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Abstract: An efficient management of production plants has to consider several external and internal
factors, such as potential interruptions of the ongoing processes. Automated guided vehicles (AGVs)
are becoming a widespread technology that offers many advantages. These AGVs can perform
complex tasks in an autonomous way. However, an inefficient schedule of the tasks assigned to
an AGV can suffer from unwanted interruptions and idle times, which in turn will affect the total
time required by the AGV to complete its assigned tasks. In order to avoid these issues, this paper
proposes a heuristic-based approach that: (i) makes use of a delay matrix to estimate circuit delays
for different daily times; (ii) employs these estimates to define an initial itinerary of tasks for an AGV;
and (iii) dynamically adjusts the initial agenda as new information on actual delays is obtained by
the system. The objective is to minimize the total time required for the AGV to complete all the
assigned tasks, taking into account situations that generate unexpected disruptions along the circuits
that the AGV follows. In order to test and validate the proposed approach, a series of computational
experiments utilizing real-life data are carried out. These experiments allow us to measure the
improvement gap with respect to the former policy used by the system managers.

Keywords: automated guided vehicles; dynamic task assignment; internal logistics; heuristic
optimization; disruption management

1. Introduction

As pointed out by Zhang and Chen [1], the concept of Industry 4.0 brings the idea of
automation to industrial systems by employing computerized, controlled, and monitored
processes as well as industrial machinery and equipment. These improvements are favored
by technological advances in different fields, such as robotics, artificial intelligence (AI),
and autonomous vehicles, among many others. Manufacturers proceed to integrate new
technologies and techniques, including Internet of Things (IoT), cloud computing, data
analytics, and machine learning, into their production facilities and throughout their
operations. There are applications in a wide range of fields such as transportation [2],
wireless sensor networks [3], or integrated circuit design [4], just to name a few. These
technologies and techniques collect data in an easy and agile way, which leads to the control
of production plants and the forecasting of possible events that might have a negative
impact on productivity.

Appl. Sci. 2023, 13, 3708. https://doi.org/10.3390/app13063708 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13063708
https://doi.org/10.3390/app13063708
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4182-0120
https://orcid.org/0000-0002-8000-4989
https://orcid.org/0000-0001-8425-1381
https://orcid.org/0000-0003-4734-2414
https://orcid.org/0000-0003-1392-1776
https://doi.org/10.3390/app13063708
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13063708?type=check_update&version=2


Appl. Sci. 2023, 13, 3708 2 of 16

Different factors, both internal and external, need to be considered in order to empower
plant management at different levels. For instance, process automation is a key factor in
this new digital era. An appropriate control of these factors facilitates decision-making
in the most complex production processes. Smart factories are equipped with advanced
sensors, embedded software, and robotics such as driverless mobile robots or AGVs. These
are capable of transporting small loads (those oriented to the medical or picking sector) as
well as large loads of several tons (those oriented to large-volume logistics, construction, or
mining industries). AGVs perform as fully automatic devices, i.e., driverless and without
manual activities being performed by human operators. AGVs have become an integral
part of Industry 4.0 [5]. In recent years, the use of AGVs in the industrial sector has raised a
great deal of interest. Although AGVs have been used for more than 25 years already [6],
their popularity is still increasing day by day due to the significant reduction in production
costs they allow and a noticeable diminishing in price. Among the main benefits and
advantages that AGVs provide, we can cite: improving productivity, increasing safety
and security for plant operators, reducing damage to structures and products during load
handling, being able to work in unfavorable environments (cold chambers, ovens, etc.),
improving the operational efficiency of production lines, and the enhancement of stocks
and inventory systems management. AGVs offer a large economic potential due to their
lower maintenance expenditure compared to conventional vehicles and their capability to
function with minimum labor cost and human intervention, as well as a range of benefits
across environmental and social sustainability dimensions [7].

The fundamental components of each AGV include the physical vehicle, a localization
guidance system, a control system, and a communication system [8]. The two last systems
enable the AGV to execute highly complex maneuvers at an individual level by recognizing
the environment. The routes that the AGV follows within the production plants are affected
by external factors, such as collaboration with other vehicles, machinery, or operators which
may generate interruptions in the scheduled activities of the AGV. In this circumstance, the
control and communication systems enable the AGV to communicate with the external
factors to avoid crashes, and also allow it to communicate with other industrial robots, so
that they can coordinate better. Wireless communication technologies used in AGVs allow
them to react to different obstacles in a dynamic industrial environment, including facing
other AGVs, operators, etc. Some types of AGVs stop when encountering a moving obstacle
and wait for the obstacle to disappear, while other types change their path and perform a
path re-planning to avoid collision with the obstacle. In any case, these interruptions lead
to a delay in the estimated arrival of the AGV to its destination, which disrupts and affects
the optimal operation of the production plant [9].

