
This is the **accepted version** of the review article:

Rivera, Alba; Viñado, Belén; Benito, Natividad; [et al.]. «Recommendations of the Spanish Antibiogram Committee (COESANT) for in vitro susceptibility testing of antimicrobial agents by disk diffusion». *Enfermedades infecciosas y microbiología clínica*, Vol. 41, Issue 9 (November 2023), p. 571-576. DOI 10.1016/j.eimc.2022.04.015

This version is available at <https://ddd.uab.cat/record/285155>

under the terms of the license

1 **Recommendations of the Spanish Antibiogram Committee (COESANT) for *in*
2 *vitro* susceptibility testing of antimicrobial agents by disk diffusion**

3 **Abstract**

4 Disk diffusion is a well standardized method that provides reliable categorical results to guide
5 antimicrobial therapy in numerous types of infections. Based on the guidelines of the European
6 Committee on Antimicrobial Susceptibility Testing (EUCAST), which are widely implemented in
7 Spain, the Spanish Antibiogram Committee (COESANT) has drawn up recommendations for
8 antimicrobial selection by the disk diffusion technique, including selective reporting and its use
9 for the detection of resistance mechanisms. Factors affecting disk diffusion results, along with
10 advantages and shortcomings of the method, are also discussed.

12 **Introduction**

13 Disk diffusion is a conventional phenotypic method for antimicrobial susceptibility testing that
14 combines simplicity and cost-effectiveness. Even though automated antimicrobial systems are
15 now widely employed in many clinical microbiology laboratories, the disk diffusion method is
16 still in use, as it provides reliable qualitative results to guide antimicrobial therapy in numerous
17 types of infections. Rigorous compliance with the methodology, the use of high-quality reagents
18 (culture media and antibiotic-containing disks) together with an adequate quality control allow
19 accurate and reproducible results to be obtained.¹⁻³

22 The method is based on the diffusion of a predefined amount of a given antimicrobial agent
23 contained in a paper disk or tablet, which is placed on the surface of an agar plate previously
24 inoculated with a standardized inoculum of the microorganism. As the drug diffuses, it creates
25 a gradient of concentration, leading to the formation of inhibition zones where the
26 concentration is sufficient to inhibit the growth of the inoculated microorganism. The inhibition-
27 zone diameters are classified into susceptibility categories according to regularly updated clinical
28 breakpoints.^{4,5} Several factors influence the zone diameters, which can be related to the drug
29 (disk content, diffusion rate, activity against the tested isolate), agar (depth, composition),
30 incubation conditions (temperature, duration, atmosphere) or microorganism (growth rate,
31 inoculum density). Disk diffusion methodology guidelines are provided by the CLSI (Clinical and
32 Laboratory Standards Institute) and EUCAST (European Committee on Antimicrobial
33 Susceptibility Testing), with some differences regarding the testing media for fastidious
34 organisms and the disk concentration for certain antimicrobial agents.^{6,7} Fortunately, CLSI and
35 EUCAST have created a joint disk-diffusion working group to develop standardized
36 recommendations for disk content selection, which will henceforth be applied to new
37 antimicrobial agents.^{8,9}

38 For each bacterium-drug combination, clinical breakpoints for interpreting zone diameter are
39 commonly set by selecting an optimal disk content and evaluating the correlation between the
40 minimum inhibitory concentration (MIC) values obtained by reference methods and the
41 inhibition zone diameters.^{10,11} In 2019, EUCAST revised interpretative clinical categories,
42 redefining category I (susceptible, increased exposure) and establishing arbitrary "off-scale"
43 breakpoints for some species/agents corresponding to a zone diameter of $S \geq 50$ mm, which
44 indicates that the microorganism may require a high exposure to the drug.

47 A relevant advantage of the disk diffusion technique is its flexibility in the choice of
48 antimicrobials as opposed to commercial systems in which both the antimicrobials and their
49 concentrations are chosen by the manufacturer. Thus, disk panels can be readily modified
50 according to the specific needs of each center. Moreover, the incorporation of new
51 antimicrobials into disk diffusion antibiograms is easier and less time-consuming compared with

52 commercial panels, which also tend to be costly.¹² In contrast, disk diffusion is considered the
53 least expensive of all susceptibility methods. Another benefit is that growth visualization allows
54 the detection of inoculum adequacy, mixed cultures, heteroresistance and interactions between
55 antibiotics as synergy or antagonism effects, which is highly useful for the phenotypic detection
56 of resistance mechanisms. Moreover, interpretive reading of the antibiogram and education can
57 be an advantage of disk diffusion due to its easy adaptability.

