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Abstract

Quantum machine learning—and specifically Variational Quantum Algorithms (VQAs)—offers a powerful, flexible paradigm
for programming near-term quantum computers, with applications in chemistry, metrology, materials science, data science,
and mathematics. Here, one trains an ansatz, in the form of a parameterized quantum circuit, to accomplish a task of interest.
However, challenges have recently emerged suggesting that deep ansatzes are difficult to train, due to flat training landscapes
caused by randomness or by hardware noise. This motivates our work, where we present a variable structure approach to build
ansatzes for VQAs. Our approach, called VAns (Variable Ansatz), applies a set of rules to both grow and (crucially) remove
quantum gates in an informed manner during the optimization. Consequently, VAns is ideally suited to mitigate trainability
and noise-related issues by keeping the ansatz shallow. We employ VAns in the variational quantum eigensolver for condensed
matter and quantum chemistry applications, in the quantum autoencoder for data compression and in unitary compilation
problems showing successful results in all cases.

Keywords Quantum machine learning - Variational quantum algorithms - Quantum circuit discovery

1 Introduction quantum algorithms (VQAs) (Bharti et al. 2022; Cerezo
et al. 2021a; Peruzzo et al. 2014) train such circuits to
minimize a cost function and consequently accomplish a

task of interest. Examples of such tasks are finding ground-

Quantum computing holds the promise of providing solu-
tions to many classically intractable problems. The availabil-

ity of Noisy Intermediate-Scale Quantum (NISQ) devices
(Preskill 2018) has raised the question of whether these
devices will themselves deliver on such a promise, or whether
they will simply be a stepping stone to fault-tolerant archi-
tectures.

Parameterized quantum circuits have emerged as one of
the best hopes to make use of NISQ devices. Variational
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states (Peruzzo et al. 2014), solving linear systems of equa-
tions (Bravo-Prieto et al. 2019; Huang et al. 2019; Xu et al.
2021), simulating dynamics (Cirstoiu et al. 2020; Commeau
et al. 2020; Gibbs et al. 2021; Yuan et al. 2019), factor-
ing (Anschuetz et al. 2019), compiling (Khatri et al. 2019;
Sharma et al. 2020), enhancing quantum metrology (Beckey
et al. 2022; Koczor et al. 2020), and analyzing principle
components (Cerezo et al. 2022; LaRose et al. 2019). More
generally, one may employ multiple input states to train the
parameterized quantum circuit, and many data science appli-
cations have been envisioned for VQAs (Abbas et al. 2021;
Biamonte et al. 2017; Schuld et al. 2014; Verdon et al. 2019b).

Despite recent relatively large-scale implementations of
VQAs (Arute et al. 2020; Harrigan et al. 2021; Ollitrault et al.
2020), there are still several issues that need to be addressed to
ensure that VQAs can provide a quantum advantage on NISQ
devices. One issue is trainability. For instance, it has been
shown that several VQA architectures become untrainable
for large problem sizes due to the existence of the so-called
barren plateau phenomenon (Cerezo et al. 2021b; Holmes
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etal. 2021; McClean et al. 2018; Pesah et al. 2021; Thanasilp
et al. 2021; Zhao and Gao 2021), which can be linked to
circuits having large expressibility (Holmes et al. 2022) or
generating large quantities of entanglement (Marrero et al.
2021; Patti et al. 2021; Sharma et al. 2022). The exponen-
tial scaling caused by such barren plateaus cannot simply be
escaped by changing the optimizer (Arrasmith et al. 2021,
Cerezo and Coles 2021). However, some promising strate-
gies have been proposed to mitigate barren plateaus, such as
correlating parameters (Volkoff and Coles 2021), layerwise
training (Skolik et al. 2021), and clever parameter initializa-
tion (Grant et al. 2019; Verdon et al. 2019a).

The other major issue is quantum hardware noise, which
accumulates with the circuit depth (Stilck Franga and Garcia-
Patron 2021; Wang et al. 2021). This of course reduces the
accuracy of observable estimation, e.g., when trying to esti-
mate a ground state energy. However, it also leads to a more
subtle and detrimental issue known as noise-induced barren
plateaus (Wang et al. 2021). Here, the noise corrupts the states
in the quantum circuit and the cost function exponentially

concentrates around its mean value. Similar to other barren
plateaus, this phenomenon leads to an exponentially large
precision being required to train the parameters. Currently,
no strategies have been proposed to deal with noise-induced
barren plateaus. Hence, developing such strategies is a cru-
cial research direction.

Circuit depth is clearly a key parameter for both of these
issues. It is, therefore, essential to construct ansatzes that
maintain a shallow depth to mitigate noise and trainability
issues, but also that have enough expressibility to contain the
problem solution. Two different strategies for ansatzes can
be distinguished: either using a fixed (Bartlett and Musiat
2007; Cao et al. 2019; Farhi et al. 2014; Hadfield et al. 2019;
Kandala et al. 2017) or a variable structure (Chivilikhin et al.
2020; Cincio etal. 2018, 2021; Du et al. 2020; Grimsley et al.
2019; Rattew et al. 2019; Tang et al. 2021; Zhang et al. 2021,
2020b). While the former is the traditional approach, the
latter has recently gained considerable attention due to its ver-
satility to address the aforementioned challenges. In variable
structure ansatzes, the overall strategy consists of employing
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Fig.1 Schematic diagram of the VAns algorithm. a VAns explores the
hyperspace of architectures of parametrized quantum circuits to create
short depth ansatzes for VQA applications. VAns takes a (potentially
non-trivial) initial circuit (step I) and optimizes its parameters until
convergence. At each step, VAns inserts blocks of gates into the circuit
which are initialized to the identity (indicated in a box in the figure),
so that the ansatzes at contiguous steps belong to an equivalence class
of circuits leading to the same cost value (step II). VAns then employs
a classical algorithm to simplify the circuit by eliminating gates and
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finding the shortest circuit (step II to III). The ovals represent sub-
spaces of the architecture hyperspace connected through VAns. While
some regions may be smoothly connected by placing identity resolu-
tions, VAns can also explore regions that are not smoothly connected
via a gate-simplification process. VAns can either reject (step IV) or
accept (step V) modifications in the circuit structure. Here Z (X) indi-
cates a rotation about the z (x) axis. b Schematic representation of the
cost function value versus the number of iterations for a typical VAns
implementation which follows the steps in a)
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a machine learning protocol to iteratively grow the quantum
circuit by placing gates that empirically lower the cost func-
tion. While these approaches address the expressibility issue
by exploring specific regions of the ansatz architecture hyper-
space, their depth can still grow and lead to noise-induced
issues, and they can still have trainability issues from accu-
mulating a large number of trainable parameters.

In this work, we combine several features of recently
proposed methods to introduce the Variable Ansatz (VAns)
algorithm to generate variable structure ansatzes for generic
VQA applications. As shown in Fig. 1, VAns iteratively
grows the parameterized quantum circuit by adding blocks
of gates initialized to the identity, but also prevents the cir-
cuit from over-growing by removing gates and compressing
the circuit at each iteration. In this sense, VAns produces
shallow circuits that are more resilient to noise, and that
have less trainable parameters to avoid trainability issues.
Our approach provides a simple yet effective way to address
the ansatz design problem, without resorting to resource-
expensive computations.

This article is fix-structured as follows. In Sec. 2, we pro-
vide background on VQA and barren plateaus, and we present
a comprehensive literature review of recent variable ansatz
design. We then turn to Sec. 3, where we present the VAns
algorithm. In Sec. 4, we present numerical results where we
employ VAns to obtain the ground state of condensed matter
and quantum chemistry systems. Here, we also show how
VAns can be used to build ansatzes for quantum autoencod-
ing applications, a paradigmatic VQA implementation, and
demonstrate how VAns can be applied to compile quantum
circuits. Moreover, we study the noise resilience of VAns
by benchmarking ground-state preparation tasks in the pres-
ence of noise. Finally, in Sec. 5, we discuss our results and
present potential future research directions employing the
VAns algorithm.

2 Background
2.1 Theoretical framework

In this work, we consider generic Variational Quantum Algo-
rithm (VQA) tasks where the goal is to solve an optimization
problem encoded into a cost function of the form

Ck,0) =" fi (THOU K. 8)0,U" (k. 0)1) . )

Here, {p;} are n-qubit states forming a training set, and
U(k,0) is a quantum circuit parametrized by continu-
ous parameters @ (e.g., rotation angles) and by discrete
parameters k (e.g., gate placements). Moreover, O; are
observables and f; are functions that encode the opti-

mization task at hand. For instance, when employing the
Variational Quantum Eigensolver (VQE) algorithm, we have
fi(x) = x and the cost function reduces to C(k,0) =
Tr[HU (k, 0)pU7 (k, 0)], where p is the input state (and the
only state in the training set) and H is the Hamiltonian whose
ground state one seeks to prepare. Alternatively, in a binary
classification problem where the training set is of the form
{pi, yi}, with y; € {0, 1} being the true label, the choice
filx)=(x— y,')2 leads to the least square error cost.

