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Background: The combination of anatomical MRI and deep learning-based methods such as convolutional neural networks
(CNNs) is a promising strategy to build predictive models of multiple sclerosis (MS) prognosis. However, studies assessing
the effect of different input strategies on model’s performance are lacking.
Purpose: To compare whole-brain input sampling strategies and regional/specific-tissue strategies, which focus on a priori
known relevant areas for disability accrual, to stratify MS patients based on their disability level.
Study Type: Retrospective.
Subjects: Three hundred nineteen MS patients (382 brain MRI scans) with clinical assessment of disability level performed
within the following 6 months (�70% training/�15% validation/�15% inference in-house dataset) and 440 MS patients
from multiple centers (independent external validation cohort).
Field Strength/Sequence: Single vendor 1.5 T or 3.0 T. Magnetization-Prepared Rapid Gradient-Echo and Fluid-
Attenuated Inversion Recovery sequences.
Assessment: A 7-fold patient cross validation strategy was used to train a 3D-CNN to classify patients into two groups,
Expanded Disability Status Scale score (EDSS) ≥ 3.0 or EDSS < 3.0. Two strategies were investigated: 1) a global approach,
taking the whole brain volume as input and 2) regional approaches using five different regions-of-interest: white matter,
gray matter, subcortical gray matter, ventricles, and brainstem structures. The performance of the models was assessed in
the in-house and the independent external cohorts.
Statistical Tests: Balanced accuracy, sensitivity, specificity, area under receiver operating characteristic (ROC) curve (AUC).
Results: With the in-house dataset, the gray matter regional model showed the highest stratification accuracy (81%),
followed by the global approach (79%). In the external dataset, without any further retraining, an accuracy of 72% was
achieved for the white matter model and 71% for the global approach.
Data Conclusion: The global approach offered the best trade-off between internal performance and external validation to
stratify MS patients based on accumulated disability.
Evidence Level: 4
Technical Efficacy: Stage 2
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Multiple sclerosis (MS) is a chronic autoimmune disease
of the central nervous system and is the main non-

traumatic cause of irreversible disability in young adults.1

MRI and associated biomarkers play an important role in
the diagnosis, monitoring, and prognosis of MS, allowing
quantification and tracking of patients’ tissue structural damage
over time.1,2 Biomarkers such as the number of lesions,1 brain
volume quantification3 or the combination of both4 have been
associated with the accumulation of patient disability.5,6

Deep learning-based models, especially convolutional
neural networks (CNNs), have the ability to solve complex
tasks by means of automatic feature extraction.7 In the last
decade, deep learning-based models applied to medical imaging
have been useful for the diagnosis or the prognostic classifica-
tion of neurological conditions, as well as for brain lesion seg-
mentation procedures.8 Deep learning based studies on MS
have focused on the investigation of MRI biomarkers and their
evolution over time, and have mostly resulted in new
implementations for lesion segmentation and the detection of
new lesions.9 However, deep learning-based methods have also
been used in image pre-processing pipelines and dimensionality
reduction strategies, which are mainly focused on diagnosis or
prognosis predictions.10

Deep learning-based studies on MS classification or
future prognosis of MS patients are limited and most have used
a whole brain input strategy to build the models. Some
approaches have used multiple MRI sequences,11 the addition
of pre-extracted biomarkers, such as brain lesion masks, or have
used additional non-imaging data, such as clinical measures or
patients’ demographics.12 Different sampling strategies, rather
than using the whole brain, have been explored in other neuro-
degenerative diseases in which the use of brain MRI as input
for classification tasks has been more widely studied
(i.e., Alzheimer’s Disease). Depending on the extent of the
region-of-interest (ROI), studies can be classified in three cate-
gories: whole volume-level, regional-level, and patch-level. The
whole volume strategy considers the whole volume of the ana-
lyzed structure (the whole brain in our case) as input. At the
regional-level, the sampling is based on pre-segmented ROIs
which correspond to structures that have been previously used
as biomarkers in a given condition (eg, hippocampus, ventri-
cles).13,14 This level would include masked regions of the
whole-brain, such as segmented gray matter (GM) and white
matter (WM), tissue probability maps15,16 or a variation of
these, for example their modulation by the Jacobian of the
deformation field.17,18 Finally, there would be the patch-level
samplings, where the input would consist of several patches,
whose size can be reduced as desired, without needing to con-
tain a ROI in its entirety. Patch-level samplings, where patches
are commonly randomly selected from abnormal tissue,19 are
more widely used in segmentation tasks, where they were pro-
posed in order to more effectively capture local structural
changes.

