
Citation: Alemán-Montes, B.; Zabala,

A.; Henríquez, C.; Serra, P. Modelling

Two Sugarcane Agro-Industrial

Yields Using Sentinel/Landsat

Time-Series Data and Their Spatial

Validation at Different Scales in Costa

Rica. Remote Sens. 2023, 15, 5476.

https://doi.org/10.3390/rs15235476

Academic Editors: Francesco Pirotti

and Mitsunori Yoshimura

Received: 14 September 2023

Revised: 10 November 2023

Accepted: 17 November 2023

Published: 23 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

remote sensing  

Article

Modelling Two Sugarcane Agro-Industrial Yields Using
Sentinel/Landsat Time-Series Data and Their Spatial Validation
at Different Scales in Costa Rica
Bryan Alemán-Montes 1,2,* , Alaitz Zabala 1 , Carlos Henríquez 2 and Pere Serra 1

1 Grumets Research Group, Geography Department, Universitat Autònoma de Barcelona,
08193 Cerdanyola del Vallès, Spain; alaitz.zabala@uab.cat (A.Z.); pere.serra@uab.cat (P.S.)

2 Centro de Investigaciones Agronómicas, Universidad de Costa Rica, Montes de Oca 11501-2060, Costa Rica;
carlos.henriquez@ucr.ac.cr

* Correspondence: bryan.aleman@ucr.ac.cr

Abstract: Sugarcane production is a relevant socioeconomic activity in Costa Rica that requires
tools to improve decision-making, particularly with the advancement of agronomic management
using remote sensing (RS) techniques. Some contributions have evaluated sugarcane yield with RS
methods, but some gaps remain, such as the lack of operational models for predicting yields and
joint estimation with sugar content. Our study is a contribution to this topic that aims to apply an
empirical, operational, and robust method to estimate sugarcane yield (SCY) and sugar content (SC)
through the combination of field variables, climatic data, and RS vegetation indices (VIs) extracted
from Sentinel-2 and Landsat-8 imagery in a cooperative in Costa Rica for four sugarcane harvest
cycles (2017–2018 to 2020–2021). Based on linear regression models, four approaches using different
VIs were evaluated to obtain the best models to improve the RMSE results and to validate them
(using the harvest cycle of 2021–2022) at two management scales: farm and plot. Our results show
that the historical yield average, the maximum historical yield, and the growing cycle start were
essential factors in estimating SCY and the former variable for SC. For SCY, the most explicative
VI was the Simple Ratio (SR), whereas, for SC, it was the Ratio Vegetation Index (RVI). Adding VIs
from different months was essential to obtain the phenological variability of sugarcane, being the
most common results September, December and January. In SC estimation, precipitation (in May and
December) was a clear explicatory variable combined mainly with RVI, whereas in SCY, it was less
explanatory. In SCY, RMSE showed values around 8.0 t·ha−1, a clear improvement from 12.9 t·ha−1,
which is the average obtained in previous works, whereas in SC, it displayed values below 4.0 kg·t−1.
Finally, in SCY, the best validation result was obtained at the plot scale (RMSE of 7.7 t·ha−1), but this
outcome was not verified in the case of SC validation because the RMSE was above 4.0 kg·t−1. In
conclusion, our operational models try to represent a step forward in using RS techniques to improve
sugarcane management at the farm and plot scales in Costa Rica.

Keywords: sugarcane yield; sugar content estimation; Sentinel-2 and Landsat-8; vegetation indices;
multivariate linear regression; spatial variability; farm and plot validation

1. Introduction

Sugarcane production is an important activity for Costa Rica because it brings eco-
nomic, labour, social, technological, and even cultural benefits [1]. In 2021, 58,268.6 ha of
sugarcane cultivation was reported [2], which the Liga Agrícola Industrial de la Caña de
Azúcar (LAICA, the governing body of sugarcane in Costa Rica) divided into six regions.
Annually, sugarcane production generates approximately 100,000 jobs, both directly and
indirectly, providing an economic contribution to the local economy between 200 and
250 million USD, considering sugar and its derivatives [3].
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The sugarcane is a perennial grass growing in the tropical and subtropical world
regions with a high concentration of sucrose in the stalk, and it has four phenological stages.
In the case of Costa Rica, these stages extend approximately three months, but in other
countries, they may change depending on the variety, local conditions, culture management,
and geographical parameters [4]. The first stage is seed and germination, characterized
by the appearance of buds that allow partial soil coverage with vegetation [5,6]. Next
is the stage of tillering and canopy development, where the newly sprouted plants have
rapid growth and cover the soil with the crop; after that, the period of great growth
begins, when the crop intercepts a high percentage of solar radiation, and the stalk has
a fast elongation [7]. Finally, the maturation stage is characterized by an increase in the
concentration of sucrose in the stalks and a reduction in the leaf area [8]. Sugarcane fields
are harvested several times after the first planting (known as plant crop), and then new
ratoons emerge from the same root system [6,9].

The constant interest in increasing sugarcane productivity and its sustainability has
promoted the incorporation of remote sensing (RS) in decisions made around crop manage-
ment due to its repetitive and synoptic coverage and cost-efficient provision [10–12]. The
principal applications of RS in sugarcane plantations are crop mapping, variety classifica-
tion, crop growth anomaly, health monitoring, and yield estimation [4,13]. There are some
examples of RS applications for sugarcane yield estimation, including in [14], which is one
of the first studies that integrated agrometeorological data and spectral information (Ratio
Vegetation Index, RVI) from Landsat-4 and 5 in Brazil.

One of the most common RS techniques for sugarcane yield estimation is the use of
vegetation indices (VIs) because they are quantitative measurements indicating the vigor of
vegetation, and they are easy to obtain [15]. Some studies have found positive relationships
between VIs and sugarcane yield. For instance, Rao et al. [16] found positive correlations
between the Normalized Difference Vegetation Index (NDVI) and yield using the Indian
Remote Sensing Satellite (IRC-1C) and Landsat data in India. Another example of different
satellite data combinations (Landsat and ASTER) is found in Almeida et al. [17], in which
the authors intended to forecast sugarcane yield using VIs, Principal Component Analysis,
and historical harvest data.

Fernandes et al. [18] evaluated the feasibility of estimating yield at the municipality
scale using NDVIs extracted from SPOT-Vegetation images with low spatial resolution
(1 km2) and meteorological data in Brazil. In contrast, Mutanga et al. [19] used the same
images to forecast yield at a regional scale in Zimbabwe. In Kenya, Mulianga et al. [20]
showed the difficulty in forecasting the yield on an annual basis using low-resolution
satellite images (MODIS) and precipitation data, whereas, in India, Dubey et al. [21]
explored an RS-based approach for predicting yield using multiple linear regression, at the
district scale, with the Vegetation Condition Index (VCI) and MODIS images, concluding
that the relation between VCI and yield was poor in some districts. Another example of the
combination of different satellite data, but with more spatial resolution, is Morel et al. [22]
in Reunion Islands, where they used an NDVI time series derived from SPOT-4 and SPOT-5
in some farm fields to predict sugarcane yield, where a linear empirical model produced
the best results. In Australia, Rahman and Robson [23] combined Landsat and Sentinel
images using the same technique to estimate yield at the block level, and in Ethiopia, Abebe
et al. [24] merged Landsat and Sentinel images (and different VIs) to estimate yield using a
support vector regression, a multilayer perception neuronal network, and a multiple linear
regression. Finally, dos Santos Luciano et al. [25] calibrated other predictors to forecast
sugarcane yield but only using Landsat satellite images (and different VIs) and agronomic
and meteorological data with Random Forest regression.