The idea of this research is inspired by a real case. With the goal of minimizing total
time required in completing a series of tasks, production managers need to determine
the order of tasks assigned to an AGV under dynamic conditions. Hence, the associated
travel and processing times are dynamic in the sense that they vary with time. This is
due to potential disruptions in some tasks that might occur at different times during
the working hours. The problem under consideration can be viewed as a generalized
(dynamic) version of the single-machine scheduling problem, with the AGV serving as a
single machine. Because most single-machine scheduling problems are NP-hard [10], the
dynamic version considered here might require a fast and reactive heuristic approach if
real-time decisions are to be made using dynamic inputs. Hence, this paper proposes an
‘’agile” optimization algorithm [11] for the mobile robotics AGV problem. The proposed
algorithm is an extremely fast reactive heuristic procedure that aims at minimizing the total
time required by an AGV to complete all the assigned tasks under a dynamic scenario with
potential disruptions. Thus, our reactive approach makes use of a dynamic matrix which
accounts for such delays. In order to build the aforementioned matrix, we employ historical
data to estimate the delay associated with a given circuit at any point in time. Therefore,
our reactive approach uses estimated delays and dynamically adjusts the initial agenda
as new information on potential delays is obtained by the system. We study the creation
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of the permutation of tasks for the proposed reactive heuristic and compare it to other
approaches. In a nutshell, our proposed reactive algorithm does the following: (i) it makes
use of a delay matrix to estimate circuit delays for different daily times; (ii) it employs these
estimates to define an initial itinerary of tasks for an AGV; and (iii) it dynamically adjusts
the initial agenda as new information on actual delays is obtained by the system.

The optimization problem is depicted in Figure 1. Let us consider a warehouse layout
where each product has to be processed in different workstations. Each product can visit
these stations in any order. Initially, all products are located at a depot station. An AGV has
to move each product (one at a time) from the depot station to each workstation and then,
once it has been processed, bring the product back to the depot station. The expected time
required to complete a circuit (i.e., the sequence depot station–specific working station–
depot station) is given by the sum of the travel times in ideal conditions plus the sum of the
expected delays throughout the circuit. Unfortunately, delay times are dynamic, i.e., they
are a function of the system conditions at each moment in time. The objective is to assign
and re-assign the itineraries of the tasks to be completed by the AGV in order to minimize
the total time required for the AGV to complete all the assigned tasks.

Figure 1. Visual representation of the AGV optimization problem being considered.

To the best of our knowledge, the scientific literature has not previously investigated
minimizing the total time employed by an AGV in completing a series of tasks under a
dynamic scenario in which disruptions in the form of unexpected or random delay times
might occur while the AGV is moving along defined pathways. We propose a method
for determining the order of tasks assigned to an AGV using estimated circuit delays and
dynamically adjusting the initial agenda as new information on actual delays becomes
available. Hence, the main contributions of our work can be described as follows: (i) the
introduction of a single AGV task order determination with unexpected interruption events
in order to minimize the total time or makespan; (ii) the use of data analytics techniques to
estimate the AGV interruption and caused delay for each determined pathway during de-
termined time-spans; and (iii) the development of a reactive heuristic [12,13], studying the
resulting permutations of tasks generated using three different approaches. The remaining
part of the paper is organised as follows. Section 2 reviews related work. Section 3 provides
a formal description of the problem being tackled. Section 4 proposes a heuristic-based
approach to solve the industrial problem. Section 5 illustrates the methodological concepts
with an example. Section 6 includes the computational experiments, while Section 7 pro-
vides an analysis of the results obtained. Finally, the paper is completed in Section 8 with
key conclusions.

2. Overview on AGVs and Related Problems

New manufacturing strategies must be oriented towards flexible, agile, and efficient
production chains that allow for obtaining quality products. Internal logistics represent
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an important factor in terms of competitiveness and economy. This is mainly due to the
dynamism of the current market that has caused globalization. The objective of today’s
manufacturing companies is focused on reducing idle times and zero reserve stock. This
improves the company’s reliability in the market, which in turn increases the availability
of its products [14]. The application of advanced methods for planning and anticipating
events in a production plant, as well as the level of interconnection of the different systems,
is relatively low in practice [15].

This section first describes a database search identifying works related to AGVs,
focusing on those referring to, at least, one of the following four types of popular and
challenging decision-making processes: assignation, routing, scheduling, and sequencing.
Afterwards, a representative sample of recent works on sequencing or scheduling processes
related to AGVs is reviewed.

2.1. Database Search

The number of works on AGVs has been growing during the last three decades,
but the increase has been higher since 2016. Figure 2 shows some results from Scopus
using the following query: TITLE-ABS-KEY (“Automated Guided Vehicle”) AND (LIMIT-
TO (DOCTYPE, “ar”)) AND (LIMIT-TO(LANGUAGE, “English”)). This query searched
Scopus-indexed articles in English, including the term “Automated Guided Vehicle” either
in the title, abstract, or keywords. Subfigure (a) reveals the evolution of the number of
documents from 1984 to 2022. This number was around 25 until 2016, when it started to
grow until reaching its peak in 2021 with more than 125 articles. Subfigure (b) indicates the
percentage of documents by subject area. The bigger area corresponds to ‘’Engineering”
(38.7%, 1112), followed by ‘’Computer Science” (21.8%, 627), ‘’Decision Sciences” (9.8%,
283), ‘’Business, Management and Accounting” (8.0%, 229), and ‘’Mathematics” (7.4%,
214). These 5 areas account for almost 86% of the documents. Subfigure (c) identifies the
10 countries/territory with the highest number of documents. The United States and China
have more than 200 documents each. In contrast, Japan achieves a number slightly lower
than 100. South Korea, India, Germany, Iran, Taiwan, Canada, and the United Kingdom
complete the list.

