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Abstract
The phase portraits of the planar linear differential systems are very well known. This is 
not the case for the phase portraits of the planar continuous piecewise linear differential 
systems. In this paper we classify the phase portraits of the class of planar continuous 
piecewise linear differential systems of the form 

in the Poincaré disc when a� − b� ≠ 0 , and prove the existence and uniqueness of limit 
cycles. Note that on the straight line x = 0 these differential systems are only continuous.

Keywords Continuous piecewise linear differential system · Phase portrait · Limit cycle · 
Poincaré disc

Mathematics Subject Classification 34A36 · 34C07 · 37G05

Introduction and Statement of the Main Result

Andronov et al. [1] started to study the piecewise linear differential systems in the 1920s 
for modelizing some mechanical systems, but the interest on this kind of differential sys-
tems persists up to nowadays. During the past twenty years many authors studied the 
dynamics of the piecewise linear differential systems, which can model many problems of 
mechanics, electronics, economy more accurately, see for instance [3, 4, 14, 18].

While the phase portraits of the linear differential systems

ẋ = a|x| + by + c, ẏ = 𝛼|x| + 𝛽y + 𝛾 ,

ẋ = ax + by + c, ẏ = 𝛼x + 𝛽y + 𝛾 ,
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are very well known, the phase portraits of the most easiest class of continuous piecewise 
linear differential systems

with a� − b� ≠ 0 separated by the straight line x = 0 are unknown. As usual the dot 
denotes derivative with respect to the independent variable of the differential systems, 
here called the time t. Note that these piecewise linear differential systems are analytic 
in ℝ2 ⧵ {x = 0} and only continuous on the straight line x = 0 . Of course the domain of 
definition of the continuous piecewise linear differential systems (1) is the whole plane ℝ2.

The objective of this paper is to classify all topologically distinct phase portraits of the dif-
ferential systems (1) in the Poincaré disc.

Recall that the phase portrait of a differential system is the description of the domain of 
definition of the differential system as union of all their orbits, in this way we know where 
the orbits born and die (i.e., their �-limits and �-limits), and where equilibrium points, 
periodic orbits and homoclinic orbits are, ..., of course if these kinds of orbits exist. In 
other words the phase portrait of a differential system provides all the qualitative informa-
tion about the dynamics of a differential system. There are some new results about planar 
continuous piecewise linear differential systems with two pieces separated by a straight 
line, such as [9, 10], and some references therein.

A phase portrait in the Poincaré disc has the advantage with respect to a phase por-
trait in the plane ℝ2 that it controls the orbits which come from or escape to the infinity. 
Roughly speaking the Poincaré disc � is the closed disc of radius one centered at the origin 
of coordinates whose interior has been identified with ℝ2 and its boundary, the circle �1 , 
with the infinity of ℝ2 . For more details in the Poincaré disc see “Poincaré Compactifica-
tion” section.

A periodic orbit isolated in the set of all periodic orbits of systems (1) is called a limit 
cycle.

Our main result is the following one.

Theorem 1 The phase portrait in the Poincaré disc of a continuous piecewise linear differ-
ential system (1) is topologically equivalent to one of the XIX phase portraits described in 
Fig. 1. Moreover, there exists a limit cycle in Figs. 21 and 25.

Theorem 1 is proved in Sects. 3 and 4.

Preliminaries

The Normal Forms of the Differential Systems (1)

The continuous piecewise linear differential systems (1) depend on six parameters, but we 
will see that only two parameters are essential.

Since b and � cannot be zero simultaneously, first we can assume that b ≠ 0 . 
Inspired in Proposition 3.1 of [7] we do the diffeomorphism h ∶ ℝ

2
→ ℝ

2 defined by 
h(x, y) = (x, �x − by − c) = (X, Y) , which transforms systems (1) into the continuous piece-
wise linear differential systems