Recently, a new type of platform, the unmanned aerial vehicle (UAV), has been used to
estimate sugarcane yield with high precision in small study areas, such as 3.6 hectares in [26],
5 hectares in [27], 1 hectare in [28], and around 1 hectare in [29]. Images from UAVs are very
useful for precision agriculture, given their high spatial resolution (centimeters), among
other characteristics, and they are increasingly common in research [30]. Nevertheless,
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in this study, the application of UAVs was not feasible because our study area was quite
extensive, more than 500 ha, and because the time series of VIs were required since 2017,
which was impossible to have with UAVs.

In summary, from the mentioned works, the following lessons can be derived. First,
the combination of RS images extracted from different sensors is a preferable option for
obtaining robust multitemporal series and minimizing the presence of clouds and other
artifacts. In addition, the use of several VIs (GNDVI, NDVI, etc.) for analyzing/including
the annual phenological evolution is very usual, with a predominance of NDVI. The VIs
have been combined with other climatic and agronomic data to improve sugarcane yield
estimation. At the same time, a tendency to enhance the spatial resolution has been iden-
tified (from VEGETATION to UAV), also affecting the scale of the work, from regional
to local. Finally, the most common method for yield estimation has been multivariate
linear regression (MLR), which achieves an average root mean square error (RMSE) of
12.9 t·ha−1 [4]. Conversely, one issue or limitation is that most studies have been under-
taken at a research level with less operational sugarcane yield-prediction models [4,13].
This situation may be worse in the case of Costa Rica because, in the literature review,
an incipient development was observed in models for the estimation of sugarcane yields,
including geospatial information [28,31].

In addition to having yield-estimation models with good adjustment parameters, it
is necessary to know the spatial variability of yield production inside each crop area to
define management strategies, delimit management zones, and understand yield deter-
minants [32]. The operational nature of models will also improve the identification of
low-productivity farms and plots as a basis for implementing optimization strategies for
the following season, make the planning of harvesting logistics clearer, and verify the
reliability of farmers’ pre-harvest estimates [33]. In the context of sugarcane research, many
studies have developed a yield-estimation model; however, few have mapped the spatial
variability of the model even though that information is very valuable for improving crop
management [34]. Another constraint is the low number of works that include both the
sugarcane yield estimate (t·ha−1) and the sugar content prediction (kg·t−1), which are
important for the sugarcane agro-industry. Indeed, from an economic point of view, the
producers are paid based on these indicators. Nevertheless, two exceptions have been
observed: Bégué et al. [35] obtained a better relationship between the sugarcane yield and
the NDVI acquired before the maturation stage, whereas for sugar content and the NDVI
the link was during the maturation stage. Moreover, Shendryk et al. [36] identified that the
sugarcane yield and the sugar content can be estimated by integrating satellite variables
and climatic data four months before harvest.

The objective of this study was to apply an empirical, operational, and robust method
for estimating sugarcane yield and sugar content through the combination of field variables,
climatic data, and RS VIs calculated with Sentinel-2 and Landsat-8 satellite images in a
producer’s cooperative in Costa Rica and to validate the results at two different scales.
The estimation models were adjusted to the reality of the cooperative, which manages
heterogeneous farms according to size, agronomic management practices, and agroecolog-
ical conditions. The contribution of this research is fourfold: (1) to obtain empirical and
operational models adapted to the local needs of Costa Rica, combining field variables,
historical yield indicators, climatic data, and RS VIs; (2) to fit the best models comparing
four approaches—(a) the use of just one specific VI, (b) the combination of different VIs,
(c) the merging of just one specific VI and climatic data, and (d) the integration of different
VIs and climatic data; (3) to improve the RMSE of models compared with some previous
works developed in other countries and related to the traditional estimate of the cooper-
ative based on empirical knowledge; and, finally, (4) to validate the spatial variability of
sugarcane yield and sugar content at two different scales: farms and plots.
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2. Materials and Methods
2.1. Study Area

Sugarcane production in Costa Rica has been organized through national legislation
that has allowed sugarcane production to be divided and organized into six regions with
different edaphoclimatic and production characteristics. The regions are Guanacaste,
Pacífico Central, Valle Central, Zona Norte, Zona Sur, and Turrialba/Juan Viñas [37,38]
(Figure 1b).
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The study area is part of the “Valle Central” production region located in the West
Central Valley of Costa Rica; it contains the sugarcane plantations of the CoopeVictoria
R.L. cooperative (Figure 1c). This region is particularly interesting because it was the
first sugarcane production region in Costa Rica, and nowadays, it has strong commercial,
industrial, and urban development, increasing the pressure on agricultural lands and
producing a decreasing trend in the cropped area [39]. We worked with 26 farms that sum
511 hectares with a mean of 19.6 hectares per farm and with different planted varieties, of
which RB86-7515 and LAICA 07-09 were the most common.

The context of the study area is characterized by having soils of the order andisols,
inceptisols, and their associations [40]. The study area may be divided into two climatic
zones according to the available meteorological stations: the wettest zone, named DIECA
(the data from this meteorological station were provided by DIECA (Departamento de
Investigación y Extensión de la Caña de Azúcar)), where the rainfall is around 2600 mm and
the mean temperature is close to 21.5 ◦C, and the driest zone, named Argentina (these data
were obtained from the Argentina station of the National Meteorological Institute, IMN in
Spanish), which has a mean precipitation of about 2000 mm and a mean temperature close
to 22.4 ◦C. Both zones have two climatic seasons: one dry, from December to April, and
another rainy, from May to November. Furthermore, there is a slight decrease in rainfall
around July, which is known as “Canícula” in Costa Rica [41]. Figure 2 shows that in
DIECA, from 2021 to 2022, this climatic phenomenon did not happen, a clear exception in
the general precipitation trend.
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The average temperature is quite constant throughout the year, oscillating between
20 ◦C and 25 ◦C. The 26 studied farms were divided into two groups using a neighborhood
criterion based on the available meteorological stations. We assigned 21 farms to the
wettest zone (DIECA), and the other 5 farms were included in the driest zone (Argentina).
Monthly accumulated precipitation and average temperature data were assigned to each
farm according to their closeness to meteorological stations.

