
This is the **accepted version** of the journal article:

Gao, Yanju; Tariq, Akash; Zeng, Fanjiang; [et al.]. «Fine-root traits are devoted to the allocation of foliar phosphorus fractions of desert species under water and phosphorus-poor environments». *Physiologia Plantarum*, Vol. 175, issue 6 (November/December 2023), art. e141052023. DOI 10.1111/ppl.14105

This version is available at <https://ddd.uab.cat/record/287588>

under the terms of the IN COPYRIGHT license

Fine-root traits are devoted to the allocation of foliar phosphorus fractions of desert species under water and phosphorus-poor environments

Yanju Gao^{1,2,3}, Akash Tariq^{1,2,3,4*}, Fanjiang Zeng^{1,2,3,4*}, Xiangyi Li^{1,2,3,4}, Jordi Sardans^{5,6}, Chenggang Liu⁷, Josep
Penuelas^{5,6}

¹Xinjiang Key Laboratory of Desert Plant Roots Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

²State Key Laboratory of Desert and Oasis Ecology, Key Laboratory of Ecological Safety and Sustainable Development in Arid Lands, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China

¹⁰ ³Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China

11 ⁴University of Chinese Academy of Sciences, Beijing 100049, China

12 ⁵CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, 08193 Barcelona, Catalonia, Spain

13 ⁶CREAF, Cerdanyola del Vallès 08193, Catalonia, Spain

14 ⁷CAS Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden,
15 Chinese Academy of Sciences, Menglun 666303. China

16

17 **Abstract:**

18 • Leaf and fine root traits are expected to predicate the response and adaptation of plants to different environments.

19 However, whether and how fine root traits are related to foliar phosphorus (P) fraction allocation of desert species under
20 water and P-poor environments remains unclear.

21 • We exposed seedlings of *Alhagi sparsifolia* Shap. (*Alhagi*) treated with two water and four P-supply levels for
22 three-years pot experiments, and measured foliar P fraction concentrations, leaf traits, and fine root traits.

23 • The allocation proportion of foliar nucleic-P and acid phosphatase (APase) activity of fine root was significantly
24 increased by 45.94 and 53.3% under drought and no P-supply treatments, contrasted to the well-watered and high
25 P-supply treatment, whereas foliar metabolic-P and structural-P were significantly reduced by 3.70 and 5.26%. The
26 allocation proportions of foliar structural-P and residual-P were positively correlated with fine root P (FRP)
27 concentration, but nucleic acid-P was negatively correlated with FRP concentration. Moreover, a trade-off association
28 was found between the allocation proportion to all foliar P fractions with respect to FRP concentration, fine root APase
29 activity, and foliar Mn concentration (indicate the released amounts of root carboxylates), followed by fine root
30 morphological traits. Overall, drought condition enhances the requirement for *Alhagi*'s aboveground and underground
31 link than well-watered condition.

32 • Changes the fine root traits and the allocation of P to foliar nucleic acid-P were two coupled strategies of *Alhagi*
33 under low soil water and/or P-supply. Fine root APase activity and carboxylates amounts were better predictors of foliar
34 P fraction allocation than root morphological traits. These results advance our understanding of foliar P allocation
35 strategies via mediating fine root traits under drought and P-poor environments.

36

37 **Keywords:** plant functional traits, fine root, foliar P fraction, drought, P deficient, soil P fraction, desert vegetation,
38 desert ecosystem

39

40

41 **1. Introduction**

42 Plant functional traits are crucial indices for predicitng how plants respond and adapt to varied environments across
43 levels of organization (He et al., 2020; Carmona al., 2021). Throughout the last few decades, plant adaptation and
44 environmental response research has focused on the interactions among several traits as they are interconnected
45 (Bruelheide et al., 2018; Ma et al., 2018). Although their prevalence, these attribute constellations typically alter among
46 functional group of plant traits (e.g., leaf N concentration and root length) and situations (e.g., drought and
47 nutrients-deficiency), giving important insights in a variety of scenarios (Osnas et al., 2018; He et al., 2020).

48

49 The balance between the fine roots (those with a diameter less than 2 millimeters corresponding to roots of order 1-3),
50 which are the most importance plant organs to uptake water and nutrients, as well as leaves, which are the primarily
51 responsible organs for photosynthetic processing, has always been a major ecological concern for researchers
52 (Bergmann et al., 2020; Lamber et al., 2022). Indeed, fine roots are sometimes regarded as the belowground equivalent
53 of leaves, as their primary purpose is to acquire nutrients and a closely relationship was found between fine foot and
54 leaf traits (Shen et al., 2019). The plant economics spectrum hypothesis therefore postulates that leaf and fine root traits
55 should exhibit a substantial amount of covariation (Carmona al., 2021). Prior studies have shown functionally
56 comparable correlations between leaves and fine roots, such as a significant positive correlation between leaves N and
57 root N and specific leaf area (SLA) and specific root length (SRL) (Díaz et al., 2016). However, other studies suggested
58 that decoupling between root and leaf traits (Kramer-Walter et al., 2016). For example, Burton et al. (2020) observed
59 plant root traits were unrelated to leaf traits in 57 species of undercanopy plants. It should be noted that earlier research
60 focused mostly on morphological traits (Liu et al., 2016). Root physiological traits, including the secretion of root acid
61 phosphatase (APase) and carboxylates, can gradually convert fixed and unavailable soil P that cannot be absorbed by
62 plants into soil labile-P fractions, which are directly available for plants to absorb (Shi et al., 2020). In low-P soils, roots
63 have a reduced capacity to capture P, despite the fact that root APase activity is enhanced in response to these conditions
64 (Lugli et al., 2020; Lamber et al., 2022). Based on a study conducted by Ushio et al. (2015), fine root APase activity and
65 leaf total P concentration in the tropical forest of Borneo were significantly negatively correlated in this area, with the
66 correlation being stronger in poor-P soil.

67

68 The composition of foliar P fractions with distinct functions (metabolic, nucleic, structural, and residual) exhibits a
69 stronger sensitivity to soil labile-P fractions than the soil total P (Yan et al., 2021). Among them, foliar metabolic-P is
70 mainly substances for enzymes in glycolysis and the Calvin-Benson cycle (Veneklaas et al., 2012), nucleic acid-P make

71 up 40-60% organic P of leaves, with 85% into RNA (rRNA), structural-P are essential for plant growth and stress
72 responses, and can substitute non-P lipids for phospholipids under nutrients-poor (Prodhanet al., 2019). Residual-P
73 fraction that is not well characterized but is expected to include phosphorylated proteins (Veneklaas et al., 2012).
74 Fabaceae species was found had higher nucleic acid-P concentrations and relatively lower metabolic-P concentrations
75 than non-Fabaceae species in P-poor soils (Yan et al., 2019). It could be contributed to the high protein concentrations
76 in Fabaceae species that need be supported by high nucleic acid-P concentrations. However, the low metabolic-P
77 concentrations may difficult the activity of enzymes that use metabolites as substrates (Lamber et al., 2022). In addition,
78 previous research has shown that leaf total P concentrations in Fabaceae species are often greater than the world
79 average (Mori et al., 2016), however there are outliers, mostly from P-poor areas, with low leaf total P concentration
80 (Guilherme et al., 2019). It suggests that in low-P scenarios, some Fabaceae species should invest a little amount of P at
81 least in one of the foliar P fraction listed above. However, in order to determine if reducing the P allocation will result in
82 the sacrifice of ideal traits and if it will be linked to changes in root traits, further research is still required.

83

84 In a water-limited desert environment, the coordination of desert species' leaf and root functional traits is of great
85 ecological significance for their adaptation to water scarcity and nutrient deprivation, particularly during harsh drought
86 conditions (Gao et al., 2023). The root system that extends to groundwater (mainly phreatophytes), high root crown
87 ratio, small or evolved into distorted branches, and low N and P concentrations in leaves are all adaptive traits of desert
88 species to cope with adverse conditions (Liu et al., 2016; Tariq et al., 2022a). In hyper-arid desert ecosystems, research
89 has found that the concentration of soil labile-P and leaf total P in desert species are much lower than global levels (Gao
90 et al., 2022a, b). To accommodate to the P-poor soils, desert species adopted flexible allocation strategies among
91 distinct foliar P fractions, example as allocating more foliar P to the structural-P or nucleic-acid P (Gao et al., 2022a,
92 Tariq et al., 2022b). Furthermore, changing the morphological traits of roots, increasing root APase activity and the
93 release amount of carboxylates are strategies for roots reply low P in soils (Gao et al., 2023). However, there is
94 currently insufficient evidence on how the combined effects of drought and P-deficient affect foliar P allocation and fine
95 root traits in desert species at once, and whether the allocation patterns of foliar P fractions and fine root traits present
96 some tradeoffs.

97

98 This study selected *Alhagi sparsifolia* as the researches object because it is a typical deep-rooted desert species that
99 occurs widely distributed in the southern desert ecosystem of Taklamakan Desert. A three-year pot experiment with
100 different water and P-supply levels was performed. The allocation patterns to distinct foliar P fractions, leaf traits and

101 fine root traits were determined at once, as well as the trade-off relationship between fine root traits and foliar P
102 fractions were analyzed. We aimed to verify the three next hypotheses: (1) Variations of foliar P fractions and the fine
103 root traits were more sensitive to the drought and/or low P conditions than well-watered and/or rich P conditions; (2)
104 There is a trade-off relationship between the foliar P allocation and fine root traits, and four foliar P fractions differ from
105 one another in the allocation patterns; (3) Physiological traits of fine root rather than morphological traits are closely
106 related to the foliar P fraction allocation patterns.

107

108 **2. Materials and Methods**

109 **2.1 Experiment design**

110 The study area is located in the desert-oasis transition zone on the southern edge of Taklamakan Desert. The region has
111 a warm temperate continental desert climate with sparse precipitation, hyper-arid climate, and strong seasonality. The
112 annual average temperature, annual average precipitation, and maximum evaporation potential are 11.9 °C, 35 mm, and
113 2600 mm, respectively. The main type of soil is sandy soil, with low concentrations of available P and organic matter
114 (Gao et al., 2022a). The vegetation is mainly composed of perennial herbs such as *Alhagi* (Fabaceae) and *Karelinia*
115 *caspia* Pall. (Composite), shrub *Tamarix ramosissima* Ledeb. (Tamaricaceae) and *Calligonum caput-medusae* Schrenk
116 (Polygonaceae), which are drought and salt tolerant. These perennial species together formed the protective forest
117 around the desert-oasis transition zone.

