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Abstract 44 

Global greening characterized by an increase in leaf area index (LAI) implies an increase in 45 

foliar carbon (C). Whether this increase in foliar C can be due to higher photosynthesis or higher 46 

allocation of C to leaves remains unknown under climate change. Here, we explored the 47 

divergent trends in foliar C accumulation and allocation during leaf green-up from 2000 to 2017 48 

using satellite-derived LAI and solar-induced chlorophyll fluorescence (SIF). The 49 

accumulation of foliar C accelerated in early green-up period due to both increased 50 

photosynthesis and higher foliar C allocation driven by climate change. In the late stage, 51 

however, we detected negative decreased of foliar C accumulation and foliar C allocation. Such 52 

stage-variable trends in the accumulation and allocation of foliar C are not represented in 53 

current terrestrial biosphere models. Our results highlight that better representation of C 54 

allocation should be incorporated into models. 55 

 56 
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INTRODUCTION 57 

Plant photosynthesis and respiration are two important fluxes affecting the terrestrial ecosystem 58 

carbon (C) cycle, and carbon allocation can affect these two processes by distribution 59 

assimilated C among plant parts (Lambers 1998; Chapin et al. 2002; Brüggemann et al. 2011). 60 

Many studies have investigated the assimilation of C and processes of respiration (Janssens et 61 

al. 2001; Keenan et al. 2013; Wehr et al. 2016; Bond-Lamberty et al. 2018), but much less effort 62 

has been devoted to the investigation of C allocation, i.e. the investment of photosynthetic 63 

products in different plant organs and functions (Brüggemann et al. 2011; Hartmann et al. 2020). 64 

Plants are often subjected to different resource limitations and stress factors and have different 65 

inherited life-history strategies, and hence the portfolios of C investment can change with shifts 66 

of dominant factors of resource limitations or stresses (Iwasa & Roughgarden 1984; Reich et 67 

al. 2014; Chen et al. 2020). For example, more C could be allocated to nonphotosynthetic parts 68 

such as stems for harvesting light or to roots for absorbing belowground resources, depending 69 

on the main type of resource limitation (Litton et al. 2007; Poorter et al. 2012; Guillemot et al. 70 

2017). 71 

The modifications of C allocation with environmental changes are important for both plant 72 

autoecological growth and ecosystem C cycles (Friedlingstein et al. 1999; Vicca et al. 2012; 73 

Konôpka et al. 2020). Most studies on plant C allocation, however, have been conducted at the 74 

autoecological level, with few at ecosystem or regional scales. Factors of global change, 75 

particularly the increase in CO2 concentration, extreme droughts and increasing nitrogen (N) 76 

deposition, may profoundly alter stress factors and the broad-scale availability of plant 77 

resources (Finzi et al. 2007; Sardans et al. 2008; Kicklighter et al. 2019). Therefore, a better 78 

understanding of large-scale variations in the strategies of plant C allocation in response to 79 
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global change is essential for predicting vegetation dynamics and C cycles. 80 

Recent advances in remote-sensing technology and data collection provide a potentially 81 

practical approach to investigate variations in the allocation of C between photosynthetic 82 

(leaves) and nonphotosynthetic (e.g. roots and stems) organs, both between years and within a 83 

growing season. In particular, seasonal plants grow leaves during the early part of growing 84 

season, but allocate more C to nonphotosynthetic organs at the peak of the season (Chapin 1991; 85 

Pantin et al. 2012; Tilman 2020). The exact allocation ratio between leaves and 86 

nonphotosynthetic organs during different stages of a growing season is difficult to obtain at 87 

broad scales, but remote sensing-based changes in the leaf area index (LAI) across these stages 88 

can be indicative of the amount of C allocated to leaves. Global greening identified using LAI 89 

has been widely observed under anthropogenic climate change (Zhu et al. 2016; Chen et al. 90 

2019; Piao et al. 2020), but it remains unknown how different stages of a growing season 91 

contribute to this greening trend and how the allocation of C across different stages is regulated 92 

by climate change. Exploring these questions is important for increasing our understanding on 93 

the strategies used by plants to adapt to climate change and for improving the modeling of 94 

vegetation dynamics. 95 

Here, we innovatively used the increases in LAI (ΔLAI) as a proxy for the allocation of C 96 

to leaves. We explored the interannual trends in ΔLAI in each month during the entire leaf 97 

green-up period in the Northern Hemisphere for 2000-2017, and further investigated how the 98 

trends were directly and indirectly regulated by environmental factors (e.g. temperature, soil-99 