2.2. Sugarcane Crop Cycle in Costa Rica

In general, the sugarcane crop cycle in Costa Rica has homogeneous patterns, with
each phenological stage lasting approximately ninety days. However, the start time of the
growing season varies across regions due to differences in climatic conditions, management
culture, or workforce availability (Figure 3). In the regions with irrigation systems, the
phenological cycle of new sugarcane planting can start in January, while in other regions
without irrigation systems, farmers must wait for the rainy season. The end of the sugarcane
crop cycle depends on the start time, but the full cycle generally takes twelve months.
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In the “Valle Central” region, the consequence of the local conditions is that the plant
is sown between May and June, such that the start of the crop cycle coincides with the
rainy season. The maturation stage ends in April of the next year; however, for ratoon
plots, the maturation stage starts in January. For ratoons, new plants begin to emerge about
fifteen days after harvest, but their growth may be limited by low rainfall and the absence
of an irrigation system, which makes it difficult to carry out agronomic practices such as
fertilization [43].

2.3. Available Data
2.3.1. Yield and Climatic Data

To model sugarcane estimations of sugarcane yield and sugar content, four harvest
seasons were included: 2017–2018, 2018–2019, 2019–2020, and 2020–2021. The data for the
two agro-industrial yields were obtained from the cooperative CoopeVictoria R.L. using the
total production at the farm scale. Sugarcane yield (t·ha−1) is the sum of the tons of stalks
harvested on a specific farm divided by its area in hectares, whereas sugar content (kg·t−1)
is the mean of kilograms of sugar that can be obtained from one ton of stalks. The traditional
harvesting process is used, which is manual, very labour-intensive, and time-consuming,
while the yields are calculated following industrial processes. To validate the best-adjusted
estimation models, an additional season was added, corresponding to 2021–2022, from the
same source. In this last harvest season, the data were available at two scales: the farm
scale and the plot scale (Figure 4). The data at the plot scale allowed validation with an
improved spatial resolution, which is very uncommon in sugarcane research. According to
production data, during the harvest cycles from 2017–2018 to 2020–2021, this cooperative
had a mean sugarcane yield of 88.6 t·ha−1, while the mean sugar content was 119.3 kg·t−1

during the same period. Based on empirical knowledge from the cooperative, the estimated
RSME of sugarcane yield for the 2021–2022 harvest cycle was 12.9 t·ha−1.
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Harvest yield records have been used to model sugarcane yield based on RS in some
works [17,20]. As is known, sugarcane yields decline with successive ratoon crops [44,45],
being the knowledge of this decay essential for the modelling of sugarcane yield and sugar
content. Therefore, an understanding of their historical trends is required. In this work,
historical yield indicators, the historical average yield and the historical maximum yield,
were calculated; the former considered the average of the 2015–2016 and 2016–2017 harvest
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cycles, while the latter retained the maximum yield achieved between those two years,
both included as independent variables in the first evaluated harvest season (2017–2018).
To more comprehensively explore the historical perspective, the same indicators were
aggregated from the previous harvest cycles before the evaluation year for the rest of
analysed seasons (2018–2019, 2019–2020, and 2020–2021 yield data). Climatic data were
included as independent variables, specifically the accumulated precipitation and average
temperature by month, which were obtained from the IMN of Costa Rica and DIECA for
2017 to 2022.

2.3.2. Satellite Images and Vegetation Indexes

In this work, given the high presence of clouds, the combination of two different
satellite images, Sentinel and Landsat, was needed, as used in previous studies [35,46–48].
Level 2 images from Sentinel-2A and 2B (MSI sensor) were downloaded from European
Space Agency (ESA) using the Copernicus Open Access Hub (https://scihub.copernicus.
eu/dhus/#/home, accessed on 25 January 2022), and Landsat-8 (OLI sensor) images in
level 2 were downloaded from the collection two of the United States Geological Survey
(USGS) using the Earth Explorer portal (https://earthexplorer.usgs.gov/, accessed on
25 January 2022). Downloading the images processed in level 2 allowed the use of images
with reflectance on the Earth’s surface, reducing the influence of the atmosphere on satellite
images. The specific processing chain for both images used different algorithms: Landsat-8
images were processed using the Landsat Surface Reflectance Code (LaSRC) [49], while
Sentinel-2 images were treated with the Sen2Cor algorithm [50].

The estimation models for sugarcane yield and sugar content were calibrated with
34 images obtained from 2017–2018 to 2020–2021 (Table 1). Between May and January,
one image per month that was as free of clouds as possible (about <25%) was selected.
This option was impossible for the images taken in June and July 2020 because they were
completely cloudy. This situation also occurred in the images taken in October 2017 and
October 2018, for which images were replaced by images from early November, given the
availability of other images in mid-November. Further, the images selected for the harvest
cycle of 2021–2022 were used to validate the model. In this period, no images for September
were available due to high cloudiness. Nevertheless, an image from October 2 was assigned
to the month of September to keep the time series as complete as possible.

Table 1. Availability of Landsat-8 (L8) and Sentinel-2 (S2) images in the study area for the five harvest
cycles, 2017–2018 to 2021–2022.

Month
Harvest Cycles

2017–2018 2018–2019 2019–2020 2020–2021 2021–2022

May L8-2017-05-18 S2-2018-05-11 S2-2019-05-16 L8-2020-05-26 S2-2021-05-15
June L8-017-06-19 L8-2018-06-22 S2-2019-06-30 ND S2-2021-06-19
July S2-2017-07-15 L8-2018-07-24 L8-2019-07-27 ND L8-2021-07-16

August L8-2017-08-22 L8-2018-08-25 S2-2019-08-24 S2-2020-08-28 L8-2021-08-17
September L8-2017-09-07 S2-2018-09-13 S2-2019-09-08 L8-2020-09-15 S2-2021-10-02 *

October L8-2017-11-10 * S2-2018-11-07 * L8-2019-10-31 S2-2020-10-22 ND
November S2-2017-11-17 L8-2018-11-13 S2-2019-11-22 S2-2020-11-26 S2-2021-11-26
December S2-2017-12-22 S2-2018-12-27 S2-2019-12-27 S2-2020-12-21 S2-2021-12-31

January S2-2018-01-26 S2-2019-01-31 S2-2020-01-31 S2-2021-01-30 S2-2022-01-20

ND = no data. * Due to clouds, these images were assigned to the month before to keep the time series as complete
as possible.

For each satellite image, eight VIs were calculated that are common in agricultural
applications and sugarcane studies with optical satellite images [4,51]. The VIs were
the DVI (Difference Vegetation Index), EVI (Enhanced Vegetation Index), GNDVI (Green
Normalized Difference Vegetation Index), NDVI (Normalized Difference Vegetation Index),
RI (Redness Index), RVI (Ratio Vegetation Index), SAVI (Soil Adjusted Vegetation Index),
and SR (Simple Ratio) (Table 2) (Figure 4).

https://scihub.copernicus.eu/dhus/#/home
https://scihub.copernicus.eu/dhus/#/home
https://earthexplorer.usgs.gov/
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Table 2. Vegetation indexes (VIs) obtained from the satellite images.

Vegetation Index Equation Source

DVI NIR − Red [52]

EVI
2.5 × NIR−Red

(NIR+C1Red−C2Blue+L)
C1 = 6, C2 = 7.5, L = 1

[53]

GNDVI Green−Red
Green+Red [54]

NDVI NIR−Red
NIR+Red [55]

RI Red−Green
Red+Green [56]

RVI Red
NIR [57]

SAVI NIR−Red
(NIR+Red+0.5)×(1+0.5) [58]

SR * NIR
Red [59]

* This has also been defined in the literature as VIN (Vegetation Index Number) or RVI (Ratio Vegetation Index).