Given the cost function, a quantum computer is employed
to estimate each term in Eq. 1, while the power of classical
optimization algorithms is leveraged to solve the optimiza-
tion task

argmin C(k, 0) . 2)
k.0

The success of a VQA algorithm in solving Eq.2 hinges on
several factors. First, the classical optimizer must be able to
efficiently train the parameters, and in the past few years,
there has been a tremendous effort in developing quantum-
aware optimizers (Arrasmith et al. 2020; Fontana et al. 2020;
Koczor and Benjamin 2019; Kiibler et al. 2020; Nakanishi
etal. 2020; Stokes et al. 2020; Verdon et al. 2018). Moreover,
while several choices of observables { O;} and functions { f;}
can lead to different faithful cost functions (i.e., cost func-
tions whose global optima correspond to the solution of the
problem), it has been shown that global cost functions can
lead to barren plateaus and trainability issues for large prob-
lem sizes (Cerezo et al. 2021b; Sharma et al. 2022). Here,
we recall that global cost functions are defined as ones where
O; acts non-trivially on all n qubits. Finally, as discussed in
the next section, the choice of ansatz for U (k, @) also plays a
crucial role in determining the success of the VQA scheme.

2.2 Barren plateaus

The barren plateau phenomenon has recently received con-
siderable attention as one of the main challenges to overcome
for VQA architectures to outperform their classical counter-
parts. Barren plateaus were first identified in McClean et al.
(2018), where it was shown that deep random parametrized
quantum circuits that approximate 2-designs have gradients
that are (in average) exponentially vanishing with the system
size. That is, one finds that

Var |:8C(k, 0)

u i|<F(n), with F(n)eo<i), 3

21’1

where 6 € 6. From Chebyshev’s inequality, we have that
Var [%’5’())] bounds the probability that the cost-function
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partial derivative deviates from its mean value (of zero) as

aC (k,0)
Pr M >cl < M , 4)
96 c?

for any ¢ > 0. Hence, when the cost exhibits a barren plateau,
an exponentially large precision is needed to determine a cost
minimizing direction and navigate the flat landscape (Arra-
smith et al. 2021; Cerezo and Coles 2021).

This phenomenon was generalized in Cerezo et al. (2021b)
to shallow circuits, and it was shown that the locality of
the operators O; in Eq.1 play a key role in leading to
barren plateaus. Barren plateaus were later analyzed and
extended to the context of dissipative (Sharma et al. 2022)
and convolutional quantum neural networks (Pesah et al.
2021; Zhao and Gao 2021), and to the problem of learn-
ing scramblers (Holmes et al. 2021). A key aspect here is
that circuits with large expressibility (Holmes et al. 2022;
Larocca et al. 2022) (i.e., which sample large regions of the
unitary group (Sim et al. 2019)) and which generate large
amounts of entanglement (Marrero et al. 2021; Patti et al.
2021; Sharma et al. 2022) will generally suffer from barren
plateaus. While several strategies have been developed to
mitigate the randomness or entanglement in ansatzes prone
to barren plateaus (Bharti and Haug 2021; Cerezo et al. 2022;
Grantetal. 2019; Pesah etal. 2021; Skolik et al. 2021; Verdon
et al. 2019a; Volkoff and Coles 2021; Zhang et al. 2020a), it
is widely accepted that designing smart ansatzes which pre-
vent altogether barren plateaus is one of the most promising
applications.

Here, we remark that there exists a second method leading
to barren plateaus which can even affect smart ansatzes with
no randomness or entanglement-induced barren plateaus. As
shown in Wang et al. (2021), the presence of certain noise
models acting throughout the circuit maps the input state
toward the fixed point of the noise model (i.e., the maximally
mixed state) (Stilck Franca and Garcia-Patron 2021; Wang
et al. 2021), which effectively implies that the cost function
value concentrates exponentially around its average as the
circuit depth increases. Explicitly, in a noise-induced barren
plateau one now finds that
’m‘ <gm), with g(heO <i) , 5)

20 q'

where g > 1 is a noise parameter and / the number of layers.
From Eq. 5, we see that noise-induced barren plateaus will be
critical for circuits whose depth scales (at least linearly) with
the number of qubits. It is worth remarking that Eq.5 is no
longer probabilistic as the whole landscape flattens. Finally,
we note that strategies aimed at reducing the randomness
of the circuit cannot generally prevent the cost from hav-
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ing a noise-induced barren plateau, since here reducing the
circuit noise (improving the quantum hardware) and employ-
ing shallow circuits seem to be the only viable and promising
strategies to prevent these barren plateaus.

2.3 Ansatz for parametrized quantum circuits

Here, we analyze different ansatzes strategies for parametrized
quantum circuits and how they can be affected by barren
plateaus. Without loss of generality, a parametrized quantum
circuit U (k, 0) can always be expressed as

Uk.0) =] [U,0)W, . (6)
J

where ij are fixed gates, and where Ukj 0;) = e_iej Gi;

are unitaries generated by a Hermitian operator Gy; and
parametrized by a continuous parameter 6; € . In a fixed
structure ansatz, the discrete parameters k; € k usually deter-
mine the type of gate, while in a variable structure ansatz they
can also control the gate placement in the circuit.

2.3.1 Fixed structure ansatz

Let us first discuss fixed structure ansatzes. A common archi-
tecture with fixed structure is the layered Hardware Efficient
Ansatz (HEA) (Kandala et al. 2017), where the gates are
arranged in a brick-like fashion and act on alternating pairs
of qubits. One of the main advantages of this ansatz is that
it employs gates native to the specific device used, hence
avoiding unnecessary depth overhead arising from compil-
ing non-native unitaries into native gates. This type of ansatz
is problem-agnostic, in the sense that it is expressible enough
so that it can be generically employed for any task. However,
its high expressibility (Holmes et al. 2022) can lead to train-
ability and barren plateau issues.

As previously mentioned, designing smart ansatzes can
help in preventing barren plateaus. One such strategy are
the so-called problem inspired ansatzes. Here the goal is to
encode information of the problem into the architecture of the
ansatz so that the optimal solution of Eq.2 exists within the
parameter space without requiring high expressibility. Exam-
ples of these fixed structure ansatzes are the Unitary Coupled
Cluster (UCC) Ansatz (Bartlett and Musiat 2007; Cao et al.
2019) for quantum chemistry and the Quantum Alternat-
ing Operator Ansatz (QAOA) for optimization (Farhi et al.
2014; Hadfield et al. 2019). However, while these ansatzes
might not exhibit expressibility-induced barren plateaus,
they usually require deep circuits to be implemented, and
hence are very prone to be affected by noise-induced barren
plateaus (Wang et al. 2021).
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2.3.2 Variable structure ansatzes

To avoid some of the limitations of these fixed struc-
ture ansatzes, there has recently been great effort put
forward towards developing variable ansatz strategies for
parametrized quantum circuits (Chivilikhin et al. 2020; Cin-
cio et al. 2018, 2021; Du et al. 2020; Grimsley et al. 2019;
Rattew et al. 2019; Tang et al. 2021; Zhang et al. 2021,
2020b). Here, the overall strategy consists of iteratively
changing the quantum circuit by placing (or removing) gates
that empirically lower the cost function. In what follows, we
briefly review some of these variable ansatz proposals.

The first proposal for variable ansatzes for quantum chem-
istry was introduced in Grimsley et al. (2019) under the name
of ADAPT-VQE. Here, the authors follow a circuit structure
similar to that used in the UCC ansatz and propose to iter-
atively grow the circuit by appending gates that implement
fermionic operators chosen from a pool of single and double
excitation operators. At each iteration, one decides which
operator in the pool is to be appended, which can lead to
a considerable overhead if the number of operators in the
pool is large. Similarly, to fix structure UCC ansatzes, the
mapping from fermions to qubits can lead to prohibitively
deep circuits. This issue can be overcome using the qubit-
ADAPT-VQE (Tang et al. 2021) algorithm, where the pool
of operators is modified in such a way that only easily imple-
mentable gates are considered. However, the size of the pool
still grows with the number of qubits. In this context, train-
ability issues have been tackled in Sim et al. (2021), where
the parameter optimization is turned into a series of optimiza-
tions each performed on a subset of the whole parameter set;
an heuristic method is proposed in order to remove gates
and add new ones, which in turn allowed the authors to
optimize circuits naively containing more than a thousand
parameters. In addition, Ref. (Zhang et al. 2021) studies how
the pool of operators can be further reduced by comput-
ing the mutual information between the qubits in classically
approximated ground state. We remark that estimations of
the mutual information have also been recently employed
to reduce the depth of fixed structured ansatzes (Tkachenko
et al. 2021). We refer the reader to Claudino et al. (2020)
for a detailed comparison between ADAPT-VQE and UCC
ansatzes. Despite constituting a promising approach, it is
unclear whether ADAPT-VQE and its variants will be able
to overcome typical noise-induced trainability problems as
the systems under study are increased in size. Moreover, due
to its specific quantum chemistry scope, the application of
these schemes is limited.