moisture content (SM) and solar radiation). Finally, we tested whether terrestrial biosphere 100 

models (TBMs) could identify the strategy used by plants to adapt to climate change by 101 
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adjusting C allocation at different stages of leaf green-up period. Our work found that the 102 

accumulation of foliar C accelerated in early green-up period and decreased in the late stage, 103 

but the TBMs did not capture the decreased trend due to inaccurate representation of C 104 

allocation strategy. 105 

 106 

MATERIAL AND METHODS 107 

Phenological metrics 108 

We defined the period of leaf green-up period as the time between the start of the growing 109 

season (SOS) and the peak of the growing season (POS). SOS, defined as the date when the 2-110 

band Enhanced Vegetation Index (EVI2) value first exceeded 15% (Gray et al. 2019), which is 111 

the phenological product of MCD12Q2 V6 calculated using data from the Moderate-resolution 112 

Imaging Spectroradiometer (MODIS) (downloaded from 113 

https://lpdaac.usgs.gov/products/mcd12q2v006/), available at 500-m spatial resolutions for 114 

2001-2018. POS was defined as the date when annual LAI derived from the MOD15A2H v006 115 

product was highest (details about the product are described below). The multi-year average 116 

dates of these two phenological metrics were converted from day of year into month of year, 117 

and then the duration of the ecosystem green-up period was calculated as the difference between 118 

POS and SOS. 119 

 120 

Satellite-observed LAI 121 

We used the LAI product of MOD15A2H v006 122 

(https://lpdaac.usgs.gov/products/mod15a2hv006/) (Myneni et al. 2015). This product is 123 
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available at 500-m spatial and 8-d temporal resolutions for 2000-2017 (Yan et al. 2016). 124 

Monthly LAI was used to perform further analysis: on the one hand, it may reduce extreme 125 

values caused by clouds or aerosols (Verger et al. 2011) compared with multi daily LAI; on the 126 

other hand, it could compare with the modeled results with monthly temporal resolution. We 127 

first assigned each 8-d LAI data set to the month with the longest temporal overlap to obtain an 128 

accurate monthly LAI. For example, the LAI data set for 2 February was assigned to January 129 

due to only two out of eight days in February. We then extracted the monthly maximum as a 130 

proxy of monthly LAI, the monthly mean value was also used. Some types of vegetation lacking 131 

strong seasonal dynamics (e.g. evergreen forests and barren soils) were excluded based on the 132 

land-cover classification of MCD12C1 v006 (https://lpdaac.usgs.gov/products/mcd12c1v006/) 133 

(Friedl et al. 2010). We also excluded regions where annual maximum LAI occurred outside 134 

the March to October window. Another LAI product, CGLS (or the European Geoland2 Version 135 

2 (GEOV2)); data input source: SPOT/VGT & PROBA-V 136 

(https://land.copernicus.eu/global/products/lai), was used to further verify the robustness of the 137 

results based on MODIS LAI. The spatial and temporal resolutions of LAI product of CGLS 138 

(or GEOV2) were 1-km and 10-d, respectively, available from 1999 to the present. We rescaled 139 

the two LAI products to a resolution of 0.5° to match the meteorological data sets. 140 

 141 

Model-simulated LAI 142 

The project “Trends and drivers of the regional scale sources and sinks of carbon dioxide” 143 

(TRENDY) V7 is a dynamic global vegetation model project that simulates a factorial set of 144 

the Dynamic Global Vegetation Model (DGVM) simulations 145 
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(http://dgvm.ceh.ac.uk/index.html), which was used to test how well state-of-the-art TBMs 146 

could reproduce satellite-observed changes in monthly foliar C accumulation and 147 

corresponding dominant drivers. We chose monthly composites of LAI of the third simulation 148 

(S3), including CO2, climate and land use from 2000 to 2017. We used five models with spatial 149 

resolution of 0.5° (the same as that of the observed meteorological data sets and resampled LAI 150 

data): the Dynamic Land Ecosystem Model (DLEM), Lund-Postam-Jena General Ecosystem 151 

Simulator (LPJ-GUESS), Land surface Processes and eXchanges (LPX), Vegetation Integrative 152 

SImulator for Trace gases (VISIT) and the Vegetation Integrative Simulator for Trace gases 153 

(ISAM). The corresponding driving factors of these models are climatic forcing (the Climatic 154 

Research Unit (CRU) and the CRU Japanese 55-year Reanalysis (CRU-JRA55)), rising levels 155 

of atmospheric CO2 from both ice core and atmospheric observations and land-use change 156 

