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Abstract: CO2 is the gas that contributes the most to the greenhouse effect and, therefore, to global
warming. One of the greatest challenges facing humanity is the reduction of the concentration
of CO2 in the air. Here, we analyze the possible use of Au1@g-C3N4 electrocatalyst to transform
CO2 into added-value products. We use density functional theory (DFT) to determine the reaction
Gibbs energies for eight electron–proton transfer reaction paths of the electrochemical carbon dioxide
reduction reaction (CO2RR) using a single Au atom supported on 2D carbon nitride support. Our
simulations classify the Au1@g-C3N4 electrocatalysts as “beyond CO” since their formation is ener-
getically favored, although their strong binding with a Au single atom does not allow the desorption
process. DFT calculations revealed that the lowest energy pathway is CO2 (g)→ COOH*→ CO*
→ HCO*→ HCOH*→ CH2OH*→ CH2*→ CH3*→ CH4 (g), where the first hydrogenation of
CO to HCO is predicted as the rate-limiting step of the reaction with slightly lower potential than
predicted for Cu electrodes, the most effective catalysts for CO2RR. Methane is predicted to be the
main reaction product after eight proton–electron transfers (CO2 + 8 H+ + 8e− → CH4 + 2H2O). The
generation of formaldehyde is discarded due to the large formation energy of the adsorbed moiety
and the production of methanol is slightly less favorable than methane formation. Our computational
study helps to identify suitable electrocatalysts for CO2RR by reducing the amount of metal and
using stable and low-cost supports.

Keywords: electrocatalysis; carbon dioxide reduction; Au single metal atom; carbon nitride;
computational hydrogen electrode; methane production

1. Introduction

One of the most challenging and relevant problems that our society must face to
improve the quality of life of future generations is climate change, with the emission of
carbon dioxide (CO2) considered the major contributor [1,2]. The use of renewable energy
resources can drastically reduce these emissions, although nowadays approximately 80% of
global energy consumption consists of fossil fuels [3]. Mitigation strategies like capture [4,5]
and sequestration of CO2 [6,7], or even functionalization towards other chemicals [8,9],
especially cycloaddition of CO2 to epoxides [10–13], have been pursued, although the
conversion of CO2 to valuable fuels is more promising [3,14,15]. This could promote the
use of desirable waste as feedstock for added-value compounds for the industry [16–18].

From the point of view of heterogeneous catalysis, the research community is making
progress in creating smaller and dispersed metal particles supported on innocent and
non-innocent supports based on metal oxides [19–25] and metal carbides [26–29], with Cu
as the highest active metal particle for CO2 hydrogenation to methanol and Ni as the most
effective metal for CO2 methanation [30].

In recent years, significant progress has been made to find active and selective cata-
lysts for electrochemical CO2 reduction reaction (CO2RR) [31], where noble metals such
as Pd [32], Ag [33,34], and Au [35,36], and transition metals such as Fe and Co enhance
CO formation as the main product [37]. However, Cu is the rising star in this group of
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metal catalysts, since it is the only transition metal able to reduce CO2 into alcohols and
hydrocarbons with acceptable Faradaic efficiencies [31,38–46]. A way to drastically reduce
the cost of the catalysts and at the same time increase their catalytic activity and selectivity
is to use single metal atoms. Over the past decade, single-atom catalysis (SAC) has become
one of the most widely researched methods for the synthesis of novel low-cost and effective
catalysts [47]. It is proposed that these single metal atoms have the same principle as homo-
geneous catalysts, improving the selectivity with respect to metal-supported nanoparticles,
although the local coordination around the single atom site plays an important role [48]. In
fact, SAC can be treated as the step following supported homogeneous catalysts, since after
the removal of the ligand, it is stabilized as SAC [49]. The preparation of SACs and the
support choice is not trivial, since it can promote clustering [50,51] and absorption inside
the catalysts [52].