The aim of this study was to investigate whether CNN
approaches that focus on different brain regional structures
perform better than a whole-brain CNN approach for the
stratification of patients with MS based on their disability
level, using a single brain MRI time-point.

Materials and Methods
The study was approved by the Vall d’Hebron Institute of
Research – Research and Ethics Committee (PR(AG)389/2021 and
PR(AG)99/2017) and informed consent was obtained from each
patient, for all data used during this research.

Datasets
In this study, we used data from two different cohorts (in-house and
external) of MS patients. The inclusion criteria were the same for
both datasets: 1) MRI scans available for image analysis and 2) the
corresponding clinical examination.

MRI sequence acquisitions included sagittal 3D T1-weighted
magnetization prepared rapid gradient-echo (MPRAGE) and trans-
verse T2-weighted fluid-attenuated inversion recovery (T2-FLAIR).
A clinical examination was performed within 6 months after the scan
acquisition. Clinical examination included assessment of either the
Expanded Disability Status Scale (EDSS) score (in-house cohort)20

or the Patient Determined Disease Steps (PDDS) score (external
cohort),21 depending on availability. The EDSS score ranges from
0 (no disability) to 10 (severe disability).2,22 The PDDS score ranges
from 0 to 8 and has been shown to have a strong correlation with
the EDSS score.23 Figure 1 shows examples of MRI scans of MS
patients with low and mild disability from the two cohorts.

IN-HOUSE DATASET. The in-house subjects were part of a larger
cohort of patients, the Barcelona CIS cohort,2 composed of consecu-
tive patients from the Multiple Sclerosis center of Catalonia
(Cemcat), Vall d’Hebron University Hospital (VHUH), prospec-
tively followed over time after their first demyelinating attack. The
selection of patients was based on the availability of MRI data that
could be closely associated with the clinical evaluation, on patients
that had their first demyelinating attack before the age of 50.

We included 319 unique patients, 215 with an EDSS score <3.0
and 104 with an EDSS score ≥3.0 (non-confirmed, i.e., EDSS ≥ 3.0
reached at least once, which might not be maintained over a mini-
mum period of 6 months). Each MRI scan was associated with
the closest available EDSS score (mean time difference = 37 days,
range = [1–161]). Demographics are shown in Table 1. A total of
382 scans, acquired from 2010 to 2020, that included multiple scans at
different time-points for 33 subjects.

The in-house dataset was acquired in a single center with five
different Siemens (Heidelberg, Germany) scanner models at two dif-
ferent magnetic fields (1.5 T and 3.0 T), with standardized acquisi-
tion protocols for each scanner (see Table S1 in the Supplemental
Material for specific acquisition parameters).

EXTERNAL VALIDATION (MS PATHS) DATASET. Multiple
Sclerosis Partners Advancing Technology and Health Solutions
(MS PATHS)24 is a learning health system in MS, started in 2016,
comprising a collaborative network of 10 healthcare centers, provid-
ing standardized routinely-acquired clinical and MRI data. From this
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FIGURE 1: Example cases of low (EDSS/PDDS = 0.0) and mild (EDSS = 3.5, PDDS = 3.0) disability in (a) the in-house and (b) the
external cohorts.