(LUH2 data sets). 157 

 158 

Meteorological data sets 159 

The mean 2-m surface temperatures were acquired from CRU.TS4.04 at a spatial resolution of 160 

0.5° and a monthly temporal resolution, which were interpolated from ground meteorological 161 

stations (https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.04/cruts.2004151855.v4.04/) (Harris 162 

et al. 2020). The soil-moisture (SM) at a depth of 2-5 cm was acquired from the C3S dataset 163 

provided by European Centre for Medium-Range Weather Forecasts (ECMWF) v201812.0.0 at 164 

a spatial resolution of 0.25° and a monthly temporal resolution 165 

(https://cds.climate.copernicus.eu/cdsapp#!/dataset/satellite-soil-moisture?tab=overview). 166 

Data for solar radiation were acquired from CRU-JRA v2.0, which is a combination of CRU 167 
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and a Japanese reanalyzed data set (JRA) 168 

(https://catalogue.ceda.ac.uk/uuid/7f785c0e80aa4df2b39d068ce7351bbb), at a spatial 169 

resolution of 0.5° and 6-hourly temporal resolution (Harris et al. 2014; Kobayashi et al. 2015). 170 

The SM data set was resampled to a spatial resolution of 0.5°. 171 

 172 

Photosynthesis indicators 173 

We used the synchronously simulated gross primary productivity (GPP) dataset from the five 174 

models described above to represent the photosynthetic activity. Solar-induced chlorophyll 175 

fluorescence (SIF), a probe of photosynthesis (Baker 2008), was used as a proxy for GPP in the 176 

satellite-observed data analysis due to the lack of long-term observational GPP data at large 177 

scale. The data set for contiguous SIF (CSIF) dataset was trained by a neural networks method 178 

using SIF from Orbiting Carbon Observatory-2 (OCO-2) and MCD43C1 v6 reflectance as input 179 

variables (Zhang et al. 2018), which has a 4-d temporal and a 0.05o spatial resolutions, available 180 

from 2000 to 2020 (https://doi.org/10.17605/OSF.IO/8XQY6). Therefore, it makes up for the 181 

coarse spatiotemporal resolution and high uncertainty in the current SIF data set (Zhang et al. 182 

2018). 183 

 184 

Data analysis 185 

We used the increase in LAI (ΔLAI) in each month and throughout green-up period to indicate 186 

the net allocation of C to leaves because the respired C was not considered here (hereafter leaf 187 

C). ΔLAI during green-up period was defined as annual maximum LAI minus LAI in the month 188 

before SOS, and monthly ΔLAI was calculated as (Fig. S1a): 189 

https://doi.org/10.17605/OSF.IO/8XQY6
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ΔLAI = LAIt - LAIt-1    Eq. 1 190 

Because foliar growth is irreversible during the green-up period (Pantin et al. 2012) and there 191 

were few pixels with ΔLAIs <0 (only 0.07~2.4%, Fig. S2), So these pixels were discarded from 192 

our analysis. 193 

Linear regression was used to identify the interannual trends in ΔLAI throughout the entire 194 

study period (Fig. S1b, Eqn2): 195 

(ΔLAI)i =ai *(Time) + bi    Eq. 2 196 

where time is the number of years from 2000 to 2017 for pixel i, ai is the temporal trend in 197 

ΔLAI for pixel i, bi is the intercept for pixel i. For the pixels with positive trends in green-up 198 

period ΔLAI, we further defined the month contributing the most to the increase in ΔLAI (the 199 

month with largest positive trends in monthly ΔLAI) during the green-up period as the dominant 200 

month (TDM). The time between SOS and TDM is shown in Fig. 1g. We further examined the 201 

temporal autocorrelation of ΔLAI, we found that there was no evident temporal autocorrelation 202 

of ΔLAI for different months (Fig. S3). 203 

The amount of C allocated to leaves (Cleaf) depends on the total amount of assimilated 204 

photosynthetic C assimilation (Ctotal) and the proportion of Ctotal that is allocated to leaves (Pleaf): 205 

