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Abstract

We reconstruct the phenotype of Balto, the heroic sled dog renowned for transporting diphtheria 

antitoxin to Nome, Alaska in 1925, using evolutionary constraint estimates from the Zoonomia 

alignment of 240 mammals and 682 genomes from dogs and wolves of the 21st century. Balto 

shares just part of his diverse ancestry with the eponymous Siberian husky breed. Balto’s genotype 

predicts a combination of coat features atypical for modern sled dog breeds, and a slightly 

smaller stature. He had enhanced starch digestion compared with Greenland sled dogs and a 

compendium of derived homozygous coding variants at constrained positions in genes connected 

to bone and skin development. We propose that Balto’s population of origin, which was less 

inbred and genetically healthier than modern breeds, was adapted to the extreme environment of 

1920s Alaska.

One-Sentence Summary:

Comparative genomics uncovers genotype-phenotype links between Balto, famed sled dog of the 

1925 Serum Run, and modern dogs.

Technological advances in the recovery of ancient DNA make it possible to generate 

high-coverage nuclear genomes from historic and fossil specimens, but interpreting genetic 

data from past individuals is difficult without data from their contemporaries. Comparative 

genomic analysis offers a solution: by combining population-level genomic data and 

catalogs of trait associations in modern populations, we can infer the genetic and phenotypic 

features of long-dead individuals and the populations from which they were born. Zoonomia 

is a new comparative resource that addresses limitations of previous datasets (1) to support 

interpretation of paleogenomics data. With 240 placental mammal species, Zoonomia has 

sufficient power to distinguish individual bases under evolutionary constraint - a useful 

predictor of functional importance (2) - in coding and regulatory elements (3). Zoonomia’s 

reference-free genome alignment (4, 5) allows evolutionary constraint to be scored in any of 

its 240 species, including dogs.

Here, we generate a genome for Balto, the famous sled dog who delivered diphtheria serum 

to the children of Nome, Alaska, during a 1925 outbreak. Following his death, Balto was 

taxidermied and his remains are held by the Cleveland Museum of Natural History. We 

generated a 40.4-fold coverage nuclear genome from Balto’s underbelly skin using protocols 

for degraded samples. His DNA was well preserved, with an average endogenous content of 
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87.7% in sequencing libraries, low (<1%) damage rates (fig. S1) and short (68bp) average 

fragment sizes, consistent with the age of the sample.

Balto was born in the kennel of sled dog breeder Leonard Seppala in 1919. Although 

Seppala’s small fast dogs were known as Siberian huskies (6), they were a working 

population that differed from the dog breed recognized by the American Kennel Club (AKC) 

today. Modern dog breeds are genetically closed populations that conform to a tightly 

delineated physical standard (7). Balto’s relationship to AKC-recognized sled dog breeds 

like the Siberian husky (established in 1930) and Alaskan malamute (1935) (8) is unclear. 

Balto himself was neutered at six months of age and had no offspring.

Working populations of sled dogs survive. Alaskan sled dogs are bred solely for physical 

performance, including outcrossing with various breeds (9). Greenland sled dogs are an 

indigenous land-race breed that have been used for hunting and sledging by Inuit in 

Greenland for 850 years, where they have been isolated from contact with other dogs (10). 

Here, we use the term “breed” exclusively to refer to modern breeds recognized by the 

AKC or other kennel clubs (e.g. sled dog breeds), as distinct from the less rigidly defined 

populations of Greenland sled dogs and Alaskan sled dogs (working sled dogs). This is a 

genetic distinction; AKC-registered dogs can be successful working sled dogs.

We compared Balto to working sled dogs, sled dog breeds, other breeds, village dogs (free-

breeding dogs without known breed ancestry), and other canids. Our whole genome dataset 

comprised 688 dogs (table S1) representing 135 breeds/populations, including three Alaskan 

sled dogs and five Greenland sled dogs (10). We identified evolutionarily constrained bases 

using phyloP evolutionary constraint scores from the dog-referenced version of the 240 

species Zoonomia alignment (3).