(a) (b)

(c)

Figure 2. Analysis from articles based on AGVs. (a) Documents by year. (b) Documents by subject
area. (c) Documents by country/territory.
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A more specific search is carried out using this query: TITLE-ABS-KEY (“Automated
Guided Vehicle”) AND (TITLE-ABS-KEY(assign*)) AND (LIMIT-TO(DOCTYPE, “ar”))
AND (LIMIT-TO(LANGUAGE, “English”)). Thus, this new query is more restrictive
and requires the root word “assign*” (i.e., assign, assignation, assigning, etc.). Three
more queries are created replacing “assign*” by “rout*”, “schedul*”, and “sequenc*”. The
analysis of documents by year is displayed in Figure 3. The four series have a positive
trend. The number of works by year on AGVs and sequencing is similar to the number of
works on AGVs and assignation. The number of works on AGVs and routing is higher, but
lower than those on AGVs and scheduling.

Figure 3. Analysis from articles based on AGVs and assignation/routing/scheduling/sequencing.

2.2. Related Work

Li et al. [16] describe the robotic task sequencing Problem as follows. Let there be an
AGV initially located at its parking position P0. It receives n tasks, indexed by 1, 2, . . . , n,
where task i requires the AGV to move some goods from position Bi to position Di. Starting
from position P0, the AGV should finish all the tasks and, then, return to that parking posi-
tion. The main goal is to determine the task execution sequence S = (P0, s1, s2, . . . , sn, P0),
where si denotes the index of the task executed in the i-th place, so as to minimize the
total distance (where any distance is considered deterministic and known in advance).
The authors propose transforming this problem to an equivalent asymmetric traveling
salesman problem and apply the 2-opt movements (which constitutes a basic operator used
by local-search based heuristics), developing data structures able to reduce the above time
complexity from O(n3) to O(n2). Experimental results based on simulations are shown to
illustrate the approach. Li et al. [17] explore the tasks assigning and sequencing problem
of several capacitated multiple-load AGVs. A mathematical model is formulated which
describes three objective functions to minimize: the total travel distance, the standard
deviation of workload, and the standard deviation of the difference between the latest
delivery time and the predicted time of tasks. The solving approach relies on an improved
harmony search algorithm, which adopts dynamic changing harmony memory considering
rate parameters and implementing neighborhood search strategy. A case study based on a
manufacturing enterprise is presented.

Zhong et al. [18] present the integrated scheduling of multi-AGV with conflict-free
path planning. First, a mixed-integer programming model is formulated to analyze an
AGV scheme that combines scheduling and path planning in an automated container
terminal considering that the task allocation is known. The aim is to minimize AGVs delay
time. A set of experiments are carried out to validate the solving approach, which relies
on a hybrid genetic algorithm (GA) and a particle swarm optimization (PSO) algorithm.
Zou et al. [19] address the multiple AGV dispatching problem, which involves two types of
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decisions: assigning tasks to AGVs and sequencing the tasks of each AGV. The main goal is
to minimize the transportation cost (which adds travel cost, penalty cost for violating time
and AGV cost). The problem is formulated as a mixed integer linear programming model.
A discrete artificial bee colony algorithm is presented. Five neighborhood operators are
proposed to obtain diverse neighboring solutions, as well as theorems to avoid unfeasible
solutions, new control parameters, and an insertion-based local search method. The authors
collected a number of instances with up to 50 tasks from Foxconn Technology Group
(an advanced electronics equipment manufacturing enterprise in China). Interestingly,
the instances are split into test instances and calibrating instances, and all are publicly
available. The proposed algorithm is compared against a heuristic, the Gurobi solver and
four existing metaheuristics. The Gurobi solver is only able to obtain solutions for small
instances if the computational time employed is limited (5 s). The other methods are coded
in C++ language. The results proof the efficiency of the proposed approach. Zou et al. [20]
study the multi-compartment AGV scheduling problem, aiming to minimize the total
cost, which includes the travel cost, the service cost, and the cost of vehicles. A mixed-
integer linear programming model is formulated and a novel iterated greedy algorithm,
which makes use of accelerations for evaluating solutions, is designed. Zou et al. [21]
address the AGV scheduling problem with pickup and delivery and present a novel multi-
objective evolutionary algorithm to solve it. The goal is to maximize customer satisfaction
while minimizing distribution cost. A multi-objective mixed-integer linear programming
model is formulated. A set of computational experiments, based on real-world instances,
are described.