(1)ẋ = a|x| + by + c, ẏ = 𝛼|x| + 𝛽y + 𝛾 ,

(2)Ẋ = āX − Y , Ẏ = d̄X + c̄, if X ≥ 0, and
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Fig. 1  The phase portrait in the Poincaré disc of a continuous piecewise differential system (1) is topologi-
cally equivalent to one of the XIX phase portraits
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where ā = 𝛽 + a , b̄ = 𝛽 − a , c̄ = c𝛽 − b𝛾 and d̄ = a𝛽 − b𝛼 ≠ 0.
If c̄ = 0 , then doing the rescaling (X,Y , t) = (x∕|d̄|, y, t̄∕|d̄|) systems (2) and (3) become

where â = ā∕|d̄| , b̂ = b̄∕|d̄| , now the dot denotes derivative with respect to the new time t̄ , 
the upper sign takes place when d̄ > 0 , and the lower sign takes place when d̄ < 0 . Note 
that by exchanging the position of â and b̂ systems (4) with upper sign are the same that 
systems (5) with lower sign, while systems (4) with lower sign are the same that systems 
(5) with upper sign.

Now we further do the rescaling (X,Y , t) = (c̄x̄∕d̄, c̄ȳ∕
√
�d̄�, t̄∕

√
�d̄�) if c̄d̄ > 0 and sys-

tems (2) and (3) become

where ã = ā∕
√
�d̄� , b̃ = b̄∕

√
�d̄� , and now the dot denotes derivative with respect to the 

new time t̄ . Moreover, if d̄ > 0 then the signs in (6) and (7) are negative, otherwise they 
are positive. When c̄d̄ < 0 , using the rescaling (X,Y , t) = (−c̄x̄∕d̄, c̄ȳ∕

√
�d̄�, t̄∕

√
�d̄�) , we 

change systems (2) and (3) to the following

Similarly, if d̄ > 0 then the signs in (8) and (9) are positive, otherwise they are negative. By 
(x̄, ȳ, t) → (−x̄, ȳ, t) , the negative situation is similar to the positive situation by exchanging 
the position of ã and b̃.

Assuming that b = 0 , we similarly do the diffeomorphism h ∶ ℝ
2
→ ℝ

2 defined as 
h(x, y) = (x, �y + �) = (X, Y) , which transforms systems (1) into the continuous piecewise 
linear differential systems

If c = 0 , then doing the rescaling (X, Y , t) = (x, y, t̄∕|a|) systems (10) and (11) become

where ǎ = 𝛼𝛽∕|a| , b̌ = 𝛽∕|a| , now the dot denotes derivative with respect to the new time 
t̄ , the upper sign takes place when a > 0 , and the lower sign takes place when a < 0 . Note 

(3)Ẋ = b̄X − Y , Ẏ = −d̄X + c̄, if X ≤ 0,

(4)ẋ = âx − y, ẏ = ±x, if x ≥ 0, and

(5)ẋ = b̂x − y, ẏ = ∓x, if x ≤ 0,

(6)̇̄x = ãx̄ ± ȳ, ̇̄y = x̄ + 1, if x̄ ≥ 0, and

(7)̇̄x = b̃x̄ ± ȳ, ̇̄y = −x̄ + 1, if x̄ ≤ 0,

(8)̇̄x = ãx̄ ± ȳ, ̇̄y = −x̄ + 1, if x̄ ≥ 0, and

(9)̇̄x = b̃x̄ ± ȳ, ̇̄y = x̄ + 1, if x̄ ≤ 0.

(10)Ẋ = aX + c, Ẏ = 𝛽(𝛼X + Y), if X ≥ 0, and

(11)Ẋ = −aX + c, Ẏ = 𝛽(−𝛼X + Y), if X ≤ 0.

(12)ẋ = ±x, ẏ = ǎx + b̌y, if x ≥ 0, and

(13)ẋ = ∓x, ẏ = −ǎx + b̌y, if x ≤ 0,
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that a ≠ 0 , otherwise a� − �b = 0 . On the other hand systems (12) with the lower sign are 
the same that systems (13) with the upper sign if we regard ǎ as −ǎ . While systems (12) 
with the upper sign are also the same that systems (13) with the lower sign.