Carbon-based materials such as graphene have high surface areas and superior elec-
trical conductivity and are normally employed as SAC supports to boost oxygen reduc-
tion reaction [53], oxygen evolution reaction [54], hydrogen evolution reaction [55], and
CO2RR [56], among others, improving electrochemical activities. Graphitic carbon nitride
(g-C3N4), with a graphene-like framework, contains periodic heptazine units connected
via tertiary amines. The presence of nitrogen atoms in this graphene structure provides
rich electron lone pairs to capture metal ions in the ligands. In fact, these electron pairs
promote layer corrugation due to their electronic repulsions, although the corrugation
phenomena enhance the generation of active sites for metal deposition [57]. 2D g-C3N4 is
an excellent candidate for electrocatalytic CO2 reduction, acting as a non-innocent support
for single metal atom catalysts—mainly Cu, Pd, and Pt [58–60]. Experimental studies using
Cu1@g-C3N4 as a catalyst for CO2RR proved the stability of Cu single atom since the
formation of Cu nanoparticles was not observed [59]. Moreover, it was found that formic
acid and H2 were the main products. From a theoretical point of view, the CO2RR has
been studied using Cu and Au atoms supported on polymeric carbon nitride (CN) [61]
and several transition metal atoms embedded on C2N [62]. Focusing on polymeric CN,
authors [61] highlighted the selectivity of Cu single atom to produce CH4; however, neither
the competitive hydrogen evolution reaction (HER) nor the poor selectivity of Au single
atom was addressed. On the other hand, the recent work by Dobrota et al. reported, by
means of density functional simulations, the stability of several single metal atoms on simi-
lar carbon nitride supports, showing that Cu, Ag, and Au are stable but have lower stability
compared with other transition metals [63]. Despite this, Cu1@g-C3N4 and Au1@g-C3N4
have been synthesized [64].

In this work, we want to explore the capability of a single Au atom supported on
g-C3N4 for CO2RR. The single Au atom deposition on g-C3N4 was experimentally con-
firmed [64] but its catalytic activity has not been elucidated. This paper explores the reaction
mechanism of the eight electron–proton transfer processes by means of periodic density
functional calculations (DFT) applying the computational hydrogen electrode approach
(CHE) [65].

2. Results

First, it is important to clarify the relevance of the monolayer corrugation. Initially,
the optimized monolayer with and without the single metal atom has a flat structure. The
deposition of Au single atom did not modify the planarity of the monolayer. However, the
adsorption of all the moieties involved in the different pathways of CO2RR and HER process
promoted surface corrugation (see Figure 1). This corrugation process is not unexpected
and has been previously observed for g-C3N4 slab [52] and g-C3N4 monolayers [66,67].
According to Azofra et al. [57], corrugation minimizes the electronic repulsion of the
nitrogen lone pairs located in their structural holes. From an energy point of view, the
corrugated surface is around 1.2–2 eV lower in energy than the planar, including or not
the transition metal single atom. Therefore, the global minimum and the reference of the
monolayer’s energy is the corrugated structure, while the planar is a metastable structure
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that becomes corrugated after the adsorption of reactants. With respect to single-atom
deposition, Au anchoring is favored by 1.91 eV. This result, together with the experimental
characterization of Au1@g-C3N4 [58], highlights its stability.
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Figure 2 shows the Gibbs energy profile, considering the lowest energy pathways,
while Figure 3 illustrates the sketches of all the adsorbed species of CO2RR reaction on
Au1@g-C3N4 and their relative Gibbs energies with respect to CO2 and the C3N4 surface
in the gas phase. In a previous study, we elucidated the interaction and activation of CO2
molecules on Au1@g-C3N4, obtaining a binding energy of −0.22 eV, and maintaining the
linear conformation of the molecule [61]. This was in contrast to other studies where CO2
was not bonded to Au single atom on 2D-carbon nitrides structure [68]. CO2 bending
facilitates the proton-coupled electron transfer, although Cu single atom on g-C3N4 was
found to be active both experimentally [59] and computationally [61] for the two proton-
coupled electron transfers maintaining the (almost) linear structure. Going into detail about
each proton-electron transfer, the first proton–coupled electron transfer is energetically
favored, independent of the formed species, with COOH (2a, see Figure 3 for labels) being
slightly lower in energy than HCOO (2b) by 0.33 eV. The second proton–electron transfer has
two competitive pathways involving the ejection of one water molecule and the formation of
adsorbed CO on top of the Au single atom or the generation of formic acid. Our simulations
predict that the formation of adsorbed CO is favored by 0.83 eV, clearly ruling out the
formation of HCOOH. However, our predictions show that CO would not be detected as
a product since its desorption energy is very large (1.58 eV). Therefore, the Au1@g-C3N4
system can be classified into the “beyond CO” group of catalysts. The third proton–electron
transfer, which implies the hydrogenation of CO, is the most energetically demanding step
of the reaction since it has the largest thermodynamic barrier. This predicted barrier, at 0 V,
gives the limiting potential value. It coincides with the reaction mechanism explored with
Cu [38,43], where a limiting potential of −0.74 V is required. For the Au1@g-C3N4 system,
the limiting potential is −0.69 eV, slightly lower than the most efficient catalyst for CO2RR.
It is important to mention that CO* hydrogenates toward HCO* species (4b) because the
formation of COH* is 2.00 eV higher in energy (4a). The HCO* is hydrogenated to HCOH*
moiety (5b) during the fourth proton–electron transfer. The thermodynamic energy barrier
for this step is only 0.08 eV, whereas the formation of the CH2O moiety (5c) comes with an
energetic cost of 1.15 eV. The possible formation and desorption of one water molecule (5a)