Mousavi et al. [22] focus on the multi-objective scheduling of AGVs, where the aim is
to allocate AGVs to tasks, minimizing makespan and number of AGVs while considering
the AGVs’ battery charge. A mathematical model is presented and integrated with different
evolutionary algorithms: GA, PSO, and hybrid GA-PSO. According to the results of the
computational experiments, the hybrid GA-PSO outperforms the other algorithms. Evalua-
tion and validation of the approach is carried out by simulation via the FlexSim simulation
software [23]. More recently, Dang et al. [24] address the problem of scheduling transport
requests on multi-load and multi-ability AGVs with battery management. Each request has
a soft time window and a priority. The specific decisions involved are: assign transport and
charging requests to AGVs, sequence them, and determine the arrival times and charging
duration. The aim is to minimize the tardiness costs of requests and travel costs of AGVs.
The authors present a mixed-integer linear programming model and, as a solving method-
ology, a hybrid adaptive large neighborhood search. This approach is illustrated by means
of an industry case study using real-world data. Finally, Singh et al. [25] study the problem
of scheduling AGVs with battery constraints. Each transport has an associated soft time
window and each AGV has specific capabilities and travel costs. The AGV batteries can
be recharged partially if required. The decisions involved in this problem are: to assign
the transport and charging requests to AGVs, sequence the requests, and determine their
starting times and recharging durations of the AGVs. The aim is to minimize a weighted
sum of the tardiness costs of transport requests and travel costs of AGVs. The authors
present a mixed-integer linear programming model and a novel matheuristic to address
the problem. Finally, an industry case study is described.

While most works rely on heuristics/metaheuristics [26], there are also some relying on
reinforcement learning [27]. For instance, Xue et al. [28] deal with a multi-AGV flow-shop
scheduling problem, where each AGV moves along fixed tracks, transporting products
between successive machines. As in many flow-shop scheduling problems, the usual goal
is to minimize the average job delay and total makespan, for which many different types of
algorithms can be employed [29,30]. The authors formulate this scheduling problem as a
Markov problem by defining state features, actions space and a reward function. Numerical
experiments are carried out to assess the performance of the proposed approach.

All in all, there is an increasing number of works studying the sequencing of tasks in
AGV-related problems. Table 1 gathers the main features of the works related described
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before. Most of these works describe challenging restrictions related to the use of batteries
or the capabilities of the AGVs (e.g., capacitated multiple-load AGVs), or different objective
functions. Many authors formulate a mathematical model and present a solving approach
for a case study based on a real-life manufacturing enterprise. While the need to consider
unexpected events and dynamic routing times has been acknowledged in some works,
there is a gap in the literature regarding the use of simple yet efficient heuristics that feed
from historical data and are capable to react, in real-time, to unexpected disruptions in the
AGV paths.

Table 1. Related work.

Work Problem’s Name Goal Restrictions Methodology Experiments

Li et al. [16] Robotic Task Sequencing
Problem

Min. total distance - Efficient 2-opt local search Based on simulations

Li et al. [17] Tasks Assigning and Se-
quencing Problem of Multi-
ple AGVs

Min. total distance, stan-
dard deviation of workload,
and standard deviation of
the difference between lat-
est delivery time and pre-
dicted time of tasks

Capacitated multiple-load
AGVs

Improved harmony search
algorithm

Case in a real-world manu-
facturing enterprise of pro-
ducing back cover of smart
phone in China

Zhong et al.
[18]

Integrated Scheduling of
Multi-AGV with Conflict-
Free Path Planning

Min. AGVs’ delay time Multiple AGVs; Safe dis-
tance; Capacitated road;
Task allocation known

Hybrid genetic algorithm-
particle swarm optimiza-
tion with fuzzy logic con-
troller to adaptive auto tun-
ing

Based on Xiamen Ocean
Gate port in China

Zou et al. [19] Multiple AGV Dispatching
Problem

Min. transportation cost in-
cluding travel cost, penalty
cost for violating time and
AGV cost

Multiple AGVs Discrete artificial bee
colony algorithm

Based on Foxconn Technol-
ogy Group in China

Zou et al. [20] Multi-Compartment AGV
scheduling problem

Min. total cost including
travel cost, service cost, and
cost of vehicles involved

Multiple AGVs; Multiple
compartments

Iterated greedy algorithm Based on an electronic
equipment manufacturing
enterprise in China

midrulehline
Zou et al. [21]

AGV Scheduling Problem
with Pickup and Delivery

Max. customer satisfaction
and min. distribution cost

Multiple AGVs; Goods han-
dling process in a matrix
manufacturing workshop
with multi-variety and
small-batch production

Evolutionary algorithm Based on an electronic
equipment manufacturing
enterprise in China

Mousavi et al.
[22]

Multi-objective AGV
Scheduling

Min. makespan and num-
ber of AGVs while consider-
ing AGVs’ battery charge

Multiple AGVs with unit-
load capacity

Hybrid genetic algorithm
and particle swarm opti-
mization

Numerical examples

Dang et al.
[24]

Scheduling Heterogeneous
Multi-load AGVs

Min. tardiness costs of re-
quests and travel costs

Multiple AGVs; Battery
Constraints

Hybrid adaptive large
neighborhood search

Based on Brainport Indus-
tries Campus in the Nether-
lands

Singh et al.
[25]