If c ≠ 0 , doing the rescaling (X, Y , t) = (|c|x∕|a|, y, t̄∕|a|) systems (10) and (11) 
become

where ̌̌a = 𝛼𝛽|c|∕|a|2 , b̌ = 𝛽∕|a| and now the dot denotes derivative with respect to the 
new time t̄ . Note that the signs of a and c determine the signs in front of x and 1 respec-
tively. More precisely, the upper signs takes place when a > 0 and c > 0 respectively, and 
the lower signs takes place when a < 0 and c < 0 respectively. For convenience we denote 
systems (14) by S

+
∶ (+,+), S

+
∶ (+,−), S

+
∶ (−,+), S

+
∶ (−,−) and systems (15) by 

S
−
∶ (−,+), S

−
∶ (−,−), S

−
∶ (+,+), S

−
∶ (+,−) according to the order of signs in front of 

x and 1. By (x, y, ̌̌a, b̌, t) → (x, y,− ̌̌a,−b̌,−t), systems S
+
∶ (+,+) and S

+
(+,−) (respectively 

S
−
(−,+) and S

−
(−,−) ) are changed to systems S

+
∶ (−,−) and S

+
∶ (−,+) (respectively 

S
−
(+,−) and S

−
(+,+) ). Thus we can obtain the 6 normal forms with only two parameters 

of the continuous piecewise differential systems (1) shown in Table 1, where we use � and 
� as two new parameters for convenience. This completes the proof of Table 1.

In summary to classify the phase portraits of the continuous piecewise differential 
systems (1) is equivalent to classify the phase portraits of the continuous piecewise lin-
ear differential systems of Table 1. Note that the continuous piecewise linear differential 
systems of Table 1 only depend on two parameters.

(14)S
+
∶ ẋ = ±x ± 1, ẏ = ̌̌ax + b̌y, if x ≥ 0, and

(15)S
−
∶ ẋ = ∓x ± 1, ẏ = − ̌̌ax + b̌y, if x ≤ 0.

Table 1  The 6 normal forms with only two parameters of the continuous piecewise differential systems (1)

b ≠ 0 c̄ < 0  d̄ > 0             S
+
∶ ẋ = 𝜎x + y, ẏ = −x + 1 ,    if x ≥ 0

(I):
            S

−
∶ ẋ = 𝜍x + y, ẏ = x + 1 ,    if x ≤ 0

c̄ = 0  d̄ > 0             S
+
∶ ẋ = 𝜎x − y, ẏ = x ,    if x ≥ 0

(II):
            S

−
∶ ẋ = 𝜍x − y, ẏ = −x ,    if x ≤ 0

c̄ > 0  d̄ > 0             S
+
∶ ẋ = 𝜎x − y, ẏ = x + 1, if x ≥ 0

(III):
            S

−
∶ ẋ = 𝜍x − y, ẏ = −x + 1, if x ≤ 0

b = 0 c < 0  a > 0             S
+
∶ ẋ = x − 1, ẏ = 𝜎x + 𝜍y, if x ≥ 0

(IV):
            S

−
∶ ẋ = −x − 1, ẏ = −𝜎x + 𝜍y, if x ≤ 0,

 a < 0             S
+
∶ ẋ = −x − 1, ẏ = 𝜎x + 𝜍y, if x ≥ 0

(V):
            S

−
∶ ẋ = x − 1, ẏ = −𝜎x + 𝜍y, if x ≤ 0,

c = 0  a > 0             S
+
∶ ẋ = x, ẏ = 𝜎x + 𝜍y, if x ≥ 0

(VI):
            S

−
∶ ẋ = −x, ẏ = −𝜎x + 𝜍y, if x ≤ 0,
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Poincaré Compactification

In the proof of Theorem  1 we will use the Poincaré compactification of a pla-
nar polynomial vector field X(x, y) = (P(x, y),Q(x, y)) of degree d. The Poincaré 
compactification of X  , denoted by p(X) , is an induced vector field on the sphere 
𝕊
2
= {y = (y1, y2, y3) ∈ ℝ

3
∶ y2

1
+ y2

2
+ y2

3
= 1} . We call �2 the Poincaré sphere. For more 

details on the Poincaré compactification see [5, Chapter 5]. Here we just introduce what we 
need.