58
59 One of the main reasons against the use of the disk diffusion method is that it does not provide
60 MIC values, which are used in pharmacokinetic/pharmacodynamic (PK/PD) models for
61 personalized antibiotic therapy, especially in critically ill patients.¹³ However, as occurs in disk
62 diffusion, MIC determination is inherently variable, influenced by biological factors (strain-to-
63 strain differences) and the type of assay (accepted variation of one doubling dilution), and
64 therefore MIC values cannot be considered as absolute.¹⁴

65 Although the qualitative results obtained by disk diffusion are considered adequate for most
66 infections, choosing the most suitable antibiotic treatment regimen for some types of infections
67 (e.g., endocarditis) or microorganisms (e.g., carbapenemase-producing *Enterobacteriales*)
68 requires establishing MIC values.¹⁵ MIC determination can also be useful for the confirmation of
69 unexpected results, when the disk diffusion result falls within the newly defined EUCAST area of
70 technical uncertainty (ATU) or in cases where disk diffusion is unreliable (e.g. vancomycin and
71 staphylococci).

72
73 Another shortcoming is that although the method has been validated against the most common
74 bacteria, as stated by the international committees EUCAST and CLSI, it is not yet well
75 standardized against some fastidious and/or slow-growing microbes. It is worth noting that
76 ongoing EUCAST research on setting new disk breakpoints has led to the development of a new
77 disk diffusion method for rapidly growing anaerobic bacteria, and the breakpoints have been
78 published in the 2022 EUCAST document.^{5,16}

79
80 Furthermore, the disk diffusion method is labor-intensive, not fully automated, and the
81 interpretation of the inhibition zone diameters is subject to inter-observer variation. The
82 implementation of equipment that allows automatic reading and interpretation of inhibition
83 zone diameters, such as Sirscan (i2a, Montpellier, France), ADAGIO (Bio-Rad, Marnes-la-
84 Coquette, France), or BIOMIC (Giles Scientific Inc., Santa Barbara, USA), has gone some way to
85 address these problems.¹⁷⁻¹⁹ This equipment incorporates an expert system to improve the
86 quality of interpretation and allows the storage and further management of data. Disk diffusion
87 could also benefit from automatization of the entire process, including inoculum preparation,
88 streaking of media plates, incubation, and reading, as demonstrated by Cherkaoui *et al.* using
89 the WASPLab™ system (Copan, Brescia, Italy).²⁰ A study analyzing the most frequently
90 encountered pathogens in blood cultures has shown that this device could also allow early
91 reading (6-12 h).²¹

92
93 A recently introduced improvement of the disk diffusion method has been the standardization
94 of rapid susceptibility testing for bloodstream infections with the aim of shortening the
95 turnaround time. The EUCAST rapid method performed directly from positive blood culture
96 bottles provides reliable results within 4–8 h and so far has been validated for seven
97 pathogens.²²

98
99 In 2020, the Spanish Antibiogram Committee (COESANT) and the Study Group on Mechanisms
100 of Action and Resistance to Antimicrobial Agents (GEMARA) from the Spanish Society of
101 Infectious Diseases and Clinical Microbiology (SEIMC) published recommendations for the
102 inclusion of antimicrobials and the selection of concentration ranges in automated systems

103 according to the clinical breakpoints and the epidemiological breakpoints (ECOFF) defined by
104 EUCAST.²³

105 Similarly, the objective here is to provide recommendations on the antimicrobials to be studied
106 using the diffusion disk technique and suggestions for selective reporting. The usefulness of the
107 method for the detection of resistance mechanisms is also outlined.

108

109 **General recommendations for antimicrobial susceptibility testing using the disk diffusion**
110 **method**

111 The lists of antimicrobial agents to be tested and reported are shown in supplementary tables
112 S1-S11. Antimicrobials have been divided into five categories (A to E) along with
113 recommendations of testing and selective reporting (Table 1).²³ These recommendations should
114 be adapted to each individual center according to the institutional formulary and local antibiotic
115 stewardship programs. Antimicrobial selection criteria are based on microbiological, clinical and
116 PK/PD data, as stated in the previous COESANT document.²³ It should be noted that some
117 antimicrobial agents (category E) are used to detect resistance mechanisms or as surrogate
118 markers to extrapolate results for other agents and should not be reported. According to
119 EUCAST guidelines, the list of disk diffusion screening tests that can be used for these purposes
120 is included in Table 2.²⁴

121

122 Susceptibility testing by the disk diffusion method is challenging for some drugs, such as colistin
123 and daptomycin, due to their molecular size and physico-chemical traits, and the results for
124 some anaerobes, *Neisseria* and *Helicobacter* are unreliable, in which case an MIC method should
125 be used (Table 3).¹⁵ There are also some drug-organism combinations for which both disk and
126 MIC EUCAST breakpoints are lacking. In these cases, EUCAST recommends using the PK/PD non-
127 species-related breakpoints only available as MIC values.²⁵ EUCAST also recommends referring
128 to the epidemiologic cutoff (ECOFF) values to determine whether the MIC against the targeted
129 isolate is consistent with the wild type MIC distribution against the species. There may still be
130 cases in which the use of breakpoints defined by other organizations such as the Clinical and
131 Laboratory Standards Institute (CSLI), the Societe Francaise de Microbiologie (SFM) or the U.S.
132 Food and Drug Administration (FDA) could be an alternative when EUCAST breakpoints are
133 unavailable. In these cases, methodological recommendations of each organization regarding
134 disk content and testing media must be taken into account.