Cleaf = Ctotal × Pleaf    Eq. 3 206 

To disentangle the relative importance of these two drivers. We built two different statistical 207 

models by the partial correlation analysis. The partial correlation analysis is a method that can 208 

access the net correlation coefficient between two variables by setting other synergistic 209 

variables as the controlling variables. The first model is driven by climate factors including 210 

temperature, SM and solar radiation. It consisted of the integrated effects of both Ctotal and Pleaf 211 
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on Cleaf. Note that the lagged effects of the climate factors were also considered by means of 212 

the preseason period. The preseason, defined as the period which most strongly affects 213 

phenological events (Menzel et al. 2006), was determined as the period preceding an event that 214 

exhibited the largest absolute value of partial correlation coefficient between ΔLAI and a 215 

climate factor, after controlling for the other climatic factors. 216 

The second model is driven by including photosynthesis as the mediator between climate 217 

factors and Cleaf. The indicator of photosynthesis is substituted as SIF for observational data 218 

and modeled GPP for modeled data. The photosynthesis in the partial correlation analysis 219 

indicated the effect of Ctotal on Cleaf, and the remaining effects represented the effect of Pleaf 220 

which is affected by climate factors on Cleaf based on the Eq. 3. The difference between the 221 

partial correlation analyses with and without the indicator of photosynthesis then represented 222 

the climate effect on Cleaf by affecting Ctotal. The same analysis was conducted for the modeled 223 

data. The effect of atmospheric VPD (CRU) (Harris et al. 2020) was also examined in the partial 224 

correlation analysis. 225 

 226 

RESULTS 227 

Changes in leaf C accumulation during the green-up period and their climate drivers 228 

The green-up period ΔLAI (annual maximum LAI minus LAI in the month before the start of 229 

the growing season (SOS)) showed positive trends in most areas (71% of pixels) from 2000 to 230 

2017 (Fig. 1a). Monthly ΔLAI (LAI in the current month minus LAI in the previous month), 231 

which is indicative of the inter-month rate of foliar C accumulation, however, had divergent 232 

trends across different months (Fig. 1b-e). For example, the trends in ΔLAI in Europe were 233 
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widely positive in April (Fig. 1b) but negative in May (Fig. 1c). ΔLAI had widespread uptrends 234 

in North America in May (Fig. 1c) and June (Fig. 1d), but widespread uptrends in Siberia only 235 

in June (Fig. 1d). This spatiotemporal heterogeneity of ΔLAI trends is associated with 236 

vegetation phenology: earlier phenology coincided with the earlier occurrence of positive ΔLAI 237 

trends, and vice versa. Indeed, if we defined the month contributing the most to the uptrend in 238 

ΔLAI in green-up period as the dominant month (TDM) (Fig. 1f), the duration from SOS to 239 

TDM was no more than one month in most areas (Fig. 1g). Surprisingly, 78% of all pixels in 240 

July showed negative trends in ΔLAI during 2000-2017 (Fig. 1e), despite the widespread 241 

increase in July LAI over the same period (Fig. S4d). We also tested the robustness of the above 242 

results obtained with the Moderate-resolution Imaging Spectroradiometer (MODIS) LAI 243 

product (MOD15A2H v006) using the monthly mean value as a proxy of monthly LAI (Fig. 244 

S5) and the Copernicus Global Land Service (CGLS) LAI product (data input source: the 245 

‘Satellite Pour l'Observation de la Terre’ (SPOT) VEGETATION (SPOT/VGT) & the Project 246 

for On-Board Autonomy–Vegetation (PROBA-V)), which consistently indicated that foliar C 247 

accumulation generally had positive trends in the early stage of green-up but negative trends in 248 

late stages (Fig. S6).  249 

We further performed partial correlation analyses between ΔLAI and climatic factors 250 

(temperature, SM and radiation) to understand how changes in climatic variables may 251 

contribute to the observed trends in foliar C accumulation during each month of the green-up 252 

period (Fig. 2a-h). Since the climate of the preceding months (preseason) can also influence 253 

phenological dates and affect the rate of foliar C accumulation, we also included potential 254 

lagged effects of the climatic variables on ΔLAI in the analyses (Fig. S7). The results suggested 255 
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that temperature was the dominant climatic driver for ΔLAI in the early green-up stage (Fig. 2). 256 

For example, temperature in regions with the earliest onset of spring phenology (such as Europe 257 

and central and eastern North America, Fig. S8) was often the dominant climatic factor 258 

positively associated with ΔLAI in April, the month of spring onset, after controlling for SM 259 

and solar radiation (Figs. 2a, S9a). This dominant and positive effect of temperature on ΔLAI 260 

extended to higher latitudes in May, including Canada and Siberia (Figs. 2b, S9b), but was not 261 

observed in the northernmost regions until June (Figs. 2c, S9c). SM played a key role in 262 

regulating ΔLAI in May for regions with continental climate such as inland Eurasia and North 263 

