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Abstract
Negative extreme anomalies in vegetation growth (NEGs) usually indicate severely 
impaired ecosystem services. These NEGs can result from diverse natural and an-
thropogenic causes, especially climate extremes (CEs). However, the relationship be-
tween NEGs and many types of CEs remains largely unknown at regional and global 
scales. Here, with satellite- derived vegetation index data and supporting tree- ring 
chronologies, we identify periods of NEGs from 1981 to 2015 across the global land 
surface. We find 70% of these NEGs are attributable to five types of CEs and their 
combinations, with compound CEs generally more detrimental than individual ones. 
More importantly, we find that dominant CEs for NEGs vary by biome and region. 
Specifically, cold and/or wet extremes dominate NEGs in temperate mountains and 
high latitudes, whereas soil drought and related compound extremes are primarily 
responsible for NEGs in wet tropical, arid and semi- arid regions. Key characteristics 
(e.g., the frequency, intensity and duration of CEs, and the vulnerability of vegeta-
tion) that determine the dominance of CEs are also region-  and biome- dependent. 
For example, in the wet tropics, dominant individual CEs have both higher intensity 
and longer duration than non- dominant ones. However, in the dry tropics and some 
temperate regions, a longer CE duration is more important than higher intensity. Our 
work provides the first global accounting of the attribution of NEGs to diverse climatic 
extremes. Our analysis has important implications for developing climate- specific 
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1  |  INTRODUC TION

Vegetation growth, indicated by satellite or tree ring proxies, is a 
key variable signifying the quantity and quality of essential ecosys-
tem services such as carbon sequestration, mitigation of anthropo-
genic climate change and the provision of food and fibre for human 
consumption. Yet, vegetation growth is known to vary from year to 
year (Pappas et al., 2017). While small variations are expected and 
do not raise concerns, large and extreme negative anomalies in veg-
etation growth could lead to severely impaired ecosystem services 
(Felton, 2021; Piao et al., 2019; McDowell et al., 2020). Surprisingly, 
while reports of extreme negative anomalies of vegetation growth 
(NEGs) such as massive crop failure and tree mortality are often 
noted in the media (Hartmann et al., 2018; Lesk et al., 2016), we still 
lack a comprehensive assessment of them over broad scales (e.g., 
continental or global). Such understanding is critically important for 
both ecosystem science and public- policy decisions (Zscheischler 
et al., 2013).

Most of the research on “extremes” focuses on evaluating cli-
mate extremes (CEs) and their potential impacts given the more fre-
quent and more severe contemporary CEs (e.g., Gampe et al., 2021; 
Overland & Wang, 2021). Reciprocally, we argue that a vegetation- 
oriented analysis seeking to evaluate and attribute different NEGs 
to different causes could complement the widely used climate- 
oriented approach and deepen our understanding of the causes and 
consequences of extreme vegetation responses. Extreme negative 
anomalies of vegetation growth are frequently associated with CEs 
(Frank et al., 2015), although other large- scale direct anthropogenic 
activities such as deforestation and logging have also contributed. 
However, the dominant cause of climate- driven NEGs still remains 
vague at regional and global scales, likely because a broad range of 
CEs and their combinations have potential to damage plants, while 
different biomes can show diverse sensitivities to even the same CE. 
Further, CEs, often initiated by large- scale atmospheric circulation 
and sea surface temperature anomalies (Kornhuber et al., 2019; 
Rousi et al., 2022), may also be driven by two or more climate driv-
ers simultaneously. Research suggests that compound CEs are more 
likely to exacerbate but also could alleviate the impacts of individ-
ual ones on vegetation growth (Hoover et al., 2022; Zscheischler 
et al., 2020). Considering these complexities in CEs and the associ-
ated vegetation responses, it is of particular importance to attribute 
NEGs to different individual and compound CEs. Such improved un-
derstanding of NEGs and their association with various types of CEs 
is critical to project vegetation growth and subsequent carbon cycle 

feedbacks under future climate change, as well as to support eco-
system management under increasing climate change- driven risks 
(Anderegg et al., 2020; Reichstein et al., 2013).