118

119 A pot experiment lasted for a total of three years relied on the long-term ecological experiment station (80°43'45"E,
120 37°00'57"N), located the oasis area on the southern edge of Taklimakan Desert, Xinjiang Province, China. According to
121 the data information of the soil basic properties in this area (Table S1), and referring to the experimental treatment
122 methods of other soil and climate conditions similar to area studies (Xia et al., 2020), conducted two water treatments:
123 W1 (25–35% Maximum field capacity, MFC) and W2 (65–75% MFC), and four P-supply treatments: P0 (0 g P m⁻² y⁻¹),
124 P1 (1 g P m⁻² y⁻¹), P2 (3 g P m⁻² y⁻¹), and P3 (5 g P m⁻² y⁻¹). A total of 8 treatments with 24 replicates (192 pots) for
125 each treatment were executed. The P resource was ammonium dihydrogen phosphate (P 27%, N 12% in mass). The N
126 brought in by P fertilizer is balanced by urea (N 46%).

127

128 The container used for planting is a corrugated pipe with a diameter of 30 cm and a height of 100 cm. The soil used was
129 sourced from the 0–20 cm surface soil in desert natural habitats. In mid March 2021, pre-treated *Alhagi* seeds (soaked at
130 35 °C for 30 min, then soaked in water for 24 h until the embryo is exposed) were sown in corrugated pipes, with a

131 sowing depth of about 1–2 cm. The five seeds were scattered in each corrugated pipe, and then covered with soil and
132 film. When the seedlings had 2–3 leaves, remove the film and manage them uniformly for 15 days (supplied same
133 amount water). Then, based on the growth potential, remove the seedlings with significant differences in growth
134 potential to ensure that one plant survives in each pipe. After the unified maintenance, water treatment will be started in
135 mid April, 2021. A soil moisture tachometer was used to monitor the soil water content every day to ensure that the soil
136 water content of W1 was 25–35% MFC and that of W2 was 65–75% MFC. The treatment time for P was mid April
137 2021, 2022 and 2023, and it was applied with water at once.

138

139 **2.2 Sample collection**

140 Sample collection was conducted in mid June 2021, 2022 and 2023, respectively. Firstly, a total of 40 undamaged fresh
141 leaves for each replicate/pot were collected. Among them, 20 leaf samples were immediately measured for leaf traits;
142 the other 20 leaves were stored in a -20 °C refrigerator for foliar P fraction concentration determination. Then, the entire
143 aboveground was harvested for leaf total N and P concentrations, and dry weight determination. After collecting the
144 aboveground samples, carefully cut the corrugated pipe longitudinally with a saw to expose the soil to collect soil
145 samples (approximately 10 g per pipe), and then rinse with water to obtain the entire root system for root scanning.
146 Approximately 4.0 g fresh samples of washed fine roots were stored in a refrigerator at 4 °C for the determination of
147 root APase activity (within one week). The remaining samples were divided into coarse/fine root, dried to obtain dry
148 weight, and then crushed to determine the N and P concentrations. It should be noted that there is a good linear
149 relationship between the released amounts of root carboxylates and the concentration of foliar manganese (Mn)
150 ([Lambers et al., 2022](#)). Therefore, foliar Mn concentration was used to replace the released amounts of root
151 carboxylates in this study.

152

153 **2.3 Determination of leaf traits**

154 Cleaned the surface of the 20 fresh leaves taken back, performed a Vernier scale with an accuracy of 0.01mm to
155 measure the total thickness of the 20 leaves, and divided the total thickness by the number of leaves to obtain the
156 average leaf thickness (LD) of a single leaf. Then measured the blade thickness using a scanner and calculated the leaf
157 area (SA) using Image J software. After scanning, put those leaves in a 75 °C oven to constant weight for obtaining the
158 leaf dry weight (LDW). Finally, calculated the specific leaf area (SLA) and leaf tissue density (LTD) according to the
159 following formula:

160
$$\text{Specific leaf area (SLA)} = \text{leaf area}/\text{leaf dry weight} \quad (1)$$

161 Leaf tissue density (LTD) = leaf dry weight/(leaf area \times Leaf thickness) (2)

162

163 **2.4 Determination of foliar P fraction concentrations, and of total N and P concentration of leaves and fine roots**

164 The foliar P fractions were divided into metabolic-P (including inorganic phosphorus: Pi), nucleic acid-P, structural-P,
165 and residual-P, and the detailed determination process was referred to [Hidaka & Kitayama \(2011\)](#) and [Gao et al. \(2022c\)](#).
166 Briefly, first performed freeze-drying on the sample before measurement (MM400, Retsch, Haan, Germany). Then, we
167 weighed 1.0 g of freeze-dried sample and sequentially added 2 ml solution containing chloroform, methanol and formic
168 acid (12:6:1, v/v/v), 2.5 ml solution containing chloroform, methanol and water (1:2:0.8, v/v/v), 4 ml washed
169 chloroform, 5 ml methanol (85%, v/v), 2 ml 5% trichloroacetic acid (TCA), and 2 ml 2.5% TCA to obtain the extract
170 solution of four foliar P fractions. Among them, the pellet was separated from the extractant by applying centrifuged (15
171 min, 5000 rpm). Finally, added HNO_3 : H_2SO_4 (3:1, v/v) to digest the above supernatant, determined the concentration
172 of four foliar P fractions using a full band spectrophotometer at 620 nm. Leaves and fine roots samples were dried to
173 constant weight at 75 °C, then weighed, crushed, ground and digested in a solution containing concentrated HNO_3 ,
174 HClO_4 and H_2SO_4 (7:2:1, v/v/v), and finally N, P and Mn concentration in leaves, and P concentration in fine roots were
175 measured using an elemental analyzer (ICP-ABS Hitachi Z-5000, Japan).

176

177 **2.5 Determination of acid phosphatase activity**

178 The activity of root acid phosphatase (APase) was determined according to the method of [Tabatabai & Bremner \(1969\)](#).
179 Briefly, a fresh root sample of 1.0 g was weighed, added 8 ml buffer solutions containing 0.2 M sodium acetate (pH 5.8),
180 ground in an ice-environment, purified, and centrifuged for 15 min at 12 000 r min^{-1} . Then, in a newly prepared 15 ml
181 centrifuge tube, transferred 1 mL supernatant solution, added 2 mL of 0.05 M *p*-nitrophenyl phosphate (*p*NPP), and
182 maintained in darkness at 37 °C for 30 min. To halt the reaction after culture, we added 2 ml of 0.5 M CaCl_2 and 2 ml of
183 2 M NaOH. Centrifuge at 2500 r min^{-1} for 5 min. Transferred the subsequent into another newly prepared 15 ml
184 centrifuge tube and centrifuged for 5 min at 4000 r min^{-1} . Ultimately, the APase activity of 5 ml aliquots was measured
185 in a 410 nm spectrophotometer, which was expressed as μ mol *p*NP per gram per minute (μ mol *p*NP $\text{g}^{-1} \text{ min}^{-1}$).

186

187 **2.6 Determination of root morphology traits**

188 Employing root analysis software (WinRhizo Pro 2004b software, Quebec, QC, Canada) on the complete root sample
189 images of *Alhagi* obtained on the Expression 1600 Pro scanner (Model EU-35, Epson, Tokyo, Japan), the root volume
190 (RV, cm^3), root length (RL, cm), and surface area (SA, cm^2) of fine roots were determined. Then, by drying the sample

191 in an oven (at 75 °C, 48 h) and weighing the sample, the respective dry weight of fine roots was obtained. The specific
192 root length (SRL, cm mg^{-1}), specific root surface area (SRSA, $\text{cm}^2 \text{mg}^{-2}$), and root tissue density (RTD, mg cm^{-3}) were
193 computed using the dry weight of fine roots.

194

195 **2.7 Determination of soil Hedley P fraction**

196 The soil Hedley-P fractionation method divided soil P into nine components: resin P, sodium bicarbonate Pi
197 ($\text{NaHCO}_3\text{-Pi}$), sodium hydroxide Pi (NaOH-Pi), dilute hydrochloric acid Pi (conc. HCl-Pi), concentrated hydrochloric
198 acid Pi (1 M HCl-Pi), and residual-P. The sodium bicarbonate Po ($\text{NaHCO}_3\text{-Po}$), sodium hydroxide Po (NaOH-Po), and
199 dilute hydrochloric acid Po (conc. HCl-Po) were obtained from the difference value between total P ($\text{NaHCO}_3\text{-P}$,
200 NaOH-P and conc. HCl-P) and Pi ($\text{NaHCO}_3\text{-Pi}$, NaOH-Pi , and conc. HCl-Pi). Among them, Pi fractions were obtained
201 by sequentially adding resin, 0.5 M NaHCO_3 , 0.1 M NaOH , 0.1 M HCl and 1 M HCl , followed by $\text{H}_2\text{SO}_4\text{-H}_2\text{O}_2$
202 digestion of the residual. Refer to [Gao et al. \(2022b\)](#) for detailed extraction and determine processes.

203

204 **2.8 Data analysis**

205 To investigate the effect of different water conditions, P-supply levels, and their interactions on leaf traits, foliar P
206 fraction concentrations and allocation proportions, and fine root traits, we applied a two-way factorial ANOVA testing
207 using the IBM SPSS 22.0 (Statistical Graphics Crop, Princeton, NJ, USA). The association between leaf traits, leaf N
208 and P concentrations, and leaf and fine root dry weight was assessed using simple linear regression. Mantel's and
209 Pearson's correlations, together with the accompanying heatmap, were used to evaluate the relationships between fine
210 root traits and foliar P fraction concentrations and allocation proportions. After that, a statistical pattern of high
211 matching was established using structural equation modeling (SEM), which was then utilized to investigate the causal
212 links between four foliar P fractions vis-à-vis the fine root traits, respectively. Step-by-step fitting of the SEM allowed
213 for the retention of only significant coefficient-containing paths. R 4.0.4 ([R Core Team, 2021](#)) and Graphpad Prism 9.0
214 (GraphPad Software, San Diego, CA, USA) were used to generate all of the figures.