A different approach to variable ansatzes that has gained
considerable attention are machine-learning-aided evolution-
ary algorithms that upgrade individuals (quantum circuits)
from a population. Noticeably, the presence of quantum cor-
relations makes it so that it is not straightforward to combine

features between circuits during the evolution, as simply
merging two promising circuits does not necessarily lead
to low cost function values. Thus, only random mutations
have been considered so far. An example of this method is
found in the Evolutionary VQE (EVQE) (Rattew et al. 2019),
where one smoothly explores the Hilbert space by growing
the circuit with identity-initialized blocks of gates and ran-
domly removing sequences of gates. As suggested by the
authors, this might avoid entering regions leading to bar-
ren plateaus. Another example of an evolutionary algorithm
is the Multi-objective Genetic VQE (MoG-VQE) (Chivi-
likhin et al. 2020), where one uses block-structured ansatz
and simultaneously optimizes both the energy and num-
ber of entangling gates. Evolutionary algorithms constitute
a promising approach to ansatzes design, they nevertheless
come at the cost of high quantum-computational resources
to evolve populations of quantum circuits.

A different machine learning approach to discover ansatz
structures has been considered in Cincio et al. (2018, 2021)
where the goal is to obtain a short depth version of a given uni-
tary. Given specific quantum hardware constraints (such as
connectivity, noise-model as represented by quantum chan-
nels or available gates), an algorithm grows and modifies the
structure of a parametrized quantum circuit to best match the
action of the trained circuit with that of the target unitary. At
each iteration, a parallelization and compression procedure
is applied. This method was able to discover a short-depth
version of the swap test to compute state overlaps (Cincio
et al. 2018), and in Cincio et al. (2021) it was shown to
drastically improve the discovered circuit performance in the
presence of noise. Moreover, this technique has recently been
tested in large-scale numerics for combinatorial optimiza-
tion problems (Liu et al. 2021). In addition, in Ostaszewski
etal. (2021) the authors present a different iterative algorithm
where single-qubit rotations are used for growing the circuit,
hence leading to a scheme with limited expressibility power.

Finally, in the recent works of Refs. (Du et al. 2020;
Pirhooshyaran and Terlaky 2020; Zhang et al. 2020b) the
authors employ tools from auto-machine learning to build
variable ansatzes. Specifically, in Du et al. (2020) the authors
make use of the supernet and weight sharing strategies from
neural network architecture search (Elsken et al. 2019), while
in Zhang et al. (2020b) the proposal is based on a generaliza-
tion of the differentiable neural architecture search (Liu et al.
2018) for quantum circuits. In Pirhooshyaran and Terlaky
(2020) the authors study the design of quantum circuits for
multi-label classification: policy gradient methods are used to
train a neural network, so to decide which gates will compose
candidate quantum circuits. We remark that while promising,
the latter methods require quantum-computational resources
which considerably grow with the problem sizes.

In the next section, we present a task-oriented NISQ-
friendly approach to the problem of ansatzes design. In the
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context of the literature, the approach presented here gener-
alizes the work in Cincio et al. (2018, 2021) as a method
to build potentially trainable short-depth ansatz for Varia-
tion Quantum Algorithm tasks. Unlike previous methods,
the algorithm introduced here not only grows the circuit but
more importantly employs classical routines to remove quan-
tum gates in an informed manner during the optimization. In
addition, our method can be used in a wide class of prob-
lems within the realm of variational quantum algorithms
(where the cost function is usually defined as the expecta-
tion of a Hamiltonian), but also within more general contexts
(where the loss function can take more general forms such
as mean-squared error and log likelihoods). Finally, below,
we showcase the performance of VAns in the presence of
hardware noise, a benchmark notably absent in many other
variable ansatzes proposals.

3 The variable ansatz (VAns) algorithm
3.1 Overview

The goal of the VAns algorithm is to adaptively construct
shallow and trainable ansatzes for generic quantum machine
learning applications using parametrized quantum circuits.
Let us define as C; the architecture hyperspace of quantum
circuits of depth /, where a single layer is defined as gates
acting in parallel. VAns takes as input:

e A cost function C(k, ) to minimize.

A dictionary D of parametrized gates that compile to
the identity. That is, for V(y) € D there exists a set of
parameters y* such that V (p*)= 1.

An initial circuit configuration U ? (k, ) € Cy, of depth
lp.

Circuit Insertion rules which stochastically take an
element V(y*) € D and append it to the circuit. The
insertionisamap Z : C; — Cp with I’ > L.

e Circuit Simplification rules to eliminate unneces-
sary gates, redundant gates, or gates that do not have
a large effect on the cost. The simplification is a map
S:C — Cpwithl’ <.

e An optimization algorithm for the continuous parameters
0, and an optimization algorithm for the discrete param-
eters k.

Given these inputs, VAns outputs a circuit architecture and
set of parameters that approximately minimize Eq. 2. In what
follows, we describe the overall structure of VAns (presented
in Algorithm 1), and in the next sections, we provide addi-
tional details for the Insertionand Simplification
modules. In all cases, the steps presented here are aimed at
giving a general overview of the method and are intended
to be used as building blocks for more advanced versions of
VAns.

The first ingredient of VAns (besides the cost function,
which is defined by the problem at hand) is a dictionary D
of parametrized gates that can compile to identity and which
VAns will employ to build the ansatz. A key aspect here is that
D can be composed of any set of gates, so that one can build
a dictionary specifically tailored for a given application. For
instance, for problems with a given symmetry, D can con-
tain gates preserving said symmetry (Gard et al. 2020). In
addition, it is usually convenient to have the unitaries in D
expressed in terms of gates native to the specific quantum
hardware employed, as this avoids compilation depth over-
heads.

Once the gate dictionary is set, the ansatz is initialized to
a given configuration U® (k, #). As shown in Algorithm 1,
one then employs an optimizer to train the continuous param-
eters @ in the initial ansatz until the optimization algorithm
converges. In Fig. 2, we show two non-trivial initializa-
tion strategies employed in our numerical simulations (see
Sect.4). In Fig. 2a, the circuit is initialized to a separable
product ansatz which generates no entanglement, while in
Fig. 2b, one initializes to a shallow alternating Hardware

a) X b)

X—Z
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X—Z

BBl

X

X—Z

X X

NN (NN

X7

N

1

Fig. 2 Examples of initial circuit configurations for VAns. VAns take
as input an initial structure for the parametrized quantum circuit. In a,
we depict a separable product ansatz which generates no entanglement
between the qubits. On the other hand, b shows two layers of a shal-
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low alternating Hardware Efficient Ansatz where neighboring qubits
are initially entangled. Here, Z (X) indicates a rotation about the z (x)
axis
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Efficient Ansatz such that neighboring qubits are entangled.
While the choice of an appropriate initial ansatz can lead to
faster convergence, VAns can in principle transform a simple
initial ansatz into a more complex one as part of its architec-
ture search.

From this point, VAns enters a nested optimization loop.
In the outer loop, VAns explores the architecture hyperspace
to optimize the ansatz’s discrete parameters k that character-
ize the circuit structure. Then, in the inner loop, the ansatz
structure is fixed and the continuous parameters 6 are opti-
mized.

At the start of the outer loop, VAns employs its Insertion
rules to stochastically grow the circuit. The fact that these
rules are stochastic guarantees that different runs of VAns
explore distinct regions of the architecture hyperspace. As
previously mentioned, the gates added to the circuit compile
to the identity so that circuits that differ by gate insertions
belong to an equivalence class of circuits leading to the same
cost function value. As discussed below, the Insertion
rules can be such that they depend on the current circuit they
act upon. For instance, VAns can potentially add entangling
gates to qubits that were are not previously connected via
two-qubit gates.

To prevent the circuit from constantly growing each time
gates are inserted, VAns follows the Insertion step by a
Simplification step. Here, the goal is to determine if
the circuit depth can be reduced without significantly modi-
fying the cost function value in a systematic way, as proposed
in Maslov et al. (2008). This is a fundamental step of VAns as
it allows the algorithm to explore and jump between different
regions of the architecture hyperspace which might not be
trivially connected. Moreover, unlike other variable ansatz
strategies which continuously increase the circuit depth or
which randomly remove gates, the Simplification step
allows VAns to find short depth ansatzes by deleting gates in
an informed manner.