TABLE 1. Demographic and Clinical Data of Patients Included in the In-House Analysis

Full Cohort EDSS < 3.0 EDSS ≥ 3.0
N (Pts/Scans) = 319/382 N = 215/215 N = 104/167

Female, N (%)a 207 (65) 147 (68) 60 (58)

Confirmed diagnosis, N (%)a 260 (82) 160 (74) 100 (96)

Age at diagnosis, years, mean [range] 33.2 [14–59] 33.5 [16–59] 32.7 [14–55]

DD, years, mean (SD) 10.4 (7.0) 7.6 (6.6) 14.0 (5.6)

EDSS, median [range] 2.0 [0.0–9.0] 1.5 [0.0–2.5] 5.0 [3.0–9.0]

Phenotype, N (%)b

CIS 61 (16) 57 (26.5) 4 (2)

RRMS 232 (61) 157 (73) 75 (45)

SPMS 89 (23) 1 (0.5) 88 (53)

Scanner model, N (%)b

Avanto 64 (17) 19 (9) 45 (27)

Avanto Fit 64 (17) 43 (20) 21 (13)

Symphony 10 (3) 7 (3) 3 (2)

Symphony Tim 51 (13) 13 (6) 38 (23)

Tim Trio 193 (50) 133 (62) 60 (36)

Pts = patients; EDSS = Expanded Disability Status Scale; DD = disease duration; GM = gray matter; WM = white matter;
CIS = clinically isolated syndrome; RRMS = relapsing–remitting multiple sclerosis; SPMS = secondary progressive multiple sclerosis.
a% calculated with the number of patients.
b% calculated with the number of scans.
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large database, following the established criteria, we randomly
selected a subset, with representation of all grades of disability and
following the same distribution, along grades, than for the in-house
subset. This independent set was used for external validation.

The resultant set was composed of 440 patients (and scans)
imaged on four different Siemens 3 T scanner models
(Biograph_mMR, Skyra, Trio Tim and Verio) from six different
sites (excluding the provider of our in-house dataset). All scans
were acquired using standardized image acquisition protocols, as
in the Tim Trio scanner in Table S1 in the Supplemental Mate-
rial. Each MRI scan was associated with the closest PDDS score
(mean difference time 59 days, range = [1–185]). Demographic
and clinical data are summarized in Table 2.

Proposed Method
We used a deep learning model to stratify patients based on their
clinical evaluation score: moderate (EDSS ≥ 3.0) vs. mild
(EDSS < 3.0) disability.2 Different input strategies were studied on
the same network architecture to investigate not only a global image-
based approach but also different regional approaches as summarized
in Fig. 2.

Our deep learning classifier was trained with brain
T1-weighted (T1-w) and T2-FLAIR sequences from the in-house
dataset, using a 7-fold cross validation strategy. The total available
dataset was divided into 7 folds: four with 55 scans and three with
54 scans. In each iteration, the training set was composed of five
folds (�70% of the dataset), the validation set of 1-fold (�15%),
while the last one was used for inference (�15%). This process was
repeated seven times until all folds were used for inference. We
assured that patients with multiple scans were always in the same set
(training, validation or inference) so as not to bias the model.

We considered the global approach, which was trained with
the whole brain T1-w and T2-FLAIR sequences as input, as the ref-
erence model. In addition, we analyzed different regional approaches
based on ROIs that have previously been shown to be associated
with the prognosis of the disease, and which may serve as biomarkers
(eg, localized atrophy measures) or reflect typical locations of white
matter lesions3,5,6 in MS.

The selected regions were distinguished by their volume size,
i.e., 1) small regions (the lateral ventricles, the subcortical GM and
the brain stem and cerebellum [BSC]) and 2) large regions
(WM and GM). Depending on the input region that was used for
the model, different processing steps were applied to the images to
highlight the input information.

IMAGE PRE-PROCESSING. The same fully automatic image pre-
processing pipeline was applied to both VHUH (in-house) and MS
PATHS (external validation) datasets. All T1-w and T2-FLAIR
sequences were pre-processed with 1) bias correction,25 2) skull-
stripping,26 3) registration27 to MNI152 space, as well as co-registration
of T2-FLAIR sequences to T1-w space, and 4) min–max voxel intensity
normalization.