215

216 **3. Result**

217 **3.1 Soil Hedley P fraction**

218 Significant interactions between water and P-supply treatments were observed on soil resin-P and $\text{NaHCO}_3\text{-Pi}$
219 concentrations ([Fig. 1](#), $p < 0.001$). Compared to the well-watered and high P-supply treatment, soil resin-P and
220 $\text{NaHCO}_3\text{-Pi}$ concentrations were significantly lower by 87.03 and 93.22% in drought and no P-supply treatment.

221 Among them, drought treatment significantly reduced soil resin-P concentration by 48.7% and NaHCO₃-Pi
222 concentration by 67.96%, but increased conc. HCl-Pi concentration by 3.4% compared to the well-watered treatment.
223 P-supply treatment was related to higher soil labile and moderately labile-P fraction (resin-P, NaHCO₃-P and NaOH-P)
224 concentrations by 37.69–89.86% with respect to no P-supply treatment.

225

226 **3.2 Leaf traits and the dry weight and concentration of N and P in leaves and fine roots**

227 The SLA was significantly increased by 13.74% in well-watered and high P-supply treatment relative to the drought
228 and no P-supply treatment (Table 1, Fig. S1, $p < 0.05$). However, the LTD was increased by 44.44% in drought and no
229 P-supply treatment when compared to the well-watered and high P-supply treatment. In addition, leaf and fine root P
230 (FRP) concentrations and leaf dry weight were remarkably decreased by 19.87, 4.96 and 65.32% in drought and no
231 P-supply treatment when compared to the well-watered and high P-supply treatment (Fig. 2, $p < 0.001$). There is a
232 significantly positive relationship between the FRP and leaf total P concentrations, fine root and leaf dry weight,
233 whereas a significantly negative relation between the FRP concentration and leaf N:P ratio ($p < 0.001$). Furthermore, the
234 proportion of leaf dry weight in whole plant was significantly reduced in drought and no P-supply when compared to
235 the well-watered and high P-supply treatment ($p < 0.05$), and drought significantly increased the proportion of fine root
236 dry weight in whole plant relative to the well-watered treatment (Fig. S2).

237

238 **3.3 Foliar P fraction concentration and allocation proportion**

239 Compared to the well-watered and high P-supply treatment, foliar nucleic acid-P concentration and its allocation
240 proportion were significantly increased by 36.27 and 45.94% in drought and no P-supply treatment ($p < 0.01$), but foliar
241 metabolic-P and structural-P allocation proportion were significantly reduced by 3.70 and 5.26% (Fig. 3, $p < 0.05$).
242 Foliar residual-P concentration and proportion were also reduced by 36.79 and 32.39% in drought and no P-supply
243 treatment related to the well-watered and high P-supply treatment ($p > 0.05$). Among them, metabolic-P and structural-P
244 concentration and allocation proportion were increased by 1.61 and 1.45, 3.03 and 2.50% in well-watered treatment
245 when compared to the drought treatment (Table S2, $p < 0.05$). Compared to the high-P supply, foliar nucleic acid-P
246 allocation proportion was rose by 40.94% in no P-supply treatment ($p < 0.05$).

247

248 **3.4 Fine root morphological and physiological traits**

249 Water treatment significantly affected the fine root traits, except for the RTD (Fig. 4, Table S3). Compared to the
250 drought treatment, the RL, SA, RV, SRL and SRSA of fine root were significantly increased by 296.86%, 132.32%,

251 48.71%, 208.52% and 51.08% in well-watered treatment ($p < 0.05$). However, the APase activity of fine root and foliar
252 Mn concentration under drought treatment were 13.32 and 14.67% higher than in well-watered treatment ($p < 0.05$).
253 The APase activity, SA and foliar Mn concentration under no P-supply treatment were 52.53, 27.89 and 38.22% greater
254 than under high P-supply treatment ($p < 0.05$). Only the APase activity in all fine root traits was substantially elevated
255 by 53.30% in drought and no P-supply treatments compared to the well-watered and high P-supply treatments ($p <$
256 0.05).

257

258 **3.5 Relationship between foliar P fractions and leaf and fine root traits**

259 There are strong positive correlations among the foliar metabolic-P, structural-P and residual-P with respect to LA and
260 LT, whereas negative correlations were observed among them and LTD (Figs. S3, S4, $p < 0.001$). In contrast, foliar
261 nucleic acid-P was negatively correlated with the LA, LT and SLA, while was positively correlated with the LTD ($p <$
262 0.01). Moreover, fine root traits mainly affected the foliar P fraction allocation proportions (excluding nucleic acid-P),
263 especially in the presence of drought conditions (Fig. 5). Under the drought treatment, nucleic acid-P allocation
264 proportion was mainly negatively affected by FRP concentration, and significantly positively affected by RL, SA, SRL,
265 SRSA, APase activity, and foliar Mn concentrations (Figs. 5a, b). However, the structural-P and residual-P allocation
266 proportions were reverse. The correlation between fine root traits and the allocation proportion and concentration of
267 foliar P fractions in well-watered conditions was similar to drought conditions, but more strongly correlated in drought
268 conditions (Figs. 5c, d, Fig. S5). Overall, foliar P fraction allocation was primarily determined by the concentration of
269 FRP, APase activity, and foliar Mn concentration.

270

271 **3.6 SEM analysis on the correlation between the allocation of foliar P fractions and fine root traits**

272 The SEM analysis indicated that the trade-offs between the FRP concentration and foliar metabolic-P and nucleic acid-P
273 allocation proportions were different from that of other foliar P fractions, respectively (Figs. 6, 7). A convergence in the
274 balance relationship between structural-P and residual-P allocation proportions and fine root traits was found. Under
275 drought treatment, metabolic-P allocation proportion was mainly affected by the direct effects of APase activity, nucleic
276 acid-P was affected by both the direct and indirect effects of foliar Mn concentration, as well as the direct effects of FRP
277 concentration, structural-P was affected by both the direct and indirect effects of APase activity, as well as the direct
278 effects of FRP concentration, and residual-P was affected by the direct effects of FRP concentration (Figs. 6A, 7A).
279 Under well-watered treatment, metabolic-P allocation proportion was mainly affected by the direct effects of APase
280 activity, nucleic acid-P was affected by direct effects of FRP concentration, structural-P was affected by the direct

281 effects of FRP concentration and SRL's direct and indirect effects, and residual-P was affected by direct effects of FRP
282 concentration (Figs. 6B, 7B).

283

284 In general, accompanied by a decrease in FRP concentration, a trade-off occurred between the reduced structural-P and
285 residual-P allocation proportions and the increased nucleic acid-P allocation proportion and foliar Mn concentration
286 under drought or well-watered conditions. Among them, there was a substantial negative correlation between foliar Mn
287 concentration and nucleic acid-P under drought conditions, whereas it was significantly positively related to the
288 structural-P allocation proportion. Noteably, the root APase activity was most important factor for the metabolic-P,
289 whether under drought or well-watered conditions, but well-watered eliminated the effects of root APase activity on the
290 other three foliar P fractions.

291

292 **4 Discussions**

293 **4.1 Foliar P fraction allocation and the adaptability of fine root traits to drought and P-deficient conditions**

294 The behavior of foliar P allocation often provides a possible adaptation mechanism that enables plant to adapt to
295 P-deficient environments (Lambers et al., 2022). Compared to well-watered and high P-supply conditions, *Alhagi*
296 reduced foliar metabolic-P, structural-P and residual-P allocation proportions in drought and no P-supply conditions.
297 This result was consistent with the results on foliar P fraction of Verbenaceae (*Clerodendrum cyrtophyllum* Turcz.) and
298 Proteaceae (RBr) in P-limited tropical forests (Mo et al., 2019). Nevertheless, it is important to be aware that the
299 concentration of metabolic-P and structural-P in this study were lower than those of Verbenaceae. This may be due to a
300 lower soil NaHCO₃-P in this study (approximately 17.9 mg kg⁻¹), whereas proximately 74.1 mg kg⁻¹ in P-limited
301 tropical forests. Besides, the drought condition in this study was about 25% MFC, while the study of Mo et al. (2019)
302 was located in the Tropical monsoon climate region with sufficient water. Therefore, we speculated that this is highly
303 likely attributed to lower water and P concentrations in soils resulting in lower metabolic-P concentrations of *Alhagi* in
304 leaves. In addition, drought and no P-supply significantly increased nucleic acid-P concentration and allocation
305 proportion in *Alhagi* leaves. This may be due to the insufficient of soil water and P leading to the tendency of *Alhagi*
306 leaves allocating a higher proportion of foliar P towards the esseential fractions DNA and RNA (especifically rRNA).
307 This allocation pattern is crucial for maintaining vital life functions, such as the preservation of genetic information and
308 the synthesis of proteins necessary for survival (Caio et al., 2018). For example such we have observed in other studies
309 under drought and/or P deficiency plants tends to synthesize more secondary metabolites to stress defense (Sulpice et
310 al., 2014). To activate these pathways it is necessary to increase the concentration of the enzymes involved in those

311 pathways, thus it becomes essential to preserve an appropriate capacity of protein synthesis and thus of the different
312 rich-P RNAs. An additional potential mechanism to be taken into consideration is that the increase in nucleic acid-P
313 levels observed during periods of drought and/or low P conditions could be attributed to a decline in metabolic-P. This
314 decline in metabolic-P may result in a reduction in the activity of overall metabolic pathways, which can serve as an
315 adaptive mechanism to counterbalance the need to allocate more sources to the production of the most enzymes linked
316 to the pathways involved in stress tolerance (Rizvi et al., 2019). This research further shows that a reduction in soil P
317 availability is associated with a decrease in structural-P allocation proportion. Structural P is mostly found inside
318 phospholipids, which serve as a vital component of plasmalemma and organelle membranes involved in the formation
319 of cell membranes (Mo et al., 2019). These cell membranes are the primary location for photosynthesis in plants. Thus,
320 our study implied that inadequate P conditions may have a substantial inhibitory effect on *Alhagi* photosynthesis.
321 This inhibition is accompanied by the substitution of sulfates and galactolipids for foliar structural-P, leading to a
322 reduced concentration of foliar structural-P. It may be another adaptation strategy for *Alhagi* in poor-P conditions.