Denote by Tp�2 be the tangent space to �2 at the point p. Assume that X  is defined 
in the plane T

(0,0,1)𝕊
2
= ℝ

2 . Consider the central projection f ∶ T
(0,0,1)�

2
→ �

2 . This map 
defines two copies of X  , one in the open northern hemisphere H+ and the other in the open 
southern hemisphere H− . Denote by X1 the vector field Df◦X  defined on �2 except on its 
equator �1

= {y ∈ �
2
∶ y3 = 0} . Clearly �1 is identified with the infinity of ℝ2 . In order 

to extend X1 to a vector field on �2 (including �1 ) it is necessary that X  satisfies suitable 
conditions. In the case that X  is a planar polynomial vector field of degree d, then p(X) is 
the only analytic extension yd−1

3
X

1 to �2 . On �2⧵�1
= H

+
∪H

− there are two symmetric 
copies of p(X) , one in H+ and the other in H− , and knowing the behaviour of p(X) around 
�
1 , we know the behaviour of X  at infinity. The Poincaré compactification has the property 

that �1 is invariant under the flow of p(X) . The equilibrium points of X  are called the finite 
equilibrium points of X  or of p(X) , while the equilibrium points of p(X) contained in �1 , 
i.e. at infinity, are called the infinite equilibrium points of X  or of p(X) . It is known that the 
infinity equilibrium points appear in pairs diametrically opposed.

To study the vector field p(X) we use six local charts on �
2 given by 

Uk = {y ∈ �
2
∶ yk > 0} , Vk = {y ∈ �

2
∶ yk < 0} for k = 1, 2, 3 . The corresponding local 

maps �k ∶ Uk → ℝ
2 and �k ∶ Vk → ℝ

2 are defined as �k(y) = �k(y) = (ym∕yk, yn∕yk) for 
m < n and m, n ≠ k . We denote by z = (u, v) the value of �k(y) or �k(y) for any k, then (u, v) 
will play different roles depending on the local chart we are considering. The points of the 
infinity �1 in any chart have their coordinates v = 0 . The expression for p(X) in local chart 
(U1,�1) is

in the local chart (U2,�2) is

and in the local chart (U3,�3) is u̇ = P(u, v), v̇ = Q(u, v).
We note that the expression of the vector field p(X) in the local chart (Vi,�i) is equal to 

the expression in the local chart (Ui,�i) multiplied by (−1)d−1 for i = 1, 2, 3.
The orthogonal projection under �(y1, y2, y3) = (y1, y2) of the closed northern hemi-

sphere of �2 onto the plane y3 = 0 is a closed disc � of radius one centered at the origin of 
coordinates called the Poincaré disc. Since a copy of the vector field X  on the plane ℝ2 is 
in the open northern hemisphere of �2 , the interior of the Poincaré disc � is identified with 
ℝ

2 and the boundary of � , the equator of �2 , is identified with the infinity of ℝ2 . Conse-
quently the phase portrait of the vector field X  extended to the infinity corresponds to the 
projection of the phase portrait of the vector field p(X) in the Poincaré disc �.

u̇ = vd
[

−uP
(
1

v
,
u

v

)

+ Q
(
1

v
,
u

v

)]

, v̇ = −vd+1P
(
1

v
,
u

v

)

,

u̇ = vd
[

−uQ
(
u

v
,
1

v

)

+ P
(
u

v
,
1

v

)]

, v̇ = −vd+1Q
(
u

v
,
1

v

)

,
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By definition the infinite equilibrium points of the polynomial vector field X  are the 
equilibrium points of p(X) contained in the boundary of the Poincaré disc, i.e. in �1 , and 
the finite equilibrium points of X  are the equilibrium points of p(X) contained in the inte-
rior of the Poincaré disc, which of course coincide with the equilibrium points of X  in ℝ2.

Note that for studying the infinite equilibrium points of the continuous piecewise differ-
ential systems (1) in x ≥ 0 we only need to study the infinite equilibrium points which are 
in the local chart U1 and to determine if the origin of the local chart U2 is or not an equilib-
rium point. While for studying the infinite equilibrium points of the continuous piecewise 
differential systems (1) in x ≤ 0 we only need to study the infinite equilibrium points which 
are in the local chart V1 and to determine if the origin of the local chart U2 is or not an equi-
librium point.

Topological Equivalence of Two Polynomial Vector Fields

Let X1 and X2 be two polynomial vector fields on ℝ2 . We say that they are topologically 
equivalent if there exists a homeomorphism on the Poincaré disc � which preserves the 
infinity �1 and sends the orbits of �(p(X1)) to orbits of �(p(X2)) , preserving or reversing 
the orientation of all the orbits.