The primary goals of this study are to detect NEGs during the 
past three decades and to investigate the extent to which multiple 
CE types drive these vegetation anomalies. Therefore, we perform 
a coincidence analysis between NEGs derived from satellite- derived 
normalized difference vegetation index (NDVI) and different types 
of CEs during the period 1981– 2015 (see Section 2). Here we con-
sider five individual CEs (i.e., atmospheric drought, soil drought, 
heatwave, frost, flood) and six compound CEs (Table S1). The ro-
bustness of our results is further tested with analysis of NEGs from 
global tree- ring width index (RWI) records from 2992 sites (pre-
dominantly in the Northern Hemisphere). We use the site- level 
standardized tree- ring chronologies since year 1982, in line with 
the satellite- based NDVI data. After determining any simultaneous 
coincidence between NEGs and CEs, we analyze the sensitivity of 
vegetation growth to different CEs to better understand the relative 
vulnerabilities underlying the association between NEGs and CEs.

2  |  MATERIAL S AND METHODS

2.1  |  Data

2.1.1  |  Satellite- based NDVI data

The NDVI is widely used to monitor the greenness and growth of 
vegetation. We use biweekly NDVI data from the third- generation 
Global Inventory Monitoring and Modelling System (GIMMS; Pinzon 
& Tucker, 2014). These data with an original spatial resolution of 
1 × 1 km cover the period from 1982 to 2015. We aggregate NDVI 
data to a spatial resolution of 0.5 × 0.5° to match the spatial resolu-
tion of the climatic data and removed pixels of unvegetated areas, 
defined by a mean annual NDVI <0.1.

2.1.2  |  In- situ tree- ring data

We use the chronologies of tree- ring widths from the International 
Tree- Ring Data Bank (ITRDB) v7.15 (Grissino- Mayer & Fritts, 1997). 
The ITRDB provided site- level standardized chronologies from 2991 
sites, mainly in the Northern Hemisphere. The raw data for the tree 
RWI are postprocessed by detrending, standardizing, and averaging 

disaster prevention and mitigation plans among different regions of the globe in a 
changing climate.

K E Y W O R D S
climate extremes, coincidence analysis, drought, flood, frost, heatwave, vegetation growth 
anomaly
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    |  2353YANG et al.

growth series of tree samples collected at the same site using the 
dplR package (v.1.6.8) in R. We use the site- level standardized chro-
nologies since 1982, in line with the satellite- based NDVI data. Due 
to the limited number of sites with long records over the tropical and 
southern mid- latitudes, we only assess tree- ring chronologies from 
the north mid-  and high- latitude regions (>25° N latitude).

2.1.3  |  Climate data

Gridded data for monthly mean temperature, precipitation, and the 
number of frost days from 1982 to 2015 are obtained from the data 
set of the Climatic Research Unit (CRU v4.04; Harris et al., 2020) 
which has a spatial resolution of 0.5 × 0.5°. CRU climatic data are de-
rived by the interpolation of monthly climatic anomalies with obser-
vations from extensive networks of meteorological stations (Harris 
et al., 2020). Gridded data for soil– water content are reanalyzed data 
from the European Centre for Medium Range Weather Forecasts 
Reanalysis 5 (ERA5; Hersbach et al., 2020). We use all data for four 
soil layers, 0– 7, 7– 28, 28– 100, and 100– 289 cm, and aggregated 
the data at a spatial resolution of 0.5 × 0.5° before further analysis. 
The monthly vapour- pressure deficit (VPD) is calculated as the dif-
ference between the actual and saturated vapour pressures, using 
data for temperature, specific humidity, and air pressure at a height 
of 2 m from the reanalyzed data set of Modern- Era Retrospective 
analysis for Research and Applications, Version 2 (MERRA- 2; Gelaro 
et al., 2017).