Chemistry 2023, 5 1398

is not competitive since it implies an energy barrier larger than 3.5 eV. DFT simulations
show that two moieties are close in energy for the fifth proton-coupled electron transfer.
The hydrogenation of HCOH (5b) to CH2OH (6b) and CH3O (6c) is energetically favored,
being that the formation of CH2OH is lower in energy by 0.23 eV. A priori, this small
difference makes both hydrogenation processes feasible, although one should consider that
the generation of CH3O from HCOH would involve, apart from the formation of the new
C-H bond, cleavage of the O-H bond, which difficult its generation staring from HCOH
species. With respect to water molecule formation (6a), this step is endergonic by more
than 2 eV. The sixth proton–electron transfer is one of the most relevant steps because
it may involve the generation of methanol and methane. According to our simulations,
the hydrogenation of CH2OH (6b) and/or CH3O (6c) to CH4 (g) is endergonic by more
than 1.4 eV in the best cases (7c and 7d). Thus, the conversion of CO2 with six protons to
CH4 is not energetically feasible. In this case, the ejection of one water molecule and the
formation of CH2* moiety (7a) is predicted as the lowest energy step with an energy barrier
of 0.65 eV, followed by the production of methanol, which is 0.19 eV higher in energy (this
will be discussed later). Following the lowest energy route, the next step involves the
hydrogenation of CH2* (7a) to CH3* (8a). This process is exergonic and the previous step of
CH4 formation at the eighth electron–proton transfer. The last step is endergonic by 0.66 eV,
very close to the rate-limiting step. Thus, according to our simulations, methane is the main
product of CO2RR when using Au1@g-C3N4 as a catalyst and applying a limiting voltage
of −0.69 V that corresponds to CO hydrogenation to HCO. CO formation is predicted to be
exergonic, i.e., without the requirement of a potential, although its strong binding with the
Au atom is detrimental to its desorption. It is important to mention that CH4 production is
possible after eight electron–proton transfers. The same product can be generated after six
electron–proton transfers starting from CH2OH species, although our results show that the
formation of one water molecule and its corresponding desorption is a much more favored
process (by 1.00 eV).
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A limit potential of −0.84 V is predicted for methanol production (Figure 4a). As illus-
trated in Figure 4, the hydrogenation of the CH2OH moiety (6b) to methanol (7b) is possible
when the limiting potential is increased, making it the rate limiting step in the reaction.
This process is competitive with respect to the ejection of one water molecule. However, the
process would be feasible if CH3O (6c) is formed during the fifth proton–electron transfer.
This moiety is only 0.25 eV larger in energy than CH2OH and its generation can promote
methanol production with a limit potential of −0.69 V, the same value required to hydro-
genate CO to HCO* (Figure 4b). Nevertheless, as has been mentioned before, the precursor
of both moieties is HCOH (5b), which is clearly the lowest energy product of the fourth
hydrogenation process. Thus, the formation of CH3O is not only a simple hydrogenation
process but involves cleavage of the O-H bond and subsequent migration of the proton to
the C atom. Furthermore, increasing the limiting potential will still favor ejection of the
water molecule and formation of CH2* species (7a) bonded to Au single atom. For these
reasons, the generation of methanol using Au1@g-C3N4 as an electrocatalyst is difficult,
even if the limiting potential is increased. With respect to the formation of CH2O (g) (5c*),
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this process is endergonic and 0.55 eV higher than the formation of HCOH (5b). In this case,
the major difficulty is the generation of the adsorbed CH2O* species that implies an energy
cost larger than 1 eV, despite the fact that its desorption is favored in energy. Therefore, the
generation of formaldehyde is excluded.
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Finally, it is important to compare these results with the competitive reaction, the
proton evolution to H2. In this case, the binding energy of H to the Au atom is−0.92 eV [63].
Therefore, a very large overpotential is required for H2 production, which favors the CO2RR
on Au1@g-C3N4. Nevertheless, the large H–Au interaction can poison the catalytic active
site, although the binding energy of COOH/HCOO moieties, the products of the first
electron–proton transfer, and CO have higher binding energies than H. Moreover, Au
is not the preferred site for H adsorption since the interaction with monolayer carbon
atoms is higher. Thus, the monolayer would be covered by protons before binding to Au
single atom.