America (Figs. 2b, S9f), especially where the dominant type of vegetation is temperate and 264 

semi-arid grassland (Fig. S10). For these regions, both SM and temperature jointly regulated 265 

foliar C accumulation in June, but with opposite effects on ΔLAI (Figs. 2, S9). Across the whole 266 

study area, SM positively affected ΔLAI in 56% of the pixels (Fig. S9g), and temperature was 267 

generally negatively correlated with ΔLAI (Fig. S9c). These contrasting effects of SM and 268 

temperature on ΔLAI were even more widespread in July, when ΔLAI and SM were positively 269 

correlated in 65% of the pixels (Fig. S9h) and ΔLAI and temperature were negatively correlated 270 

in 66% of the pixels (Fig. S9d).  271 

 272 

Climate effects on leaf C assimilation and allocation 273 

Interestingly, SIF was more strongly correlated with ΔLAI than the climatic variables in the 274 

early green-up stage (Fig. 2). Temperature had a weakened, but still positive, effect on ΔLAI 275 

after controlling for SIF (Figs. S11-13). In the late stage of the green-up period (May at low 276 

latitudes and June and July at higher latitudes), the correlation between ΔLAI and SIF was 277 
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generally weaker and even nonsignificant in most areas (Figs. 2, S11). The correlation between 278 

ΔLAI and temperature in this late green-up stage did not change when SIF was or was not 279 

controlled for (Figs. S11-13). 280 

 281 

Assessing the performance of TBMs in C allocation simulations 282 

The partial correlation analysis between ΔLAI and climatic factors (temperature, SM and 283 

radiation) with a potential lagged effect (Fig. S14) indicated that the models could generally 284 

reproduce the apparent response of foliar C accumulation to climate change (Figs. 3e-l, S15). 285 

Nonetheless, the partial correlations between modeled ΔLAI and temperature in the late green-286 

up stage were more negative than the satellite-based results (comparing Figs. S15 and S9), 287 

suggesting a potentially overestimated apparent sensitivity of ΔLAI to temperature by the 288 

models. These models also underestimated the apparent influence of SM on foliar C 289 

accumulation (Fig. S15), especially in temperate and semi-arid grasslands, where satellite data 290 

indicated strong correlations between ΔLAI and SM (Fig. S9).  291 

We also assessed whether the models could reproduce the climatic regulation of Ctotal and 292 

Pleaf by including modeled gross primary productivity (GPP) as an independent variable in the 293 

partial correlation analyses (Figs. 3m-t, S16). The results suggested that the models generally 294 

replicated the weak effects of solar radiation on foliar C accumulation by Pleaf (Fig. S17) but 295 

did not adequately simulate the changes in strategy of foliar allocation (i.e. Pleaf) due to 296 

variations in temperature and SM (Figs. 3m-t, S16). 297 

 298 

DISCUSSIONS 299 
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Our study provides the first understanding on vegetation foliar C accumulation and allocation 300 

in large scale. We found that foliar C accumulation is increasing during the early stage of green-301 

up but decreasing in the late green-up stage on the northern ecosystem over the past 18 years 302 

from 2000 to 2017. Climate change can affect foliar C accumulation (Cleaf) by impacting on 303 

Ctotal (Wehr et al. 2016; Gampe et al. 2021) and/or Pleaf (Iwasa & Roughgarden, 1984; Reich et 304 

al., 2014; Chen et al., 2020) (Fig. 4). In early stage, we found that an increase in photosynthesis 305 

over the past 18 years was the primary factor contributing to the increase in foliar C 306 

accumulation, but temperature could still contribute to the increase in Cleaf even after accounting 307 

for its direct impact on Ctotal, likely by affecting Pleaf. This preference of plants to allocate more 308 

C to leaves in the early green-up stage under warming is likely because vegetation productivity 309 

is more limited by the foliar surface than by the access of roots to soil water and nutrients 310 

(Chapin et al. 2002; Chen et al. 2020).  311 

In the late stage, the increase in foliar photosynthesis did not necessarily increase the 312 

accumulation of foliar C. As the canopies close in this stage, vegetation productivity is more 313 

constrained by the availability of water and nutrients than by the number of leaves for 314 

photosynthesis, resulting in more C invested in nonphotosynthetic plant organs for acquiring 315 

resources (Chapin et al. 2002; Chen et al. 2020). An increase in temperature during this late 316 

green-up stage generally increases plant autotrophic respiration (Chapin et al. 2002) more than 317 

it does to the increase in photosynthesis because of the reduced optimal temperature of 318 

photosynthesis by stomatal closure (Drake et al. 2016). Continuing the allocation of more C to 319 

leaves under temperature increases in this late green-up stage is therefore not economical 320 