For the different input regional strategies, further processing
was performed to calculate the tissue masks and ROI sizes. All ROIs
and masks were obtained automatically and based on the average
population of the study. First, we performed automatic lesion seg-
mentation28 to lesion fill the T1-w scans.29 Afterwards, using the
T1-w lesion filled scan, we extracted the whole brain parcellation
with FastSurfer30 to obtain the desired regions: subcortical GM
structures (thalamus, putamen, caudate, and pallidum), lateral ven-
tricles, brainstem, and cerebellum areas, as well as, WM and GM tis-
sues. A graphical representation of the different samplings applied is
shown in Fig. 2b.

For the GM regional input strategy, in addition to the T1-w
and T2-FLAIR images, a third channel was incorporated as an input,
the GM modulation. The steps required to extract the GM modula-
tion are illustrated in Fig. 3. The GM modulation was used to pre-
serve the GM volume of the native space, through the resulting
Jacobian determinant from the nonlinear registration.31 This Jacobian
determinant (Fig. 3d) contained the local volume change in each voxel
when referred to the common MNI space.

NETWORK ARCHITECTURE. The proposed network was based
on a modified ResNet CNN architecture,32 built with three-
dimensional (3D) layers. The ResNet architecture has the capacity
to achieve state-of-the-art results comparable to their deeper and
more complex counterparts, with shorter training times, even when
using limited hardware.32 To build on these advantages, modifica-
tions were included in order to reduce the number of parameters
and the complexity of the final model. Each residual block was based
on 3D convolutional layers that produce 3 � 3 � 3 and 1 � 1 � 1
kernel convolution layers, normalized with batch normalization and
activated with leaky rectified linear unit (LeakyReLU). As shown in
Fig. 4, the architecture was composed of four residual blocks with
increasing numbers of kernels k (16, 32, 64, and 128), followed by a
2 � 2 � 2 downscale max pooling operation. Afterwards, the feature
map extracted was projected in a global adaptive max pooling layer
to reduce feature dimensionality and allow independence of the

TABLE 2. Demographic and Clinical Data of Patients
From MS PATHS Included in the Analysis

Full Cohort PDDS < 3.0 PDDS ≥ 3.0
N = 440 N = 220 N = 220

Female, N
(%)

310 (70) 170 (77) 140 (64)

Age at
diagnosis,
years,
mean
[range]

36.8 [19–69] 36.1 [19–62] 37.6 [19–69]

DD, years,
mean
(SD)

11.5 (9.1) 8.5 (7.6) 14.9 (9.5)

PDDS,
median
[range]

2.5 [0.0–7.0] 0.5 [0.0–2.0] 5.0 [3.0–7.0]

PDDS = Patient Determined Disease Steps; DD = disease
duration.
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input patch size. The final classification layer (fully connected layer)
was replaced by three successive 1 � 1 � 1 3D convolutional layers,
with k = 128, 64, 2, where the first two were activated with ReLU
and the last one with a Softmax, that outputs the probability to
belonging to one or the other class.

TRAINING PROCEDURE. For training the different models, only
the in-house dataset was used. A 7-fold patient cross validation strat-
egy was used to train and test each model. For each sampling
approach, we obtained seven different sets of parameters, i.e., seven
different models, that were evaluated on the corresponding inference
fold (�15% of patients). The folds were sampled to keep the same
class distribution in each one, while also following the distribution
present in the total dataset.

The sampling for each model was decided depending on the
type of input region analyzed. For small input regions, i.e., lateral
ventricles, subcortical GM and BSC, we used a square ROI-based
patch,13,14 automatically delineated from the maximum average map
of the region in question from the individual parcellations. The
resultant intensity patches had a size of 75 � 113 � 41 mm3 for
the lateral ventricles, 80 � 72 � 55 mm3 for subcortical GM and
123 � 85 � 61 mm3 for the BSC, and were centered on each struc-
ture. For the large regions, WM and GM tissues, we took the whole

brain patch size (144 � 184 � 152 mm3), but only kept the intensi-
ties of the tissue we intended to use as input. This was done by mas-
king the intensity patch with a dilated average mask of the studied
tissue. Therefore, only the intensities inside the analyzed mask were
considered18 (see Fig. 2b).