323

324 Morphological traits of the root system typically determine the roots' adaptability and ability to acquire restricted
325 resources (Aslam et al., 2022). This study indicated that the SRL and SRSA of *Alhagi* fine roots under three P-supply
326 levels were lower than under no P-supply conditions. It may be attributed to the higher SRL and SRSA of *Alhagi* fine
327 roots occurred at low P conditions can enhance their ability to explore more efficient P-uptake. Numerous species
328 exhibited higher RTD in low P or drought conditions, which is regarded as a significant adaptive strategy for coping
329 with soil P shortage or adverse environment conditions (Laliberté et al., 2015; Wurzburger & Wright, 2015). The
330 findings of this study suggested that an increased RTD may have a decelerating effect on root development and enhance
331 the capacity of plants to extend their tissues and defend against nutrient insufficiency, namely P deficiency. Hence, the
332 presence of high RTD in poor P or adversity environments might potentially facilitate the development of fine roots,
333 thereby augmenting their capacity to acquire water and limiting nutrients. Besides, prior studies have widely reported
334 that a negative association between soil P concentration and both root APase activity and carboxylate secretion in plant
335 roots (Lugli et al., 2020). It was consistent with the results in this study that drought and/or low P conditions increased
336 APase activity of *Alhagi* fine root and foliar Mn concentration indicating the released amounts of root carboxylates. A
337 possible reasonable speculation is that the APase of *Alhagi* fine root catalyze the hydrolysis of -C-O-P bonds liberating
338 P from organic matter and the effectively carboxylates can by changing soil pH desorbs P occluded (adsorbed) on
339 minerals (Shi et al., 2020; Lambers et al., 2022). Therefore, *Alhagi* can activate soil P-availability to obtain more P by
340 fine root in the environment lacking P. Those results verified our first hypotheses that the variations of *Alhagi* fine root

341 traits and foliar P fractions are more sensitive to drought and/or low P condition than well-watered and/or high P
342 condition.

343

344 **4.2 The trade-off between foliar P fraction allocation proportions and fine root traits**

345 As the two most important organs for nutrient absorption and utilization, leaves and fine roots jointly participate in and
346 regulate plant growth and various physiological and chemical processes (Roumet et al., 2016). The findings of this
347 research indicated that the leaf and fine root traits of *Alhagi* were not decoupled. Foliar P fraction allocation proportion
348 was mainly driven by the FRP concentration and the root physiological traits related to P activation in the root system,
349 among which the balance between foliar P fraction allocation proportions and fine root traits was more closely related
350 under drought treatment. As more optimal were the conditions (more water and/or P-supply) for plant production, more
351 P was allocated to metabolic activity and to create a more strong and great leaf structure to be able to capture more light,
352 then more P is proportionally allocated to metabolic, structural and residual fractions, whereas diminishing the nucleic
353 acid-P percentage respect to total foliar P. This also coincided with higher FRP concentrations in a general situation of
354 more favorable conditions for plant P-uptake. In this situation, allocation to increase fine root traits related to soil
355 resource uptake was reduced. This was reversed as the soil conditions (less water and/or P supply) were harsher.
356 However, Yu et al. (2022) indicated that no significant relationship between leaf N and root N in 12 plant species
357 studied in semi-arid regions. The possible explanation for this difference was attributed to the differences in plant
358 species, whereby plant physical traits, including size, woodiness, and longevity, exhibit significant heterogeneity
359 between various species. Several studies have shown that herbaceous plants exhibiting elevated SRL and N
360 concentrations in their roots, as well as elevated SLA and N concentrations in their leaves, may have comprehensive
361 nutrient acquisition strategies (Tjoelker et al., 2005; Freschet et al., 2018). In the study conducted by Weemstra et al.,
362 (2016), it was observed that the traits of woody species exhibited a contrasting pattern when compared to herbaceous
363 species. However, this study suggested that growth forms have the potential to concurrently influence variations in leaf
364 and fine root traits. *Alhagi* is a typical Fabaceae herbaceous widely distributed in hyper-arid and P-impoverished desert
365 ecosystem, with a relatively high demand for P. Thus, this may be an important reason for the significant correlation
366 between the foliar P fractions and fine root traits, as well as the differences with other research results.

367

368 Among the four foliar P fractions, structural-P can characterize the size of plant photosynthetic capacity, and higher
369 concentrations of structural-P indicate sufficient P nutrients and increased photosynthetic capacity (Caio et al., 2018;
370 Mo et al., 2019). The findings of this study suggested that the foliar structural-P was mainly positively driven by FRP

371 concentration, which means that good root nutrient absorption can conducive to the allocation of foliar P to the
372 structural-P that dominates photosynthesis. Under drought treatment, the allocation proportion of structural-P was also
373 significantly negatively driven by fine root APase activity. This also proved that lower soil available P and FRP
374 concentrations under drought treatment induce more phosphatase release from roots. On the contrary, foliar nucleic
375 acid-P allocation proportion was mainly driven by the negative direction of FRP concentration, it indicated that lower P
376 concentrations in fine roots can induce plant leaves to allocate more foliar P to the nucleic acid-P fractions involved in
377 enzyme and protein synthesis, in order to activate and release a portion of P present in vacuoles for current plant needs.
378 However, when more optimal were the conditions (more water and/or P-supply), *Alhagi* roots absorb more P to supply
379 it to leaves, while foliar P is preferentially allocated to other P-fractions. In addition, it is important to highlight that the
380 foliar metabolic-P allocation proportion was mainly driven negatively by the activity of APase in fine roots rather than
381 FRP concentration. We speculate that this may be attributed to metabolic-P existing in cytoplasm is the most active
382 fraction in the four P fractions, participating in various physiological and biochemical reactions of leaves thus may be
383 greatly influenced by factors other than root P concentration.

384

385 In water and nutrient limited environments, compared to the physiological traits of plant roots, morphological traits are
386 often the most variable, significant, and studied (Freschet et al., 2018; Ros et al., 2018). Under P poor condition, plants
387 often either/neither expand the distribution of root systems (mainly fine roots) to explore more intensely P patches in
388 the soil or release some active P substances into the rhizosphere environment to increase the bioavailability of P
389 (Shahidi et al., 2017). However, the strategy of expand root systems always requires plants to invest a large amount of
390 C (Ushio et al., 2015). Moreover, compared to morphological traits of fine root, there are stronger correlation between
391 physiological traits and FRP concentration, especially the carboxylates concentration. This may be attributed to the
392 synthesis and release of phosphatase is a process that requires higher energy investment compared to the release of
393 carboxylates (Lugli et al., 2020). Therefore, for the absorption and distribution of P nutrients, root physiological traits
394 (especially the carboxylates) related to P activation may be more important than morphological traits. The results of this
395 study also supported the theory that foliar P fraction allocation in *Alhagi* was mainly driven by the concentration of FRP,
396 root APase activity, and carboxylates secretion compared to the morphological traits of fine roots. Furthermore, this
397 research also indicated that the trade-off between foliar P fraction allocation and fine root traits under drought treatment
398 was stronger than that under well-watered treatment. This implied that good water conditions may reduce the
399 correlation between aboveground and underground traits, while drought will increase the need of connection between
400 aboveground and underground plants. Overall, our second and third hypotheses were verified.

401

402 **5 Conclusions**

403 This study found that the foliar P fraction allocation patterns and the fine root traits were significantly affected by the
404 drought and/or low P conditions in soils. A correlation was observed between the foliar P fraction allocation of in *Alhagi*
405 leaves and fine root traits, indicating a trade-off connection, and that this correlation in form of trade-off is more intense
406 under low soil P availability. As example, metabolic-P, structural-P, and residual-P allocation proportions exhibited a
407 reduction as the concentration of fine root P declined. Conversely, there was a rise in nucleic acid-P with decreasing
408 concentration of fine root P. It indicated that good nutrient acquisition of fine root P is linked with more P in leaves
409 mainly allocated to active metabolism, and to increase the capacity of light capturing.

410 The correlation between the allocation proportion of foliar P fractions and fine root physiological traits related to P
411 activation was shown to be more pronounced than the correlation with morphological traits. It implied that fine root
412 physiological traits are better predictors of foliar P fraction allocation than morphological traits, especially the release of
413 carboxylates.

414 Drought conditions enhanced the trade-off relationship between foliar P fraction allocation patterns and fine root
415 traits, which implied drought will increase the demand of connection between aboveground and underground plants.
416 Conversely, good water conditions weakened this connection.

417 Generally, this indicated that when the amount of P obtained from soil was reduced under drought and/or low P
418 conditions, *Alhagi* not only can improve their ability to obtain P by changing the fine traits, but also can allocate more P
419 to the most basic and necessary function where P participate in protein synthesis, which means having sufficient
420 enzymes to maintain the primary and defensive operations. This study greatly supplements the research gap on the
421 trade-off between foliar P fraction and fine root traits of desert species, and is conducive to strengthening the
422 understanding of P nutrient cycling, absorption, and efficient utilization strategies in desert ecosystems.

423

424 **Declaration of Competing Interest**

425 The authors declare that they have no known competing financial interests or personal relationships that could have
426 appeared to influence the work reported in this paper.

427

428 **Acknowledgments**

429 This work was supported by the National Key Research and Development Project of China (Grant No.
430 2022YFF1302504), and National Natural Science Foundation of China (Grant No. 42207163, 42271071, 41977050,

431 32250410301). This research was further supported by the Ministry of Science and Technology, China (grant number
432 QN2022045005).

433

434 **Author contributions**

435 FJZ, AT and YJG planned and designed the research; YJG performed the research and wrote the paper, AT, FJZ, XYL,
436 JS and JP provided critical suggestions on the manuscript, and all authors revised the manuscript.

437

438 **References**

439 Aslam MM, Pueyo JJ, Pang J, Yang J, Chen W, Chen H, Waaseem M, Li Y, Zhang JH, Xu W. 2022. Root acid
440 phosphatases and rhizobacteria synergistically enhance *white lupin* and rice phosphorus acquisition. *Plant
441 Physiology* 190: 2449–2465.

442 Bergmann J, Weigelt A, van der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, Valverde-Barrantes OJ,
443 Bruelheide H, Freschet GT, Iversen CM et al. 2020. The fungal collaboration gradient dominates the root
444 economics space in plants. *Science Advance* 6: eaba3756.