(Bloom et al. 1985; McCarthy & Enquist 2007). Warming can also increase atmospheric vapor-321 
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pressure deficits (VPDs) and induce water stress (Yuan et al. 2019), which can become 322 

increasingly important in limiting vegetation productivity from the early to late green-up stages 323 

and thus diverting more C investment to organs for acquiring and transporting water (Guillemot 324 

et al. 2017; Hartmann et al. 2020). This indirect effect of temperature by increasing VPD was 325 

particularly possible in Europe (Fig. S18b) and North America (Fig. S18d), where the 326 

significantly negative correlation between ΔLAI and temperature was weakened and even 327 

disappeared when VPD was further controlled for. 328 

Regarding the impacts of SM and solar radiation on foliar C accumulation during green-329 

up period, solar radiation noticeably affected Cleaf in May (Fig. S9) by increasing photosynthetic 330 

Ctotal (Figs. S9, S11). In contrast, SM could potentially affect Cleaf by affecting both Ctotal and 331 

Pleaf (Figs. S9, S11), which is worth further studies. Increasing the availability of soil water can 332 

increase Ctotal (Reich et al. 2018; Liu et al. 2020), but little is known about how variations in 333 

SM may also lead to trade-offs in C allocation between leaves and other organs (Bloom et al. 334 

1985; Tilman 2020). Several mechanisms may have contributed to the observed impact of SM 335 

on Pleaf (Fig. 4). First, high SM can relieve plant water stress and reduce the need for C 336 

investment for acquiring and transporting water (Litton et al. 2007; Poorter et al. 2012; 337 

Guillemot et al. 2017), which can shift more C to leaves and hence increase Pleaf. Second, an 338 

increase in SM can increase the activities of soil microbes and accelerate the mineralization of 339 

soil N and phosphorus (Keuper et al. 2012; Finger et al. 2016), which can also reduce the need 340 

of allocating more C to root systems (Litton et al. 2007; Poorter et al. 2012; Guillemot et al. 341 

2017). Meanwhile, increasing N availability could stimulate plants to allocate more C to leaves 342 

for assimilating more C to maintain the C: N stoichiometric ratio. Third, when SM is low, a 343 
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decrease in Pleaf saves water and reduces respiratory C loss (Metcalfe et al. 2010). Fourth, root 344 

exudation can also compete with leaves for C under drought, because thirsty tree roots exude 345 

more C (Heinemeyer et al. 2012; Preece et al. 2018). 346 

Correct schemes for C allocation simulations are essential for the accurate prediction of 347 

vegetation dynamics and ecosystem C cycles by process-based TBMs. However, TBMs could 348 

well capture the early stage of foliar C allocation but overestimate it in the late stage of green-349 

up. Parallel analysis like observations, the overestimation of foliar C allocation during the late 350 

stage of green-up was caused by the neglect of the SM effect on foliar C accumulation. The 351 

actual process was that the models generally replicated the weak effects of solar radiation on 352 

foliar C accumulation by Pleaf (Fig. S17) but did not adequately simulate the changes in strategy 353 

of foliar allocation (i.e. Pleaf) due to variations in temperature and SM (Figs. 3m-t, S16), which 354 

were likely the cause of the biases in the modeled apparent sensitivities of foliar C accumulation 355 

to these climatic variables, for three reasons. 356 

First, the models overestimated the link between photosynthesis and C allocation to leaves 357 

in the late stage of green-up (Figs. 3, S16), which may explain why the models could not 358 

reproduce the widespread downward trends in ΔLAI during July (Fig. 3d, 38% pixels for the 359 

models versus 78% pixels for the satellite-based results exhibiting negative trends in ΔLAI, Fig. 360 

1e). The satellite-based findings indicated that the increase in foliar photosynthesis did not 361 

necessarily increase foliar C accumulation in the late stage of green-up. Four of the five models 362 

(all except LPX, Fig. S19), however, generated strong positive correlations between GPP and 363 