2.2  |  Analysis

2.2.1  |  Identification of vegetation (NEGs) and CEs

We calculate the average biweekly NDVI of the growing season from 
1982 to 2015. Information for the growing season is derived from 
Zhu et al. (2016). The long- term linear trend of growing- season NDVI 
is first detrended. Note the detrending procedure is used to avoid 
overestimation of variability due to potential trends that could have 
been driven by different factors such as elevated CO2 concentra-
tion, nitrogen deposition, and long- term vegetation acclimation. The 
years of NDVI negative extremes (NEGs) are defined as years with 
NDVI anomalies below the 10th percentile of NDVI anomalies dur-
ing 1982– 2015. We also test different definitions of extreme events, 
for example, we use mean minus 1.5 SD as the threshold, where SD 
is the standard deviation of growing- season NDVI anomalies, and we 
verify that the attribution results are robust with respect to the defi-
nition of extremes (Figure S1). Site- level standardized RWI chronolo-
gies use the same 10th percentile to define RWI negative extremes 
and are, therefore, similar to our use of NDVI data. In this study, we 
only focus on the negative extreme anomalies in vegetation growth, 
which have serious damage to terrestrial ecosystems. Note that we 
exclude all the vegetation negative extremes in 1991 and 1992 to 
avoid the effects of the Pinatubo volcanic eruption because the aim 

of this analysis is to determine the impacts of climate on negative 
vegetation growth extremes.

We consider five types of CEs: cold extremes (Tmp−; also called 
frost), heatwaves (Tmp+), high VPD extremes (VPD+, also called at-
mospheric drought), soil drought (WA−), and positive extremes of 
water availability (WA+; also called flood). We use several climatic 
indexes to define CEs using the same percentile method applied to 
vegetation extremes. For Tmp−, the time series of average monthly 
temperature, minimum monthly temperature, and the number of 
frost days during the growing season are detrended. Anomalies of 
average temperature or minimum temperature below their 10th per-
centile, or anomalies of the number of frost days above their 90th 
percentile are defined as Tmp−. For Tmp+, the time series of average 
monthly temperature and maximum monthly temperature during 
the growing season are detrended. Anomalies of average tempera-
ture or maximum temperature above their 90th percentiles are de-
fined as Tmp+. Similarly, the average monthly VPD and maximum 
monthly VPD during the growing season are used to define VPD+. 
Anomalies of the average VPD or maximum VPD above their 90th 
percentile are defined as VPD+. For WA− and WA+, we use average 
monthly precipitation and average soil- water content for four soil 
layers (0– 7, 7– 28, 28– 100 and 100– 289 cm). Anomalies of average 
precipitation or average soil- water content below their 10th percen-
tiles were defined as WA− whereas anomalies of average precipita-
tion or average soil- water content above their 90th percentiles were 
defined as WA+.

We also consider compound CEs, that is, two or more CEs oc-
curred simultaneously. Six types of compound CEs are investigated 
in this study: Tmp−&WA−, Tmp−&WA+, Tmp+&WA−, Tmp+&WA+, 
VPD+&WA− and VPD+&Tmp+&WA− (Table S1). The other com-
pound extremes are excluded from this study because they are as-
sociated with less than 1% of NEGs globally. In Figure 2c,d, Tmp is 
abbreviated as T, WA as W and VPD as V.

2.2.2  |  Coincidence analysis for NEGs and CEs

We conduct a coincidence analysis (Rammig et al., 2015) that quanti-
fies the coincidence between NEGs and each individual and com-
pound CE. The rate of coincidence is an index that indicates how 
many NEGs coincide with CEs from all the vegetation extremes de-
tected during 1982– 2015 for all grids in each 15 × 15 spatial moving 
windows. For the global rates of coincidence in Figure 2a,c, we sum 
the coincidences between NEGs and CEs for all sites or 0.5° grid 
cells around the globe, and divide them by the number of all NEGs 
for the sites (RWI) or 0.5° grid cells (NDVI). The individual and com-
pound CEs with the highest coincidences are selected separately 
and considered the dominant drivers of NEGs. For tree- ring data, 
according to the coordinate information of each site, we can identify 
the 0.5° grid cells where they are located. For each site, we take the 
grid cell in which the site is located, find all the other sites located in 
adjacent grid cells within a 15 × 15 spatial moving window, and then 
use these sites together to do the coincidence analysis.
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Here, we test if the coincidence rate of each dominant CE is 
significantly higher than the coincidence rates of the CE when they 
occur randomly in a time series. We randomly shuffle the times 
series of the yearly data of all climate variables, but keep the time 
series of growing- season NDVI unaltered. Then, we use the same 
method to identify NEGs, and individual and compound CEs. Next, 
we calculate the coincidence rate of each CE with NEGs. We repeat 
the random shuffling 1000 times and calculate the coincidence rate 
of each CE with NEGs in random time series. Lastly, for all study 
regions, we compare the coincidence rate of the dominant CE es-
timated by our randomly shuffled climate time series with the co-
incidence rate calculated using the original unaltered climate time 
series. We find, for almost study regions, the coincidence rate of the 
dominant CE is significantly greater than that estimated by randomly 
shuffled climate time series, based on the Student's t- test (p < .05, 
Figure S2). Hence, this confirms the connection between CEs and 
NEGs cannot occur simply at random.