445 Bruelheide H, Dengler J, Purschke O, Lenoir J, Jiménez-Alfaro B, Hennekens SM, Botta-Dukát Z, Chytrý M, Field
446 R, Jansen F et al. 2018. Global trait–environment relationships of plant communities. *Nature Ecology & Evolution*
447 2: 1906–1917.

448 Caio GP, Peta LC, Rafael SO, Lambers H. 2018. Eudicots from severely phosphorus impoverished environments
449 preferentially allocate phosphorus to their mesophyll. *New Phytologist* 218: 959–973.

450 Carmona CP, Bueno CG, Toussaint A, Träger S, Díaz S, Moora M, Munson AD, Pärtel M, Zobel M, Tamme R. 2021.
451 Fine-root traits in the global spectrum of plant form and function. *Nature* 597, 683–687.

452 Díaz S, Kattge J, Cornelissen J, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Prentice IC et al. 2016. The
453 global spectrum of plant form and function. *Nature* 529, 167–171.

454 Freschet GT, Violle C, Bourget MY, Scherer-Lorenzen M, Fort F. 2018. Allocation, morphology, physiology,
455 architecture: the multiple facets of plant above and belowground responses to resource stress. *New Phytologist* 219:
456 1338–1352.

457 Gao YJ, Zeng FJ, Waqar I, Zhang ZH, Du Y, Zhang YL, Chai XT, Liu YF. 2022c. Coexistence desert plants respond to
458 soil phosphorus availability by altering the allocation patterns of foliar phosphorus fractions and acquiring
459 different forms of soil phosphorus. *Journal of Plant Growth Regulation* 42: 3770–3784.

460 Gao YJ, Zhang ZH, Zeng FJ, Ma XY. 2023. Root morphological and physiological traits are committed to the

461 phosphorus acquisition of the desert plants in phosphorus-deficient soils. *BMC Plant Biology* 23:188.

462 Gao YJ, Tariq A, Zeng FJ, Sardans J, Peñuelas J, Zhang ZH, Islam W, Xu MQ. 2022b. “Fertile islands” beneath three
463 desert vegetation on soil phosphorus fractions, enzymatic activities, and microbial biomass in the desert-oasis
464 transition zone. *Catena* 212: 106090.

465 Gao YJ, Tariq A, Zeng FJ, Graciano C, Zhang ZH, Sardans J, Peñuelas J. 2022a. Allocation of foliar-P fractions of
466 *Alhagi sparsifolia* and its relationship with soil-P fractions and soil properties in a hyperarid desert ecosystem.
467 *Geoderma* 407: 115546.

468 Guilherme Pereira C, Hayes PE, O’Sullivan O, Weerasinghe L, Clode PL, Atkin OK, Lambers H. 2019. Trait
469 convergence in photosynthetic nutrient-use efficiency along a 2-million year dune chronosequence in a global
470 biodiversity hotspot. *Journal of Ecology* 107: 2006–2023.

471 He NP, Li Y, Liu CC, Xu L, Li MX, Zhang JH, He JS, Tang ZY, Han XG, Ye Q et al. 2020. Plant trait networks:
472 improved resolution of the dimensionality of adaptation. *Trends in Ecology & Evolution* 35: 908–918.

473 Hidaka A, Kitayama K. 2011. Allocation of foliar phosphorus fractions and leaf traits of tropical tree species in response
474 to decreased soil phosphorus availability on Mount Kinabalu, Borneo. *Journal of Ecology* 99: 849–857.

475 Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC. 2016. Root traits are
476 multidimensional: specific root length is independent from root tissue density and the plant economic spectrum.
477 *Journal of Ecology* 104: 1299–1310.

478 Laliberté E, Lambers H, Burgess TI, Wright SJ. 2015. Phosphorus limitation, soilborne pathogens and the coexistence
479 of plant species in hyper diverse forests and shrublands. *New Phytologist* 206: 507–521.

480 Lambers H. 2022. Phosphorus acquisition and utilization in plants. *Annual Review of Plant Biology* 73: 17-42.

481 Liu B, He J, Zeng FJ, Lei JQ, Arndt SK. 2016. Life span and structure of ephemeral root modules of different functional
482 groups from a desert system. *New Phytologist* 211: 103–112.

483 Lugli LF, Andersen KM, Aragão LE, Cordeiro AL, Cunha HF, Fuchslueger L, Meir P, Mercado LM, Oblitas E, Quesada
484 CA et al. 2020. Multiple phosphorus acquisition strategies adopted by fine roots in low-fertility soils in Central
485 Amazonia. *Plant Soil* 450: 49–63.

486 Ma Z, Guo D, Xu X, Lu MZ, Bardgett RD, Eissenstat DM, McCormack ML, Hedin LO. 2018. Evolutionary history
487 resolves global organization of root functional traits. *Nature* 555, 94–97.

488 Mo Q, Li Z, Sayer EJ, Lambers H, Li Y, Zou B, Tang J, Heskel M, Ding Y, Wang F. 2019. Foliar phosphorus fractions
489 reveal how tropical plants maintain photosynthetic rates despite low soil phosphorus availability. *Functional
490 Ecology* 33, 503–513.

491 Mori A, Fukuda T, Vejchasarn P, Nestler J, Pariasca-Tanaka J, Wissuwa. 2016. The role of root size versus root
492 efficiency in phosphorus acquisition in rice. *Journal of Experimental Botany* 67: 1179–1189.

493 Osnas JLD, Katabuchi M, Kitajima K, Wright SJ, Reich PB, Van Bael SA, Kraft NJB, Samaniego MJ, Pacala SW,
494 Lichstein JW. 2018. Divergent drivers of leaf trait variation within species, among species, and among functional
495 groups. *Proceedings of the National Academy of Sciences* 115: 5480–5485.

496 Prodhan MA, Finnegan PM, Lambers H. 2019. How does evolution in phosphorus impoverished landscapes impact
497 plant nitrogen and sulfur assimilation? *Trends in Plant Science* 24: 69–82.

498 Yu QS, Ni XF, Cheng XL, Ma SH, Tian D, Zhu B, Zhu JL, Ji CJ, Tang ZY, Fang JY. 2022. Foliar phosphorus allocation
499 and photosynthesis reveal plants' adaptative strategies to phosphorus limitation in tropical forests at different
500 successional stages, *Science of The Total Environment* 846: 157456.

501 R Development Core Team. 2021. R: A Language and Environment for Statistical Computing. R Foundation for
502 Statistical Computing, Vienna.

503 Rizvi A, Shankar A, Chatterjee A, More TH, Bose T, Dutta A, Balakrishnan K, Madugulla L, Rapole S, Mande SS et al.,
504 2019. Rewiring of metabolic network in mycobacterium tuberculosis during adaptation to different stresses.
505 *Frontiers in Microbiology* 10: 2417.

506 Ros MBH, De Deyn GB, Koopmans GF, Oenema O, van Groenigen JW. 2018. What root traits determine grass
507 resistance to phosphorus deficiency in production grassland. *Journal of the Plant Nutrition & Soil Scence* 181:
508 323–335.

509 Roumet C, Birouste M, Picon-Cochard C, Ghestem M, Osman N, Vrignon-Brenas S, Cao KF, Stokes A. 2016. Root
510 structure-function relationships in 74 species: evidence of a root economic spectrum related to carbon economy.
511 *New Phytologist* 210: 815–826.

512 Shahidi R, Yoshida J, Cougnon M, Reheul D, Van Labeke MC. 2017. Morpho-physiological responses to dehydration
513 stress of perennial ryegrass and tall fescue genotypes. *Functional Plant Biology* 44: 612–623.

514 Shen Y, Gilbert GS, Li W, Fang M, Lu H, Yu S. 2019. Linking aboveground traits to root traits and local environment:
515 implications of the plant economics spectrum. *Frontiers in Plant Science*, 10, 1412.

516 Shi J, Strack D, Albornoz F, Han Z, Lambers H. 2020. Differences in investment and functioning of cluster roots
517 account for different distributions between *Banksia attenuata* and *B. sessilis*, with contrasting life history. *Plant &*
518 *Soil* 447: 85–98.

519 Sulpice R, Ishihara H, Schlereth A, Cawthray GR, Encke B, Giavalisco P, Ivakov A, Arrivault S, Jost R, Krohn N, Kuo J,
520 Laliberté E, Pearse SJ, Raven JA, Scheible WR, Teste F, Veneklaas EJ, Stitt M, Lambers H. 2014. Low levels of ribosomal

521 RNA partly account for the very high photosynthetic phosphorus-use efficiency of Proteaceae species. *Plant, Cell*
522 & *Environment* 37: 1276–1298.

523 Tabatabai MA, Bremner JM. 1969. Use of p-Nitrophenyl phosphate for assay of soil phosphatase activity. *Soil Biology*
524 & *Biochemistry* 1: 301–307.

525 Tariq A, Sardans J, Peñuelas J, Zhang ZH, Graciano C, Zeng FJ, Olatunji OA, Ullah A, Pan KW. 2022b. Intercropping
526 of leguminous and non-leguminous desert plant species does not facilitate phosphorus mineralization and plant
527 nutrition. *Cells* 11: 998.

528 Tariq A, Ullah A, Sardans J, Zeng FJ, Graciano C, Li XY, Wang WQ, Ahmed Z, Ali S, Zhang ZH. 2022a. *Alhagi*
529 *sparsifolia*: An ideal phreatophyte for combating desertification and land degradation. *Science of The Total*
530 *Environment* 844, 157228.

531 Tjoelker MG, Craine JM, Wedin D, Reich PB, Tilman D. 2005. Linking leaf and root trait syndromes among 39
532 grassland and savannah species. *New Phytologist* 167: 493–508.

533 Ushio M, Fujiki Y, Hidaka A, Kitayama K. 2015. Linkage of root physiology and morphology as an adaptation to soil
534 phosphorus impoverishment in tropical montane forests. *Function Ecology* 29:1235–1245.

535 Veneklaas E J, Lambers H, Bragg J, Finnegan PM, Lovelock CE, Plaxton WC, Price CA, Scheible WR, Shane MW,
536 White PJ et al. 2012. Opportunities for improving phosphorus-use efficiency in crop plants. *New Phytologist* 195:
537 306–320.