Due to the differences in spatial, spectral, and radiometric resolutions between Sentinel-
2 and Landsat-8 images, it was necessary to perform harmonization, without modifying the
original spatial resolution (10 m and 30 m, respectively), using the VIs from six images for
both satellites, corresponding to those images taken on the same day that were also cloud-
free: 7 November 2016, 26 January 2017, 2 March 2018, 16 January 2019, 2 December 2019,
and 5 January 2021.

After the VIs were calculated for each image, a systematic network of vectorial points
(including all the covers: urban, forest, sugarcane, etc.) with a constant separation was
overlaid, and then the median value of 36,570 circular polygons, with a radius of 40 m to
consider at least a pixel of Landsat (30 m), was extracted to adjust a linear regression model
for each VI. After harmonization regressions were applied, our combination of Sentinel-2
and Landsat-8 satellite images allowed us to create a satisfactory time series covering the
sugarcane’s phenological stages in monthly intervals.

Finally, although the phenological cycle in Valle Central theoretically begins in May,
it was necessary to create an independent variable to show when the phenological cycle
started. Given the lack of this specific information, a factor called the “growing cycle start”
was included, defined as the ordinal number of the month in which the GNDVI in a farm
was higher than 0.2. This threshold was chosen based on the influence that soil has on the
first stages of the crop cycle. The first value assigned was 1 for January, and the last was 5
for May.

2.4. Multivariate Statistical Analysis and Spatio-Temporal Validation

In this study, the dependent variables were sugarcane yield and sugar content, while
the independent variables included VIs, the historical yield indicators, and the growing
cycle start. We applied some MLR to fit the best predictive models using the independent
variables. The initial approach was to follow an additive temporal criterion for each VI
(namely, just considering a VI, e.g., SR), beginning in May, followed by June, July, and so
on until January, and excluding those months and VIs without statistical significance. A
second approach was to combine different VIs to analyse if they fitted better at different
phenological stages and, therefore, to improve the sugarcane yield and sugar content
estimations [60].

After VIs and historical yield indicators were used, in order to improve our models,
climatic data were included in a third approach, combining the first option (using just a
specific VI) with climatic data, and in a fourth approach, combining the second option
(mixing different VIs) with climatic data. The objective was to evaluate the weight of
climatic factors (temperature and precipitation) following the additive temporal criterion.
The initial hypothesis was to consider the climatic data as important factors for sugarcane
yield and sugar content models [36].

The software R (version 4.0.5) on the RStudio environment (version 2023.03.1+446)
was used to fit the models using the function lm(). The significant variables (p-value < 0.05)
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were selected using the stepwise() function and bidirectional selection criteria available
in the StepReg package developed by [61]. We evaluated all fitted models for each month
using cross-validation with the trainControl() function and the LOOCV (Leave-one out
cross-validation) method included in the caret package developed by [62]. Two indicators
were used to select the best-adjusted model for each dependent variable: the determination
coefficient (R2) and the root mean square error (RMSE).

A fifth year, corresponding to the 2021–2022 harvest cycle, was used to validate our
best operational models of sugarcane yield and sugar content. The estimations were
performed using a raster model, with a pixel size of 10 m × 10 m for all the variables, where
each pixel indicated the estimated value and consequently showed the spatial variability of
both dependent variables. Those new rasters were validated on two different scales: the
farm scale and the plot scale. Zonal statistics were calculated to extract the average value
of sugarcane yield or sugar content using a vector shapefile with the farms and plots of the
study area. The data at the plot scale did not cover all the farm fields for various reasons
(erroneous values, lack of data, or inconsistencies); 50 was the final number, equivalent to
28% of all plots and 33.4% of the study area. As an initial hypothesis, the validation at the
plot scale would give better results than at the farm scale because, at the former, the spatial
generalization is lower due to calculating an average from fewer pixels.

3. Results
3.1. Harmonization of Vegetation Indexes and Temporal Phenological Signatures

The harmonization of VIs from Landsat-8 and Sentinel-2 was successful because the
R2 parameter was almost greater than 0.9. In the four examples shown in Figure 5, the
RMSE was also small for each VI, which validated the combined use of both sensors [63].
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for NDVI, SR, SAVI, and RI vegetation indexes.

The growing cycle start presented a high heterogeneity during the study period
because, in this cooperative, the harvest calendar runs from February to April of each year,
representing an overlap between two harvest cycles, showing a decreasing trend until
March and an increasing trend from April onward (Figure 6). During the five harvest
cycles analysed, the percentage of farms that began the phenological cycle from February
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to April varied: in the 2017–2018 cycle, 88% of the farms began the crop cycle between the
months indicated, while in the 2018–2019 cycle, it was only 64%, a similar percentage to
the 2019–2020 cycle, i.e., 69%, but clearly inferior to the value in 2020–2021, i.e., 91%, and,
finally, in the 2021–2022 cycle it was 69%.
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Figure 6. Mean and standard deviation of sugarcane phenological evolution (using NDVI extracted
from Sentinel-2 and Landsat-8 imagery) for the 2017–2018 to 2021–2022 harvest cycles on the farms of
CoopeVictoria R.L.

A possible cause of the high variability at the beginning of the phenological cycle
could be the agronomic management according to the availability of labour or the diverse
meteorological conditions. Consequently, the phenological cycle of farms presented great
variability in the initial stages and partially in the later ones during the five cycles evaluated.
In May, June, and July, the crop presented high variability accompanied by a strong
increase in the value of the NDVI, one of the VIs most used in sugarcane research, as
previously mentioned.

This period coincides with the beginning of planting and germination when the crop
partially covers the ground with leaves. Subsequently, a reduction occurs in the variability
of the index accompanied by a relative seasonality between August and December; during
this time, the phenological stages of tillering and high growing occur, producing a total
ground cover. Finally, in January, there is a reduction in the index accompanied by an
increase in the variability. These variations are associated with the final stage of the
phenological cycle, the maturation, when a reduction in foliar coverage is shown due to the
translocation of assimilates to the stalk [6].

3.2. Sugarcane Yield Models
3.2.1. Modelling Sugarcane Yield at the Farm Scale

The sugarcane yield models were obtained from the first four harvest cycles of
2017–2021. Table 3 shows the R2 and RMSE results of the MLR models of sugarcane
yield according to the first approach, following the additive temporal criterion for indi-
vidual VIs (not combined), historical yield indicators, and growing cycle start. This table
displays the results for every model per VI (each of them individually, as indicated in the
rows) and per month (from May to January, presented in the columns), but without describ-
ing the specific significant independent variables. The best-selected model for sugarcane
yield under this first approach is shown in Equation (1).
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Table 3. Results of multivariate linear regressions to estimate sugarcane yield (2017–2021, in t·ha−1)
per VI (each of them individually, shown in the rows) and per month (from May to January, shown
in the columns) after applying the additive temporal criterion and excluding those months and VIs
without statistical significance, including historical yield indicators and growing cycle start.