Taken together, Insertion and Simplification
provide a set of discrete parameters k. However, to determine
if this new circuit structure can improve the cost function
value it is necessary to enter the inner optimization loop and
train the continuous parameters . When convergence in the
optimization is reached, the final cost function value is com-
pared to the cost in the previous iteration. Updates that lead
to equi-cost values or to smaller costs are accepted, while
updates leading to higher cost functions are accepted with
exponentially decaying probability in a manner similar to a
Metropolis-Hastings step (Hastings 1970). Here one accepts
an update which increases the cost value with a probabil-
ity given by exp (—f %—OC), with %.—g being increment in the
cost function with respect to the initial value, and 8 > 0 a
“temperature” factor. The previous optimizations in inner and
outer loops are repeated until a termination condition frerm
is reached, e.g., distance to a target cost function value (if a

Algorithm 1 Pseudo-code for VAns.

Input: Cost function C (k, 6); initial circuit U O (&, 0);
dictionary of gates D; Insertion rules which take
gates from D and appends them to a circuit;
Simplification rules; optimization algorithm
Opt¢ for continuous parameters #; optimization
algorithm Opt p for discrete parameters which accepts
or rejects an ansatz update given changes in the cost
function value; termination condition function
Srern(n, C(k,0),U(k,0)), n € N

Output: Optimized ansatz U/,

Init: Randomly initialize the parameters @ initialize the ansatz
U «—UO%k, 0); D « 0,k « k0 < 0;
U(k,0) < 1; Term < false;n < 0.

1 Optimize # with Opt¢ and store result in 0.,

CY) «— C(k, ).

2 while Term is false do
3 n<n+1

4 Accept <« false
5

6

while Accept is false do

Use Insertion in UY) and store new sets of
discrete parameters, continuous parameters and ansatz
in @, k, and U(k, 9), respectively.

7 Use Simplificationrules 1-5 on/(k, #) and
store new sets of discrete parameters, continuous
parameters and ansatz in @, k, and U (k, 0),

respectively.
8 Optimize continuous parameters in U (k, ) with
Optc and store result in 8; C) «— C(k, 0).
9 Use Simplificationrule 6
10 Given C(k,0) and C (0% optimize discrete parameters

| inU(k, @) with Optp and store result in Accept.
1 kD — k.

12 0 9.

13 UY) — Uk, ).

14 CY) — C(k,0).

15 Term < frerm(n, ch, U(f))

lower bound is available), maximum VAns iteration number,
or an user-specified function that might depend on variables
such as circuit structure and cost value reached.

3.2 Insertion method

As previously mentioned, the Insertion step stochas-
tically grows the circuit by inserting into the circuit a
parametrized block of gates from the dictionary D which
compiles to the identity. It is worth noting that in practice
one can allow some deviation from the identity to reach a
larger gate dictionary D. In turn, this permits VAns to explore
regions of the architecture hyperspace that could otherwise
take several iterations to be reached. In Fig. 3, we show exam-
ples of two parametrized quantum circuits that can compile
to the identity.

There are many choices for how VAns determines which
gates are chosen from D at each iteration, and where they
should be placed. When selecting gates, we have here taken
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a) — L X4 —

b) ZaXAZ

XHZAX

Fig. 3 Circuits from the dictionary D used during the Insertion
steps. Here, we show two types of the parametrized gate sequences
composed of CNOTSs and rotations about the z and x axis. Specifically,
one obtains the identity if the rotation angles are set to zero. Using the
circuit in a, one inserts a general unitary acting on a given qubit, while
the circuit in b entangles the two qubits it acts upon

auniform sampling approach, where every sequence of gates
in D has an equal probability to be selected. While one
could follow a similar approach for determining where said
gates should be inserted, this can lead to deeper circuits
with regions containing an uneven number of CNOTs. In our
heuristics, VAns has a higher probability to place two-qubit
gates acting on qubits that were otherwise not previously
connected or shared a small number of entangling gates.

Fig.4 Rules for the

3.3 Simplification method

The Simplification steps in VAns are aimed at elim-
inating unnecessary gates, redundant gates, or gates that
do not have a large effect on the cost. For this purpose,
Simplification moves gates in the circuit using the
commutation rules shown in Fig. 4a to group single qubits
rotations and CNOTs together. Once there are no further com-
mutations possible, the circuit is scanned and a sequence of
simplification rules are consequently applied. For instance,
assuming that the input state is initialized to |0)®", we can
define the following set of simplification rules.

1. CNOT gates acting at the beginning of the circuit are
removed.

2. Rotations around the z-axis acting at the beginning of the
circuit are removed.

3. Consecutive CNOT sharing the same control and target
qubits are removed.

4. Two or more consecutive rotations around the same axis
and acting on the same qubit are compiled into a single
rotation (whose value is the sum of the previous values).

5. If three or more single-qubit rotations are sequentially
acting on the same qubit, they are simplified into a general
single-qubit rotation of the form R, (01)R,(62) R, (63) or
R, (01)R;(02) R, (63) which has the same action as the

Simplification steps.a a) Z
Commutation rules used by
VAns to move gates in the

circuit. As shown, one can
commute a CNOT with a

rotation Z (X) about the z (x)
axis acting on the control
(target) qubit. b Example of

simplification rules used by
VAns to reduce the circuit depth.
Here, we assume that the circuit
is initialized to |0)®"

b)

o o} 7 —
Jan Jan
N N
° o
— X —D S— X |—

04

0) — Z |—

N| D—
-

NG
N
S
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previous product of rotations—note that in the figures,
we denote such rotations by X or Z —.

6. Gates whose presence in the circuit does not considerably
reduce the cost are removed.

Rules (1) —(5) are schematically shown in Fig. 4b. We remark
that a crucial feature of these Simplification rules is
that they can be performed using a classical computer that
analyzes the circuit structure and hence do not lead to addi-
tional quantum-computation resources.

As indicated by step (6), the Simplification steps
can also delete gates whose presence in the circuit does not
considerably reduce the cost. Here, given a parametrized
gate, one can remove it from the circuit and compute the
ensuing cost function value. If the resulting cost is increased
by more than some threshold value, the gate under considera-
tion is removed and the simplification rules (1) — (5) are again
implemented. Here, one can use information from the inner
optimization loop to find candidate gates for removal. For
instance, when employing a gradient descent optimizer, one
may attempt to remove gates whose parameters lead to small
gradients. Note that, unlike the simplification steps (1) — (5)
in Fig. 4b, when using the deletion process in (6) one needs
to call a quantum computer to estimate the cost function, and
hence these come at an additional quantum-resource over-
head which scales linearly with the number of gates one is
attempting to remove.

An interesting aspect of the Simplification method
is that it allows VAns to obtain circuit structures that are not
contained in the initial circuit U?)(k, 9) or in the gate dictio-
nary D, and hence to explore new regions of the architecture
hyperspace. For instance, using the gate dictionary in Fig. 3,
VAns can obtain a gate structure as the one shown in Fig. 5.

3.4 Scaling of VAns

With the previous overview of the VAns method in mind, let
us now discuss the computational complexity arising from

® L 4
L/ N

N N

L L

Fig. 5 Circuit obtained from VAns. Shown is a non-trivial circuit
structure that can be obtained by VAns using the Insertion and
Simplification steps and the gate dictionary in Fig. 3

using VAns versus that of using a standard fix architecture
scheme. In the following discussion, we will not include
any computational cost or complexity of the optimizer as
we assume that the same tools could be used for fixed or
variable ansatzes.

Firstly, we note that any additional computational
cost comes due to circuit manipulations, meaning that
we should study the scaling of the Insertion and
Simplification methods. On the one hand, adding
gates via Insertion is stochastic, and independent of
the number of qubits or the current circuit depth, that is:
its complexity is always in O(1). Then, removing gates via
Simplification has a cost which increases with the
number of gates in the circuit. If we have M gates, then
running the Simplification scheme has a cost O(M). We
note that such computational complexity is similar to that
of using gradient-free versus gradient-based methods, as the
computational cost of the latter also scale as O(M). Notably,
since the goal of VAns is to produce short-depth circuits, the
algorithm itself tries to reduce its own computational cost
during training. As we sill see below in our numerical exam-
ples, VAns is always able to find short-depth circuits whose
solutions are better than those arising from fixed structure
ansatzes, meaning that the extra complexity of VAns can be
justified in terms of its performance.

3.5 Mitigating the effect of barren plateaus
3.5.1 General considerations

Let us now discuss why VAns is expected to mitigate the
impact of barren plateaus.

First, consider the type of barren plateaus that are
caused by the circuit approaching an approximate 2-design
(McClean et al. 2018). Approximating a 2-design requires a
circuit that both has a significant number of parameters and
also has a significant depth (Brandao et al. 2016; Dankert
et al. 2009; Haferkamp 2022; Harrow and Low 2009; Har-
row and Mehraban 2018). Hence, reducing either the number
of parameters or the circuit depth can combat these barren
plateaus. Fortunately, VAns attempts to reduce both the num-
ber of parameters and the depth. Consequently, VAns actively
attempts to avoid approximating a 2-design.