538 Weemstra M, Mommer L, Visser EJ, van Ruijven J, Kuyper TW, Mohren GM, Sterck FJ. 2016. Towards a
539 multidimensional root trait framework: a tree root review. *New Phytologist* 211: 1159–1169.

540 Wurzburger N, Wright SJ. 2015. Fine-root responses to fertilization reveal multiple nutrient limitation in a lowland
541 tropical forest. *Ecology* 96: 2137–2146.

542 Xia ZC, He Y, Yu L, Lv R, Korpelainen H, Li C. 2020. Sex-specific strategies of phosphorus (P) acquisition in
543 *Populus cathayana* as affected by soil P availability and distribution. *New Phytologist* 225: 782–792.

544 Yan L, Sunoj VSJ, Short AW, Lambers H, Elsheery NI, Kajita T, Wee AKS, Cao KF. 2021. Correlations between
545 allocation to foliar phosphorus fractions and maintenance of photosynthetic integrity in six mangrove populations
546 as affected by chilling. *New Phytologist* 232: 2267–2282.

547 Yan L, Zhang XH, Han ZG, Pang J, Lambers H, Finnegan PM. 2019. Responses of foliar phosphorus fractions to soil
548 age are diverse along a two-million-year dune chronosequence. *New Phytologist* 223: 1621–1633.

549

550

551

552

553 **Table 1 Leaf traits were affected by water and phosphorus treatments and the overall effects of water and P**
 554 **supplies and their interactions on leaf traits**

	Leaf area LA (cm ²)	Leaf thickness LT (cm)	Specific leaf area SLA (cm ² g ⁻¹)	Leaf tissue density LTD (g cm ⁻³)
Water treatment (W)				
Drought	11.42±3.17	0.52±0.11	41.52±14.66	0.06±0.03
Well-watered	13.35±3.92	0.51±0.10	45.74±16.46	0.05±0.02
P supply treatment (P)				
No P supply	9.57±2.07c	0.45±0.08b	42.14±18.72b	0.07±0.03a
Low P	11.43±2.73b	0.52±0.11a	41.02±16.37b	0.06±0.02b
Intermediate P	12.84±4.14a	0.55±0.11a	41.97±10.69b	0.05±0.02bc
High P	14.71±4.13a	0.55±0.11a	49.39±14.90a	0.04±0.01c
Fixed effect				
W	0.001	0.658	0.063	0.114
P	< 0.001	< 0.001	0.031	< 0.001
W * P	0.418	0.506	0.020	0.009

555 **Note:** Means with different lower-case letters are significantly different ($p < 0.05$). Values are means ± standard
 556 deviation, n = 96 for water treatment, n = 48 for P supply treatment.

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573 **Figure captions**

574 **Fig. 1 Soil phosphorus fraction concentration under different water and phosphorus treatments**

575 Note: The data set consists of 24 observations, with the mean value reported as the mean \pm standard deviation (SD). The
576 bars in the graph depict the mean standard deviation values. Values shown by distinct letters indicate a statistically
577 significant difference among the various treatments involving water and phosphorus supply ($p < 0.05$). W indicates
578 water treatment, P indicates P supply treatment, W*P indicates the interactions with water and P supply treatment.

579 **Fig. 2 Phosphorus concentration and dry weight of leaves and fine roots under different water and phosphorus
580 treatments**

581 Note: The data set consists of 24 observations, with the mean value reported as the mean \pm standard deviation (SD). The
582 bars in the graph depict the mean standard deviation values. Values shown by distinct letters indicate a statistically
583 significant difference among the various treatments involving water and phosphorus supply ($p < 0.05$). Each point
584 represents an individual data. R^2 and p values for linear trend lines are shown on each plot. *** $p < 0.001$. W indicates
585 water treatment, P indicates P supply treatment, W*P indicates the interactions with water and P supply treatment.

586 **Fig. 3 The concentration and allocation proportion of foliar phosphorus fractions under different under different
587 water and phosphorus treatments**

588 Note: The data set consists of 24 observations, with the mean value reported as the mean \pm standard deviation (SD). The
589 bars in the graph depict the mean standard deviation values. Values shown by distinct letters indicate a statistically
590 significant difference among the various treatments involving water and phosphorus supply ($p < 0.05$). W indicates
591 water treatment, P indicates P supply treatment, W*P indicates the interactions with water and P supply treatment.

592 **Fig. 4 Fine root morphology and physiological traits under different water and phosphorus levels**

593 Note: The data set consists of 24 observations, with the mean value reported as the mean \pm standard deviation (SD). The
594 bars in the graph depict the mean standard deviation values. Values shown by distinct letters indicate a statistically
595 significant difference among the various treatments involving water and phosphorus supply ($p < 0.05$). W indicates
596 water treatment, P indicates P supply treatment, W*P indicates the interactions with water and P supply treatment.

597 **Fig. 5 Correlation analysis between the allocation proportion of foliar phosphorus fractions and fine root traits**

598 Note: The magnitude of the Pearson correlation coefficient is shown by the intensity of color. The strength of the
599 association increases as the value approaches ± 1 . As the value approaches zero, the strength of the link diminishes.
600 Statistical significance is shown only if $p < 0.05$. * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. FRP, fine root phosphorus

601 concentration; RL, root length; SA, root surface area; RV, root volume, SRL, specific root length; SRSA, specific root
602 surface area; RTD. Root tissue density; APase, root acid phosphatase; Mn, indicating the amount of carboxylic acid
603 secreted.

604 **Fig. 6 Structural equation models of the allocation proportion of foliar phosphorus fractions and fine root traits**

605 Note: The blue lines serve to represent positive relationships, while the green lines are used to signify negative
606 relationships. The solid lines in the diagram depict associations that are statistically significant, whereas the dashed
607 lines show relationships that are not statistically significant. The asterisks serve as indicators of statistical significance.

608 * not present, $p > 0.05$; otherwise * $p < 0.05$, ** $p < 0.01$, *** $p < 0.001$. The standardized regression coefficients for
609 each path are provided, and results of model fit tests are shown below each figure. FRP, fine root P concentration; RL,
610 root length; SRL, specific root length; SA, surface area; MP, metabolic-P; NP, nucleic acid-P; SP, structural-P; RP,
611 residual-P.

612 **Fig. 7 Structural equation models of showing the direct and indirect effects of the foliar phosphorus fraction
613 allocation and fine root traits in drought (A) and well-watered treatment (B).**

614 Note: The standardized total effects may be calculated by summing the standardized direct impacts and the standardized
615 indirect effects.