Month May June July August September October November December January

DVI R2 * * * * 0.48 0.50 * * 0.61
RMSE 10.2 10.1 9.1

EVI R2 * * * 0.48 0.49 * * * *
RMSE 10.7 10.1

GNDVI R2 * * * * * * * 0.56 0.56
RMSE 9.2 9.2

NDVI R2 * * * * * 0.53 0.56 0.60 0.63
RMSE 10.2 9.5 9.0 8.9

RI R2 * * * 0.48 0.55 0.61 0.64 0.64 0.66
RMSE 10.8 9.4 9.1 8.7 8.7 8.5

RVI R2 * * * * 0.47 0.53 0.55 0.60 0.60
RMSE 10.2 10.3 9.6 9.0 9.0

SAVI R2 * * * * * * * * *
RMSE

SR R2 * * * 0.47 0.53 0.56 0.57 0.65 0.68
RMSE 10.8 9.9 9.6 9.2 8.4 8.1

* = Without statistical significance (p-value > 0.05). The specific significant independent variables are only shown
in Equation (1), equivalent to the best-selected model for sugarcane yield estimation under the first approach. The
intensity of the colours is associated with the adjustment of R2 and RMSE; darker colours indicate a better fit,
while lighter colours suggest a less optimal fit.

In general, the R2 presented a growing trend from September until the maximum in
December–January (0.68 with SR, Table 3). The SR and RI indices alternated as the most
appropriate to estimate sugarcane yield between September to January, whereas no VI was
significant in May, June, and July due to the high heterogeneity in the initial phenological
stages of the plantation, as shown in Figure 6. On the other hand, RMSE appeared with
a decreasing trend from September until the minimum in December–January (8.1 t·ha−1

with SR). Therefore, after the additive temporal criterion was applied, the best results were
obtained, including the SR indices from September, December, and January, as shown in
Equation (1), and the rest of the months were not significant. This equation describes the
regression model that presented the best results before using the other approaches for the
estimation of sugarcane yield (ŷSCY), obtaining a model that explained 68% of the variance
(R2 of 0.68), with an RMSE of 8.1 t·ha−1 (Figure 7a).

ŷSCY = 35.8 + 0.8 × ASCY − 5.5 × GCS − 0.5 × MSCY + 3.5 × SRSep + 2.3 × SRDec + 1.9 × SRJan (1)

where ASCY is the historical average of sugarcane yield (t·ha−1) on each farm; GCS indicates
the growing cycle start by year; MSCY indicates the maximum historical sugarcane yield
obtained in the farm (from 2015 to 2021); and SRSep, SRDec, and SRJan are the SR indices for
September, December, and January, respectively.

The best result after applying the second approach, using the additive temporal crite-
rion and combining different VIs, is shown in Equation (2). The estimation of sugarcane
yield (ŷSCY), including the average sugarcane yield, the growing cycle start, and the max-
imum sugarcane yield as significant factors, replaced the SRSep and SRJan by RISep and
DVIJan, respectively. This approach reported an R2 of 0.69 and an RMSE of 8.1 t·ha−1

(Figure 7b) and, consequently, very similar to Model (1).

ŷSCY = 43.3 + 0.6 × ASCY − 5.1 × GCS − 0.4 × MSCY − 135.8 × RISep + 1.5 × SRDec + 52.3 × DVI Jan (2)

where ASCY is the historical average of sugarcane yield (t·ha−1) on each farm (from 2015 to
2021); GCS indicates the growing cycle start by year; MSCY indicates the maximum historical
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sugarcane yield obtained on the farm (from 2015 to 2021); and RISep, SRDec, and DVIJan are
the RI for September, the SR for December, and the DVI for January, respectively.
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The results from the third approach, combining the first option (using just a specific
VI) with climatic data, showed that the best result was exactly the same as obtained in
Equation (1). Therefore, neither the temperature nor the precipitation were explicative
factors of sugarcane yield, and consequently, no improved equation was obtained. For
this reason, an equation for this approach is not presented. On the contrary, the results
from the fourth approach, combining the second option (mixing different VIs) with climatic
data, showed the best regression model Equation (3). The estimation of sugarcane yield
(ŷSCY), considering the average sugarcane yield, the growing cycle start, and the maximum
sugarcane yield as significant factors, included the RI, the SR, and the precipitation of
December. This combination reported an R2 of 0.70 and an RMSE of 8.0 t·ha−1 (Figure 7c)
and was consequently slightly better than models 1 and 2.

ŷSCY = 39.8 + 0.7 × ASCY − 4.8 × SGC − 0.5 × MSCY − 145.3 × RISep + 2.1 × SRDec + 1.5 × SRJan + 0.05 × PDec (3)

where ASCY is the historical average of sugarcane yield (t·ha−1) on each farm (from 2015
to 2021); GCS indicates the growing cycle start by year; MSCY indicates the maximum
historical sugarcane yield obtained on the farm (from 2015 to 2021); RISep, SRDec, and SRJan
are the RI for September, December, and January, respectively; and PDec is the precipitation
in December.

Therefore, it was found from the three models that the historical average sugarcane
yield (ASCY) and its maximum historical yield (MSCY) were significant explanatory factors
because the historical trend of the farms reflected the expected potential sugarcane yield
(each farm has a maximum threshold that is related to its historical trend). At the same
time, the growing cycle start (GCS) affected the development of the cultivation and the
time that the plantation was maintained in the field before being harvested. According to
Model (1), SR indexes presented an additive contribution when they were incorporated in
September, December, and January. The second model introduces the RISep with a negative
weight already being expected, given its formula (Red/NIR) and the DVIJan. Finally, if the
third model was considered, the influence of the December precipitation was significant.

3.2.2. Spatial Validation of Sugarcane Yield at Farm and Plot Scales

The spatial validation of our three operational regression models to estimate sugarcane
yield at the farm scale was carried out using the 2021–2022 harvest cycle. Figures 8a and 7b,c
show the three models from Equations (1)–(3), respectively, all with similar R2 values (0.66,
0.68, and 0.67, respectively) but with a better RMSE in the first model Equation (1). These
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figures, compared with Figure 7a–c, showed that the R2 was slightly lower and the RMSE
was higher, mainly in the second and third models (Figure 8b,c). Therefore, according to
the validation process, Equation (1) was considered the best model for sugarcane yield at
the farm scale because it had a similar R2 but a better RSME than Equations (2) and (3).
The main advantage of using this model compared to Equation (3), the best model before
validating, is that Equation (1) is “simpler” because it just involves one VI (SR) and no
climatic data are needed, which can sometimes be difficult to obtain at the local scale.
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Figure 8. Validation of best multivariate linear regressions for sugarcane yield estimation at farm
scale, obtained with Equation (1) (a), Equation (2) (b), and Equation (3) (c).