2.2.3  |  Sensitivity of vegetation and frequency, 
intensity, and duration of CEs

The risk and impact of CE events in the Intergovernmental Panel 
on Climate Change (IPCC) report is characterized by ‘hazard’, ‘ex-
posure’, and ‘vulnerability’ (Field et al., 2012). We use this frame-
work to calculate the frequency of each individual or compound 
CE (representing ‘hazard’), the intensity and duration of the CE 
(representing ‘exposure’), and the sensitivity of vegetation to the 
CE (with NEG representing ‘vulnerability’). Frequency is calculated 
as the probability of CE occurrence during 1982– 2015 inclusive, 
for all grids in the a 15 × 15 spatial moving window. Intensity (or 
duration) is calculated as the mean intensity (or duration) of all 
extreme events during 1982– 2015 for all grids in the 15 × 15 spa-
tial moving windows. Sensitivity is calculated as the mean of veg-
etation anomalies during the years of CE divided by the mean of 
the intensity of CE. All years with negative vegetation anomalies 
(NDVI anomalies <0) in response to the CE are included. Years 
with positive vegetation anomalies are excluded because such 
positive responses are likely to be caused by other climatic factors 
or human management.

2.2.4  |  Changes in the response of NDVI to 
individual and compound CEs

We conduct this analysis for regions where the dominant compound 
extreme is the combination of the dominant individual extreme and 
another CE. We compare the sensitivity of vegetation to compound 
CEs and that to every individual CE at the same intensity. For 
example, in one pixel in Amazon, the dominant individual CE is WA− 
and the dominant compound CE is WA−&VPD+. We compare the 
sensitivity of vegetation to the same intensity of WA− with and 
without VPD+. The detailed methods are as follows: First, we select 

all individual and compound CE events during 1982– 2015 for all 
grids in each 15 × 15 spatial moving windows. Second, all individual 
and compound extremes are then sorted into 13 bins according to 
their intensity: 1.2– 1.3, 1.3– 1.4, …, 2.3– 2.4 and 2.4– 2.5, where SD 
is from their historical climatic distributions. Third, we calculate the 
differences in the average NDVI anomalies (only if NDVI anomalies 
<0) between the occurrence of individual CEs and the occurrence 
of compound extremes for each intensity bin. Finally, we calculate 
the mean of the NDVI anomalies difference between individual and 
compound CEs across all intensity bins.

3  |  RESULTS AND DISCUSSION

3.1  |  The coincidence of individual and compound 
CEs with extreme reductions in vegetation growth

We define NEGs as continuous time periods when the current NDVI 
value is less than the 10th percentile of the historical NDVI distribu-
tion. Figure 1a illustrates the coincidence of NEGs with individual 
and compound CEs (which are similarly defined by the 10th or 90th 
percentiles of historical distributions; see Section 2) at the global 
scale. Our headline finding is that the coincidence between NEGs 
and CEs is relatively high in semi- arid and arid regions, as well as in 
northern mid- latitude regions such as northeastern China and India, 
eastern Europe, northeastern United States, and southern Canada. 
In the Southern Hemisphere, we find a high coincidence between 
NEGs and CEs in southern Africa and northern Australia. In these 
regions, almost 70% of the NEGs could be attributed to different 
types of CEs. The residues in this coincidence analysis may have 
been partly due to the limited reliability of the climatic data (Harris 
et al., 2020), or extensive direct human activities that affect vegeta-
tion growth (Davis et al., 2020). Furthermore, part of any remaining 
inconsistency between NEGs and CEs could also be explained by 
the lagged impacts of CEs (Anderegg et al., 2015), for example in the 
epicenter of the 2005 and 2015/16 Amazonian droughts (Saatchi 
et al., 2013; Yang et al., 2022). In addition, natural disturbances such 
as wildfire and windthrow, or other biotic disturbance agents such 
as insect pests and pathogens, which are not completely aligned 
with meteorological conditions, may also affect vegetation growth 
(Balzter et al., 2007; Forzieri et al., 2021; Hicke et al., 2012).