135 Additional recommendations for the detection of resistance mechanisms in the primary panel
136 by the disk diffusion method and other peculiarities of different bacterial groups are outlined
137 below. Suggested disk diffusion panels for *Enterobacteriales*, *Enterobacteriales* from urinary tract
138 infections (UTI), *Pseudomonas* spp., *Staphylococcus* spp., *Streptococcus* spp./*Enterococcus* spp.,
139 *Enterococcus* spp. from UTI, *Haemophilus influenzae*/*Haemophilus parainfluenzae* and
140 *Campylobacter jejuni*/*Campylobacter coli* as well as the recommended media are shown in
141 Figure 1.

142

143 ***Enterobacteriales***

144 The analysis of antimicrobial resistance patterns and the observation of antibiotic interactions
145 is very useful for the detection of resistance mechanisms. Disk diffusion constitutes a suitable
146 technique for the detection of several beta-lactamases of clinical and epidemiological
147 importance, such as extended spectrum beta-lactamases (ESBLs), AmpC and carbapenemases.
148 Phenotypic confirmation by diffusion techniques is mainly based on the use of beta-lactamase
149 inhibitors and indicator beta-lactam drugs. One of the recommended methods for ESBL
150 detection is the double-disk synergy test, which can be easily incorporated into the primary disk
151 diffusion antibiogram. This method involves placing an amoxicillin-clavulanic acid (10 µg) disk at
152 a distance of 30 mm (center to center, the distance provided by several types of disk-dispensers)
153 from disks containing third and fourth generation cephalosporins (30 µg) used as beta-lactam
154 indicators. The distance may be reduced to 15-20 mm according to the inhibition zone

155 diameters. ESBL production is demonstrated if the inhibition zone of any of the indicators is
156 extended by the action of clavulanic acid.^{26,27}

157
158 Phenotypic confirmation of ESBL can also be performed by the combination disk test using
159 cephalosporin disks (30 µg) with and without clavulanic acid (10 µg). An increase in the inhibition
160 zone diameter of ≥5mm for cephalosporin with clavulanic acid compared to cephalosporin alone
161 is considered a positive result. It is worth noting that the cephalosporin disk content initially
162 recommended by EUCAST for the detection of ESBLs (cefotaxime 30 µg and ceftazidime 30 µg)
163 differed from that used for standard susceptibility testing (cefotaxime 5 µg and ceftazidime 10
164 µg). In 2019, the EUCAST technical guidance on the use of the combination disk test to confirm
165 ESBLs in *Enterobacterales* was modified in favor of the concentration used in standard
166 susceptibility testing.²⁸ Nevertheless, the recommendation for disk content in the double-disk
167 synergy technique currently remains unchanged. Detection of ESBLs in isolates co-producing
168 AmpC beta-lactamases may be challenging due to resistance to clavulanic acid, which can
169 mitigate the synergistic effect. Several approaches could be used to improve ESBL detection in
170 these cases, including the use of AmpC-stable fourth-generation cephalosporins such as
171 cefepime or incorporating cloxacillin (200-250 mg/L), an inhibitor of AmpC enzymes, into the
172 medium.

173 Similarly, the double-disk synergy test or the combination disk test can be performed to detect
174 AmpC beta-lactamases, using disks with AmpC inhibitors such as cloxacillin (500-750 µg) or
175 boronic acid (400-600 µg) and third generation cephalosporins as indicators. It should be noted
176 that boronic acid inhibitors are not specific for AmpC enzymes and also affect class A beta-
177 lactamases. Inducible AmpC beta-lactamase production can also be detected in a conventional
178 disk diffusion assay by the appearance of a flattening inhibition zone between beta-lactams
179 (such as third generation cephalosporins, aztreonam or piperacillin-tazobactam) and beta-
180 lactam inducers (such as imipenem, cefoxitin or amoxicillin-clavulanate). Additionally, the
181 appearance of scattered colonies near the edge of the inhibition zone of cefoxitin, cefotaxime,
182 ceftazidime and aztreonam has been described as a useful phenotypic indicator to differentiate
183 between plasmidic and chromosomal AmpC.²⁹