Second, consider the barren plateaus that are caused by
hardware noise (Wang et al. 2021). For such barren plateaus,
it was shown that the circuit depth is the key parameter, as
the gradient vanishes exponentially with the depth. As VAns
actively attempts to reduce the number of CNOQOTs, it also
reduces the circuit depth. Hence, VAns will mitigate the effect
of noise-induced barren plateaus by keeping the depth shal-
low during the optimization. Evidence of such a mechanism
can be found in the next section, where we consider sim-
ulations under the presence of noise. In such a case, VAns
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automatically adjusts the circuit layout in such a way that the
cost function reaches a minima, which translates to short-
depth circuits in noisy scenarios.

3.5.2 Specific applications

While in the previous subsection, we have presented gen-
eral arguments as to why VAns can improve trainability,
here, we instead present a practical method that combines
VAns with the recent techniques of Ref. Sack et al. (2022)
for mitigating barren plateaus using classical shadows. For
completeness, we briefly review the results in Sack et al.
(2022). Firstly, as noted in Sect.2.2 it is known that the
presence of barren plateaus is intrinsically related to the
entanglement generated in the circuit (Marrero et al. 2021;
Patti et al. 2021; Sharma et al. 2022). That is, circuits gen-
erating large amounts of entanglement are prone to barren
plateaus. With this remark in mind, the authors in Sack
et al. (2022) propose to detect the onset of a barren plateau
by monitoring the entanglement in the state at the out-
put of the circuit. This can be achieved by computing, via
classical shadows (Huang et al. 2020), the second Rényi
entanglement entropy S>(pr) = —log(Tr[pg]?), where
pr = Trg[Uk, 0)p;U T(k, 0)] denotes a reduced state on
a subset of R qubits. As such, if S>(pg) approaches the
maximal possible entanglement of the S qubits, given by the
so-called Page value SP%€¢ ~ klog(2) — W one knows
that the optimization is leading to a region of high entangle-
ment, and thus of barren plateaus. The key proposal in Sack
et al. (2022) is to tune the optimizer (e.g., by controlling the
gradient step) so that regions of large entropies are avoided.
This technique is shown to work well with an identity block
initialization (Grant et al. 2019), whereby the parameters in
the trainable unitary are chosen such that U(k,0) = 1 at
the start of the algorithm. Note that, in principle, this is still
a fixed ansatz method, as some circuit structure has to be
fixed beforehand, and as no gates are ever removed. Hence,
the methods in Sack et al. (2022) can be readily combined
with VAns to variationally explore the architecture hyper-
space while keeping track of the reduced state entropy. In
practice, this means that one can modify the VAns update
rule to allow for steps that do not significantly increase
entropy, while favoring steps that keep the entropy constant,
or even that reduce it (e.g., by removing gates during the
Simplification modules).

4 Numerical results

In this section, we present heuristic results obtained from sim-
ulating VAns to solve paradigmatic problems in condensed
matter, quantum chemistry, and quantum machine learning.
We first use VAns in the Variational Quantum Eigensolver

@ Springer

(VQE) algorithm (Peruzzo et al. 2014) to obtain the ground
state of the Transverse Field Ising model (TFIM), the XXZ
Heisenberg spin model, and the H> and Hs molecules. We
then apply VAns to a quantum autoencoder (Romero et al.
2017) task for data compression. We then move to use VAns
to compile a Quantum Fourier Transform unitary in systems
up to 10 qubits. Finally, we benchmark the performance
of VAns under the presence of noisy channels, which are
unavoidable in quantum hardware, and demonstrate that it
successfully finds cost-minimizing circuits on a wide range
of noise-strength levels.

The simulations presented here were performed using
Tensorflow quantum (Broughton et al. 2020). Adam (Kingma
and Ba 2015) and gqFactor (Younis and Cincio 2020) were
employed to optimize the continuous parameters . While
the results shown in noiseless scenarios were obtained from
a single instance of the algorithm for each problem, noisy
simulations required several instances of the algorithm to
reach a minima (here, we present results obtained after 50
iterations), due to the fact that the optimization landscape is
considerably more challenging in the latter case. The dictio-
nary of gates used consisted on single-qubit rotation around
x and z axis, and CNOTs gates between all qubits in the
circuit. Moreover, we have assumed no connectivity con-
straints under the quantum circuits under consideration. In
the following examples, VAns was initialized to either a sep-
arable ansatz or an £-layer HEA, with £ < 3 (see Fig. 2 for
a depiction of separable and 2-layer HEA circuits); in our
heuristics, we observed that, as expected, varying the initial
circuit helps to attain a quicker convergence towards optimal
cost-values. Nevertheless, the optimal choice of initial circuit
is subtle: highly expressible initial circuits are not always the
best choice, since they might bias the search and even dimin-
ish the convergence rate due to the appearance of multiple
local minima in the optimization landscape. Moreover, under
the presence of noise, long-depth initial circuits such as HEA
potentially increase the cost-value function instead of dimin-
ishing it, due to noise accumulation. In such a case, it takes
VAns a higher amount of iterations to shorten circuit’s depth.
For the noisy simulations, we have considered a one-layered
HEA as initial circuit for VAns.

4.1 Transverse field ising model

Let us now consider a cyclic TFIM chain. The Hamiltonian
of the system reads

n n
H=-J]) olol, —gy of, @)
j=1 j=1
where O’;C(Z) is the Pauli x (z) operator acting on qubit j,

and where n + 1 = 1 to indicate periodic boundary con-
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Fig.6 Results of using VAns to — _ g7 FTAT
obtain the ground state of a i g ZJ 9 J ZJ 959541
Transverse Field Ising model. a) _4 b)
Here, we use VAns in the VQE n=4 —10
algorithm for the Hamiltonian
in Eq.7 with a n = 4 qubits and
b 1 = 8 qubits, field g = 1, for 5 —61 —20
different values of the 8
interaction J. Top panels: solid ﬁ -
lines indicate the exact ground 30
state energy, and the markers are
the energies obtained using —904
VAns. Bottom panels: Relative
error in the energy for the same 5.37 4% 10-5 8.01x10~*
interaction values
—
g 3.58
et 3.0
2
E 1.794
Q
~ 1.3
0.001
0.0 0.5 10 15 20 00 04 08 12 16 20 2427
J
AFE
e VAns ground energy Eyround

ditions. Here, J indicates the interaction strength, while g
is the magnitude of the transverse magnetic field. As men-
tioned in Sect.2, when using the VQE algorithm the goal
is to optimize a parametrized quantum circuit U (k, #) to
prepare the ground state of H so that the cost function
becomes E(k,0) = Tr[HU (k,0)pU" (k, )], where one
usually employs p = |0)0] with |0) = |0)®". Note that,
we here employ E as the cost function label to keep with
usual notation convention.

In Fig. 6, we show results obtained from employing VAns
to find the ground state of a TFIM model of Eq. 7 withn = 4
qubits (a) and with n = 8 qubits (b), field g = 1, and
different interactions values. To quantify the performance
of the algorithm, we additionally show the relative error
|AE/Ey|, where Ey is the exact ground state energy Eo,
AE = Evans — Eo, and Evaps the best energy obtained
through VAns. For 4 qubits, we see from Fig. 6 that the rel-
ative error is always smaller than 6 x 107>, showing the
that ground state was obtained for all cost values. Then, for
n = 8 qubits, VAns obtains the ground state of the TFIM
with relative error smaller than 8 x 1074,

To gain some insight into the learning process, in Fig. 7,
we show the cost function value, number of CNOTSs, and
the number of trainable parameters in the circuit discov-

ered by VAns as different modifications of the ansatz are
accepted to minimize the costin ann = 8 TFIM VQE imple-
mentation. Specifically, in Fig. 7(top), we see that as VAns
explores the architecture hyperspace, the cost function value
continually decreases until one can determine the ground
state of the TFIM. Figure 7(bottom) shows that initially VAns
increases the number of trainable parameters and CNOTs in
the circuit via the Insertion step. However, as the circuit
size increases, the action of the Simplification module
becomes more relevant as we see that the number of trainable
parameters and CNOTs can decrease throughout the com-
putation. Moreover, here, we additionally see that reducing
the number of CNOTs and trainable parameters can lead to
improvements in the cost function value. The latter indicates
that VAns can indeed lead to short depth ansatzes which can
efficiently solve the task at hand, even without the presence
of noise.

In Fig. 7, we also compare the performance of VAns with
that of the layered Hardware Efficient Ansatz of Fig. 2b with
2 and 5 layers. We specifically compare against those two fixed
structure ansatzes as the first (latter) has a number of trainable
parameters (CNOTs) comparable to those obtained in the VAns
circuit. In all cases, we see that VAns can produce better results
than those obtained with the Hardware Efficient Ansatz.
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Fig.7 VAns learning process. a _
Here, we show an instance of (a) 80
running the algorithm for the
Hamiltonian in Eq. 7 withn = 8
qubits, field g = 1, and
interaction J = 1.5. The top
panel shows the cost function
value and the bottom panel
depicts the number of CNOTs,
and the number of trainable
parameters versus the number of
modifications of the ansatz

= VAns
== Ground state energy
== HEA 2 Layers

HEA 5 Layers

accepted in the VAns algorithm.