To mitigate the class imbalance, data augmentation was used.
Depending on the input region size, we applied different strategies.
For whole brain patches, the global approach and regional WM and
GM approaches, an axial flip was applied to all subjects with
EDSS ≥ 3.0 and to a random 75% of the patients with EDSS < 3.0,
trying to find an equilibrium between balancing the data and not
letting the model to learn a non-characteristic feature as the axial
flip. For ROI-based models, where the patches were smaller than the
whole brain patch, a random voxel displacement in the three dimen-
sions was used to generate additional patches of all subjects, consid-
ering the 1:3 proportion of patients with EDSS ≥ 3.0 in the dataset.

Each model was trained using T1-w and T2-FLAIR scans
(from the in-house dataset) and the corresponding EDSS-based class
(EDSS ≥ or <3.0). We trained the model for a maximum of
200 epochs, with an early stopping strategy to prevent overfitting.
The model was optimized with a learning decay strategy depending
also on the validation performance, and trained by minimizing a
weighted cross entropy loss as cost function.

FIGURE 2: Classification strategies. (a) Whole brain and (b) individual regions were evaluated by the classifier model to predict the
probability of belonging to EDSS ≥ 3.0 or EDSS < 3.0. Large regions (WM and GM) were masked from the whole brain and, small
regions (subcortical-GM, lateral ventricles, and BSC) are cropped to the ROI comprising the specific structure. (c) The single regional
model predictions were combined in two voting fusion ensembles to predict the disability status of the patient: 1) based on the
maximum probability of the five regional models (max) and 2) based on the mode of the final regional predictions (majority).
WM = white matter; GM = gray matter; BSC = brain stem and cerebellum.
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INFERENCE. For each individual CNN model, and following the
same sampling procedure as described for model training, each
model-specific patch, as described during training, was used as input
through the trained model providing the output probabilities of
belonging to one class or the other. The final classification was deter-
mined by the maximum of both probabilities, with a threshold
set at 0.5.

In addition to the results of each individual model, we com-
puted an ensemble of the regional models with a late fusion
strategy.33 As represented in Fig. 2c, the predictions obtained with
each trained regional model were aggregated to make a final predic-
tion based on two different voting strategies: 1) maximum and 2)
majority voting. The maximum voting strategy was calculated as the
prediction of the model with the highest probability, while the
majority voting approach was calculated as the mode of the different
predictions obtained after thresholding each model’s probabilities.
The calculation of the ensemble models provided individual

information of how subjects performed within the different models,
presenting either a higher prediction probability (maximum voting)
or full agreement across all different models (majority voting).

Without any retraining or fine-tuning of the different models
trained with the in-house dataset, inference on the external valida-
tion set was also computed as described above. The final prediction
per subject was obtained from the majority voting across the seven
different cross-validation models, for each one of the sampling strate-
gies. To evaluate the ensemble of regional models, a maximum vot-
ing was computed across the 7-folds of each regional model.
Following this, using the winning fold, the specific voting strategy
was computed, i.e., majority or maximum voting across regional
models.

Evaluation Measures and Statistical Analysis
To evaluate and compare the performance of the models presented
we used the following metrics:

FIGURE 3: GM modulation. As part of the pre-processing, the T1-weighted scan in native space was registered to the MNI space (a)
linearly and (b) non-linearly. The linearly registered scan was used to obtain the GM probability map (c) and the non-linearly
registered scan was used to compute the Jacobian determinant (d). The GM modulation was obtained as the product of the GM
probability map and the deformation (the Jacobian determinant) (e). A Gaussian kernel was then used to smooth the product at a
FWHM of 4.7 mm (f). GM = gray matter; FWHM = full width at half maximum.