184
185 Disk diffusion-based tests can also be performed to detect carbapenemase-producing
186 *Enterobacterales*. The most commonly used method is the combination disk test based on the
187 potentiation of the action of meropenem or imipenem in the presence of specific inhibitors of
188 each class of carbapenemases (boronic acid for class A carbapenemases, and dipicolinic acid or
189 EDTA for class B carbapenemases), in which the inhibition zones of the carbapenem with and
190 without the inhibitor are compared.^{26,27,30} Commercial kits are available that include cloxacillin
191 to differentiate between AmpC hyperproduction plus porin loss and carbapenemase-
192 production. For OXA-48-type carbapenemases, the only disk-based phenotypic marker is
193 temocillin resistance (zone diameter <11 mm), although it lacks specificity. The combination disk
194 method is not included in the primary disk diffusion panel, and is used for positively screened
195 isolates according to the zone diameter cut-off values for carbapenemase-producing
196 *Enterobacterales*. Therefore, the main drawback of this method is that it requires overnight
197 incubation and has been replaced by other techniques that provide faster results such as
198 biochemical tests, lateral flow immunoassays or molecular assays.^{27,30}

199
200 **Non-fermentative Gram-negative bacilli**

201 For non-fermenting Gram-negative bacilli other than *Pseudomonas* spp., *Acinetobacter* spp.,
202 *Achromobacter xylosoxidans*, *Stenotrophomonas maltophilia* and *Burkholderia pseudomallei*,
203 disk diffusion and MIC EUCAST breakpoints are unavailable. In these cases, it is recommended
204 to perform a MIC-based technique and interpret the results according to the EUCAST PK/PD non-
205 species-related breakpoints.²⁵

207 As for *Enterobacteriales*, disk-based assays using cloxacillin as an inhibitor and ceftazidime as an
208 indicator could be employed to detect AmpC beta-lactamase overproduction in *P. aeruginosa*.
209 The double-disk synergy test or the combination disk using EDTA or dipicolinic acid and
210 carbapenems can also be useful for the detection of class B carbapenemases in *P. aeruginosa*
211 and other non-fermentative Gram-negative bacilli.

212

213 ***Staphylococcus* spp., *Streptococcus* spp. and *Enterococcus* spp.**

214 The appearance (sharp or fuzzy) of the inhibition zone edges of certain antimicrobial agents can
215 provide information on resistance mechanisms. For *Staphylococcus aureus*, isolates with
216 penicillin zone diameters in the susceptible range and sharp zone edges should be considered
217 beta-lactamase producers. Cefoxitin disk diffusion results reliably predicts methicillin resistance
218 in staphylococci, except in *Staphylococcus pseudintermedius*, *Staphylococcus schleiferi* and
219 *Staphylococcus coagulans*. Conventional disk diffusion tests can also detect inducible resistance
220 to clindamycin in *Staphylococcus* and *Streptococcus* species, manifested by the appearance of a
221 flattening inhibition zone adjacent to an erythromycin disk (D-zone effect).

222

223 Disk diffusion is unreliable for glycopeptide susceptibility testing among staphylococci as it
224 cannot distinguish between wild type isolates and those with non-*vanA*-mediated glycopeptide
225 resistance. For enterococci, fuzzy zone edges and colonies within the inhibition zone are highly
226 suggestive of glycopeptide resistance and should be investigated further with an MIC method.

227

228 **Additional uses of diffusion testing**

229 The gradient strip diffusion method combines the principles of dilution and diffusion and allows
230 the MIC to be determined directly. It shares several similarities with the disk diffusion technique
231 regarding inoculum preparation, culture media and incubation conditions, as well as procedural
232 simplicity and versatility in the choice of antimicrobials. The gradient diffusion method generally
233 produces results that match those obtained with standardized dilution methods and has the
234 advantage of providing a more accurate MIC value, due to the use of a higher number of
235 dilutions than the conventional double series. However, it is not considered a reference
236 technique and the degree of concordance with reference dilution methods may vary for some
237 microorganism-drug combinations.

238 The gradient diffusion method has also been used to detect resistance mechanisms. Double-
239 sided strips containing cephalosporins or carbapenems with and without inhibitors have been
240 developed for the detection of ESBLs, AmpC betalactamases or metallo-beta-lactamases. A
241 method for the screening of heteroresistant vancomycin-intermediate *Staphylococcus aureus*
242 has also been described.

243

244 **Concluding remarks**

245 Disk diffusion remains a reliable method for the antimicrobial susceptibility testing of most
246 bacterial pathogens. Unlike commercial automated microdilution systems, the disk diffusion
247 method combines flexibility in the choice of antimicrobials and low cost. It also allows the
248 recognition of phenotypic traits, including inducible and synergistic effects, that are highly useful
249 in detecting certain resistance mechanisms. Although a labor-intensive method, this drawback
250 could be partially resolved by the incorporation of instrumentation for reading zone diameters.
251 Currently, disk diffusion is not well standardized for some bacterial groups; however, the test is
252 being updated according to ongoing research and new disk breakpoints are being set, as
253 reflected in EUCAST and CLSI publications.