A separatrix of the Poincaré compactification �(p(X)) is one of following orbits: all the 
orbits at the infinity �1 , the finite equilibrium points, periodic orbits which are isolated in 
the set of periodic orbits at least by one side, when a periodic orbit is isolated in the set 
of periodic orbits by both sides it is a limit cycle, and the two orbits at the boundary of 
a hyperbolic sector at a finite or an infinite equilibrium point, see for more details on the 
separatrices [15, 16].

The set of all separatrices of �(p(X)) , which we denote by ΣX , is a closed set (see [16]).
A canonical region of �(p(X)) is an open connected component of � ⧵ ΣX . The union 

of the set ΣX with an orbit of each canonical region form the separatrix configuration of 
�(p(X)) and is denoted by Σ�

X
 . We denote the number of separatrices of a phase portrait in 

the Poincaré disc by S, and its number of canonical regions by R.
Two separatrix configurations Σ�

X1

 and Σ�

X2

 are topologically equivalent if there is a 
homeomorphism h ∶ � ⟶ � such that h(Σ�

X1

) = Σ
�

X2

.
According to the following theorem which was proved by Markus [15], Neumann [16] 

and Peixoto [17], it is sufficient to investigate the separatrix configuration of a polynomial 
differential system, for determining its global phase portrait.

Theorem  2 Two Poincaré compactified polynomial vector fields �(p(X1)) and �(p(X2)) 
with finitely many separatrices are topologically equivalent if and only if their separatrix 
configurations Σ�

X1

 and Σ�

X2

 are topologically equivalent.

Limit Cycles

In 1991–1992 Lum and Chua in [12, 13] conjectured that a continuous piecewise linear dif-
ferential system in the plane with two pieces separated by one straight line has at most one 
limit cycle. We note that even in this apparent simple case, only after a difficult analysis it 
was possible to prove the existence of at most one limit cycle, thus in 1998 this conjecture 
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was proved by Freire, Ponce, Rodrigo and Torres in [6]. Recently, a new easier proof that 
at most one limit cycle exists for the continuous piecewise linear differential systems with 
two pieces separated by one straight line has been done by Llibre et al. in [11]. For other 
results on the limit cycles of continuous and discontinuous piecewise differential systems 
see [2].

Proof of Theorem 1

The continuous piecewise differential systems (1) with a� − b� ≠ 0 are topologically 
equivalent to some of the six continuous piecewise differential systems of Table 1.

If the x-coordinate of an equilibrium point is positive (respectively negative), this equi-
librium point is real (respectively virtual) for the differential systems S

+
 . If the x-coordi-

nate of an equilibrium point is negative (respectively positive), this equilibrium point is 
real (respectively virtual) for the differential systems S

−
 . Of course if the x-coordinate of 

an equilibrium point is zero, then this equilibrium point is real for both differential systems 
S
+
 and S

−
.

Limit Cycles

For continuous piecewise linear differential systems (1), we study the existence and 
uniqueness of their limit cycles, see “Limit Cycles” section. Note that a region enclosed by 
a periodic orbit of systems (1) must contain equilibrium points and the sum of the indices 
of the equilibrium points in a region enclosed by any periodic orbit of systems (1) is one, 
as it is shown in the properties 2 and 3 of [19, p. 148].

Lemma 3 For continuous piecewise linear differential systems (I) there exists a unique limit 
cycle lying in the strip −1 < x < 0 if either 𝜍 < 0 and 0 < 𝜎 < 2 , or 𝜍 > 0 and −2 < 𝜎 < 0 . 
Moreover, if � = 0 and � = 0 there is a continuum of periodic orbits surrounding the equi-
librium point P

+
 of systems S

+
 bounded by a homoclinic orbit connecting the saddle P

−
 

of systems S
−
 . And there is no periodic orbits for continuous piecewise linear differential 

systems (II) − (VI)

Proof First we see that systems S
−
 (respectively S

+
 ) have the equilibrium point P

−
(−1, �) 

(respectively P
+
(1,−�) ). Furthermore, the eigenvalues of the Jacobian matrix evaluated at 

P
−
 are (� ±

√
�2 + 4)∕2 . The equilibrium point P

−
 is a saddle whose index is −1 , implying 

that there is no periodic orbits surrounding P
−
 for systems (I) in the plane x ≤ 1.