Scheduling AGVs Min. tardiness costs of re-
quests and travel costs

Multiple AGVs; Battery
Constraints; Soft Time
Windows; Heterogeneous
fleet

Matheuristic relying on an
adaptive large neighbor-
hood search algorithm and
a linear program

Based on Brainport Indus-
tries Campus in the Nether-
lands

Xue et al. [28] Multi-AGV Flow-shop
Scheduling Problem

Min. average job delay and
total makespan

Multiple AGVs Reinforcement learning
method

Based on simulations

3. Formal Description of the Problem

Let us consider a warehouse layout where each product i ∈ I has to be processed by
different workstations, j ∈ J. A typical working day has a final time t f > 0. There is a
depot station, 0, where all products are located initially. An AGV has to move each product
i ∈ I (one at the time) from depot 0 to each workstation j ∈ J and then, once the product i
has been processed in j, bring it back to depot 0. Given a product i ∈ I and a workstation
j ∈ J, the actual time required by i to complete a circuit 0 → j → 0, Tij ≥ 0, is given by
the sum of the travel and processing times in ideal conditions, t∗ij > 0, plus the sum of
the actual delays throughout the circuit, Dij ≥ 0. In other words: Tij = t∗ij + Dij, where
Dij is a function of time t ∈ [0, t f ), i.e., Dij = Dij(t). Notice that delay times are dynamic,
i.e., the delays are a function of the system conditions at each moment in time t ∈ [0, t f ).
It is precisely this dynamic behavior that makes the optimization problem a non-trivial
one. In addition, completing any single circuit 0 → j → 0 should take no more than a
user-defined time threshold t0 > 0. Under these circumstances, the objective is to minimize
the total time required for the AGV to complete all the assigned tasks. The problem can
mathematically be defined as follows:
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min ∑
i∈I

∑
j∈J

Tij (1)

subject to:

Tij = t∗ij + Dij ∀i ∈ I, ∀j ∈ J (2)

Dij = Dij(t) ∀i ∈ I, ∀j ∈ J, ∀t ∈ [0, t f ] (3)

Tij ≤ t0 ∀i ∈ I, ∀j ∈ J (4)

4. Solving Methodology

The solving methodology presents a heuristic-based approach to solve the problem
described in Section 3. We consider two relatively simple yet effective and extremely fast
heuristics. These heuristics assume we can estimate the expected delay associated with each
circuit at any moment in time, being this delay a function of the current system conditions.
This is achieved by creating a dynamic matrix of expected delays that uses historical data
to estimate the delay associated with a given circuit under a specific configuration of the
environmental conditions. In other words, the dynamic matrix provides, for the current
time, the updated estimates for the delays associated with each possible circuit. Algorithm 1
presents the pseudo-code for our first heuristic, which is a non-reactive one.

Algorithm 1 Non-Reactive Heuristic for Dynamic Delays
1: Data: List of tasks T, and matrix of expected delays D
2: Result: Permutation of completed tasks P
3: P← ∅
4: tc ← 0
5: while T 6= ∅ do
6: T← estimateDelays(T, D, tc)
7: T← sort(T)
8: t← selectTask(T)
9: P← P ∪ {t}

10: tc ← updateSystem(tc, t)
11: end while
12: return P

The non-reactive heuristic algorithm receives the following input parameters: (i) the
list of assigned tasks T a particular AGV needs to complete; and (ii) the dynamic matrix of
expected delays D. More specifically, each task in the list contains a product-workstation
pair, along with the time needed by the AGV to complete the associated circuit. The
dynamic matrix contains the estimated delays associated with each circuit for each daily
time. The non-reactive heuristic works as follows: first, an empty permutation of tasks P is
constructed (line 3). The elements from the list of tasks will be added to this permutation
in the order the assigned tasks are completed. In addition, the system conditions track the
current time tc, which is initialized to the starting time t = 0. Next, the list of tasks to be
completed T is iterated until no more tasks are in the list (lines 5–11). In each iteration,
the delays of each circuit are estimated based on the system conditions (line 6). More
specifically, the delays for each circuit are extracted from the dynamic matrix of estimated
delays using the current time tc. In addition, the estimated delay of each circuit is added
to the time each task in the list of tasks needs to complete the particular circuit it needs
to traverse. Hence, we compute the estimated total time needed by the AGV to complete
each assigned task. The list of tasks is then sorted from the lowest to the highest estimated
delay (line 7). The task with the lowest delay t is extracted from the list (line 8). This
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task is then added to the end of the permutation of completed tasks (line 9). Once the
completed task is added to the permutation, the system conditions are updated, which
adds the estimated total time needed to complete the assigned task to the system variable
that tracks the current time (line 10). Once the list of assigned tasks to be completed is
empty, the constructed permutation of completed tasks is returned (line 12).

The non-reactive heuristic presented here selects the task with the lowest estimated
delay when the circuit is traversed, which constitutes the delays estimated from historical
data. However, the delays encountered when the circuit is actually traversed might be
different than the estimated ones. The second heuristic, which is described next, solves this
issue by employing a reactive approach: taking into account the current system conditions,
which are updated at the end of each circuit. Algorithm 2 presents the pseudo-code of our
reactive heuristic.