Ancestry analysis places Balto in a clade of sled dog breeds and working sled dogs and 

closest to the Alaskan sled dogs (Fig. 1A,B). Most of his ancestry is assigned to clades of 

Arctic-origin dogs (68%) and, to a lesser extent, Asian-origin dogs (24%) in an unsupervised 

admixture analysis with 2166 dogs and 116 clusters (Fig. 1C, table S2, S3). He carried no 

discernible wolf ancestry. The more recently established Alaskan sled dog population (9) did 

not fall into a distinct ancestry cluster in the unsupervised analysis, but comprised 34% of 

Balto’s ancestry in a supervised analysis defining them as a cluster (fig. S2).

Balto was more genetically diverse than breed dogs today and similar to working sled 

dogs (Fig. 1D). Balto had shorter runs of homozygosity than any breed dog, and fewer 

runs of homozygosity than all but one Tibetan mastiff (table S4). When inbreeding is 

calculated from runs of homozygosity, Balto and the two working sled dog populations 

are lower than almost any breed dog (fig. S3). When inbreeding is calculated using an 

allele frequency approach (method-of-moment), Greenland sled dogs have high inbreeding 

coefficients, reflecting their long genetic isolation in Greenland (fig. S3).

To evaluate the genetic health of Balto’s population of origin, we developed an analytical 

approach that leveraged the Zoonomia 240 species constraint scores and required only a 

single dog from each population (necessary since Balto is the only available representative 

of his population). Briefly, we selected one individual at random from each breed or 
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population (57 dogs total) and scored variant positions as either evolutionarily constrained 

(and more likely to be damaging (2)) or not using the Zoonomia phyloP scores (3). We also 

identified variants likely to be “rare” (low frequency) in each dog’s breed or population. 

Because we couldn’t directly measure population allele frequencies with only a single 

representative dog, we defined “rare” variants as heterozygous or homozygous variants 

unique to that dog among all 57 representative dogs. This metric effectively identifies 

variants occurring at unusually low frequencies (fig. S4).

Balto and modern working sled dogs had a lower burden of rare, potentially damaging 

variation, indicating they represent genetically healthier populations (11) than breed dogs. 

Balto and the working sled dogs had significantly fewer potentially damaging variants 

(missense or constrained) than any breed dog, including the sled dog breeds (Fig. 1E). The 

pattern persists even in the less genetically diverse Greenland sled dog. Selection for fitness 

in working sled dog populations appears more effective in removing damaging genetic 

variation than selection to meet a breed standard.

Balto’s physical appearance predicted from his genome sequence (Fig. 2A, table S5) 

matches historical photos (Fig. 2B) and his taxidermied remains, indicating that the same 

variants shaping modern breed phenotypes also explained natural variation in his pre-breed 

working population. We predict that he stood 55cm tall at his shoulders (12)(Fig. 2C), 

within the acceptable range for today’s Siberian husky breed (53–60cm (8)), and had a 

double layered coat (13) that was mostly black with only a little bit of white (14). He was 

homozygous for an allele conferring tan points (15) and one for blue eyes (16), but both 

were masked by his melanistic facial mask (17), and his predicted light-tan pigmentation 

(18) may have been indistinguishable from white. He carried neither the “wolf agouti” nor 

“Northern domino” patterns that are common in the Siberian husky and other sled dog 

breeds today (19).

Both Balto and Alaskan sled dogs had unexpected evidence of adaptation to starch-rich 

diets. They carry the dog version of MGAM, a gene involved in starch processing that 

is differentiated between dogs and wolves (20) and one of fourteen regions analyzed for 

evidence of selective pressure in Balto’s lineage using a gene tree analysis (table S6). In 

earlier work, the high frequency of the wolf version of MGAM in Greenland sled dogs 

prompted speculation that reduced starch digestion might be a working sled dog trait (10). 