3. Conclusions

In this work, DFT simulations have been carried out to explore the capability of single
Au atom supported on g-C3N4 for CO2RR using the CHE approach. The lowest energy
pathway is CO2 (g)→ COOH*→ CO*→ HCO*→ HCOH*→ CH2OH*→ CH2*→ CH3*
→ CH4 (g), where the step that marks the limiting potential is the CO hydrogenation to
HCO, the third electron–proton transfer. A limiting potential of −0.69 V is required to over-
come this thermodynamic barrier; this is lower than the potential required for Cu metal, the
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most efficient electrocatalyst for CO2RR. Our simulations predict CH4 generation, where
eight proton–electron transfers are required (CO2 + 8H+ + 8e− → CH4 + 2H2O). The forma-
tion of CH4 using six protons (CO2 + 6H+ + 6e− → CH4 + H2O + O*) is not feasible since
the ejection of a second water molecule is preferred (CH2OH* + H+ + e− → CH2* + H2O).
In fact, this is the key step of the catalyst’s selectivity, since this water generation is slightly
favored over methanol production by 0.18 eV. The high stability of the CH2OH* moiety
with respect to CH3O* is detrimental to methanol production, where a limiting potential of
−0.84 V is required.

In summary, applying the CHE approach, Au1@g-C3N4 is predicted as a promising
electrocatalyst for CO2RR, avoiding H2 production due to the large overpotential required.
This work encourages research on single metal atom properties for catalysis as well as
the role of density functional simulations in order to shed light on the adsorption mode,
coordination environment, and stability of single atom catalysts.

4. Computational Details and Models

The geometry of the bare monolayer, gas phase species, and the combination of both
have been obtained from total energy minimization with the energy obtained from peri-
odic DFT-based calculations carried out using the Vienna Ab initio Simulation Package
(VASP) [69]. Exchange-correlation effects have been accounted for using generalized gra-
dient approximation employing the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
potential [70], including the semi-empirical method of Grimme (D3) to describe the disper-
sion effects [71]. The valence electron wavefunctions were expanded onto a plane-wave
basis set. The effect of the core electrons is considered through the projector augmented
wave (PAW) method of Blöchl [72] as implemented by Kresse and Joubert [73]. The Brillouin
zone was sampled by a 5 × 5 × 1 grid of k-points within the Monkhorst-Pack scheme [74].
The atomic positions were relaxed until the forces were smaller than 0.01 eV Å−1. The
threshold for electronic relaxation was less than 10−5 eV.