Algorithm 2 Reactive Heuristic for Dynamic Delays
1: Data: List of tasks T, and matrix of expected delays D
2: Result: Permutation of completed tasks P
3: P← ∅
4: tc ← 0
5: while C 6= ∅ do
6: T← estimateDelays(T, D, tc)
7: T← sort(T)
8: t← selectTask(T)
9: t← executeTask(t)

10: P← P ∪ {t}
11: tc ← updateSystem(tc, t)
12: end while
13: return P

The reactive heuristic approach, which receives the same input parameters as the
non-reactive heuristic for dynamic delays, works as follows. First, an empty permutation
of tasks P is constructed (line 3). Additionally, the system conditions track the current time
tc, which is initialized to the starting time t = 0. Next, the list of tasks to be completed T is
iterated until no more tasks are in the list (lines 5–11). In each iteration, the delays of each
circuit are estimated based on the system conditions, and the list of tasks is then sorted
from the lowest to the highest estimated delay (lines 6 and 7). The first task from the new
permutation of tasks t is extracted, and the task is executed by the AGV (lines 8 and 9).
The expected total travel time is then updated with the actual time the AGV takes to travel
throughout the circuit. In other words, we compute the real total time needed by the AGV
to complete task t, taking into account the actual delays encountered along the way. Next,
the task is added to the end of the permutation of completed tasks (line 10). Finally, the
system conditions are updated, which adds the actual time needed to complete the task to
the system variable that tracks the current time (line 10), not the estimated time needed to
complete the task. Once the list of assigned tasks to be completed is empty, the constructed
permutation of completed tasks is returned (line 12).

Notice that the reactive heuristic proposed here selects the task with the lowest es-
timated delay at each iteration, just as the non-reactive heuristic. However, the reactive
heuristic updates the system conditions with the real total time the AGV needs to complete
the circuit. Also, it recomputes the permutation of remaining tasks according to the current
system conditions in subsequent iterations. This gives the reactive heuristic the ability to
adapt to potential disruptions.
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5. An Illustrative Example of Our Reactive Approach

This section describes a simple example that illustrates how the proposed reactive
algorithm solves the problem, in an iterative way, as new data is updated in the system
at the end of each round trip (i.e., each time the AGV returns from a station to the depot).
Figure 4 shows a toy case with 2 products and 2 workstations. Let us denote by fij(t) a
function that provides an estimate of the real round trip time associated with assigning
product i to station j at time t ∈ [0, t f ), tt

ij, where t f refers to the end time of a working
day. The main concept here is: (i) we will use fij(t) to design an initial assignment plan
based on estimated travel times; and (ii) every time the AGV returns to the depot, since
the actual times might be different than the estimated ones, the remaining assignments
will be recomputed using fij(t) again. In other words, each time we pass through the
depot (and while the list of pending assignments is not empty), the current time tc > 0 will
be registered and the previous assignment plan will be re-adjusted (from tc to t f ), taking
into account the estimates provided by fij(t). Hence, the figure shows a first assignment
plan (E1) where: (i) product 1 (P1) is first sent to station 2 (S2) and then returned to the
depot (0) once processed; (ii) product 2 is taken to station 1 and then returned to the depot;
(iii) product 2 is taken to station 2 and returned to the depot; and (iv) product 1 is taken to
station 1 and returned to the depot. Would the estimated travel times be perfectly accurate
(i.e., without delays), this plan would finish by time tE1. Unfortunately, as we put this plan
in action, we might experience changes in the estimated travel times (usually in the form
of delays), as shown in the real execution plan R1, which might lead to a new estimated
makespan tR1. At this point in time, when product P1 has just returned to the depot, we
cannot do anything to change the fact that product 1 has already been processed in station
2. However, we can re-adjust our initial plan taking into account the current time tc and
fij(t). This is how plan E2 emerges. Notice that plan E2 is able, at least in theory, to enhance
the makespan associated with R1. This process of comparing the estimated travel times
with the real ones, and then re-adjusting future trips if convenient, is repeated until all
products have been processed by all stations. In our case, this leads to a final makespan tR3,
which is not as good as tE1 but definitively better than tR1 thanks to our ability to reactively
adjust the plan according to the current system conditions (current time every time the
AGV visits the depot and the estimation function, which depends on the time t at which
a trip is launched). One should notice that this is just a toy example, but in a situation in
which the number of products n is large, and the number of stations m also grows, the size
of the possible solutions space is vast and the problem suffers from combinatorial explosion.
In addition, when several AGVs and depots are considered, the problem becomes even
more challenging.