254

255 **Conflict of interest**

256 The authors declare they have no conflict of interest.

257

258 **Table 1.** Categories used for the inclusion and reporting of antimicrobial agents in susceptibility
259 testing by disk diffusion.²³
260

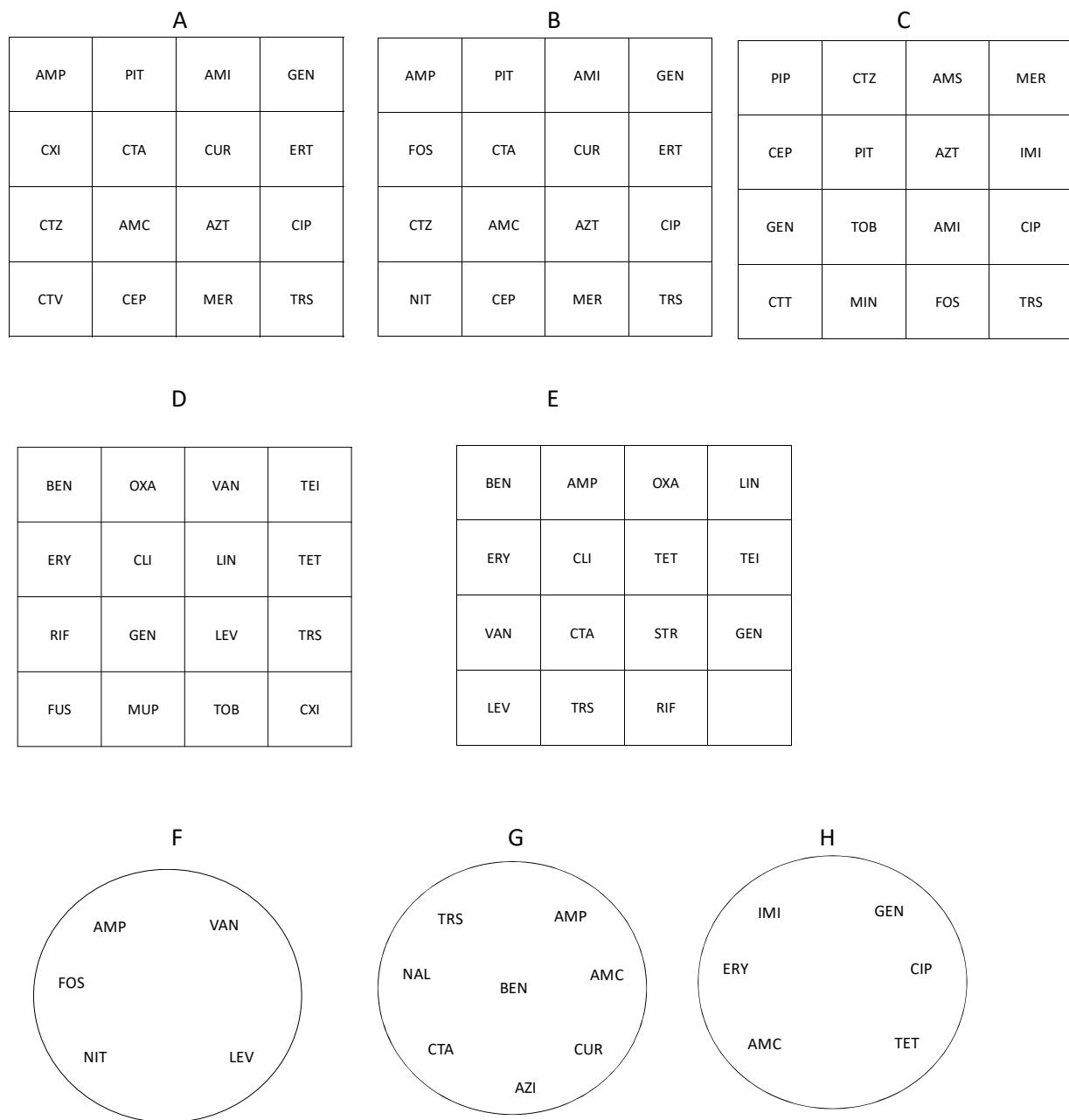
Categories	Definitions
A	Antimicrobials that must be routinely studied and reported. They are relevant for both clinical purpose and for the process of interpretive reading of the antibiogram.
B	Antimicrobials that must be routinely studied but selectively reported. They are useful for the process of interpretive reading of the antibiogram and should be selectively reported according to the type of patient, type of infection or the inferred resistance mechanism.
C	Antimicrobials that should be selectively studied and reported according to the type of patient, type of infection or to the inferred resistance mechanism.
D	Antimicrobials that are recommended to be routinely studied and reported in urine isolates.
E	Antimicrobials that should be studied but not reported. They are useful for the detection of antimicrobial resistance mechanisms, application of an expert rule or as surrogate markers of the susceptibility testing result of other antimicrobials.