ΔLAI in this stage, which could lead to false positive feedbacks that in turn lead to the 364 

overestimation of vegetation productivity. Second, three of the models (LPJ-GUESS, LPX and 365 
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VISIT, Fig. S20) replicated the negative effect of temperature on foliar C accumulation by 366 

influencing Pleaf in the late stage of green-up but overestimated the strength of this negative 367 

effect. The other two models either produced a positive effect of temperature on Pleaf (and 368 

consequently on foliar C accumulation) in the late stage of green-up or a weak correlation 369 

between ΔLAI and temperature throughout green-up period, both in contrast to the satellite-370 

derived results. These models may have skewed the trade-offs of C allocation between organs 371 

under changing temperature. Third, surprisingly, none of the five models reproduced the 372 

positive effect of SM on Pleaf and ΔLAI (Fig. S21), which may be another reason for the 373 

mismatch between the models and satellite observations in the ΔLAI trend in the late stage of 374 

green-up period. Optimizing the response of C allocation in TBMs to different drought stresses 375 

would likely improve their performance. 376 

There are also uncertainties related to representation of leaf C and LAI product. The proxy 377 

of leaf C by LAI may cause an uncertainty in evaluating its variation, for specific leaf area (the 378 

ratio of fresh leaf area to dry leaf biomass) is not constant. SLA changes with environments, 379 

then may lead to a non-linear relationship of LAI-leaf C. However, no long-term dataset of SLA 380 

in current observations or databases (such as TRY database) allows us to explore its variation 381 

over time. An experimental study showed a slight response of SLA over time due to the opposite 382 

effect of temperature and CO2 (Tjoelker et al., 1999). Future progresses in observing networks 383 

of plant traits may contribute to solving this uncertainty. In addition, our analyses were 384 

conducted at a spatial resolution of 0.5° × 0.5°, which is fairly coarse and may lead to some 385 

uncertainties. First, it is difficult for us to distinguish whether the changes in LAI are attributed 386 

climate change or vegetation type shift for a mixed pixel, especially in the ecological transition 387 
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zones. Second, the driving mechanisms at local-scale can be masked by broad-scale patterns 388 

based on ecological scaling theory (Levin et al., 1992; Bradford et al., 2017). Accordingly, our 389 

findings call to test the mechanisms controlling leaf C allocation with full scope from 390 

population to community and from regional to global scales in future studies. 391 

   In summary, we provide the first account of how foliar C accumulation and allocation may 392 

have changed during different stages of the green-up period from 2000 to 2017 at the landscape 393 

level using data sets of satellite-derived LAI and SIF. Our results highlighted an accelerating 394 

accumulation of foliar C during the early stage of green-up due to the increases in both total 395 

photosynthesis and the proportion of photosynthetic C allocated to leaves under recent climate 396 

change. In contrast, foliar C accumulation during the late green-up stage showed a decreasing 397 

trend. The divergent trends of foliar C accumulation in the early versus late stages of green-up 398 

are consistent with the optimal partitioning theory, which has been verified at the level of 399 

individual plants, but never at the broader landscape level before. This landscape-level 400 

optimized C allocation scheme between photosynthetic and nonphotosynthetic plant organs in 401 

response to climate changes has important implications for the global change modeling 402 

community. TBMs are currently inadequate for modeling the response of C allocations to 403 

climatic variations at different stages of vegetation growth, in particular the overestimation of 404 

foliar C allocation during the late stage of green-up and the neglect of the SM effect on foliar 405 

C accumulation. This lack of capacity in C allocation simulations may be one of the sources for 406 

the large uncertainties in modeling C cycle responses to climate change.  407 

Reducing model uncertainties requires better parameterization and description of the C 408 

allocation scheme and its dynamics with vegetation seasonal cycles and climate change. Clearly, 409 
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integrated studies combining data from manipulative field experiments and long-term 410 

observations of plant C allocation are valuable for model development and verifications. On 411 

the other hand, however, ecological theories of optimal resource acquisition provide critical 412 

guidelines in developing and refining climate change adapted allocation schemes used in TBMs, 413 

which can also be extended to other components (such as roots) where empirical experimental 414 

and observational data are even more difficult to obtain over broader scales. Furthermore, while 415 

direct evidence from in-situ long-term biomass observations is lacking, our findings will inspire 416 

new research, especially that using networks of coordinated ground monitoring (e.g. the NEON 417 

system), to further test the hypothesis and improve our understanding of carbon allocation under 418 

climate change. 419 
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Figure legends 565 

FIGURE 1 Trends in ΔLAI throughout leaf green-up period (GUP) and for each month of the 566 

GUP for 2000-2017. a, Trends in ΔLAI throughout GUP (ΔLAI is defined as the difference 567 

between the annual maximum LAI and LAI in the month before the start of the growing season). 568 

They are parameters of a1 in Eq. 2, same as subplots of b-d. Trends in ΔLAI for (b) April 569 