616

617

618

619

620

621

622

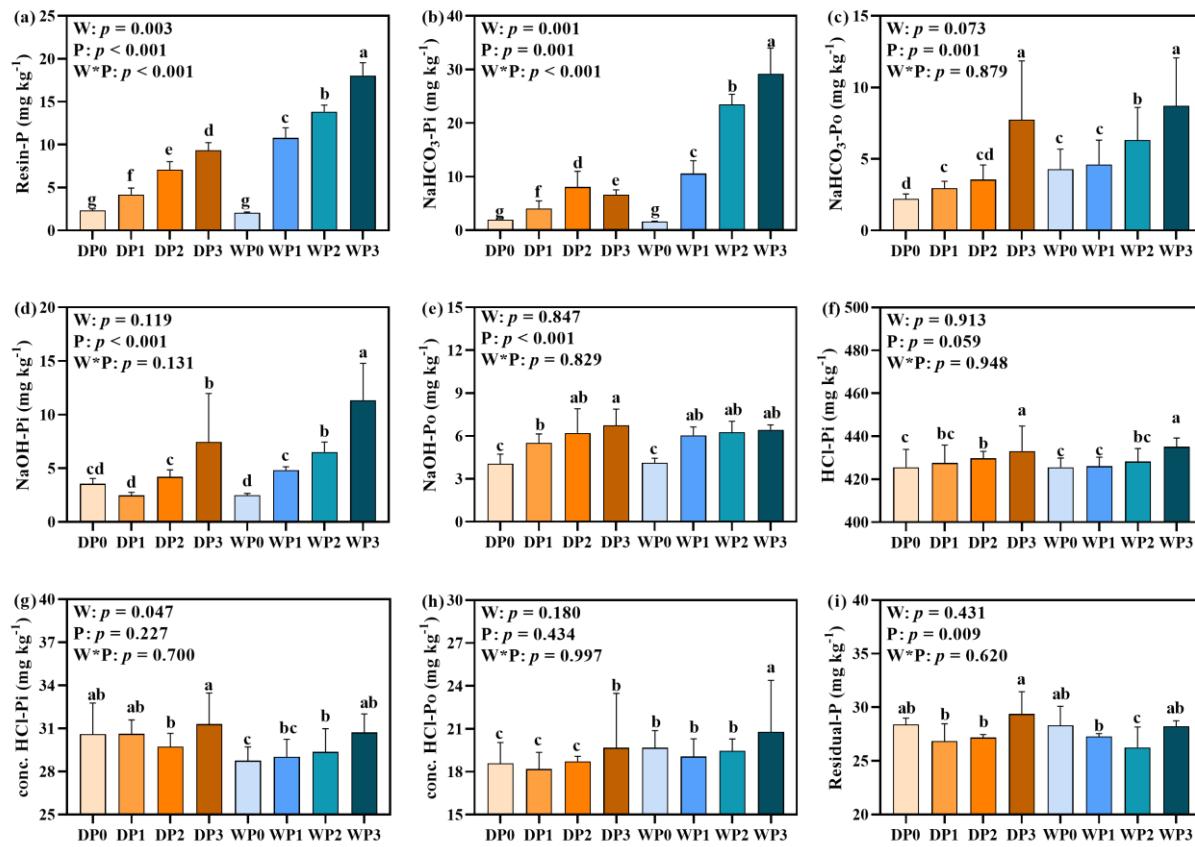
623

624

625

626

627


628

629

630

631

632

633 **Fig. 1**

634

635

636

637

638

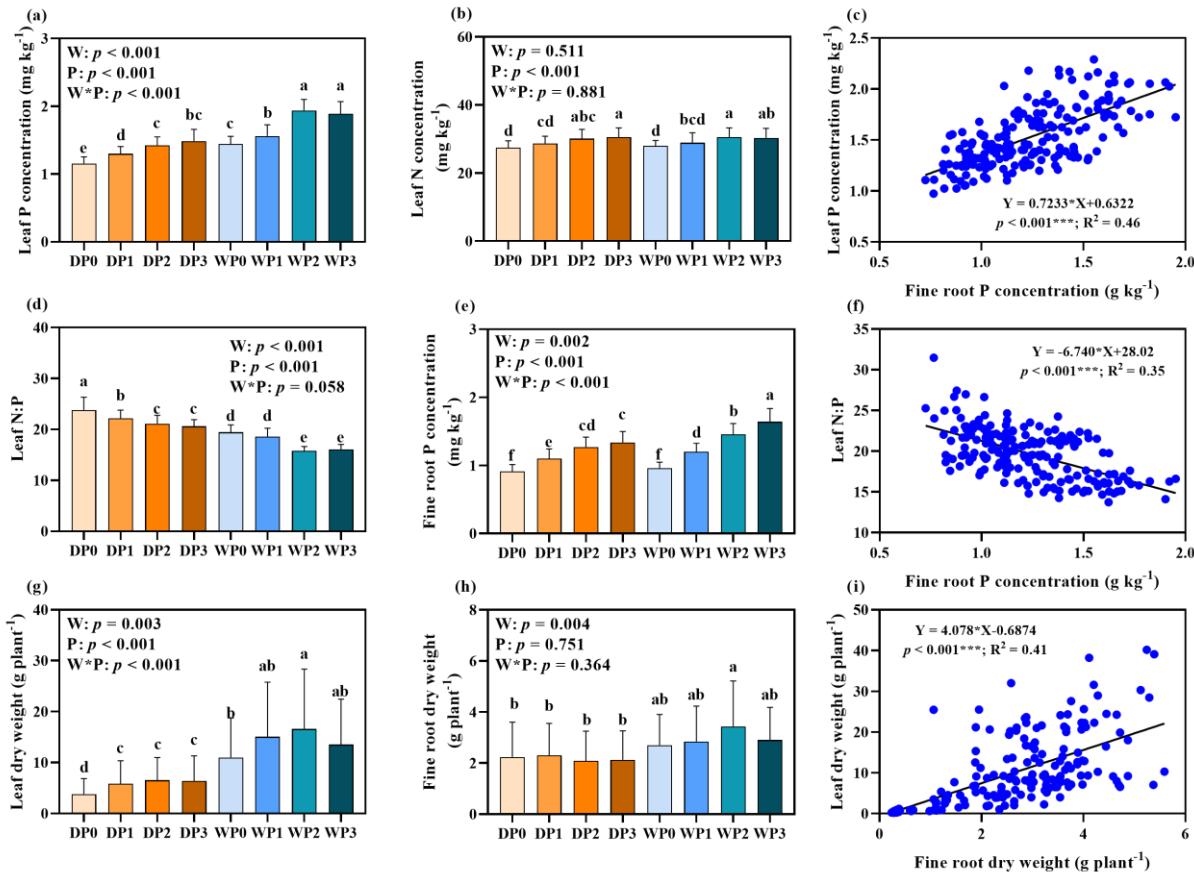
639

640

641

642

643


644

645

646

647

648

649 **Fig. 2**

650

651

652

653

654

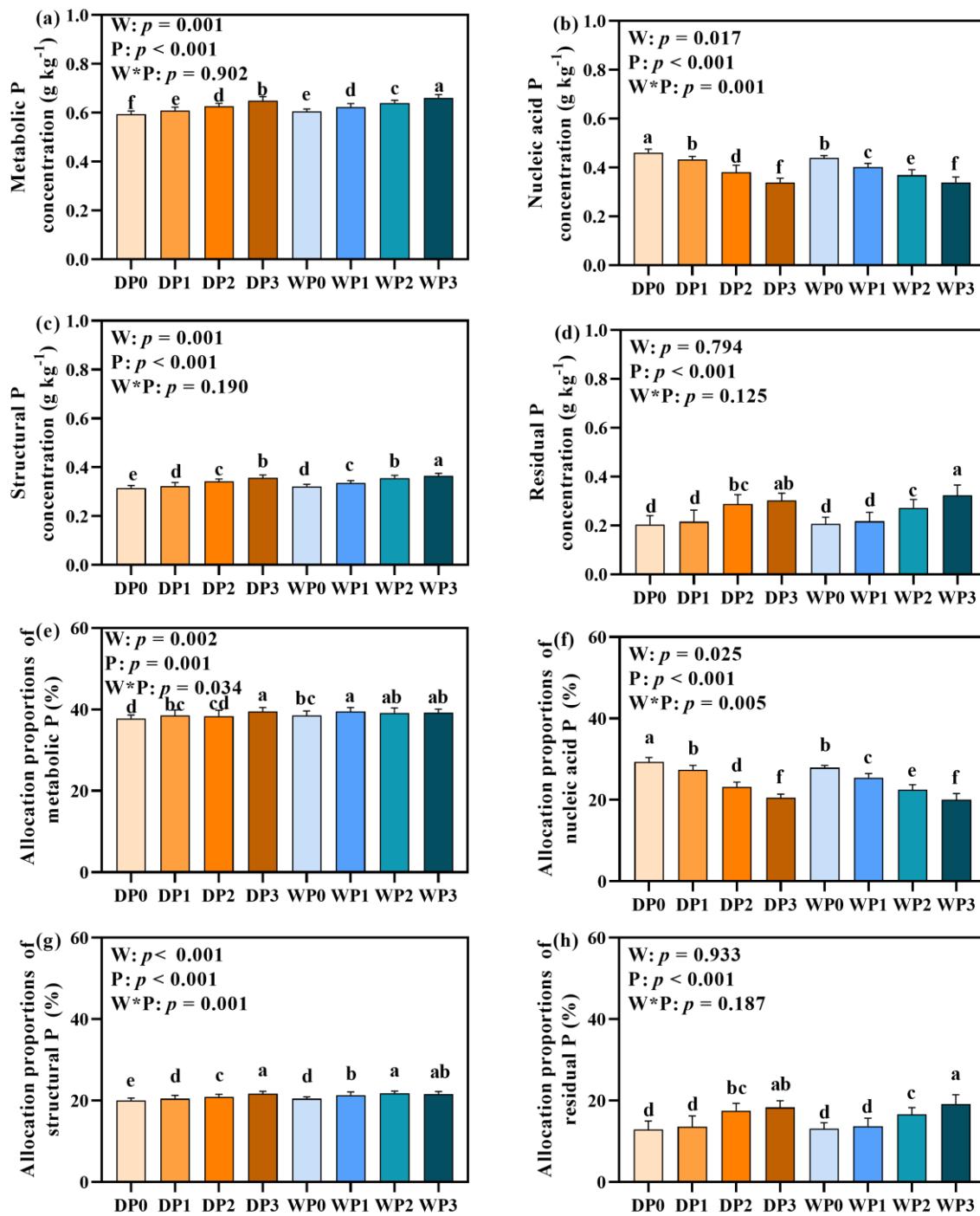
655

656

657

658

659


660

661