261
262
263
264 **Table 2.** Antimicrobial agents (category E) used to detect resistance mechanisms or as
265 surrogates for the results of other agents and screening tests.²⁴

Antimicrobial	Microorganisms and screening tests
Cefoxitin 30 µg	Staphylococci, to exclude methicillin resistance except in <i>S. pseudintermedius</i> , <i>S. schleiferi</i> and <i>S. coagulans</i>
Oxacillin 1 µg	<i>Streptococcus pneumoniae</i> , to exclude all mechanisms of beta-lactam resistance. To exclude methicillin resistance in <i>S. pseudintermedius</i> , <i>S. schleiferi</i> and <i>S. coagulans</i>
Benzylpenicillin 1U	<i>Haemophilus influenzae</i> and <i>viridans group streptococci</i> , to exclude all mechanisms of beta-lactam resistance
Norfloxacin 10 µg	Gram-positive bacteria (staphylococci, pneumococci, enterococci, aerococci) to exclude fluoroquinolone resistance
Pefloxacin 5 µg	<i>Salmonella enterica</i> and <i>Vibrio</i> spp., to exclude fluoroquinolone resistance
Nalidixic acid 30 µg	<i>H. influenzae</i> , <i>Moraxella catarrhalis</i> and <i>Pasteurella multocida</i> , to exclude fluoroquinolone resistance

266
267
268 **Table 3.** Current antibiotic-organism combinations without disk diffusion breakpoints that
269 require MIC determination. (Adapted from ref. 15).
270

Antibiotic	Group of bacteria
Fosfomycin	<i>Enterobacteriales</i> except <i>E. coli</i> , <i>Staphylococcus</i> spp.
Ciprofloxacin	<i>Salmonella</i> spp.
Colistin	All Gram-negative bacilli
Tigecycline	<i>Enterobacteriales</i> except <i>E. coli</i>
Beta-lactams	Penicillin non-susceptible <i>Streptococcus pneumoniae</i>
Glycopeptides	<i>Staphylococcus</i> spp.
Daptomycin	All Gram-positive


271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319

Lipoglycopeptides
All antibiotics

All Gram-positive
Some anaerobes, *Neisseria* spp., *Helicobacter pylori*

Figure 1. Panel distribution of antimicrobial agents to be tested by disk diffusion against *Enterobacteriales* (A), *Enterobacteriales* from urinary tract infections (UTI) (B), *Pseudomonas* spp. (C), *Staphylococcus* spp. (D), *Streptococcus* spp./*Enterococcus* spp. (E), *Enterococcus* spp. from UTI (F), *Haemophilus influenzae*/*Haemophilus parainfluenzae* (G), and *Campylobacter jejuni*/*Campylobacter coli* (H). Figures refer to square (A-E) or round (F-H) plates. Recommended media: Mueller-Hinton agar for *Enterobacteriales*, *Pseudomonas* spp., *Staphylococcus* spp., *Enterococcus* spp.; Mueller-Hinton agar + 5% defibrinated horse blood and 20 mg/L β -NAD (MH-F) for *Streptococcus* spp., *Haemophilus influenzae*/*Haemophilus parainfluenzae* and *Campylobacter jejuni*/*Campylobacter coli*.

320
321 AMC Amoxicillin-clavulanate, AMI Amikacin, AMP Ampicillin, AMS Ampicillin-sulbactam, AZI Azithromycin,
322 AZT Aztreonam, BEN Benzylpenicillin, CEP Cefepime, CIP Ciprofloxacin, CLI Clindamycin, CTA Cefotaxime,
323 CTT Ceftolozane-tazobactam, CTV Ceftazidime- avibactam, CTZ Ceftazidime, CUR Cefuroxime, CXI
324 Cefoxitin, ERT Ertapenem, ERY Erythromycin, FOS Fosfomycin, FUS Fusidic acid, GEN Gentamicin, IMI
325 Imipenem, LEV Levofloxacin, LIN Linezolid, MER Meropenem, MIN Minocycline, MUP Mupirocin, NAL
326 Nalidixic acid, NIT Nitrofurantoin, OXA Oxacillin, PIP Piperacillin, PIT Piperacillin-tazobactam, RIF
327 Rifampicin, STR Streptomycin, TEI Teicoplanin, TET Tetracycline, TOB Tobramycin, TRS Trimethoprim-
328 sulfamethoxazole, VAN Vancomycin.