Top: As the number of iterations
increases, VAns minimizes the
energy until one finds the ground
state of the TFIM. Here, we also
show the best results obtained
by training a fixed structure
layered Hardware Efficient
Ansatz (HEA) with 2 and 5
layers, and in both cases, VAns
outperforms the HEA. Bottom:
While initially the number of
CNOTs and number of trainable
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parameters increases, the
Simplification method in
VAns prevents the circuit from
constantly growing, and can
even lead to shorter depth
circuits that achieve better
solutions. Here, we also show
the number of CNOTs (solid
line) and parameters (dashed
line) in the HEA ansatzes
considered, and we see that
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4.2 XXZ Heisenberg model

Here, we use VAns in a VQE implementation to obtain the
ground state of a periodic X X Z Heisenberg spin chain in a
transverse field. The Hamiltonian of the system is

n n
y_y
H = 20;6;4-1 +0507, —I—Ao;o;_H +gZUf, 8)

J=1 J=1

where again GJ’.‘ are the Pauli operator (with © = x,y,2)

acting on qubit j, n + 1 = 1 to indicate periodic boundary
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conditions, and where A is the anisotropy. We recall that
H commutes with the total spin component S; = }_; 0/,
meaning thatits eigenvectors have definite magnetization Mz
along z (Cerezo et al. 2017).

InFig. 8, we show numerical results for finding the ground
state of Eq.8 withn = 4 and n 8 qubits, field g = 1,
and for different anisotropy values. For 4 qubits, we see that
VAns can obtain the ground state with relative errors which
are always smaller than 9 x 1077, In the n = 8 qubits case,
the relative error is of the order 10~3, with error increasing in
theregion0 < A < 1. We remark that a similar phenomenon
is observed in Cervera-Lierta et al. (2020), where errors in
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Fig.8 Results of using VAns to H = R dosd VoY Ac?o? oF
obtain the ground state of a ZI i1 T 001 %t Zl v
Heisenberg X X Z model. Here, a) —6 b)
we use VAns in the VQE n=4
algorithm for the Hamiltonian
in Eq.8 withan =4and b o _g —18
n = 8 qubits, field g = 1, and 20
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preparing the ground state of the X X Z chain increase in the
same region. The reason behind this phenomenon is that the
optimizer can get stuck in a local minimum where it prepares
excited states instead of the ground state. Moreover, it can be
verified that while the ground state and the three first exited
states all belong to the same magnetization sub-space of state
with magnetization Mz = 0, they have in fact different local
symmetries and structure. Several of the low-lying excited
states have a Néel-type structure of spins with non-zero local
magnetization along z of the form | 1] 4] - - -). On the other
hand, the state that becomes the ground-state for A > 11is a
state where all spins have zero local magnetization along z,
meaning that the local states are in the xy plane of the Bloch
sphere. Since there is a larger number of excited states with
a Néel-type structure (and with different translation symme-
try) variational algorithms tend to prepare such states when
minimizing the energy. Moreover, since mapping a state with
non-zero local magnetization along z to a state with zero local
magnetization requires a transformation acting on all qubits,
any algorithm performing local updates will have a difficult
time finding such mapping.

4.3 Molecular hamiltonians

Here, we show results for using VAns to obtain the ground
state of the Hydrogen molecule and the H4 chain. Molecular

electronic Hamiltonians for quantum chemistry are usually
obtained in the second quantization formalism in the form

. 1 +
H = Z hpmna,,an + 3 Z hmnpqa;'na:zapaq g )
mn mnpq

where {a,L} and {a,} are the fermionic creation and anni-
hilation operators, respectively, and where the coefficients
hmn and hyupg are one- and two-electron overlap inte-
grals, usually computed through classical simulation meth-
ods (Aspuru-Guzik et al. 2005). To implement Eq.9 in a
quantum computer one needs to map the fermionic opera-
tors into qubits operators (usually through a Jordan Wigner
or Bravyi-Kitaev transformation). Here, we employed the
OpenFermion package (McClean et al. 2019) to map Eq.9
into a Hamiltonian expressed as a linear combination of n-
qubit Pauli operators of the form

H = E c;0%,
z

(10)

with 0% € {1, 0%, 07, 0%}®", ¢, real coefficients, and z €
{0, x, y, 7}®".

In all cases, the basis set used to approximate atomic
orbitals was STO-3 g and a neutral molecule was considered.
The Jordan-Wigner transformation was used in all cases.
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While for the H, the number of qubits required is four
(n = 4), this number is doubled for the H4 chain (n = 8).

4.3.1 H, Molecule

Figure9 shows the results obtained for finding the ground
state of the Hydrogen molecule at different bond lengths.
As shown, VAns is always able to accurately prepare the
ground state within chemical accuracy. Moreover, as seen
in Fig. 9(bottom), VAns usually requires less than 15 itera-
tions until achieving convergence, showing that the algorithm
quickly finds a way through the architecture hyperspace
towards a solution.

4.3.2 Hq Molecule

Figure 10 shows the results obtained for finding the ground
state of the Hy chain, where equal bond distances are taken.
Noticeably, the dictionary of gates D chosen here is not a
chemical-inspired one (e.g., it does not contain single and
double excitation operators nor its hardware-efficient imple-
mentations), yet VAns is able to find ground-state preparing
circuits within chemical accuracy (McArdle et al. 2020).
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Fig. 9 Results of using VAns to obtain the ground state of a Hydro-
gen molecule, at different bond lengths. Here, we use VAns in the VQE
algorithm for the molecular Hamiltonian obtained after a Jordan-Wigner
transformation, leading to a 4-qubit circuit. Top: solid lines correspond
to ground state energy as computed by the Full Configuration Interaction
(FCI) method, whereas points correspond to energies obtained using
VAns. Middle: differences between exact and VAns ground state ener-
gies are shown. Dashed line corresponds to chemical accuracy, which
stands for the ultimate accuracy experimentally reachable in such sys-
tems. Bottom: number of iterations required by VAns until convergence
are shown
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Fig. 10 Results of using VAns to obtain the ground state of a H4 chain
with a linear geometry, at different bond lengths. Here, we use VAns
in the VQE algorithm for the molecular Hamiltonian obtained after a
Jordan-Wigner transformation, leading to an 8-qubit circuit. Top: solid
lines correspond to ground state energy as computed by the Full Config-
uration Interaction (FCI) method, whereas points correspond to energies
obtained using VAns. Middle: differences between exact and VAns
ground state energies are shown. Dashed line corresponds to chemical
accuracy. Bottom: number of iterations required by VAns until conver-
gence are shown

4.4 Quantum autoencoder

Here, we discuss how to employ VAns and the results from
the previous section for the Hydrogen molecule to train the
quantum autoencoder introduced in Romero et al. (2017).
For the sake of completeness, we now describe the quantum
autoencoder algorithm for compression of quantum data.

Consider a bipartite quantum system AB of n4 and np
qubits, respectively. Then, let {p;, [1;)} be a training set of
pure states on AB. The goal of the quantum autoencoder is
to train an encoding parametrized quantum circuit V (k, @) to
compress the states in the training set onto subsystem A, so
that one can discard the qubits in subsystem B without losing
information. Then, using the decoding circuit (simply given
by V7 (k, 8)) one can recover each state |;) in the training
set (or in a testing set) from the information in subsystem A.
Here, V (k, ) is essentially decoupling subsystem A from
subsystem B, so that the state is completely compressed into
subsystem A if the qubits in B are found in a fixed target
state (which we here set as |0) g = |0)®"8).
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As shown in Romero et al. (2017), the degree of compres-
sion can be quantified by the cost function

Co(k.0) = 1= Y piTr [(10X01 ® L) VIya)wi V'] |

where 1p is the identity on subsystem A, and where we
have omitted the k and @ dependence in V for simplicity of
notation. Here, we see that if the reduced state in B is |0)
for all the states in the training set, then the cost is zero. Note
that, as proved in Cerezo et al. (2021b), this is a global cost
function (as one measures all the qubits in B simultaneously)
and hence can have barren plateaus for large problem sizes.
This issue can be avoided by considering the following local
cost function where one instead measures individually each
qubit in B (Cerezo et al. 2021b)

np

Crk.0)=1- ; Z e [(10601 ® 1, ) Vivaxwav'] . (11)

Here, 1 , 7 is the identity on all qubits in A and all qubits
in B excef)t for qubit k. We remark that this cost function is
faithful to C¢ (k, @), meaning that both cost functions vanish
under the same conditions (Cerezo et al. 2021b).

As shown in Fig. 11, we employ the ground states |y;)
of the H> molecule (for different bond lengths) to create a
training set of six states and a test set of ten states. Here, the
circuits obtained through VAns in the previous section serve
as (fixed) state preparation circuits for the ground states of the
H; molecule. We then use VAns to learn an encoding circuit
V (k, 8) which can compress the states |i;) into a subsystem
of two qubits.