Figure 4. An illustrative description of the proposed algorithms.
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6. Computational Experiments

The proposed heuristic approaches have been implemented using Python 3.10 [31],
and tested on a workstation with a multi-core processor Intel Xeon E5-2630 v4 and 32 GB
of RAM. The remainder of this section explains the computational experiments carried
out to validate and illustrate our reactive heuristic. First, the test instances employed are
described. Afterwards, we describe in detail the three different approaches used to test
the instances, along with the method used to provide the actual delays of the circuits.
For the computational experiments, each generated instance has been run 10 times for
each approach. Each run has been executed with a different seed for the random number
generator used for simulating the actual delays of the circuits (which are based on historical
data), and the average are reported for different levels of dynamism. In particular, we have
which introduced a low, medium, and high level of dynamism, respectively.

6.1. Test Instances

Since there are no benchmark instances publicly available for the problem we have
presented, a set of instances have been created to assess the performance and the quality
of the proposed algorithm. We used real historical data from a company, a single dataset
gathered over several days by an AGV to conduct our testing. This dataset included various
variables, including date, time, circuit, destination node, and location (X and Y coordinates).
The date and time represent the starting time of the AGV and are updated every second
from 5 a.m. to 11 p.m. over a span of seven days. The dataset consists of six circuits, each
of which accomplished a specified task. The AGV contacts various nodes designated as
the destination node during each circuit, and the X and Y coordinates denote the AGV’s
location at a specific time.

To facilitate our methodology, we extracted useful features such as distance and filtered
the data where the distance was zero to record the times and locations where the AGV
stopped due to specific circumstances. We then computed the delay time per hour for
each circuit, and a dynamic matrix table was created to feed our methodology. This matrix
includes the combination of the average delay time of each pair of circuits per hour that is
intended to execute a particular task.

We defined four different instances, namely small, medium, large, and very large, which
describe scenarios where three stations must process 30, 60, 120, and 240 products, respec-
tively. Additionally, the travel time with no delay for each circuit is in seconds, while the
starting time of the AGV is set at 5 a.m.

6.2. Test Approaches

The three approaches considered in our computational experiments are described
as follows:

• FIFO: In this approach, the list of tasks to be completed is iterated in a first-in, first-out
(FIFO) manner without taking into account the estimated delays for each of the circuits
as well. Once the list of tasks is iterated, the actual delays associated with the FIFO
permutation of tasks are computed.

• Non-Reactive: In this approach, the permutation of tasks is created using the non-
reactive heuristic for dynamic delays presented in a previous section. Thus, the task
with the lowest expected delay when traversing its circuit is added to the permuta-
tion of tasks at each iteration. Subsequently, the actual delays associated with the
permutation of tasks are computed.

• Reactive: Regarding the last approach, the permutation of tasks is created using
the reactive heuristic algorithm described in Section 4. Thus, a new permutation
of remaining tasks along with their respective actual delays are computed, and the
system is updated with the actual time it takes to traverse each of the circuits.

In our numerical experiments, we employ white noise [32] in order to emulate the
behavior of the actual delay values that the AGV will encounter when traversing each
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circuit. In particular, each sample generated from white noise has a normal distribution
with zero mean, which is added to the estimated delays to emulate the actual delay values.
In other words, the actual delays are simulated by adding a white Gaussian noise sample to
the estimated delays. During the experiments, the samples are generated with mean µ = 0
and standard deviation σ. The standard deviation σ allows us to consider different levels of
dynamism in our experiments, as lower values of σ indicate a lower dynamism and higher
values of σ produce a high level of dynamism. In our experiments, we have set σ to the
values 100, 200, and 300 for a low, medium, and high level of dynamism, respectively.

7. Analysis of the Results

The analysis of the results from the computational experiments has been carried out
using R [33]. Tables 2–4 present the results for the different levels of dynamism, from
the lowest to the highest. The first column identifies the instances, while the remaining
columns show the total time (in seconds) required by an AGV to complete all the assigned
tasks for the three considered approaches. First, we report the results obtained for the FIFO
approach, where the tasks are completed in a FIFO manner. In the next section of the table,
we report the obtained results for the non-reactive approach. The first column shows the
total time when the tasks are completed in the order returned by the non-reactive heuristic
for dynamic delays, while the second column compares the average FIFO solutions (OBF)
with the average non-reactive solutions (OBN). The last section of the table exhibits the
obtained results for the reactive approach. The first column shows the total time when
the tasks are completed in the order returned by the reactive heuristic, while the second
column compares the average FIFO solutions (OBF) with the average reactive solutions
(OBR). Finally, the average values are shown in the last row.

Table 2. Computational results for the test instances with a low level of dynamism.

FIFO Approach Non-Reactive Approach Reactive Approach

Instance OBF OBN GAP(%) OBR GAP(%)
[1] [2] [1–2] [3] [1–3]

Small 86,735.7 82,403.1 −5.00 82,236.4 −5.19
Medium 173,105.4 166,014.1 −4.10 164,528.6 −4.95
Large 346,699.7 335,395.6 −3.26 328,056.4 −5.38
Very large 691,926.7 677,652.9 −2.06 655,090.7 −5.32

Average: 324,616.9 315,366.4 −3.6 307,478.0 −5.2

Table 3. Computational results for the test instances with a medium level of dynamism.