329

330 Bibliography

- 331 1. Matuschek E, Brown DFJ, Kahlmeter G. Development of the EUCAST disk diffusion
332 antimicrobial susceptibility testing method and its implementation in routine
333 microbiology laboratories. *Clin Microbiol Infect.*, 20 (2014), pp. 20:O255e66.
334 <http://dx.doi.org/10.1111/1469-0691.12373>.
- 335 2. Åhman J, Matuschek E, Kahlmeter G. Original article EUCAST evaluation of 21 brands of
336 Mueller Hinton dehydrated media for disc diffusion testing. *Clin Microbiol Infect.*, 26
337 (2020), pp. 1412.e1-1412.e5. <http://dx.doi.org/10.1016/j.cmi.2020.01.018>.
- 338 3. Åhman J, Matuschek E, Kahlmeter G. The quality of antimicrobial discs from nine
339 manufacturers d EUCAST evaluations in 2014 and 2017. *Clin Microbiol Infect.*, 25 (2019),
340 pp. 346-352. <http://dx.doi.org/10.1016/j.cmi.2018.05.021>.
- 341 4. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial
342 susceptibility testing. 32st ed.; CLSI supplement M100. Clinical and Laboratory Standards
343 Institute: Wayne, PA, USA, 2022.
- 344 5. European Committee on Antimicrobial Susceptibility Testing. Clinical breakpoints—
345 bacteria (v 12.0). 2022. Available online: https://https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Breakpoint_tables/v_12.0_Breakpoint_Tables.pdf.
- 348 6. European Committee on Antimicrobial Susceptibility Testing. Antimicrobial susceptibility
349 testing EUCAST disk diffusion Method. Version 8.0. 2021. Available online:
350 https://https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Disk_test_documents/2021_manuals/Manual_v_9.0_EUCAST_Disk_Test_2021.pdf.
- 352 7. Clinical and Laboratory Standards Institute. Performance standards for antimicrobial disk
353 susceptibility tests, 13th ed.; CLSI Standard M02. Clinical and Laboratory Standards
354 Institute: Wayne, PA, USA, 2018.
- 355 8. Clinical and Laboratory Standards Institute. Procedure for optimizing disk contents
356 (potencies) for disk diffusion testing of antimicrobial agents using harmonized CLSI and
357 EUCAST criteria. 1st ed.; CLSI document M23S. Clinical and Laboratory Standards
358 Institute: Wayne, PA, USA, 2020.
- 359 9. European Committee on Antimicrobial Susceptibility Testing. Procedure for establishing
360 zone diameter breakpoints and quality control criteria for new antimicrobial agents,
361 EUCAST SOP 9.2, 2020. <http://www.eucast.org>.
- 362 10. Kronvall G, Giske CG, Kahlmeter G. Setting interpretive breakpoints for antimicrobial
363 susceptibility testing using disk diffusion. *Int J Antimicrob Agents.*, 38 (2011), pp. 281-290.
364 <http://dx.doi.org/10.1016/j.ijantimicag.2011.04.006>.
- 365 11. Craig BA. Modeling approach to diameter breakpoint determination. *Diagn Microbiol
366 Infect Dis.*, 36 (2000), pp. 193-202. [http://dx.doi.org/10.1016/s0732-8893\(99\)00130-3](http://dx.doi.org/10.1016/s0732-8893(99)00130-3).
- 367 12. Humphries RM, Kircher S, Ferrell A, Krause KM, Malherbe R, Hsiung A, *et al.* The
368 continued value of disk diffusion for assessing antimicrobial susceptibility in clinical
369 laboratories: report from the Clinical and Laboratory Standards Institute Methods
370 Development and Standardization Working Group. *J Clin Microbiol.*, 26 (2018), pp.
371 e00437-18. <http://dx.doi.org/10.1128/JCM.00437-18>.

372 13. Roberts JA, Abdul-Aziz M, Lipman J, *et al* on behalf of TIS of, Pharmacodynamics A-IP and
373 the P and, Diseases SG of the ES of CM and I. Individualised antibiotic dosing for patients
374 who are critically ill: challenges and potential solutions. *Lancet Infect Dis.*, 14 (2014),
375 pp.498-509. [http://dx.doi.org/10.1016/S1473-3099\(14\)70036-2](http://dx.doi.org/10.1016/S1473-3099(14)70036-2).

376 14. Mouton JW, Muller AE, Cantón R, Giske CG, Kahlmeter G, Turnidge J. MIC-based dose
377 adjustment : facts and fables. *J Antimicrob Chemother.*, 73 (2018), pp. 564-568.
378 <http://dx.doi.org/10.1093/jac/dkx427>.

379 15. Kowalska-Krochmal B, Dudek-Wicher R. The minimum inhibitory concentration of
380 antibiotics: methods, interpretation, clinical relevance. *Pathogens.*, 10 (2021), pp. 1-21.
381 <http://dx.doi.org/10.3390/pathogens10020165>.

382 16. Bavelaar H, Justesen US, Morris TE, Anderson B, Copsey-Mawer S, Stubhaug TT, *et al*.
383 Development of a EUCAST disk diffusion method for the susceptibility testing of rapidly
384 growing anaerobic bacteria using Fastidious Anaerobe Agar (FAA): a development study
385 using *Bacteroides* species. *Clin Microbiol Infect.*, 27 (2021), pp. 1695.e1-1695.e6.
386 <http://dx.doi.org/10.1016/j.cmi.2021.03.028>.

387 17. Hombach M, Zbinden R, Böttger EC. Standardisation of disk diffusion results for antibiotic
388 susceptibility testing using the Sirscan automated zone reader. *BMC Microbiol.*, 13 (2013),
389 pp. 225. <http://dx.doi.org/10.1186/1471-2180-13-225>.