For the regions where NEGs have high coincidence with CEs, 
individual CEs contribute about 40%– 50%, while the rest half are 
coincident with compound CEs (Figure 1b). By contrast, in the humid 
tropics, southeastern China, and part of Siberia, the coincidence be-
tween NEGs and compound CEs is relatively low. That is, in these 
regions, most NEGs are associated with individual CEs (colored red 
in Figure 1b). Even when we relax the definition for compound CE 
events as 20th and 80th percentiles, only about 3% of NEGs coin-
cide with compound CEs in these regions (Figure S3). Furthermore, 
as an independent verification of our findings, NEGs derived from 
tree- RWI show similar patterns in their coincidence with CEs (bot-
tom insets in Figure 1a,b), confirming the robustness of our results.
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    |  2355YANG et al.

Next, we identify the dominant individual and compound CEs co-
incident with NEGs. For individual CEs, soil drought (defined by the 
10th percentiles of precipitation and soil water content of four dif-
ferent soil layers, WA−) has the highest occurrence rate with NEGs 
(13% for NDVI, 12% for RWI, Figure 2a). These NEGs coincident with 
soil drought occur mainly in pan- tropic regions including tropical 
semi- arid regions (Figure 2b), where soil drought is the primary fac-
tor limiting vegetation growth (Li et al., 2021; Walther et al., 2019). 
It is particularly noteworthy that although the wet tropical region is 
in general not water- limited, massive vegetation declines like tree 
mortality are also widely observed in this area under extreme soil 
droughts (for example, Bonal et al., 2016; Corlett, 2016) which are 
induced by El Niño- Southern Oscillation (ENSO) or elevated sur-
face temperatures of the Atlantic Ocean. However, some of these 
areas, including parts of the upper Amazon and Congolese Basins, 
also have negative vegetation growth anomalies under extreme wet 
conditions (Figure 2b), when pulse flooding may cause tree mortal-
ity (Resende et al., 2020). In northern mid-  and high- latitude regions 
such as the basins of the Yangtze River in China, the Ob, Yenisey 
and Lena Rivers in Siberia, and the Yukon and Mackenzie Rivers in 
Canada, it is also wet extremes of soil water, usually associated with 
water inundation and flooding, that had the highest coincidence rate 
with NEGs (Figure 2b). In these regions, besides flood damages, the 
reduced radiation and low temperature, along with heavy precip-
itation events, may also add to the risk of widespread plant mor-
tality and thus NEGs. Furthermore, in mountainous areas of North 
America, Europe, and northern Siberia, NEGs are mostly associated 
with cold extremes (Figure 2b).

Warming- induced increases in VPD have been suggested to play 
an increasingly important role in suppressing vegetation growth 

(Grossiord et al., 2020; Novick et al., 2016; Yuan et al., 2019). 
However, we rarely find extremely high VPD as the only factor 
accounting for NEGs (Figure 2a), which is likely related to the fact 
that high VPD extremes rarely occurred individually (Figure S4). 
Instead we do find compound CEs involving high VPD extremes, 
i.e., VPD+&WA− and VPD+&Tmp+&WA−, have high coincidences 
with NEGs (Figure 2c). Such VPD- associated compound events 
often involve a strong coupling of VPD and soil moisture, which 
can cause severe vegetation degradation (Seneviratne et al., 2010; 
Zhou et al., 2019). Geographically, these VPD- associated CEs (i.e., 
VPD+&WA− and VPD+&Tmp+&WA−) as dominant compound 
CEs are coincident with NEGs in tropical and temperate drylands 
(Figure 2d). At these locations, high VPD and soil water deficits 
together trigger major stomatal closure to minimize water loss, at 
the cost of strongly inhibited plant photosynthesis. The closure of 
stomata reduces evapotranspiration and thus evaporative cooling 
effect, leading to further local warming and a rise in VPD (Hauser 
et al., 2016; Zhang et al., 2020). This positive feedback can prompt 
additional reduction in photosynthesis. The other type of compound 
CE that has substantially high coincidence with NEGs is Tmp−&WA+, 
which mainly appears in boreal regions (>60° N) (Figure 2d).