FIFO Approach Non-Reactive Approach Reactive Approach

Instance OBF OBN GAP(%) OBR GAP(%)
[1] [2] [1–2] [3] [1–3]

Small 87,921.7 83,161.8 −5.41 82,761.6 −5.87
Medium 175,289.6 168,075.4 −4.12 165,001.2 −5.87
Large 351,553.2 338,148.2 −3.81 329,533.5 −6.26
Very large 699,450.7 681,942.1 −2.50 656,655.8 −6.12

Average: 328,553.8 317,831.9 −4.0 308,488.0 −6.0
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Table 4. Computational results for the test instances with a high level of dynamism.

FIFO Approach Non-Reactive Approach Reactive Approach

Instance OBF OBN GAP(%) OBR GAP(%)
[1] [2] [1–2] [3] [1–3]

Small 90,084.8 84,662.7 −6.02 83,959.6 −6.80
Medium 179,177.4 171,094.5 −4.51 166,810.5 −6.90
Large 360,197.0 344,949.7 −4.23 334,807.1 −7.05
Very large 716,942.5 690,075.2 −3.75 665,469.4 −7.18

Average: 336,600.4 322,695.5 −4.6 312,761.6 −7.0

As expected, all the percentage gaps are negative, which indicates that the non-reactive
and reactive approaches outperform the FIFO approach. The objective function value
increases with the size of the instance, as increasing the number of assigned tasks requires
more time from the AGV to complete them. The percentage gaps of the solutions obtained
with the non-reactive and reactive approaches with respect to the FIFO approach tend to be
high in absolute terms. In particular, the percentage gaps of the solutions obtained with
the reactive approach with respect to the FIFO approach are the highest. In other words,
the reactive approach takes the least time to complete the assigned tasks, so the reactive
approach can be considered the most effective approach to solve the described problem.
The barplot in Figure 5 shows the average gaps of non-reactive, and reactive approaches
with respect to the FIFO approach considering the different levels of dynamism. Notice that
the mean gap is always higher, in absolute terms, for the reactive approach. In addition,
the average gaps increase as the level of dynamism grows. Thus, it is particularly useful to
apply a reactive approach in a dynamic environment subject to unexpected disruptions
in the delay times. Specifically, the reactive approach allows for the AGV to react to
unexpected disruptions when traversing the environment, and alter the assignment of the
tasks to minimize the total time. This is achieved because the reactive approach considers
the actual delays happening as the AGV completes the assigned tasks, not only estimating
the delays that could happen to the AGV while completing the assigned tasks.

Figure 5. Barplot of the mean gaps (%) of non-reactive and reactive approaches with respect to the
FIFO approach considering different levels of dynamism (from low to high).

Next, an analysis of variance (ANOVA) is used to analyze the differences among
means. The gap is the dependent variable, and the approach, the dynamism level, and
the instance are the independent variables. Table 5 displays the results obtained. The
conclusion of this analysis is that there are statistically significant differences among the
means of the different approaches, and dynamism levels, but not among the means of the
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different instances. Finally, the Tukey multiple comparisons of means among approaches
(95% family-wise confidence level) are applied to find means that are significantly different
from each other. Table 6 shows the results obtained. Notice that there are significant
differences between the non-reactive and the reactive approaches, as the p-value is lower
than 0.05.

Table 5. Results from the ANOVA analysis.

Df Sum Sq Mean Sq F Value Pr (>F)

Approach 1 24.24 24.24 50.37 0.00000

Level of Dynamism 2 7.88 3.94 8.19 0.00324

Instance 3 4.56 1.52 3.16 0.05181

Residuals 17 8.18 0.48

Table 6. Tukey multiple comparisons of means (95% family-wise confidence level).

Pair of Approaches Difference Lower Upper P Adjusted

Reactive—Non-Reactive −2.01 −2.6075 −1.4125 0.00000

8. Conclusions

To the best of our knowledge, this paper is the first attempt to minimize the total
time employed by an AGV in completing a series of tasks under a dynamic scenario in
which disruptions in the form of unexpected or random delay times might occur while the
AGV is moving along defined pathways. We have presented a reactive heuristic, which is
combined with a dynamic matrix of expected delays. This matrix is built using historical
data to estimate the delay associated with a given circuit at any point in time. Additionally,
we study the creation of the permutation of tasks for the proposed reactive heuristic and
compare it to three other different approaches.

Data analytics techniques are used to estimate the AGV interruption for each deter-
mined pathway during determined time spans. White Gaussian noise is also employed
to artificially generate scenarios with circuit delays. Different levels of dynamism (low,
medium, and high) are considered in creating the circuit delays. Computational evaluations
were performed with four groups of small, medium, large and very large instances and
ANOVA and Tukey tests were used to analyze results. These results show that the FIFO
approach works worse than all the other ones, while the mean gap provided by the reactive
approach is always is higher in absolute terms. The gaps increase as the level of dynamism
grows, which confirms the usefulness of the proposed reactive approach in a dynamic
environment as the one considered here for the AGVs.

For future works, more than one AGV can be considered. In addition, machine learning
models can be used to predict delays from historical data. Finally, simulation-optimization
methods such as simheuristic [34] may also be explored.
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