Figure 12 presents results obtained by minimizing the
local cost function of Eq.11 for a single run of the VAns
algorithm. As seen, within 15 accepted architecture modifi-

Hs Molecule

Learning the state preparation circuit

Table 1 Fidelities for VAns

Set —lo, 1-F
applied to the quantum 810 )
autoencoder task Training 6.49 (5.05—6.95)

Testing 6.17 (3.61—6.95)

The fidelities (F) are reported
as Mean value (Min-Max) across
both training and testing sets

cations, VAns can decrease the training cost function down
to 10~7, by departing from a separable product ansatz (see
Fig. 2). We here additionally show results obtained by train-
ing the Hardware Efficient Ansatz of Fig. 2b with 4 and 15
layers (as they have a comparable number of trainable param-
eters and CNOTs, respectively, compared to those obtained
with VAns). In all cases, VAns achieves the best performance.
In particular, it is worth noting that VAns has much fewer
parameters (~ 45 versus 180) than the 15-layer HEA, while
also achieving a cost value that is lower by two orders of mag-
nitude. Hence, VAns obtains better performance with fewer
quantum resources.

Moreover, the fidelities obtained after the decoding pro-
cess at the training set are reported in Table 1. Here, F is
used to denote the fidelity between the input state and the
state obtained after the encoding/decoding circuit. As one
can see, VAns obtains very high fidelities for this task.

4.5 Unitary compilation

Unitary compilation is a task in which a target unitary is
decomposed into a sequence of quantum gates that can be
implemented on a given quantum computer. Current quan-
tum computers are limited by the depth of quantum circuits
that can be executed on them, which makes the compilation

Learning the encoding circuit

2 IS e C = Tx[H:Uk, 8)oUj (k. 6)] C= Ly, 3, T OPV (k, 8) ) (alV 1 (K, 6)]
o T e EetenaE | | 0
I / U;TW (ko) 0)
& & : 0) ‘
£/ R AT ! BucodingV(6.0)  Dacoding
i:l - y : : {|¢£)} {|‘Z)} ' | Quantum Autoencoder
— . lo,n:r;jt ™ 3 - ebtse - " alnlng ée ¢ — +» Compression and Decompression Fidelity

Fig. 11 Schematic diagram of the quantum autoencoder implementa-
tion. We first employ VAns to learn the circuits that prepare the ground
states {|1/;)} of the H> molecule for different bond lengths. These ground
states are then used to create a training set and test set for the quantum
autoencoder implementation. The goal of the autoencoder is to train
an encoding parametrized quantum circuit V (k, @) to compress each

|i) into a subsystem of two qubits so that one can recover |v;) from
the reduced states. The performance of the autoencoder can be quanti-
fied by computing the compression and decompression fidelities, i.e.,
the fidelity between the input state and the output state to the encod-
ing/decoding circuit

@ Springer
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= -1 Cost function on training set function takes the form
b'E —2 Cost function on testing set
éig HEA (L=4) on training set N
% _4 == = HEA (L=15) on training set C(k, 0) = Z ||U(()’1F)T|w]) - V(kv 0)|w]>||2 . (13)
S s g =l
+
»n
8 —6 Note that the cost function introduced in Eq. 13 becomes
-7 equivalent to a more standard one, C'(k,0) = ||U8;)T —
HEA 4 Layers V(k,0)||?, when N = 2". While C(k, 6) measures the dis-
% R I e G C L A D tance between the exact output of QFT and the one returned
*g 40 by V (k, ) only on selected input states, C’(k, #) measures
& g |HEADLavers the discrepancy between full unitaries Ug;)T and V(k, 9).
95} -
+= It has recently been shown (Caro et al. 2022) that N < 2"
§ 20 CNots is sufficient to accurately decompose Ugf:)T. More precisely, a
o 10 Trainable parameters constant number of training states N (independent of ) can
0 be used to ensure small value of C’(k, @), while minimiz-

1 3 5 7 9 11 13 15
Accepted modifications

Fig. 12 Results of using VAns to train a quantum autoencoder. Here,
we use VAns to train an encoding parametrized quantum circuit by min-
imizing Eq. 11 on a training set comprised of six ground states of the
hydrogen molecule. We here also show the lowest cost function obtained
for a HEA of 4 and 15 layers. Top panel: the cost function evaluated at
both versus accepted VAns circuit modifications. In addition, we also
show results of evaluating the cost on the testing set. Bottom panel: num-
ber of CNOTs, and number of trainable parameters versus the number
of modifications of the ansatz accepted in the VAns algorithm. Here,
we additionally show the number of CNOTs (solid line) and parame-
ters (dashed line) in the HEA ansatzes considered. We remark that for
L = 15, the HEA has 180 parameters, and hence the curve is not shown
as it would be off the scale

task very important in the near term. Indeed, one wants to
decompose a given unitary using as few gates as possible to
maximally reduce the effect of noise. In this section, we show
that VAns is capable of finding very short decompositions as
compared with other techniques.

We will illustrate our approach by compiling Quantum
Fourier Transform (QFT) on systems up to n = 10 qubits.
Apart from VAns, we also compile the QFT unitary using
standard HEA and compare the performance of both meth-
ods.

The cost function for unitary compilation is defined as
follows. First, a training set is selected

(). USRI, (12)

where U(()’;)T is a target QFT unitary on n qubits and |/ ;) are
N, randomly selected input states. We assume that the states
| ) are pairwise orthogonal to avoid potential optimization
problems caused by similarities in the training set. The cost

@ Springer

ing the cost function in Eq. 13. This observation provides
an exponential speedup in evaluating the cost function for
unitary compilation. Indeed, the cost of evaluating C(k, 9)
in Eq. 13 is N - 2" (assuming the circuit V (k, #) consists of
few body gates and the states Uc()?T [ ;) are given in compu-
tational basis), while the cost of computing C’(k, ) is 4".

The number of training states N which lead to small value
of C’(k, ) depends on the number of independent variational
parameters in V (k, #). Suboptimal decompositions V (k, 9)
(in terms of number of parametrized gates) will require larger
N to achieve good compilation accuracy. We have used N =
15 for n = 10 qubit compilation with VAns, and a much
larger training set in an approach that uses HEA; the increase
in N is necessary since the latter approach needed a much
deeper circuit, as discussed below.

‘We have used most general two-qubit gates as the building
block in VAns and to construct HEA. This is a slight gener-
alization to the Insertionand Simplification steps
in the VAns algorithm discussed above. General two-qubit
gates can be decomposed down to CNOTs and one-qubit
rotations using standard methods.

The method based on HEA requires very deep circuits
(at n = 10). They consists of so many gates that the regular
optimization has very small success probability. We therefore
modify the method based on HEA and utilize the recursive

structure of U(SQT- In the modified approach, we use HEA to

compile Ug;;Tl) and then use it to create an ansatz for Ué’}:)T.
The ansatz for larger system size additionally consists of
several layers of HEA. We apply the above growth technique
starting from n = 3 to eventually build the ansatz forn = 10.
We stress that VAns does not require such simplification and
is capable of finding the decomposition with high success
probability directly at n = 10 while initialized randomly.
Figure 13 shows VAns results for n = 10 qubit QFT
compilation. Panel (a) depicts how the value of the cost func-
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Fig. 13 Results of using VAns
for unitary compilation. Here,
we use VAns to find a
decomposition of QFT unitary
defined on n = 10 qubits, by
minimizing a cost function
C(k, 0) (red line in panel a)
defined in Eq. (13). The cost
evaluates a difference between
exact output of QFT and the one
returned by a current circuit, on
a small number of input states
only (N = 15). The blue line
shows corresponding difference
between full unitaries,

C'(k.0) = |Ugpr — V (k. )]
We observe a high correlation
between those two cost
functions. Panel b shows how
VAns modifies the number of
two-qubit gates as it approaches
the minimum of C(k, @). The
minimum is found with 48
gates, which is ~ 4.5 times less
than the decomposition found
with HEA (not shown)

cost function

tion C (k, ) is minimized over the iterations. We also show
the corresponding value of C'(k, 0) = ||Ug;:)T —V(k,0)|>.
We observe strong correlation between both cost functions.
C’(k, 0) is eventually minimized below 10~? at the end of the
optimization. Panel (b) shows how the number of two-qubit
gates evolves as VAns optimization is performed. Excluding
the initial “warm-up” period, during which the cost function
has very large (close to maximal possible) value, the number
of two-qubit gates is steadily grown reaching 48 at the end
of the optimization.