(monthly ΔLAI is defined as the difference between LAI in the focused month and LAI in the 570 

preceding month), (c) May, (d) June and (e) July. Panels a-e share the same color bar shown 571 

below e. The black dots in a-e indicate significant trends at P<0.05. The histograms in a-e are 572 

frequency distributions of the trend in ΔLAI, the sequences of four bars represent the 573 

percentages of pixels with non-significantly negative trends, significantly negative trends, non-574 

significantly positive trends, and significantly positive trends, respectively. f, The dominant 575 

month (TDM) contributing the most to the positive ΔLAI trend in a. g, Durations between SOS 576 

and TDM (DurationSOS-TDM). Only pixels with positive trends in a are shown in f and g. The pie 577 

charts in f and g indicate the proportions of each group.  578 

 579 

FIGURE 2 Factors dominating the ΔLAI trends for each month during leaf green-up period. 580 

The dominant factor is defined as the variable with the highest partial correlation coefficient 581 

after controlling for the other variables. Only climatic variables (soil-moisture content (SM), 582 

temperature (Tem) and solar radiation (Rad)) are considered in a-h, and the three climatic 583 

variables and solar-induced chlorophyll fluorescence (SIF) in the focused month are considered 584 

in i-p. Dominant factors positively correlated with ΔLAI are shown in a-d (climate only) and i-585 

h (climate and SIF), while those negatively correlated with ΔLAI are shown in e-h (climate 586 

only) and m-p (climate and SIF) from April to July. Four intervals of |R| in [0 0.43], (0.43 0.50], 587 
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(0.50 0.62] and (0.62 1] for a-h and in [0 0.44], (0.44 0.51], (0.51 0.64] and (0.64 1] for i-p 588 

correspond to P values in [0 0.01], (0.01 0.05], (0.05 0.1] and (0.1 1], respectively. The 589 

preseason length corresponding to the climatic data used for analysis is shown in Fig. S3.  590 

 591 

FIGURE 3 Trends in modeled ΔLAI and their dominant driving factors for each month during 592 

leaf green-up period. Trends in modeled ΔLAI in (a) April (monthly ΔLAI is defined as the 593 

difference between LAI in a month and that in the preceding month), (b) May, (c) June and (d) 594 

July for 2000-2007. Panels a-d share the same color bar shown below d. The black dots in a-d 595 

indicate significant trends at P<0.05. The histograms in a-d are frequency distributions of the 596 

trend in ΔLAI. e-t, Factors dominating the modeled ΔLAI trends for each month during leaf 597 

green-up period. The dominant factor is defined as the variable with the highest partial 598 

correlation coefficient after controlling for the other variables. Only climatic variables (soil-599 

moisture content (SM), temperature (Tem) and solar radiation (Rad)) are considered in e-l, and 600 

the three climatic variables and gross primary productivity (GPP) for the focused month are 601 

considered in m-t. Dominant factors positively correlated with ΔLAI are shown in e-h (climate 602 

only) and m-p (climate and GPP), and dominant factors negatively correlated with ΔLAI are 603 

shown in i-l (climate only) and q-t (climate and GPP). Four intervals of |R| in [0 0.43], (0.43 604 

0.50], (0.50 0.62] and (0.62 1] for a-h and in [0 0.44], (0.44 0.51], (0.51 0.64] and (0.64 1] for 605 

i-p correspond to P values in [0 0.01], (0.01 0.05], (0.05 0.1] and (0.1 1], respectively. The 606 

preseason length corresponding to the climatic data used for analysis is shown in Fig. S9. 607 

 608 

FIGURE 4 Schematic of the climatic regulation of foliar C accumulation. The allocation of C 609 

to leaves (Cleaf) is determined by both the total amount of assimilated photosynthetic C (Ctotal) 610 
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and the proportion of C allocated to leaves (Pleaf), i.e. Cleaf = Ctotal × Pleaf. (I) The accelerating 611 

accumulation of foliar C in the early stage of green-up is attributed to increases in 612 

photosynthesis and Pleaf. (II) The negative trend in the accumulation of foliar C in the late stage 613 

is mainly due to a decrease in Pleaf driven by climate but is weakly linked with photosynthesis. 614 

Potential mechanisms by which climate regulates Pleaf are shown in the ovals, where red arrows 615 

indicate positive effects and blue arrows indicate negative effects. Models overestimate the link 616 

between photosynthesis and the allocation of C to leaves and skew the change in Pleaf under 617 

climate change, which leads to mismatches between the models and satellite observations for 618 

the ΔLAI trend in the late stage of green-up period. 619 

 620 
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Fig. 3 625 
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Fig. 4 628 
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