3.2  |  The underlying mechanisms linking extreme 
reductions in vegetation growth to CEs

Both the characteristics of CEs and the sensitivities of differ-
ent ecosystems to CEs could contribute to the observed coin-
cidence between CEs and NEGs (Frank et al., 2015). Hence, we 
further explore the underlying mechanisms that link NEGs to 

F I G U R E  1  Coincidence of NDVI and RWI negative extremes with individual and compound climate extremes. (a) Total rates of 
coincidence of NDVI and RWI negative extremes with individual and compound climatic extremes. (b) Fraction of the total rate of 
coincidence for individual and compound climatic extremes. Reds donate a higher rate of coincidence for individual climatic extremes, 
while blues donate a higher coincidence rate for compound climate extremes. Map lines delineate study areas and do not necessarily depict 
accepted national boundaries. NDVI, normalized difference vegetation index; RWI, ring width index.
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2356  |    YANG et al.

their dominant CEs. Following an IPCC analysis framework for 
impacts, this mechanistic assessment focuses on the frequency 
of CEs, the exposure of vegetation to CEs (characterized by the 
intensity and duration of CEs), and the vulnerability of vegeta-
tion to CEs (see Section 2.2.3). First, for individual CEs, we find 
that the frequency of dominant individual CEs is higher than the 
occurrence of other individual CEs across most vegetated areas 
(90%; Figure 3a; Figure S4). Furthermore, we find that although 
exposure risks to CEs also contribute to the high coincidence with 
NEGs, the intensity and duration of individual CEs play regionally- 
divergent roles (Figure 3b; Figure S5). In wet tropics, NEGs that 

correspond to dominant individual CEs have both higher intensity 
and longer duration than other individual CEs (colored purple in 
Figure 3b). In the dry tropics, as well as some temperate regions 
such as Australia, South Africa, and parts of China, a longer du-
ration is more important than higher intensity for individual CEs 
being dominant (colored orange in Figure 3b). In the mountainous 
areas of North America, Europe, and northern Siberia, only the in-
tensity of the dominant individual CEs is higher than that of other 
individual CEs (colored red in Figure 3b). Second, unlike individual 
CEs, high frequency is often not a key feature determining the 
dominance of compound CEs (Figure 3c; Figure S6). However, in 

F I G U R E  2  Fractions of NDVI and RWI negative extremes coincident with each individual and compound climate extreme. (a) Fractions 
of all NDVI or RWI negative extremes during 1982– 2015 (excluding 1991 and 1992) coincident with five individual climatic extremes 
(Tmp−, Tmp+, VPD+, WA− and WA+) for all grids or sites around the globe. The filled and outlined areas are fractions of NDVI and RWI 
negative extremes, respectively. (b) Spatial pattern of dominant individual climatic extremes coincident with the most NDVI or RWI negative 
extremes. (c) Fractions of NDVI or RWI negative extremes coincident with six compound climatic extremes: Tmp−&WA−, Tmp−&WA+, 
Tmp+&WA−, Tmp+&WA+, VPD+&WA− and VPD+&Tmp+&WA−. The gray filled and outlined areas are the fractions of NDVI and RWI 
negative extremes coincident with moderate compound climatic extremes (defined by the 20th/80th percentiles). (d) Spatial pattern of 
dominant compound climatic extremes, including moderate compound extremes, coincident with the most NDVI or RWI negative extremes. 
Map lines delineate study areas and do not necessarily depict accepted national boundaries. NDVI, normalized difference vegetation index; 
RWI, ring width index.
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almost all vegetated areas, both the intensity and duration of the 
dominant compound CEs are higher than those of other compound 
CEs (Figure 3d; Figure S7).