FIGURE 4: Residual convolutional neural network architecture. k = kernels; GAP = global adaptive max pooling; ReLU = rectified
linear unit.
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1. Sensitivity (SENS) of correctly classified subjects with
EDSS ≥ 3.0 thresholded at 0.5, SENS¼TP= TPþFNð Þ

2. Specificity (SPEC) of correctly classified subjects with
EDSS < 3.0 thresholded at 0.5, SPEC¼TN= TNþFPð Þ

3. Balanced accuracy (ACC) in correctly classifying each individual
by means of their EDSS, ACC¼ SENSþSPECð Þ=2

4. ROC (receiver operating characteristic) curve showing the perfor-
mance at all classification thresholds.

5. AUC, the area under the ROC curve, calculated based on all pos-
sible pairs of SENS and 1-SPEC obtained by changing the
thresholds performed on the classification scores.

where TP (true positives) were the number of correctly classified
patients with EDSS ≥ 3.0, TN (true negatives) were the number of
correctly classified patients with EDSS < 3.0, FP (false positives)
were the number of patients with EDSS < 3.0 classified as
EDSS ≥ 3.0, and FN (false negatives) were the number of patients
with EDSS ≥ 3.0 classified as EDSS < 3.0. The results were reported
in terms of mean and standard deviation for the 7-fold cross valida-
tion computed on the in-house dataset and as majority voting of the
seven models for the independent dataset.

Paired t-tests were used to compare the performance of each
sampling strategy model against the others. T-tests were obtained
using the output probabilities from each model to compare the
performance on each individual patient in which they were evalu-
ated. To compare the AUCs between models we used DeLong’s
test.34 A P-value <0.05 was considered statistically significant. The
proposed method and analysis was entirely implemented in Python
(https://www.python.org/), using the Pytorch library.35 The model
implementation and source code are publicly available at https://
github.com/suliciac/MStratification. All the experiments were run
on a GNU/Linux machine box running Ubuntu 20.04, with
125 GB RAM. For training the model, we used a single Quadro
RTX 5000 GPU (NVIDIA Corp, USA) with 16 GB VRAM
memory.

Results
Evaluation of Deep Learning Models: In-House
Dataset
The global approach, using the whole brain patch as input,
achieved a mean balanced accuracy of 79% (range across
folds: [70–83]%), 77% sensitivity and 81% specificity, for
classifying patients with an EDSS < or ≥3.0. The best per-
forming individual regional model was the GM model, with a
mean accuracy of 81% [74–87]% and the highest sensitivity
of 79% (specificity 83%). The subcortical-GM (a subregion
of the GM model) achieved a 78% [72–91]% accuracy, in
line with the WM model which had the same accuracy and
less variability [72–88]%. Both, subcortical-GM and WM
models, also achieved similar sensitivity (77% and 75%,
respectively) and specificity (79% and 81%). The other two
regional models, ventricles and BSC, showed a similar but
lower accuracy (76% [66–86]% and 76% [65–83]%, respec-
tively), but with differentiated sensitivity (76% and 68%)
and specificity (76% and 84%) at 0.5 operation point.

Figure 5a shows the ROC curves and AUC values for
all the approaches. As observed with the thresholded values at
0.5 (sensitivity and specificity) the GM regional model had
the highest AUC (0.87) and the BSC had the lowest (0.82).

When performing a t-test analysis between pairs of
models, the BSC and the ventricles regional models had sig-
nificantly poorer results compared to the other models, which
were not significantly different from each other. All the com-
binations of t-tests between models are shown in Table S2 in
the Supplemental Material.

When combining the final performance of the regional
models in a voting ensemble approach (see Fig. 2c), we
obtained accuracies of 81% [79–84]% and 80% [77–85]%
using maximum and majority fusion strategies, respectively,
with a lower variability across folds and a higher specificity
(88% and 83%, respectively) than the individual models and
a similar sensitivity (73% and 77%). In Fig. 5a, note that the
highest AUC value is obtained with the ensemble model
using majority voting (AUC 0.88). In general, the AUC
results were slightly better in the voting ensemble approaches
than in the best individual regional model (GM) in terms of
accuracy and specificity. Delong’s test showed that most
of the paired comparisons with the majority voting ensemble
were statistically significant (see Table S3 in the Supplemental
Material). In the majority voting ensemble, for most of
patients, all regional models agreed on the same class attribu-
tion, being the WM the model most frequently contributing
to the vote. In the maximum voting strategy, the models that
contributed the most were the GM and BSC, reflected in the
highest specificities of these models. The relation of all
regional models which were winning in the maximum voting
approach, i.e., having the highest output probabilities, can be
found in Table S4 in the Supplemental Material.