The results of the operational regression models for sugarcane yield at plot scale
showed quite similar results, with an R2 of 0.71 and an RMSE of 7.7 t·ha−1 for Model (1),
0.73 and 7.9 t·ha−1 for Model (2), and 0.71 and 8.6 t·ha−1 for Model (3) (Figure 9a–c,
respectively). Therefore, a slightly better validation was obtained at the plot scale compared
to the farm scale due to the lower spatial variability that existed in the smallest units, the
plots, unlike the farms, where the variability was greater. The same was true in the farm
scale validation, where Equation (1) was the best model.
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Figure 10 shows our operational regression model from Equation (1) for sugarcane
yield estimation in a raster of 10 m × 10 m with the plot boundaries overlaid. In Figure 10a,
the spatial variation of yield between the north and the south plots is very clear: the
northern farms are more productive than the southern. Figure 10b,c also displays the
sugarcane yield variability inside each plot of two farms, improving our spatial estimation
compared with the farm scale. For instance, in plot 1, the yield estimation is quite different
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between the northeast, with higher values (about 130 t·ha−1), and the southwest, with
lower values (about 50 t·ha−1).
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3.3. Sugar Content Models
3.3.1. Modelling Sugar Content at Farm Scale

The sugar content models were obtained from the first four harvest cycles, 2017–2021.
Table 4 shows the R2 and RMSE results of the MLR models of sugar content according
to the first approach, following the additive temporal criterion for individual VIs (not
combined), historical yield indicators, and growing cycle start. This table shows the results
for every model per VI (each of them individually, indicated in the rows) and per month
(from May to January, shown in the columns) but without describing the specific significant
independent variables. This information is shown in Equation (4), the best-selected model
for sugar content under this first approach.

In general, the R2 presented a growing trend from September until the maximum
in January (0.49 with EVI, Table 4). The EVI and SR indices were the most appropriate
to estimate sugar content between September to January, whereas in May, they were less
explicative due to the high heterogeneity in the initial phenological stages of plantation
(Figure 6); in June, July, and August, almost all the VIs were not significant. On the other
hand, RMSE appeared with a slightly decreasing trend from September until the minimum
in January (5.6 kg·t−1 with SR). Therefore, after the additive temporal criterion was applied,
the best results were obtained, including EVI indices from August, September, November,
and January, as shown in Equation (4), where the rest of the months were not significant.
This equation describes the best regression model before applying the other approaches,
being a model that explained 49% of the variance (R2 of 0.49) with an RMSE of 5.8 kg·t−1

(Figure 11a).

ŷSC = 40.6 + 0.6 × ASC − 56.2 × EVIAug + 87.4 × EVISep − 41.8 × EVINov + 29.0 × EVI Jan (4)

where ASC is the historical average of sugar content (kg·t−1) on each farm, and EVIAug,
EVISep, EVINov, and EVIJan are the EVI for August, September, November, and
January, respectively.
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Table 4. Results of multivariate linear regressions to estimate sugar content (2017–2021, in kg·t−1)
per VI (each of them individually, shown in the rows) and per month (from May to January, shown in
the columns) after the application of the additive temporal criterion and excluding those months and
VIs without statistical significance, including historical yield indicators and growing cycle start.

Month May June July August September October November December January

DVI R2 0.29 * * * 0.28 0.37 0.37 * *
RMSE 6.7 6.3 5.8 6.0

EVI R2 0.29 * * * 0.39 0.39 0.38 0.48 0.49
RMSE 6.7 5.9 5.8 6.0 5.7 5.8

GNDVI R2 0.26 * * * 0.33 * * * *
RMSE 6.9 6.1

NDVI R2 0.28 * * * 0.34 0.39 * * *
RMSE 6.8 6.1 5.7

RI R2 0.29 * * * 0.30 0.35 0.34 0.40 0.40
RMSE 6.7 6.2 5.9 6.1 6.0 6.0

RVI R2 0.29 * * 0.27 0.34 0.39 0.46 0.46 0.46
RMSE 6.8 6.7 6.1 5.8 5.6 5.6 5.6

SAVI R2 0.29 * * * 0.28 0.38 * * *
RMSE 6.7 6.3 5.8

SR R2 0.28 * * * 0.31 0.40 0.48 0.48 0.48
RMSE 6.8 6.2 5.8 5.6 5.6 5.6

* = Without statistical significance (p-value > 0.05). The specific significant independent variables are only shown
in Equation (4), the best-selected model for sugar content estimation under the first approach. The intensity of
the colours is associated with the adjustment of R2 and RMSE; darker colours indicate a better fit, while lighter
colours suggest a less optimal fit.
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On the other hand, the best result after applying the second approach, to use the
additive temporal criterion and to combine different VIs, is shown in Equation (5). The
estimation of sugar content (ŷSC), including the average sugar content and the combination
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of SR and GNDVI, reported an R2 of 0.59 and an RMSE of 5.0 kg·t−1 (Figure 11b) and was
consequently a bit better than Model (4).

ŷSC = −61.9 + 0.5 × ASC − 1.2 × SRAug + 81.1 × GNDVISep + 106.6 × GNDVINov (5)

where ASC is the historical average of sugar content (kg·t−1) on each farm (from 2015
to 2021) and SRAug, GNDVISep, and GNDVINov are the SR for August, the GNDVI for
September, and the SR for November, respectively.

The third approach for sugar content estimation at the farm scale, combining the first
option (using just a specific VI) with climatic data, showed an improvement in the model,
contrary to what was obtained in the sugarcane yield. The estimation of sugar content (ŷSC),
including the average of sugar content with the joint of RVI and precipitation, reported an
R2 of 0.77 and an RMSE of 3.9 kg·t−1 (Figure 11c) and was consequently the best model
compared with Equations (4) and (5).

ŷSC = 64.74 + 0.67 × ASC − 53.9 × RVINov − 16.7 × RVI Jan − 0.03 × PMay − 0.09 × PDec (6)

where ASC is the historical average of sugar content (kg·t−1) on each farm (from 2015 to
2021), RVINov and RVIJan are the RVI for November and January, and PMay and PDec are
the precipitation of May and December.

Finally, after temperature and precipitation were added, a seventh regression model
was obtained Equation (7), corresponding to the fourth approach. The estimation of sugar
content (ŷSC), including the historical average sugar content with the combination of SR and
GNDVI and precipitation, reported an R2 of 0.77 and an RMSE of 3.8 kg·t−1 (Figure 11d)
and was consequently a better model compared with models (4) and (5), but very similar
to Model (6).

ŷSC = 38.2+ 0.6× ASC + 25.4×GNDVISep + 1.6× SRJan − 0.02× PMay − 0.09× PDec (7)

where ASC is the historical average of sugar content (kg·t−1) on each farm (from 2015 to
2021); GNDVISep and SRJan are the GNDVI VI for September, SR is the VI for January, and
PMay and PDec are the precipitation of May and December.

Therefore, it was found from the four models that the historical average of sugar
content (ASCY) was an essential explanatory factor in estimating sugar content because
it reflected the expected potential content, as it happened with the models to estimate
sugarcane yield. According to Model (4), EVI indices presented an additive contribution
when they were incorporated in different months, i.e., August, September, November, and
January, whereas the fifth model introduced the combination of SRAug, GNDVISep, and
GNDVINov. The sixth model considered RVINov and RVIJan and the precipitation of May
and December, while the last model involved the influence of GNDVISep and SRJan and the
precipitation of May and December as significant factors.