The eigenvalues of the equilibrium point P
+
 are (� ±

√
�2 − 4)∕2 . So if � ≤ −2 (respec-

tively � ≥ 2 ) then 𝜆
−
≤ 𝜆

+
< 0 (respectively 𝜆

+
≥ 𝜆

−
> 0 ) implying that P

+
 is a stable 

(respectively an unstable) node. If −2 < 𝜎 < 0 (respectively 0 < 𝜎 < 2 ) then �
±
 are a pair 

of imaginary eigenvalues with negative (respectively positive) real part, implying that P
+
 

is a stable (respectively an unstable) focus. If � = 0 then �
±
 are a pair of purely imaginary 

eigenvalues, implying that P
+
 is a center. Thus the index of the equilibrium point P

+
 is one.

On the other hand we see that the divergence of systems S
+
 (respectively S

−
 ) is � 

(respectively � ). It implies by the Bendixson’s theorem [5, Theorem 7.10] that systems (I) 
have no periodic orbits surrounding P

+
 when 𝜎𝜍 > 0.
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When �� ≤ 0 by the Bendixson’s theorem systems S
+
 have no periodic orbits in the half 

plane x ≥ 0 if � ≠ 0 . Namely systems (I) have no periodic orbits in the half plane x ≥ 0 if 
� ≠ 0.

When � = 0 and � ≠ 0 by the Bendixson’s theorem systems S
+
 have no periodic orbits in 

the half plane x ≥ −1 . Namely systems (I) have no periodic orbits in the half plane x ≥ −1.
When � = 0 we define the two functions

We check H1 (respectively H2 ) is a first integral for systems S
+
 (respectively S

−
 ), i.e.,

(respectively (�H2(x, y)∕�x)(�x + y) + (�H2(x, y)∕�y)(x + 1) = 0 ). Compute

H1(x, y) = (x − 1)2 + y2,

H2(x, y) =

�
(x + 1)

√
�2 + 4 + � − �x − 2y

(x + 1)
√
�2 + 4 − � + �x + 2y

��

(y2 − (1 + x)2 + �(xy − �x − y))
√
4+�2 .

(�H1(x, y)∕�x)y + (�H1(x, y)∕�y)(1 − x) = 0

lim
x→−1,y→�

H2(x, y) = 0.

Fig. 2  𝜍 > 0

Fig. 3  � = 0

Fig. 4  𝜍 < 0
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On the other hand for systems S
−
 there are the horizontal isocline H ∶ x = −1 and the verti-

cal isocline V ∶ y = −�x . More concretely, we see ẏ > 0 on the right hand side of H , and 
ẏ < 0 on the left hand side of H . And we get ẋ > 0 in the upper of V , and ẋ < 0 in the lower 
of V . So in the four regions divided by H and V , the vector fields are shown in Figs. 2, 3, 4, 
5, 6 and 7. Then one branch of the unstable manifold of the saddle P

−
 intersects the posi-

tive y-axis at A ∶ (0, y1) , while one branch of the stable y-axis at A�
∶ (0, y�

1
) . Then 

H2(0, y1) = H2(0, y
�

1
) = lim

x→−1,y→�
H2(x, y) = 0 . Solving the equation H2(0, y) = 0 , i.e.

we get

�√
4 + �2 + � − 2y

√
4 + �2 − � + 2y

��

(y2 − �y − 1)

√
4+�2

= 0,

y1 =
1

2

�

� +
√
�2 + 4

�

, y�
1
=

1

2

�

� −
√
�2 + 4

�

.

Fig. 5  𝜍 < 0

Fig. 6  � = 0

Fig. 7  𝜍 > 0
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Note that some orbits of systems S
+
 intersect y-axis and are symmetric with respect to the 

x-axis. Let y1 = −y�
1
 . Then � = 0 . Thus on the y-axis we look for the values of y such that 

H2(0, y) = H2(0,−y) . Namely

The equality holds when � = 0 . It implies that there are filled with periodic orbits inside 
the homoclinic orbit connecting to P

−
 , seeing Fig. 3. If 𝜍 > 0 then y1 > y′

1
 . One branch of 

the stable manifold of P
−
 goes around the periodic orbit C ∶ (x − 1)2 + y2 = H1(0, 0) = 1 . 