The (001) monolayer of g-C3N4 is used as model (Cmcm space group), the most favor-
able available on materials project database [75]. The monolayer contains 24 C and 32 N
atoms since the cell is expanded two times in the x and y axes. The Au deposition occurs
between the Nitrogen atoms, which stabilize the system. The corrugation of the surface
monolayer occurs after adsorption of the reactants [64]. Thus, to obtain the minimum
energy value of the surface, the corrugated monolayers were computed without reactants,
obtaining almost identical corrugated geometries degenerate in energy. The binding energy
of single metal atom was calculated following Equation (1),

Eads= EAu@C3N4 − (EC3N4
+EAu) (1)

where EAu@C3N4 is the DFT energy of the monolayer including the anchored Au atom,
EC3N4 is the energy of the corrugated g-C3N4 monolayer, and EAu is the energy of one Au
atom in its ground state.

In this work, we have evaluated the eight possible electron–proton transfer processes,
considering all the possible reaction pathways:

CO2 (g) + H+ + e− → COOH* (R2a)

CO2 (g) + H+ + e− → HCOO* (R2b)

COOH*/HCOO* + H+ + e− → CO* + H2O (g) (R3a)

CO*→ CO (g) + * (R3a*)
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COOH*/HCOO* + H+ + e− → HCOOH (g) (R3b)

CO* + H+ + e− → COH* (R4a)

CO* + H+ + e− → HCO* (R4b)

HCO*/COH* + H+ + e− → C* + H2O (g) (R5a)

HCO*/COH* + H+ + e− → HCOH* (R5b)

HCO*/COH* + H+ + e− → CH2O* (R5c)

CH2O*→ CH2O (g) (R5c*)

C*+ H+ + e− → CH* (R6a)

HCOH*/CH2O* + H+ + e− → CH* + H2O (g) (R6a*)

HCOH*/CH2O* + H+ + e− → CH2OH* (R6b)

HCOH*/CH2O* + H+ + e− → CH3O* (R6c)

CH* + H+ + e− → CH2* (R7a)

CH2OH*/CH3O* + H+ + e− → CH2* + H2O (g) (R7a*)

CH2OH*/CH3O* + H+ + e− → CH3OH (g) (R7b)

CH2OH*/CH3O* + H+ + e− → CH4 (g) + O* (R7cd)

CH2* + H+ + e− → CH3* (R8a)

O* + H+ + e− → OH* (R8b)

CH3* + H+ + e− → CH4 (g) (R9a)

OH* + H+ + e− → H2O (g) (R9b)

To compute the reaction energy, we have employed the computational hydrogen
electrode (CHE) approach proposed by Norskov and coworkers [65]. In this protocol, the
energy of H+ + e− can be computed as half of the Gibbs energy of the H2 molecule at
0 V vs. SHE. Therefore, the reaction energy of each step can be calculated by computing the
binding energies of adsorbed moieties and the initial and final products (CO2, CO, CH2O,
CH3OH, and CH4) in gas phase. The vibrational frequencies have also been determined
through the construction and diagonalization of the Hessian matrix, constructed by inde-
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pendent displacements of atoms by 0.03 Å, and it has been used to compute the zero-point
energy and the entropic effects considering adsorbate moieties. Accounting for the DFT
energy, entropy, and ZPE, one can evaluate the Gibbs energies of the species involved in
the reaction network. The Gibbs energies can be directly related to the electrode potential
by following Equation (2) as an example case for reaction 4b:

∆G4b = ∆GHCO* − 1/2 ∆GH2 − ∆GCO* + eUSHE (2)

where e is the charge of the transferred electron and U is the voltage. The limiting potential
required is the electrode potential at which all the reaction steps are exergonic, without
thermodynamic barrier. On the other hand, solvation effects may be relevant to stabilize
some reaction intermediates owing to the H-bonding effect of water molecules [62,76],
although in our previous calculations, including solvents had no remarkable differences
(0.01–0.05 eV) [66] and thus all the calculations in the present study are performed without
including solvent effects.
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