Our findings suggest this phenomenon is specific to Greenland sled dogs. Gene tree analysis 

places one of Balto’s chromosomes in the ancestral wolf cluster, and one to the derived dog 

cluster (fig. S5). Most Alaskan sled dogs carry the dog version (frequency=0.83). However, 

read coverage of the gene AMY2B suggests Balto had fewer copies of this gene than 

many modern dogs, and thus comparatively lower production of the starch-digesting enzyme 

amylase (21, 22). Taken together, we suggest Balto’s ability to digest starch was enhanced 

compared to wolves and Greenland sled dogs, but reduced compared to modern breeds.

Of the other 14 regions tested, most (10/14) lacked sufficient diversity in dogs to resolve 

phylogenetic relationships. Bootstrap support was weak for two other genes selected in 

Greenland sled dogs (CACNA1A and MAGI2). As expected, Balto did not carry versions of 

EPAS1 associated with high altitude adaptation (23).
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We found an enrichment for unusual function variation in Balto’s population consistent with 

adaptation to the extreme environments in which early 20th century sled dogs worked. We 

identified variants in Balto’s genome that were new (not seen in wolves) and likely to be 

common in his population (homozygous in Balto; fig. S4). We further filtered for variants 

that were both protein-altering (missense) and evolutionarily constrained (FDR<0.01), and 

thus likely to be functional. Balto was no more likely to carry such variants than dogs 

from 54 other populations (fig. S6), but in Balto these variants tended to disrupt tissue 

development genes (GO:0009888; 24 genes; 3.02-fold enrichment; pFDR=0.013)(table S7). 

This enrichment was unique to Balto (Fig. 2D, fig. S7), and most of the variants were rare 

or missing in other dog populations (fig. S8). Even when all GO biological process gene 

sets are tested in all 57 dogs, Balto’s enrichment in tissue development genes is highly 

unusual. It ranks 4th out of 888,573 dog/set pairs tested (fig. S7, table S8). Phenotype 

associations from human disease studies suggest that these variants could have influenced 

skeletal and epithelial development including joint formation, body weight, coordination, 

and skin thickness (table S9)(24). Modern sled dog breeds and working sled dogs are only 

slightly more similar to Balto than other dogs at these variants (fig. S9).

Balto was part of a famed population of small, fast, and fit sled dogs imported from 

Siberia. Following his famous run, the Siberian husky breed was recognized by the AKC. 

By sequencing his genome from his taxidermied remains and analyzing it in the context of 

large comparative and canine datasets, we show that Balto shared only part of his ancestry 

with today’s Siberian huskies. Balto’s working sled dog contemporaries were healthier and 

more genetically diverse than modern breeds, and may have carried variants that helped 

them survive the harsh conditions of 1920s Alaska (6). Further work is still needed to assess 

the impact of the evolutionarily constrained missense variants that Balto carried. While 

the era of Balto and his fellow huskies has passed, comparative genomics, supported by a 

growing collection of modern and past genomes, can provide a snapshot of individuals and 

populations from the past, as well as insights into the selective pressures that shaped them.

Materials and Methods:

Assembly of comparative canid genetic variants

We collated a reference set of comparative canid genetic variants starting from the curated 

Broad-UMass Canid Variant set (https://data.broadinstitute.org/DogData/) and comprising 

whole genome sequencing data for 531 dogs of known breed ancestry distributed among 

132 breeds, 28 dogs of mixed breed ancestry, 12 dogs of unknown ancestry, 69 worldwide 

indigenous or village dogs, 33 wolves, and 1 coyote (see stable S1).

Ancient DNA extraction, library preparation, and genome assembly

We extracted DNA from a ~5mm × 5mm piece of Balto’s underbelly skin tissue, in two 

replicates (HM246 and HM247) with an extraction negative, using the ancient DNA specific 

protocol in Dabney et al. 2013 (28). We prepared 32 ~1pmol input Illumina libraries from 

these extracts following the Santa Cruz library preparation method (29), including positive 

and negative controls. All 32 libraries passed quality control (QC), and so we sequenced 
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them to a depth of ~2.3 billion on a NovaSeq 6000 platform 150bp paired end (see table S11 

for the number of reads produced per library).