Validation With the Independent MS PATHS
Dataset
The overall performance was lower than with the in-house
dataset, obtaining a balanced accuracy of 71% [68–72]%,
68% sensitivity and 75% specificity when using the whole
brain approach. The WM regional model obtained the
highest individual regional performance with 72% [69–72]%
accuracy and the same sensitivity and specificity as the whole
brain approach. GM and ventricles regional models presented
a similar accuracy (70% [68–71]%). The subcortical-GM
model achieved a similar accuracy (69%) with a much lower
sensitivity (59%), and a higher specificity (80%).

When performing the statistical analysis on the so far
presented models, there was no evidence of statistically signif-
icant differences between most of them (see Table S5 in the
Supplemental Material for all paired t-test combinations).
However, as in the in-house cohort, the BSC model per-
formed significantly worse than the other models, with 67%
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accuracy, 48% sensitivity and 85% specificity at 0.5 operating
point.

Figure 5b shows the mean across-folds ROC curves for
all the models. As observed with the values obtained at 0.5
operating point, the WM model achieved the highest AUC
(0.75) and the BSC model had the lowest (0.72). Delong’s
test showed that none of the AUCs results were statistically
significant (see Table S6 in the Supplemental Material for all
the models’ combinations P-values).

Evaluating the results obtained with the majority voting
ensemble, in most cases there was an agreement between all
regional models, with the WM model being the most fre-
quent contributor, i.e., the model that correctly stratified
more patients in agreement with the others, when calculating
the majority voting. When analyzing the maximum voting
strategy, we observed that the GM model provided the
highest probabilities followed by the BSC model (see
Table S7 in the Supplemental Material for the complete con-
tributions in the maximum voting ensemble). As seen in the
in-house dataset performance, the majority and maximum
voting ensembles showed similar metrics to those of the indi-
vidual models that best contributed to them (mean balanced
accuracy of 73% and 72%, respectively).

Discussion
The current study investigated the ability of different input
strategies (global, regional and the combination of these
(ensemble)) to accurately classify MS patients based on their
disability level through deep learning-based CNN models,
using two sequences (T1-w and T2-FLAIR) of a single MRI
time-point. The study was performed in a large cohort of
patients with MS and validated in an external MS cohort.

Our findings showed that, in the in-house cohort
(VHUH), the best accuracies were achieved with the regional

GM approach followed by the whole-brain approach, whereas
the best performing models in the external dataset
(MS PATHS) were from the regional WM approach, followed
by the whole-brain approach. Thus, the global whole-brain
approach offered the best trade-off between internal performance
and external validation, although some regional models such as
GM and WM models showed similar overall performances.

Among the different individual strategies presented,
when evaluating the in-house dataset, the regional GM model
achieved the best overall performance results. This may be
explained by the fact that in this approach, a third input
channel, the GM modulation, was incorporated. The GM
modulation represents the deformation suffered by the image
when registering the scans to a common space. Thus, it pro-
vides information about the native space, accounting for a
possible effect of GM atrophy, which is known to be impor-
tant for development of future disability in MS.36,37

With the in-house dataset, the next best ranking models
were the whole-brain approach and the regional WM and
subcortical-GM models. The whole-brain and the WM
models are those that may have a direct relationship with the
WM lesion load. Indeed, a post-hoc analysis (see Supplemen-
tal Material for detailed information) showed that there was
an association between WM lesion load and model output
for the global and WM-regional models.

On the other hand, the subcortical-GM model perfor-
mance was similar to that obtained with the GM tissue model.
These results are in line with the strong correlation shown
between GM subcortical volumes and disease severity.38

In this study, the ventricles model performed acceptably
well in both datasets. The presence (total or partial) of WM
lesions together with the presence or absence of atrophy that
can be measured by the ventricles size may have helped with
the model accuracy.1,39 However, as for the BSC regional
model, not having been given the whole brain image as input