3.3.2. Spatial Validation of Sugar Content at Farm and Plot Scales

The spatial validation of our four operational regression models to estimate sugar
content on the farm scale was performed in the same way as for sugarcane yield, using the
2021–2022 harvest cycle data. Figure 12a–d show the four models from Equations (4)–(7),
respectively, all displaying a similar R2 (0.59, 0.58, 0.56, and 0.57, respectively) but a better
RMSE in the sixth model Equation (6). These figures, compared with Figure 11a–d, showed
that the R2 was better in Model (4), similar to Model (5), and lower in Models (6) and (7).
The RMSE was lower in the fourth and sixth models but higher in the fifth and seventh.
Therefore, Equation (6) was considered the best model for sugar content because, although
it had a similar R2, the RMSE was clearly better. The main advantage of using this model
compared with the others is that it uses only one VI (RVI) combined with precipitation.
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Figure 12. Validation of the best multivariate linear regression for sugar content estimation at the
farm scale, obtained with Equation (4) (a), Equation (5) (b), Equation (6) (c), and Equation (7) (d).

The results of the operational regression models for sugar content at the plot scale
showed an R2 of 0.45 and an RMSE of 6.8 kg·t−1 from Equation (4), 0.43 and 11.3 kg·t−1

from Equation (5), 0.46 and 4.7 kg·t−1 from Equation (6), and 0.49 and 4.9 kg·t−1 from
Equation (7) (Figure 13a–d). A clearly worse sugar content validation was obtained at the
plot scale compared with the farm scale, mainly in Models (4) and (5). Like the validation
obtained at the farm scale, Equation (6) followed being the best model.
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Based on Equation (6), Figure 14 shows our operational regression model for sugar
content estimation in a raster of 10 m × 10 m, with the plot boundaries overlaid. The spatial
distribution of sugar content across the study area (Figure 14a) was similar to that obtained
for sugarcane yield: the northern farms were more productive than the southern farms.
Figure 14b,c also displays the sugar content variability inside each plot of the two farms,
showing that the spatial variation was clearly lower compared with the sugarcane yield,
probably because of the smaller spatial variability of the independent variables used in
Equation (6).
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4. Discussion

Combining different satellite images (Landsat and Sentinel) is unavoidable to obtain
robust results on regions with high cloudiness during some months of the year [4]. In
this work, VIs from Sentinel and Landsat images were harmonized to fill the gaps in a
monthly time series and to improve our estimation models because, as [23,24] asserted, the
combination of different satellite images produces better results.

Based on linear empirical regressions, our three (in fact, four, but one was not included)
operational sugarcane yield models at the farm scale produced similar R2 and RMSE
results, whereas the spatial validation presented a few smaller R2 values in all the models,
demonstrating that the best RMSE value is in Model (1). The spatial validation at the plot
scale showed similar R2 results for all the models but higher than those obtained at the
farm scale, whereas the best RMSE followed being in Model (1).

Therefore, in conclusion, our results showed quite similar outputs for sugarcane yield
using the three models and two spatial scales, with R2 values around 0.7 and RMSEs
about 8.0 t·ha−1. However, the first model was shown to be the most constant during
the modelling and validating steps, and consequently, including only the SR in different
months (September, December, and January) makes it possible to obtain a robust estimation.

Multivariate linear regression has been a common technique to estimate sugarcane
yield that has produced promising results given that it can be easily applied to different
spatial scales and can combine some explanatory variables from different data sources
such as RS, agronomic, and climatic data. For instance, Morel et al. [22] developed an
NDVI time series combined with climatic data to predict sugarcane yield and obtained a
linear empirical model that produced the best results, with an R2 of 0.64 and an RMSE of
10.4 t·ha−1. Also, according to the review by Som-Ard et al. [4], it is the most common yield-
estimation method, achieving an RMSE of 12.9 t·ha−1 on average. In our work, and as one
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of the main objectives, the RMSE values of the models were improved, with values around
8.0 t·ha−1. Two possible reasons for this improvement could be the consideration of the
local peculiarities of sugarcane’s temporal phenological signature in Costa Rica through VIs
and the inclusion of explicative factors that comprise historic crop management extracted
from the Cooperative data.

Our four operational sugar content models at the farm scale produced less similar
R2 and RMSE results than in sugarcane yield, and the models including precipitation
Equations (6) and (7) were better, whereas the spatial validation presented similar R2 values
in all the models, although the best RMSE was obtained in Model 6. The spatial validation
at the plot scale showed a few lower R2 and RMSE indicators compared with the validation
at the farm scale. The best R2 values were obtained in Models 6 and 7, and the best RMSE
values were obtained in Model 6. Therefore, our results showed that the model estimation
of sugar content was good enough at the farm scale, combining VIs and precipitation data,
with an RMSE below 5.0 kg·t−1 in the sixth and seventh models but worse R2 and the
RMSE values at the plot scale. This outcome rules out this work’s hypothesis that the
validation at the plot scale would give better results than at the farm scale because, at the
former scale, the spatial generalisation is lower as a result of calculating an average from
fewer pixels. One possible explanation for this issue could be the harvest calendar. Those
plots harvested at the beginning of the season have less sugar content concentration than
those harvested at the end of the season. This fact could be an important source of error at
this detailed scale, which is a concern to analyse in future work.

In sugarcane yield modelling, researchers have used diverse VIs, but in our work, the
most explanatory was the most simple, which agrees with [14] because they concluded that
the ratio of the reflectance of the NIR band by the Red band (NIR/RED: Ratio Vegetation
Index (RVI) or Simple Ratio (SR) in our study) is the best index to relate spectral data and
observed sugarcane yield. In the same manuscript, they cited the recommendation made
by Jackson et al. (1983) of using this index when the crop covers more than 50% of the soil.
On the other hand, Abebe et al. [24] mentioned that the GNDVI, SR, NDVI, and SIRI (Short
Wave Infrared Ratio) were strongly correlated with sugarcane yield, the GNDVI being the
most accurate, reducing the effects of saturation. But, in fact, according to [60], VIs show
variations in the amount of vegetation sensitivity at different development stages of crops.
Depending on the stage in which the crop is analysed throughout the cycle, there will be a
more adequate VI with a higher relationship with vegetation density, green leaf biomass,
and leaf area index. Therefore, an important concern to consider is crop stage dynamics
and the best time to predict sugarcane yield and sugar content, considering crop phenology.
For instance, in refs. [19,35], the authors asserted that the best acquisition period of satellite
images for the assessment of sugarcane yield was two months preceding the beginning
of harvest, when all the fields were fully developed but before the maturation stage. In
our work, September, December, and January were the months of VIs that allowed us
to obtain the best-fitting model for sugarcane yield, whereas September, November, and
January were the best for models of sugar content. Therefore, our results agree with [36],
who identified that the sugar content could be estimated with the integration of satellite
variables and climatic data four months before harvest, and with [35], who observed a
relationship between the field NDVI acquired during the maturation stage and sugar
content in the stalk.