We used SeqPrep v.1.1 (30) to trim adapters, remove reads shorter than 28bp, and 

merge remaining paired-end reads with a minimum overlap of 15 bp. We then used the 

Burrows-Wheeler Aligner (BWA) v.0.7.12 (31) with a minimum quality cut off of 20 to 

align reads to the Canis lupus familiaris (dog) reference genome (CanFam3.1) (NCBI: 

GCA_000002285.2). All 32 bam files (one for each library) were merged into one with 

PCR duplicates removed. We used both Qualimap (v2.2.1) and samtools (v1.7) to calculate 

metrics and assess the quality of the alignment (see table S12).

Variant calling

We used GATK HaplotypeCaller to call variants in Balto as well as 10 previously 

published Greenland sled dogs (10) and 3 Alaskan sled dogs sequenced for this 

study (see Supplementary Methods for details on sampling, DNA extraction, and 

sequencing) against the UMass-Broad Canid Variant set using parameter --genotyping-mode 
GENOTYPE_GIVEN_ALLELES --alleles (known alleles). Then, we merged variant call 

records from these 14 dogs with records from the UMass-Broad Candid Variants set, for 

variant calls in a full set of 688 individuals: Balto (this study), 3 modern Alaskan sled dogs 

(this study), 10 modern Greenland sled dogs (10), 531 dogs from modern breeds, 40 dogs of 

unknown or admixed ancestry, 69 village or indigenous dogs, 33 wolves, and 1 coyote.

Phylogenetic analysis and neighbor-joining trees

Using a dataset of 100 representative canids (see table S1 for samples selected in the 

`Phylogenetic Analysis`) we confirmed Balto’s phylogenetic position by generating a 

neighbor-joining (NJ) phylogenetic tree and conducting a principal component analysis 

(PCA). We converted the variant calls into a FASTA file and used MEGA-CC(33) with 

1000 bootstraps to assess tree topology. We also ran a PCA on this set using PLINK (v1.9), 

and then visualized the first two principal components in R (v. 3.6.3) using the `ggplot2` 

package.

Global ancestry inference

We inferred Balto’s ancestral similarity to modern dog breeds, sled dog type breeds, and 

working sled dogs using a custom built reference panel of modern dogs and canids of 

the 21st century (table S3). In PLINK (v2.00a3LM) (35), we identified 4,267,732 biallelic 

single nucleotide polymorphisms with <10% missing genotypes, and calculated Wright’s 

F-statistics using Hudson method (36, 37) for (1) each dog breed and sled dog population 

versus all other dogs; (2) all village dogs versus all other dogs; (3) each regional village 

dog population; (4) all wolves versus all other dogs; (5) all coyotes versus all other canids; 

and (6) North American wolves versus Eurasian wolves. We selected 1,858,634 SNPs 

with FST>0.5 across all comparisons, and performed LD-based pruning in 250kb windows 

for r2>0.2 to extract 136,779 markers for global ancestry inference. We merged Balto’s 

genotypes for these SNPs with genotypes from the reference samples. For reference samples 

also represented in the whole genome dataset, population labels used in the admixture 

analysis are given in the `Representative in Global Ancestry Inferencè column of table S1. 
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We performed global ancestry inference using ADMIXTURE (38) in both supervised mode 

(random seed: 43) with 20 bootstrap replicates to estimate parameter standard errors, and in 

unsupervised mode for the same number of populations (K=116), which showed low levels 

of error (0.3) in ten-fold cross-validation analysis of chromosome 1 for K clusters between 

50 and 150 (table S13).

Homozygosity and inbreeding metrics

We removed samples with any missing data from the dataset of 100 representative 

individuals used in the phylogenetic analyses, leaving 86 individuals (see table S1 for 

samples selected in the ‘Homozygosity Analysis’). Using this pruned dataset, we detected 

runs of homozygosity (RoH) using a window-based approach implemented in PLINK (v1.9) 

(35). We calculated two measures of inbreeding: the method-of-moments coefficient in 

PLINK (FMoM) and the metric based on runs-of-homozygosity (FRoH), as recommended by 

Zhao et al. 2020 (40) (table S4). Using the R (v. 3.6.3) function `cor.test`, we confirmed that 

FRoH and FMoM are significantly correlated (RPearson= 0.6752819, p= 9.958e-13, t= 8.3913, 

df= 84).