If 𝜍 < 0 then y1 > y′
1
 . One branch of the unstable manifold of P

−
 goes around the periodic 

orbit C . See Figs. 2 and 4.
When 𝜎𝜍 < 0 and either � ≥ 2 or � ≤ −2 the equilibrium point P

+
 is either an unstable 

node or a stable node. On the other hand for systems S
+
 there are the horizontal isocline 

H ∶ x = 1 and the vertical isocline V ∶ y = −�x . More concretely, we see ẏ < 0 on the 

�√
4 + �2 + � − 2y

√
4 + �2 − � + 2y

��

(y2 − �y − 1)

√
4+�2

=

�√
4 + �2 + � + 2y

√
4 + �2 − � − 2y

��

(y2 + �y − 1)

√
4+�2 .

Fig. 8  𝜎 < 0

Fig. 9  � = 0

Fig. 10  𝜎 > 0
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right hand side of H , and ẏ > 0 on the left hand side of H . And we get ẋ > 0 in the upper 
of V , and ẋ < 0 in the lower of V . So we see the vector fields in the four regions divided 
by H and V shown in Figs. 8, 9, and 10. There is an orbit linking P

+
 with the infinity in the 

half plane x ≥ 1 . Thus there is no periodic orbits in the half plane x ≥ −1.
When 𝜍 > 0 and −2 < 𝜎 < 0 let M(0,

�
� +

√
�2 + 4

�
∕2) (respectively 

N(0,
�
� −

√
�2 + 4

�
∕2) ) be the intersection point of the unstable (respectively stable) man-

ifold of the saddle P
−
 with the y-axis. Denote by M1(xM1, 0) (respectively N1(xN1, 0) ) the 

intersection point of the x-axis with the orbit starting at M (respectively N) if they intersect. 
When � = 0 we have the orbits living on the curves H1(x, y) = (x − 1)2 + y2 = constant 
for x ≥ 0 , being symmetry with respect to x-axis. Then the points M1 and N1 exist with 
xN1 < xM1 . For 𝜎 < 0 being small enough we see that P

+
 is a stable focus and xN1 < xM1 

still holds as 𝜍 > 0 . It follows from the Poincaré–Bendixson Theorem that there exists peri-
odic orbits in the region surrounded by P

−
M ∪MM1 ∪M1N1 ∪ N1N ∪ NP

−
 . Furthermore 

we claim that there exists a value �0 such that xN1 = xM1 . This means that there exists a 
homoclinic orbit at P

−
 and surrounding P

+
 . In fact when � = −2 we write the differential 

systems S
+
 in the local charts U1 and U2 . Then in the local chart U1 systems S

+
 write

and in the local chart U2 become

Then there is only one infinite equilibrium point of systems S
+
 in the local chart U1 , namely 

p = (1, 0), and the origin O of the local chart U2 is not an infinite equilibrium point. The 
eigenvalues of the equilibrium point p are 0 and 1. Therefore by [5, Theorem  2.19] the 
infinite equilibrium point p is a semi-hyperbolic saddle-node. By the direction of vector 
fields in Fig.  9 we have the stable manifold of P

−
 intersecting with the y-axis comes from 

the semi-hyperbolic saddle-node p. While the unstable manifold of P
−
 intersecting with the 

y-axis goes to the stale node P
+
 . They are shown in Figs. 11, 12 and 13. By the continuity 

of systems (I) in the interval −2 < 𝜎 < 0 we prove the claim.
We consider the case that 𝜍 < 0 and 0 < 𝜎 < 2 by the analogue method. Let M2(xM2, 0) 

(respectively N2(xN2, 0) ) be the intersection point of the x-axis with the orbit starting from 
M (respectively N) if they intersect. When � = 0 we see xM2 < xN2 since 
�

�

𝜍 −
√
𝜍2 + 4

�

∕2)� >

�

𝜍 +
√
𝜍2 + 4

�

∕2) as 𝜍 < 0 . For 𝜎 > 0 small enough we see that 
the inequality xM2 < xN2 still holds. Similarly by the Poincaré–Bendixson Theorem there 

(16)u̇ = −1 + 2u + v − u2, v̇ = 2v − uv;

u̇ = 1 − 2u + u2 − uv, v̇ = uv − v2.