The approach based on HEA requires 219 general two-
qubit gates to decompose n = 10 QFT, which is over 4
times more than the best circuit found by VAns. The HEA
approach uses recursive structure of QFT to find accurate
decomposition, while VAns does not rely on that property
and finds a solution in fewer number of iterations. Finally,
VAns takes advantage of the generalization bound (Caro et al.
2022), finding solution with near optimal number of varia-
tional parameters in V (k, €); the training set size N required
for small generalization error is small resulting in fast cost
function evaluations.
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4.6 Noisy simulations

The results previously shown were obtained without consid-
ering hardware noise. We observed that VAns was able to
better exploit the quantum resources at hand (i.e., attain a
lower cost-function value) as compared to its fix-structure
counterpart (e.g., HEA).

We now consider the case where noisy channels are
present in the quantum circuit, an unavoidable situation
in current experimental setups, with noise essentially for-
bidding large-depth quantum circuits to preserve quantum
coherence. In the context of VQAs, the overall effect of
noise is that of degrading the cost-function value and, if its
strength is sufficiently high, then short-depth circuits turn to
be favored even at the cost of expressibility. For instance,
increasing the number of layers in HEA ansatz might not
reduce the cost function and even increase it, since noise
accumulates due to the presence of gates.

There are several sources of noise in quantum comput-
ers. For instance, experimental implementation of a quantum
gate takes a finite amount of time, which in turn depends on

@ Springer
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the physical qubit at hand, the latter subjected to thermal
relaxation errors. Relaxation and dephasing errors depend,
in general, on each particular qubit (i.e., the qubit label). The
overall effect of the gate implementation is often modeled by
a depolarizing quantum channel, followed by phase flips and
amplitude damping channels, whose strength depends on the
aforementioned parameters (gate implementation time, qubit
label), gate type and environment temperature. For instance,
an entangling gate such as a CNOT injects considerably more
noise to the circuit than a single-qubit rotation. Moreover,
state preparation and readout errors should be taken into
account. We refer the reader to find further details on noise
modeling in Ref. Georgopoulos et al. (2021). We also note
that additional sources of noise should ultimately be consid-
ered, such as idle noise and cross-talk effects (LaRose et al.
2022; Murali et al. 2020). Because the complexity of noise
modelling in NISQ devices is particularly high, we here pro-
pose a sufficiently simple model that yet captures the essential
noise sources.

The A-model While a noise-model is ultimately linked to
the specific quantum hardware at hand and depends on sev-
eral factors, we propose a unifying and simplified one that
depends on a single parameter. The main motivation behind
this is that of benchmarking the performance of different
ansatzes in the presence of noise. In more complex scenar-
ios, one should consider specific process matrices obtained
from, e.g., process tomography (O’Brien et al. 2004; Yuen-
Zhou et al. 2014), which would here obscure the benchmark
and also bias it towards specific quantum hardware. In par-
ticular, our model is inspired by Refs Blank et al. (2020);
Georgopoulos et al. (2021), which in turn are implemented
in the aer noise simulator of IBM, and consists of the fol-
lowing models. State preparation and measurement errors
are modeled via bit flip channels acting on each qubit, with
strength A 1072, happening before the circuit U (k, #) and
measurements respectively. Noise due to gate implementa-
tion is modeled as a depolarizing channel, followed by a
phase flip and amplitude damping channels acting on the tar-
get qubit right after the gate. In principle, the strength of
the channel should depend on the specific qubit, and gate
type, but in order to keep the model simple enough we have
assumed no noise dependence on the qubit label. Moreover,
a two-qubit gate is considerably more noisy than a single-
qubit one, which in the A-model is reflected by the fact that
noise strengths are an order of magnitude higher, in the depo-
larizing channel, than in single-qubit gates, the latter being
A 107>, Finally, the strengths of the phase flip and amplitude
damping channels are set to A 1073, We note that, while not
considered here, different situations can easily be incorpo-
rated such as qubit connectivity constraints, or differences in
qubits’ quality (some qubits might be noisier than others).
In such cases, we expect VAns to find circuits which auto-
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matically balance the trade-offs at hand, i.e., minimize the
number of gates acting on such noisier qubits.

With this model at hand, we have explored the region
of A in which the action of the noise becomes interesting.
The results of running VAns under the A-model for ground
state preparation (VQE) of TFIM 8-qubit system are shown
in Fig. 14. Here, the noise strength is sufficiently high so
to affect the ground-state energy (which can otherwise be
attained by either VAns or a 3-layered HEA). We thus sweep
the value of A by two orders of magnitude, and compare the
results that VAns reaches with those of HEA (varying the
number of layers of the latter). We see that for a sufficiently
high noise strength, increasing the number of gates (e.g.,
the number of layers in HEA) eventually degrades the cost-
function value, as opposed to the noise-less scenario. On
the contrary, we observe that even if the noise-strenght is
sufficiently high, VAns considerably outperforms HEA by
automatically adjusting the depth of the circuit to the noise-
strength at hand. Thus, if the noise is large, shallow circuits

—— 1-HEA
D = zHEA
— 3-HEA
—— VAns
= = Ground state energy (noiseless)

= #CNOT HEA
#Parameter:

circuit structure

-10

Fig. 14 Results of using VAns for VQE under the A-model. Here, we
consider the TFIM for 8 qubits, with ¢ = J = 1. The results are
obtained after repeating 50 iterations of optimizations with VAns and
HEA respectively. We observe that VAns discovers much more efficient
quantum circuits as compared to HEA. As shown in the upper inset,
VAns automatically adjusts the circuit layout according to the noise
strength at hand, a feature that fix-structure ansatzes lack. In the lower
inset, we show the relative errors (e.g., standard deviation over optimal
cost found) for both ansatzes, across the 50 iterations; we observe that
VAns is more precise in reaching a minimum as compared to HEA. We
note that in this experiment, we have initialized VAns to a 1-layered
HEA, which is in turn inconvenient for a sufficiently high value of A.
Yet, VAns learns how to adapt the ansatz (in this case, finding a separable
one) so to reach the lowest cost value. In all cases VAns termination
criteria was set to a maximum number of 30 iterations
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are found, whereas if the noise-strength is low, deeper circuits
are allowed to be explored, since the penalty of adding new
gates is smaller. In general, we observe that VAns is capable
of finding the best possible circuit under given conditions,
which is something that HEA simply can not accomplish.

5 Discussion

In this work, we have introduced the VAns algorithm, a semi-
agnostic method for building variable structure parametrized
quantum circuits. We expect VAns to be especially useful for
abstract applications, such as linear systems (Bravo-Prieto
et al. 2019; Huang et al. 2019; Xu et al. 2021), factor-
ing (Anschuetz et al. 2019), compiling (Khatri et al. 2019;
Sharma et al. 2020), metrology (Beckey et al. 2022; Koczor
et al. 2020), and data science (Abbas et al. 2021; Biamonte
et al. 2017; Cerezo et al. 2022; LaRose et al. 2019; Schuld
et al. 2014; Verdon et al. 2019b), where physically moti-
vated ansatzes are not readily available. In addition, VAns
will likely find use even for physical applications such as
finding grounds states of molecular and condensed matter
systems, as it provides a shorter depth alternative to physi-
cally motivated ansatzes for mitigating the impact of noise,
as shown in our noisy simulations.

At each iteration of the optimization, VAns stochasti-
cally grows the circuit to explore the architecture hyperspace.
More crucially, VAns also compresses and simplifies the cir-
cuitby removing redundant gates and unimportant gates. This
is a key aspect of our method, as it differentiates VAns from
other variable ansatz alternatives and allows us to produce
short-depth circuits, which can mitigate the effect of noise-
induced barren plateaus (NIBPs). We will further investigate
this mitigation of NIBPs in future work.

To showcase the performance of VAns, we simulated
our algorithm for several paradigmatic problems in VQAs.
Namely, we implemented VAns to find ground states of con-
densed matter systems and molecular Hamiltonians, for a
quantum autoencoder problem and for 10-qubit QFT com-
pilation. In all cases, VAns was able to satisfactory create
circuits that optimize the cost. Moreover, as expected, these
optimal circuits contain a small number of trainable parame-
ters and entangling gates. Here, we also compared the results
of VAns with results obtained using a Hardware Efficient
Ansatz with either the same number of entangling gates, or
the same number of parameters, and in all cases, we found
that VAns could achieve the best performance. This point
is crucial for the success of VAns in the presence of noisy
channels, as it automatically adapts the circuit layout to the
situation at hand (e.g., noise strength). For instance, under the
A-model (which is the noise model we have implemented),

VAns notably outperforms HEA under ground-state prepa-
ration tasks.

While we provided the basic elements and structure of
VAns (i.e., the gate Insertion and gate Simplifi-
cation rules), these should be considered as blueprints
for variable ansatzes that can be adapted and tailored to
more specific applications. For instance, the gates that VAns
inserts can preserve a specific symmetry in the problem.
Moreover, one can cast the VAns architecture optimiza-
tion (e.g., removing unimportant gates) in more advanced
learning frameworks. Examples of such frameworks include
supervised learning or reinforced learning schemes, which
could potentially be employed to detect which gates are the
best candidates for being removed.
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