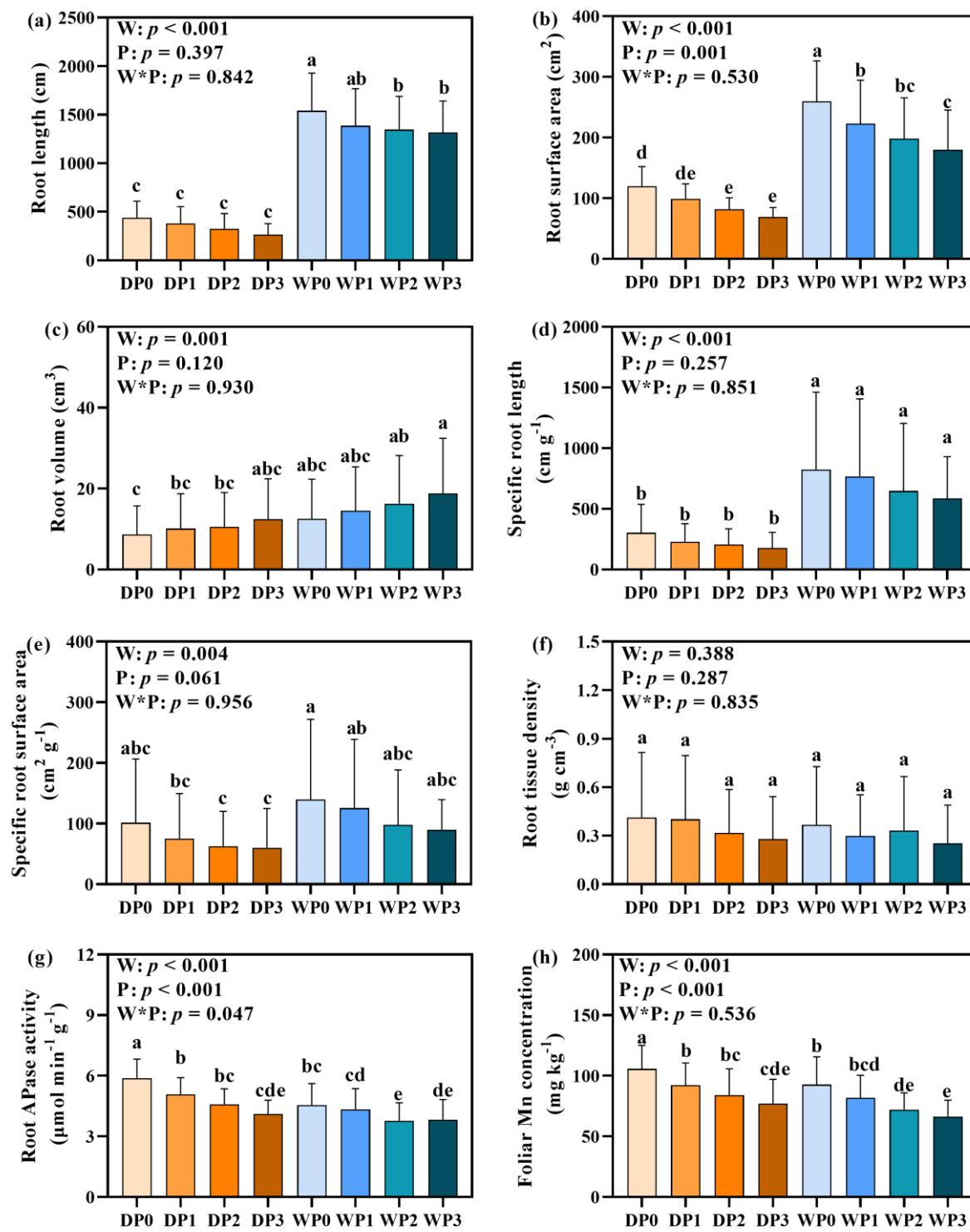
662

663

664 Fig. 3

665

666

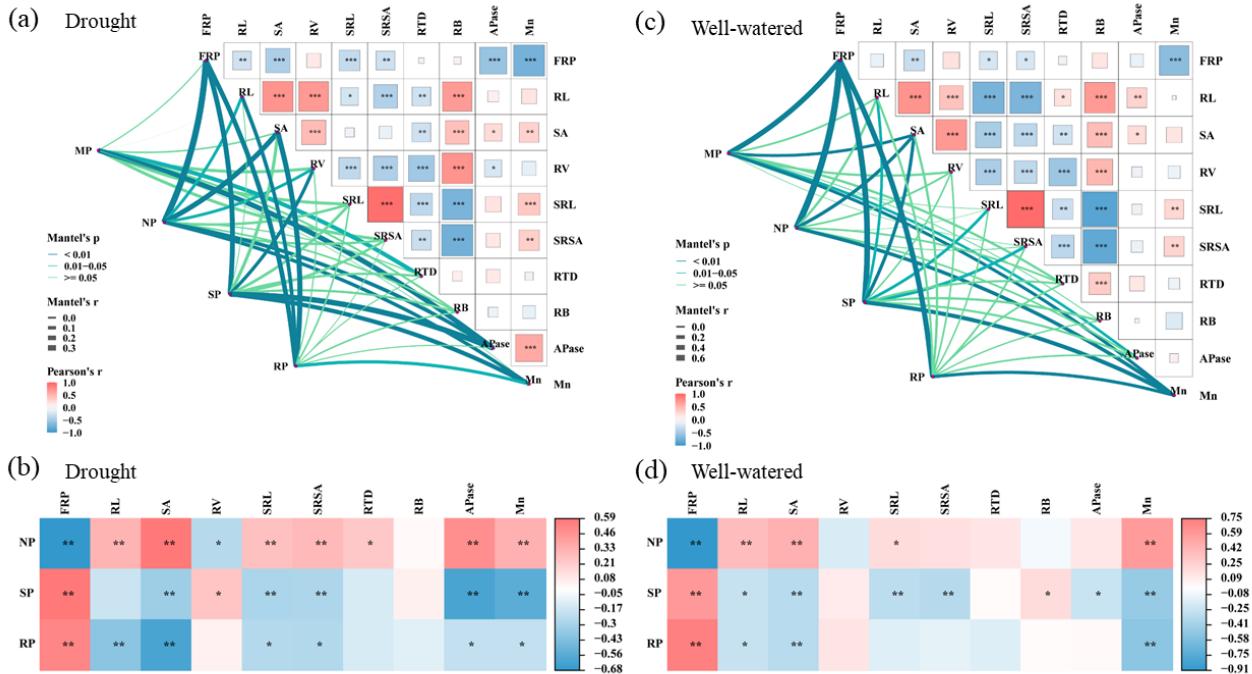

667

668

669

670

671 Fig. 4



672

673

674

675

676 **Fig. 5**

677

678

679

680

681

682

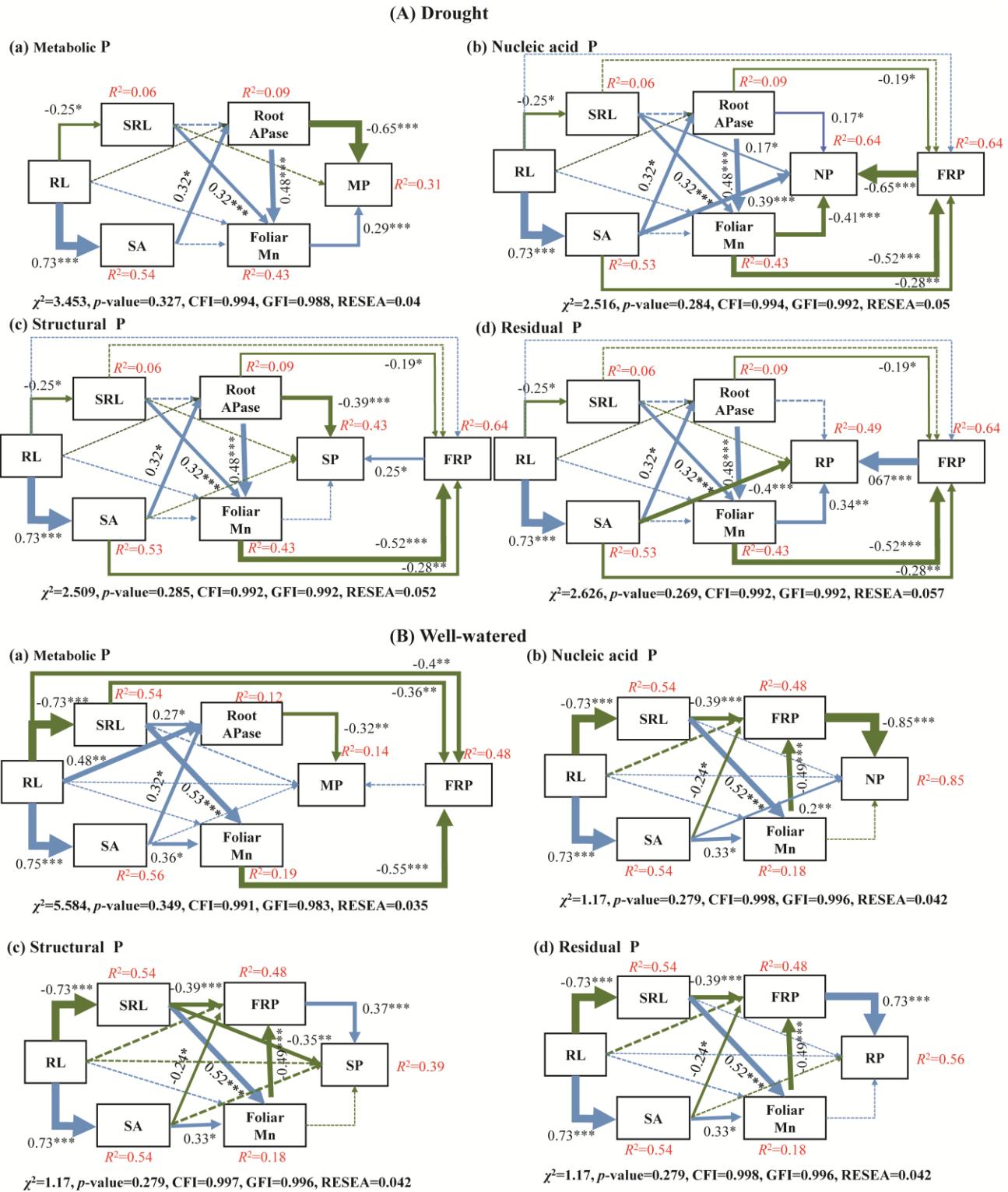
683

684

685

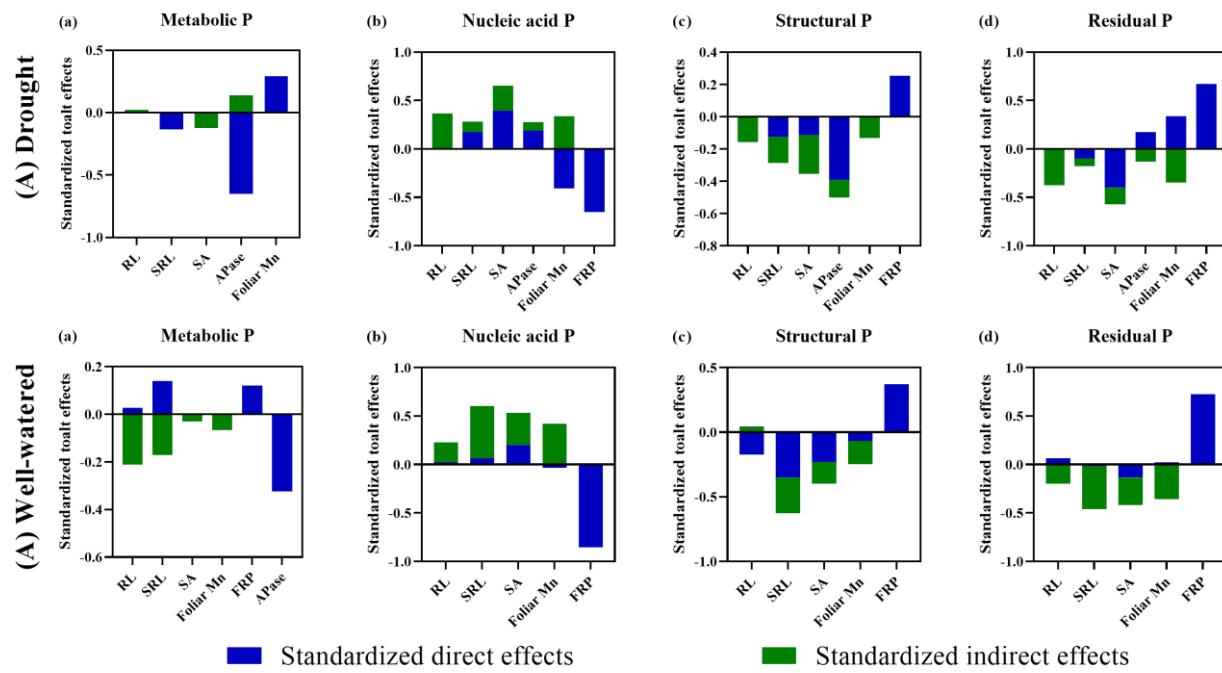
686

687


688

689

690


691

692

695 **Fig. 6**

698

699

700 **Fig. 7**

701