The vulnerability of vegetation to CEs also plays an important role 
in the high coincidence between NEGs and individual CEs. Figure 4a 
illustrates that, with similarities to the impacts of frequency, the sen-
sitivity (as a metric reflecting vulnerability) of vegetation to domi-
nant individual CEs is higher than that to the other individual CEs 
over almost all the global vegetated area (91%). This is in accordance 
with the general ecological theory that unstable ecosystems likely 
have an amplified response to perturbations, such as CEs (Scheffer 
et al., 2009; Seddon et al., 2016). In all cases, we find that climato-
logical conditions and forest cover fractions determine the spatial 
distributions of sensitivity of vegetation to CEs (Figure 5). More spe-
cifically, the sensitivity of vegetation to negative extremes of soil 
water availability (WA−) increases, as expected, with decreasing soil 
moisture but also with reduced forest cover fraction. Alternatively, 
the sensitivity of vegetation to extreme atmospheric drought 
(VPD+) actually increases with forest cover fraction. Therefore, low 
tree- cover regions have high sensitivities to soil water drought, for 

example, in dry tropics and temperate arid/semi- arid regions, while 
high tree- cover regions have high sensitivity to atmospheric water 
drought (Figure 5c,d). This divergence may be due to distinct plant 
growth and water- use strategies. In regions with high forest cover-
age, plants tend to adopt a fast- growing productive strategy to out-
compete their neighbors for resources (Forrester, 2019). As a cost 
of this strategy, these plants could be more vulnerable to resource 
scarcity when high VPD forces the reduction in stomatal conduc-
tance. In dry ecosystems where tree cover is usually low, plants 
often adopt a conservative growth strategy to reduce water loss 
from stomatal conductance. For these ecosystems, severe soil water 
depletion poses a greater threat to plant growth and survival, and 
subsequently the stability of ecosystems (Hoover et al., 2014; Liu 
et al., 2020). Unlike soil and atmospheric water drought, the sensitiv-
ity of vegetation to cold extremes (Tmp−) increases with increasing 
forest cover fraction and decreasing temperature. The sensitivity to 
Tmp− is pronounced in the dense forests or shrublands at the high 
northern latitudes (Figure S8). In these regions, temperature, which 
co- varies with energy (radiation), is the primary limiting factor for 
vegetation growth.

F I G U R E  3  Comparison of frequency and exposure among different climate extremes. (a, b) Differences in frequency (a) and exposure 
(reflected by intensity and duration) (b) of the dominant individual climate extreme and other individual climatic extremes. (c, d) The same 
results as (a, b) but for compound climatic extremes. Map lines delineate study areas and do not necessarily depict accepted national 
boundaries.
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More complex environmental conditions, for example, co- 
occurrence of multiple CEs, has been observed to become frequent 
and severe under climate change (AghaKouchak et al., 2014). Yet, 
a knowledge gap exists in whether vegetation will become more 
vulnerable to two or three concurrent CEs (as investigated here). 
According to Liebig's “law of the minimum”, vegetation growth rate 
is primarily determined by the most limiting factor (Sinclair, 1994). 
Application of Liebig's law of the minimum, however, does not al-
ways consider the interactions among multiple factors that can 
have additive or antagonistic effects. That is, as we illustrate, 
compound CEs can exacerbate or alleviate the impacts of individ-
ual CEs on vegetation. Our results suggest that for most regions, 
vegetation shows a higher sensitivity to compound CEs than to 
every individual CE of the same intensity, but lower than the sum 
of sensitivities to individual CEs (colored orange in Figure 4c). On 
average, our identified compound CEs cause an additional reduc-
tion of 11% in NDVI than the averaged impact of individual CEs 
(Figure 4b,d). In particular, when three CEs occur simultaneously, 
i.e., VPD+&Tmp+&WA−, they can cause a reduction of 23% in 

NDVI on average. Soil water deficits reduce water supply to plants 
whereas high VPD (usually associated with high temperature) en-
hances atmospheric demand for water and increases plant water 
loss (Seneviratne et al., 2010). Their compound effects, therefore, 
result in greater water limitation on plant photosynthesis and 
growth compared to individual impacts. We do, however, find a 
few regions where the vegetation sensitivity to compound CEs is 
nearly equal to its sensitivity to one individual CE (colored greens 
in Figure 4c), conforming more closely to Liebig's law of the mini-
mum. For example, vegetation shows similar sensitivities to com-
pound CEs of Tmp−&WA+ and to individual CEs of Tmp−. Cold 
extremes (Tmp−) could lead to delayed growing season and sup-
press vegetation growth in temperate and boreal regions (Zohner 
et al., 2020), reducing the vegetation demands for water and nu-
trients. As a result, vegetation might be less sensitive to the lack 
of resources imposed by other stresses. Although we use the sen-
sitivity of decline in NDVI to simultaneous CEs to assess the vul-
nerability of vegetation, other metrics such as vegetation recovery 
time and rate after different types of CEs are likely also important 