Population representative sampling

As Balto is the sole representative of his population, we randomly selected one 

representative sample from each of 57 populations for the discovery of individually-

represented, population-relevant genetic variants (see table S1 for samples selected 

in the `Population Variants Analysis`) among 67,085,518 biallelic single nucleotide 

polymorphisms. These populations included Balto, 1 Alaskan sled dog, 1 Greenland sled 

dog, and 54 modern purebred dogs, including 1 Siberian husky and 1 Alaskan malamute. 

Likewise, we selected, where available, another 5 to 11 random samples from 10 modern 

breeds, and all remaining Greenland sled dog samples, to assess the population-wide allele 

frequency of these variants (see table S1 `Population Frequency Analysis`).

Dog-referenced mammalian evolutionary constraint

We selected biallelic SNPs under evolutionary constraint by examining sites overlapping 

phyloP evolutionary constraint scores from the dog-referenced version of the 240 species 

Cactus alignment (3). We calculated the constraint score cutoffs at various false discovery 

rates (FDR).

Unique, rare, and potentially deleterious variants

We first identified all “population-unique” variants, defined as those observed in the 

representative dog from a population (either once or twice) and not observed in 

representatives from any of the other populations. With this method, we identified 206,164 

population-unique variants for Balto, 120,279 for the Alaskan sled dog, 119,482 variants 

for the Greenland sled dog, 120,780 unique to the Alaskan malamute, and 133,200 

unique to the Siberian husky. We confirmed that population-unique variants tend to be 

uncommon by calculating the allele frequencies in its population. We used Zoonomia 

PhyloP scores and SnpEff(42) annotations to identify which population-unique variants were 

either “evolutionarily constrained” (phyloP score above the FDR 0.05 cutoff of 2.56) or a 
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missense mutation and thus more likely to have functional consequences (table S15). We 

grouped the dogs into working dog groups including Balto, Alaskan sled dog, and Greenland 

sled dog, and modern breeds including all the other 54 dogs. We then applied Student’s t-test 

on the percentage of “evolutionarily constrained” or missense mutation for the two groups.

Derived, common, and potentially beneficial variants

We identified “homozygous derived” variants, defined as those observed twice in the 

representative dog from a population and not observed in wolves, for each of the 

populations. With this method, we identified 176,135 homozygous derived variants for 

Balto, 148,036 variants for Alaskan sled dog, 260,457 variants for Greenland sled dog, 

225,270 variants for Alaskan Malamute, and 189,188 variants for Siberian husky. We 

confirmed that homozygous variants in each representative dog tend to be “common” in 

their population by calculating the allele frequency of the homozygous derived variants in 

its own breed. We also used a Wilcox test against randomly selected SNPs to show that 

population-unique SNPs are rare, whereas homozygous derived SNPs are rather common, 

among their population.

We further defined variants likely to be functional as those that were both “highly 

evolutionarily constrained” (defined by phyloP score above the FDR>0.01 cutoff of 

3.52) and a missense mutation. We annotated the variant by genes, and performed 

gene set enrichment against all Gene Ontology Biological Process gene sets (http://

geneontology.org/) using the R package rbioapi v. 0.7.4 (43, 44) (table S7, S8). We 

also tested for overlap between Balto’s variant genes and genes implicated in particular 

phenotypes in human studies using the Human Phenotype Ontology (24) and the 

“Investigate gene sets” feature provided by GSEA (http://www.gsea-msigdb.org/) (table S9).

Prediction of Balto’s aesthetic phenotypes

We extracted Balto’s genotypes for a panel of 27 genetic variants associated with physical 

appearance in domestic dogs (table S5) to infer his coat coloration, patterning, and type. 