In the combination of different sources for sugarcane yield characteristic of this work,
six independent variables were recurrent to the four applied models, two extracted from
our modification of the Cooperative records (the historical yield average and the maximum
historical yield) and four from VIs (the growing cycle start and the VIs of September, De-
cember, and January). The inclusion of the historical indicators was essential for obtaining
acceptable results, together with the mentioned variables extracted from VIs. The histor-
ical yield average and the maximum historical yield (with negative coefficient) contain
the potential of the farm according to historical data (higher maximum historical yields
produce less sugarcane yields in the future given the ratoon decline, as reported by [44,45])
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as an indication of farm depletion. In contrast, the growing cycle start (with a negative
coefficient) includes the time of the plant to fulfil the phenological development.

An essential difference between the best sugar content model and the best sugarcane
yield model was that only one common explanatory variable appeared, the historical
average of sugar content, being a possible explanation that the farm depletion, extracted
from the maximum historical yield, produces a decrease in sugarcane yield but not nec-
essarily a reduction in sugar content. Another main difference was that the SR index,
which is very important for sugarcane yield estimation, was less determinant for the esti-
mation of sugar content, sharing its importance with RVI and GNDVI in the best model
Equations (6) and (7). For the sixth sugar content model, which was the best from the
validation, the RVI of November and January were significant factors, highlighting the
dominance of Red and NIR bands as in the case of SR.

According to our results, the temperature was not a predictor factor in any model,
whereas precipitation was more frequent as an explicatory variable for sugar content
models (mainly evidenced in Equations (6) and (7) from May and December, with negative
regression coefficients), which may be due to the stronger inverse relationship than the
precipitation has with the sugar content in the last months of the sugarcane cycle when the
maturation stage naturally starts in a hybrid stress condition. In this sense, the negative
coefficient of the December precipitation is because, during the maturation stage, with a
fully developed canopy, the leaves senesce and turn yellowish, corresponding to a water
loss in the plant and an increase in the sugar content of the stalk juice [35].

Our modelling approach to assess the spatial variability of sugarcane yield and sugar
content at the farm and plot scales allowed us to understand the spatial distribution of
both variables mapped. These maps are a new tool for decision-making in this cooperative
because they permit a deeper understanding of the within-field variability, delimit manage-
ment zones, and improve site-specific management strategies. In fact, they may be a good
alternative to mapping the spatial variability inside the farms when the harvest activities
(the cutting) are manual instead of using mechanical harvesters, as in our case, hindering
the data availability with higher spatial density [34].

Finally, according to our results, MLR has produced robust outcomes for two agro-
industrial yields during five years and at two different spatial scales. Although the compar-
ison may be complicated, given the different number of farms or plots and of predictors
together with pixel sizes involved in the models, other previous works asserted linear
relationships between yields and explicative variables, as in the cases of Bégué et al. [35],
Morel et al. [22], and Akbarian et al. [29], with linear correlations and R2 above 0.6. Ac-
cording to some authors, an alternative technique to MLR for predicting sugarcane yields
can be machine learning (ML) approaches. Concretely, they asserted that Random Forest
(RF), which is a non-parametric method, is more accurate to estimate yields when sample
plots and variation are relatively large. For instance, Canata et al. [34] used filtered and
interpolated yield data generated by harvesters at the field level for two years to conclude
that RF performed better than MLR in predicting sugarcane yield. Additionally, in op-
position to our outputs, they found better results when using the spectral bands directly
rather than involving VIs. Dos Santos Luciano et al. [25] also applied an RF algorithm to
forecast sugarcane yield and obtained an RMSE a little worse than ours (9.4 t·ha−1 versus
8.0 t·ha−1).

In the case of Shendryk et al. [36], given that harvester operators often do not know the
exact boundaries of each field, leading to harvested sugarcane being mixed with that from
adjacent fields, small fields (<0.64 ha) were removed. This fact and the large number of
predictive variables included (371) in four decision tree-based machine learning algorithms
(Random Forest, Gradient Boosting, Extreme Trees, and Extreme Gradient Boosting) were
some of the most important differences with our methodology. Their results agree with our
assertion that Sentinel-2-derived spectral indices were the most important in predicting
sugarcane yield, and climate variables were the most important for predicting sugar yield
(sugar content in our work). In contrast, in their prediction model, the RSME was worse
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compared with our results, with a value of 16 t·ha−1. Therefore, in spite of the benefits
and advances of ML reported by other authors, more research is required because the
differences in accuracy between ML and linear regression were not always of practical
significance, which stresses the importance of proper model calibration and selection [64].

5. Conclusions

In this research, some models based on MLR have been applied to estimate sugarcane
yield and sugar content in one cooperative in Costa Rica. The objective was to apply some
empirical and operationally robust frameworks for estimating sugarcane yield and sugar
content through the combination of different data sources, highlighting the contribution
of RS. At the same time, the combined analysis of both parameters tries to provide better
knowledge of the sugarcane agro-industry, given the small number of works that include
them, mainly in Costa Rica.

The specific contributions of this work were fourfold. The first contribution was
the application of operational models adapted to the local conditions (management and
climate) of Costa Rica, combining different data sources. Two historical yield indicators,
the historical yield average and the maximum historical yield, were essential factors in
explaining sugarcane yield, and the former was also essential for explaining sugar content.
Other important explicative variables were those provided by RS, where the growing cycles
start and VIs were essential.

Second, four approaches using different VIs were evaluated to obtain the best models.
In sugarcane yield, one of the most explicatory VI was SR in different months of the growing
cycle and with a smaller weight of RI, whereas in sugar content, the most important VI was
the RVI and, with a smaller influence, the GNDVI and the SR. The addition of VIs from
different months was essential to obtain the phenological variability of sugarcane, which
was the most common result considered from September to January. In the estimation
of sugar content, precipitation (May and December) was a clear predictor variable, as
hypothesized, combined mainly with RVI, whereas in sugarcane yield, it was clearly
less explanatory.

In this work, the RMSE values of models were improved as the third contribution, com-
pared with other research developed in other countries and compared with the traditional
estimate of the cooperative based on empirical knowledge. Our results showed RMSEs
for sugarcane yield around 8.0 t·ha−1, a clear improvement from 12.9 t·ha−1 on average
obtained in previous works, where sugar content displayed values below 4.0 kg·t−1.

The fourth contribution was the spatial validation of sugarcane yield and sugar content
at two different scales: farms and plots. In terms of sugarcane yield, the best validation
result was obtained at the plot scale (RMSE of 7.7 t·ha−1), as hypothesized, given the lower
spatial generalisation, because the average was calculated from fewer pixels. Nevertheless,
this outcome was not verified in the case of sugar content validation because the RMSE
was around 5.0 kg·t−1.

Finally, future work will comprise the application of our operational models for
sugarcane yield and sugar content in other Costa Rican regions with larger areas and
different management systems. A second future task will be to insert our operational
models into a decision support system based on RS, a process currently in development.
A third new approach will be the application of alternative algorithms, such as machine
learning, to estimate the two agro-industrial yields.
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