F I G U R E  4  Comparison for the vulnerability of vegetation to different CEs. (a) Differences of the vulnerability of vegetation to dominant 
individual CE and that to other individual CEs. (b) Comparison of the dominant individual CE and the dominant compound CE. Only regions 
where the dominant compound CE is a combination of the dominant individual CE and another CE are shown. (c) Comparison of sensitivities 
of NDVI to dominant compound CE and every individual CE. There are five relationships: A, B1, B2, B3 and C. Relationship A (colored blue) 
represents less sensitivity to compound CE than to all individual CEs; Relationship B (B1– B3, colored greens) represents higher sensitivity 
to compound CE than at least one individual CE; Relationship C (colored red) represents sensitivity to compound CE greater than the 
sum of sensitivity to all individual CEs. (d) Difference in sensitivities of NDVI to dominant compound CE and dominant individual CE. Map 
lines delineate study areas and do not necessarily depict accepted national boundaries. CE, climate extreme; NDVI, normalized difference 
vegetation index.
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F I G U R E  5  The sensitivity of NDVI and RWI to five individual climate extremes. (a) Tmp−, (b) Tmp+, (c) VPD+, (d) WA− and (e) WA+. The 
right- hand panels show the sensitivity of NDVI and RWI to individual climate extreme across climate and vegetation regimes. Map lines 
delineate study areas and do not necessarily depict accepted national boundaries. NDVI, normalized difference vegetation index; RWI, ring 
width index.
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for overall vulnerability assessment and need to be investigated in 
future studies.

4  |  SUMMARY AND IMPLIC ATIONS

An improved understanding of the CEs responsible for major sup-
pression of vegetation growth is important. Such knowledge pro-
vides more reliable projections of risks to vegetation, and can inform 
adaptation strategies, under on- going climate change. We identify 
widespread instances of negative extremes in vegetation growth 
(NEGs) over the last three decades. Further, we link these negative 
vegetation growth responses to different individual and compound 
CEs. Specifically, droughts and drought- related compound extremes 
(with high VPD and/or heatwave) are primarily responsible for most 
NEGs observed in the wet tropics, arid and semi- arid regions. NEGs 
in mountainous regions of North America, Europe, and northern 
Siberia are often associated with cold extremes, hydrological wet 
extremes, or their compound occurrence. Furthermore, in most re-
gions, compound CEs could generally lead to more negative impacts 
than individual extremes on vegetation growth. Thus, improving our 
understanding of, and capacity to predict, compound CEs and their 
impacts on ecosystems remains a research priority.

Compelling evidence suggests that the simultaneous occur-
rence of different types of CEs, i.e., the risk of compound CEs, is 
also likely to increase in both frequency and intensity under future 
climate change (Fischer et al., 2021; IPCC, 2021). For example, con-
current extremes of soil droughts and heatwaves, or of soil droughts 
and atmospheric droughts, are projected to become more fre-
quent and intense because of land- atmosphere feedbacks (Hauser 
et al., 2016; Sarhadi et al., 2018). More frequent, intense, and longer 
CEs, assuming no substantial changes in vegetation sensitivity, are 
likely to induce more substantial reductions in vegetation growth. 
Furthermore, seasonal and sub- seasonal CEs such as flash droughts 
(Otkin et al., 2019; Pendergrass et al., 2020) and heatwaves (Lin 
et al., 2022) could also have large impacts on vegetation growth 
due to their more rapid development and potential raised severity. 
Extending future analyses to these finer time scales may help gain 
additional insight into detecting and attributing NEGs. Moreover, 
enhanced vegetation sensitivities over almost all the global vege-
tated areas may amplify these reductions further, leading to more 
widespread vegetation losses. The future risk of NEGs, however, 
could be partly offset by the physiological effects of elevated at-
mospheric CO2 and by vegetation acclimation and species turnover 
(Keenan et al., 2013; Peters et al., 2018). Therefore, further research 
is required to determine the effects of any evolving ecosystem re-
sistance and resilience as atmospheric greenhouse gases rise. This 
overall area of research into combined CEs and vegetation response 
is essential for guiding effective policy and mitigative strategies.
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