We also phased haplotypes from Balto’s genotypes using EAGLE (v.2.4.1) (51) with 

reference haplotypes from the phased UMass-Broad Canid Variants and constructed the 

haplotype consensus sequences of the MITF-M promoter length polymorphism locus 

(chr20: 21,839,331 – 21,839,366) and upstream SINE insertion locus (chr20: 21,836,232 

– 21,836,429) using BCFtools in order to investigate the MITF variants that putatively affect 

white spotting. We also ran a body size prediction for Balto using a random forest model 

(R packages `caret` and `randomForest`) built on the relative heights (defined as where a 

dog’s shoulders fall relative to an “average person”, and surveyed on a Likert scale from 

ankle-high and shorter, or survey option 0, to hip-high and taller, or survey option 4) of 

1,730 modern pet dogs surveyed and 2,797 size-associated SNPs genotyped by the Darwin’s 

Ark project described previously (12) (see supporting files for model and scripts used to run 

prediction).

Balto’s physiological adaptations

We examined the genotypes underlying 14 regions (table S6), which included 1 region 

under selection in high altitude individuals (53) (Endothelial PAS domain-containing protein 
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1-EPAS1), 2 regions previously identified as under selection in sled dogs (10) (Calcium 

Voltage-Gated Channel Subunit Alpha1 A - CACNA1A and Maltase-Glucoamylase - 

MGAM), 8 regions identified by population branch statistics as potentially under selection 

in sled dog breeds (12), and 3 regions responsible for aesthetic phenotypes described 

previously in domestic dogs (Melanocortin 1 Receptor - MC1R (45), Agouti Signaling 

Protein - ASIP (52), and a chr28 cis-regulatory region associated with single-layered coats 

(13)). Following the method outlined in Bergström et al. 2020 (21), we also investigated the 

number of Amylase Alpha 2B (AMY2B) copies Balto had by quantifying the ratio of reads 

(reads/total length of region) mapping to the AMY2B regions in CanFam3.1 (ratio: 0.20) to 

the number of reads mapping to 75 randomly chosen 1kb windows of the genome (ratio: 

0.59), given that higher copy numbers are suggested for dog adaptation to starch-rich diets 

(22).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Balto clusters most closely with Alaskan sled dogs, but had high genetic diversity and a 
lower burden of potentially damaging variants.
(A) Neighbor-joining tree clusters Balto (★) most closely with the outbred, working 

population of Alaskan sled dogs, and a part of a clade of sled dog populations. (B) Similarly, 

principal component analysis puts Balto near, but not in, a cluster of Alaskan sled dogs. 

(C) Unsupervised admixture analysis of Balto alongside the Alaskan sled dogs and other 

dogs and canids (K= 116 putative populations and N= 2166 individuals) infers substantial 

ancestral similarity to Siberian huskies, Greenland sled dogs, and outbred dogs from Asia 

(table S2). The remainder of his ancestry (8%) matches poorly (<5%) to any other clusters. 

Balto and working sled dogs (D) had lower levels of inbreeding, and (E) carried fewer 

constrained (pwilcox=0.0019) and missense (pwilcox= 0.0023) rare variants than modern dog 

breeds (table S10).
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Figure 2. Genomic recreation of Balto’s physical appearance.
(A) Prediction of Balto’s coat features based on his genome sequence with details on each 

trait and genotype in blue boxes. (B) A photo of Balto with musher Gunnar Kaasen. From 

the photo and his taxidermied remains, Balto was a black dog with dark eyes and some 

white patches on his chest and legs. He had a double-layered coat, and stood just under 

knee-high relative to Kaasen. Photo credit: Cleveland Museum of Natural History. (C) Using 

a random forest model based on 1,730 dogs and 2,797 height-associated genetic variants 

(12), we predicted that Balto would stand around 55 cm tall (value: 2.3) at his withers, close 

to the average height for the Siberian husky breed. Circles show dogs from other breeds. 

(D) Gene set enrichment testing of genes with common and constrained missense variants in 

57 different dog populations shows a significant enrichment (pFDR=0.013) in the GO Tissue 

Development pathway only for Balto’s population.
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