FIGURE 5: ROC curves and AUC values for each regional model, the global approach and the two ensemble strategies (maximum
vote and majority vote) of the regional models for (a) the in-house dataset and (b) the external dataset. In (a), the mean ROC of all
the in-house cases is represented, collected from the different inferenced folds. In (b), the mean ROC is computed with each
external cohort case majority voting result across the 7-folds evaluated.
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may have constrained the model, leading to statistically signif-
icant poorer performance than the models with a larger
regional input (see Table S2 in the Supplemental Material for
absolute P-values). The BSC model had the poorest accuracy
in both datasets. However, the BSC model was a relevant
addition to the maximum voting ensemble model, due to it
having the highest specificity that resulted in it being the
model that contributed most when identifying patients with
EDSS < 3.0. On the other hand, the GM model was the
model that contributed most for the correct classification of
patients with EDSS ≥ 3.0, due to it having the highest sensi-
tivity when evaluated individually.

In general, the performance of the different models on
the MS PATHS subset resulted in slightly lower performance
than on the in-house cohort. However, considering that there
was no additional training or fine-tuning to evaluate the
unseen data, the accuracy of all models was satisfactory,
suggesting the generalization of our models. However, using a
different score (PDDS instead of the EDSS used for training)
to classify this external validation dataset may be seen as a
limitation of this evaluation, despite the strong correlation
between both metrics.23

Our results highlight the importance of considering
whole-brain input sampling strategies to promote generalizabil-
ity of CNN-based stratification models. Although this might
be intuitive, this study quantitatively assessed the effect of the
type of input that a CNN-based model must have in this MS
stratification problem. Building accurate CNN-based models is
key to predicting individual patients’ disease course in order to
achieve a personalized approach.1 The methodology presented
in this study, along with retraining or fine tuning, may have
potential for diagnostic or progression prediction tasks.

Limitations
Apart from the relatively small sample size used for training
the models from the in-house dataset, all five of the MRI
scanners present in the study were from the same vendor.
This can be seen as a limitation in terms of model generaliza-
tion. However, the training cohort did include scans acquired
at different strength fields (1.5 T and 3 T), with some varia-
tion in protocols between scanners. Approximately half of the
patient data was acquired with the same acquisition protocol
that was used in the external validation cohort (MS PATHS),
where images were also acquired with different MRI scanners
from the same vendor, three of which were not included in
the in-house dataset. The external validation was also
restricted by not using the same clinical score as used in the
training set (PDDS instead of EDSS). Of note, although
EDSS and PDDS are both nonlinear scales, the EDSS is
obtained by a neurologist, after performing an anamnesis and
a neurological examination, and the PDDS is instead reported
by the patient, implying a strong subjective nature. Therefore,
they reflect essentially different points of view of the disease.

However, they are highly correlated,23 which is reassuring
and suggests that they may be used for similar predictive and
monitoring purposes. Indeed, the PDDS is frequently used in
those clinical settings where the EDSS is not available. In our
study, we considered an EDSS of 3.0 to be equivalent to a
PDDS of 3.0. However, other equivalences were indeed pos-
sible and should be explored in further studies.

From the clinical point of view, setting a threshold at a
certain EDSS may not involve all the factors that determine
disability in MS patients at a cross-sectional point. Despite
this, EDSS is the most used clinical score to quantify disabil-
ity in MS clinical practice and clinical trials and reaching an
EDSS ≥ 3.0 has been shown to be a relevant outcome when
studying the disease progression course.2 However, in this
study, the EDSS ≥ 3.0 was not always confirmed in a follow-
up visit, which means we may not have analyzed a clinically
stable population. Also, we did not account for any disease-
modifying treatment. Further studies taking these aspects into
account are therefore necessary.

Conclusion
This study showed that CNN-based models were able to
extract features from different input strategies and lead to a
correct classification of MS patients based on their disability
score. The global (whole-brain) and large ROI-input models
(WM and GM) resulted in the highest classification accura-
cies. While their similar behavior suggests that the CNN is
able to adapt to its inputs, this also indicates that focusing on
specific regions, even if a priori important for MS, does not
necessarily translate into better performance. Indeed, using
global input approaches may result in a better generalization
of such CNN models as it offered the best trade-off between
internal performance and external validation.
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