390 18. Idelevich EA, Becker K, Schmitz J, Knaack D, Peters G, Köck R. Evaluation of an automated
391 system for reading and interpreting disk diffusion antimicrobial susceptibility testing of
392 fastidious bacteria. *PLoS One.*, 11 (2016), pp. 8-15.
393 <http://dx.doi.org/10.1371/journal.pone.0159183>.

394 19. Geiss HK, Klar UE. Evaluation of the BIOMIC video reader system for routine use in the
395 clinical microbiology laboratory. *Diagn Microbiol Infect Dis.*, 37 (2000), pp. 151-155.
396 [http://dx.doi.org/10.1016/S0732-8893\(00\)00132-2](http://dx.doi.org/10.1016/S0732-8893(00)00132-2).

397 20. Cherkaoui A, Renzi G, Vuilleumier N, Schrenzel J. Performance of fully automated
398 antimicrobial disk diffusion susceptibility testing using Copan WASP Colibri coupled to
399 the Radian In-Line Carousel and Expert System. *J Clin Microbiol.*, 59 (2021), pp. e0077721.
400 <http://dx.doi.org/10.1128/JCM.00777-21>.

401 21. Hombach M, Jetter M, Blo N, Kolesnik-goldmann N, Bo EC. Fully automated disc diffusion
402 for rapid antibiotic susceptibility test results : a proof-of-principle study. *J Antimicrob
403 Chemother.*, 72 (2017), pp. 1659-1668. <http://dx.doi.org/10.1093/jac/dkx026>.

404 22. Jonasson E, Matuschek E, Kahlmeter G. The EUCAST rapid disc diffusion method for
405 antimicrobial susceptibility testing directly from positive blood culture bottles. *J
406 Antimicrob Chemother.*, 75 (2020), pp. 968-978. <http://dx.doi.org/10.1093/jac/dkz548>.

407 23. Cantón R, Oliver A, Alós JI, de Benito N, Bou G, Campos J, *et al*. Recommendations of the
408 Spanish Antibiogram Committee (COESANT) for selecting antimicrobial agents and
409 concentrations for in vitro susceptibility studies using automated systems. *Enferm Infecc
410 Microbiol Clin.*, 38 (2020), pp. 182-187. <http://dx.doi.org/10.1016/j.eimc.2019.01.017>.

411 24. European Committee on Antimicrobial Susceptibility Testing. EUCAST phenotypic
412 screening tests to detect / exclude resistance of clinical relevance. Available online:
413 [https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_document
s/Screening_to_detect_and_exclude_resistance_2022_02_02.pdf](https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_document
414 s/Screening_to_detect_and_exclude_resistance_2022_02_02.pdf).

415 25. European Committee on Antimicrobial Susceptibility Testing. Antimicrobial susceptibility
416 tests on groups of organisms or agents for which there are no EUCAST breakpoints.
417 Available online: [https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_document
s/When_there_are_no_breakpoints_Guidance_1_Dec_2021.pdf](https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Guidance_document
418 s/When_there_are_no_breakpoints_Guidance_1_Dec_2021.pdf).

419 26. Calvo J, Cantón R, Fernández Cuenca F, Mirelis B, Navarro F. Detección fenotípica de
420 mecanismos de resistencia en gramnegativos Procedimientos en Microbiología Clínica.
421 Cercenado E, Cantón R (editores). Sociedad Española de Enfermedades Infecciosas y
422 Microbiología Clínica (SEIMC). 2011.

423

424 27. European Committee on Antimicrobial Susceptibility Testing. EUCAST guidelines for
425 detection of resistance mechanisms and specific resistances of clinical and/or
426 epidemiological importance. Available online:
427 <https://www.eucast.org/fileadmin/src/media/PDFs/>.

428 28. European Committee on Antimicrobial Susceptibility Testing. EUCAST technical guidance
429 on the use of the combination disk test (CDT) for confirmation of ESBL in *Enterobacteriales*.
430 New disk potencies for combination disks containing cefotaxime and ceftazidime without
431 and with clavulanic acid. Available online:
432 https://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/General_documents/.

433 29. Mirelis B, Rivera A, Miró E, Mesa RJ, Navarro F, Coll P. A simple phenotypic method for
434 differentiation between acquired and chromosomal AmpC β -lactamases in *Escherichia*
435 *coli*. *Enferm Infecc Microbiol Clin.*, 24 (2006) pp. 370-372.
436 <http://dx.doi.org/10.1157/13089690>.

437 30. Aguirre-Quiñonero A, Martínez-Martínez L. Non-molecular detection of carbapenemases
438 in *Enterobacteriaceae* clinical isolates. *J Infect Chemother.*, 23 (2017), pp. 1-11.
439 <http://dx.doi.org/10.1016/j.jiac.2016.09.008>.

440

441

442