Fig. 11  x
M1

> x
N1
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exist periodic orbits in the region surrounded by P
−
M ∪MM2 ∪M2N2 ∪ N2N ∪ NP

−
 . Fur-

thermore we claim that there exists a value �
∗
 such that xN2 = xM2 . This means that there 

exists a homoclinic orbit at P
−
 and surrounding P

+
 . In fact when � = 2 there is only one 

infinite equilibrium point of systems S
+
 in the local chart U1 , namely q = (−1, 0), and the 

origin O of the local chart U2 is not an infinite equilibrium point. The eigenvalues of the 
equilibrium point q are 0 and −1 , and therefore the infinite equilibrium point q is a semi-
hyperbolic saddle-node. By the directions of the vector field in Fig. 10 we have that the 
stable manifold of P

−
 intersecting the y-axis comes from the semi-hyperbolic saddle-node 

Fig. 12  x
M1

= x
N1

Fig. 13  x
M1

< x
N1

Fig. 14  x
M2

< x
N2
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q. While the unstable manifold of P
−
 intersects the y-axis and goes to the stable node P

+
 . 

They are shown in Figs. 14, 15 and 16. This competes the proof of systems (I). 
For systems (II) we see that the differential systems S

+
 (respectively S

−
 ) have the equi-

librium point P
+
= (0, 0) (respectively P

−
= (0, 0) ). Namely P

−
= P

+
=∶ P . Then the equi-

librium point P is real for both systems S
+
 and S

−
 . The eigenvalues of the equilibrium point 

P
−
 are 𝜇

−
= (b̂ −

√
b̂2 + 4)∕2 and 𝜇

+
= (b̂ +

√
b̂2 + 4)∕2 . Clearly, 𝜇

−
< 0 < 𝜇

+
 , implying 

that P
−
 is a saddle. Clearly there is no periodic orbits for systems (II).

For systems (III) the differential systems S
+
 have the equilibrium point P

+
= (−1,−a) , 

while the differential systems S
−
 have the equilibrium point P

−
= (1, b) . Then the equilib-

rium point P
+
 (respectively P

−
 ) is virtual for the differential systems S

+
 (respectively S

−
 ). 

Namely systems (III) have no finite equilibrium points, and therefore there is also no peri-
odic orbits for systems (III).

For systems (IV) note that � = �∕|a| ≠ 0 , otherwise a� − �b = 0 because b = 0 in the 
case. Then the differential systems S

+
 have the equilibrium point P

+
= (1,−�∕�). While 

the differential systems S
−
 have the equilibrium point P

−
= (−1,−�∕�). Moreover the equi-

librium point P
+
 (respectively P

−
 ) is real for the differential systems S

+
 (respectively S

−
 ). 

The eigenvalues of the equilibrium point P
+
 are 1 and � . So if 𝜍 > 0 (respectively 𝜍 < 0 ) 

then P
+
 is an unstable node (respectively a saddle). The eigenvalues of the equilibrium 

Fig. 15  x
M2

= x
N2

Fig. 16  x
M2

> x
N2
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point P
−
 are −1 and � . Then P

−
 is a saddle if 𝜍 > 0 and a stable node if 𝜍 < 0 . Clearly there 

is also no periodic orbits for systems (IV).
For systems (V) we check that systems S

−
 (respectively S

−
 ) of systems (V) have an equi-

librium point P
+
= (−1, �∕�) (respectively P

−
= (1, �∕�) ). Moreover they are both virtual, 

and therefore there is no periodic orbits for systems (V).
For systems (VI) we have that the differential systems S

+
 (respectively S

−
 ) have the 

equilibrium point P
+
= (0, 0) (respectively P

−
= (0, 0) ). Namely P

−
= P

+
=∶ P . Then the 

equilibrium point P is real for both systems S
+
 and S

−
 . The eigenvalues of the equilibrium 

point P
+
 are 1 and � . So if 𝜍 > 0 (respectively 𝜍 < 0 ) then P

+
 is an unstable node (respec-

tively a saddle). The eigenvalues of the equilibrium point P
−
 are −1 and � . Then P

−
 is a 

saddle if 𝜍 > 0 and a stable node if 𝜍 < 0 . Thus there is no periodic orbits for systems (VI) 
and therefore the proof is completed.   ◻

Phase Portraits in the Poincaré Disc of Systems (I)

The Finite and Infinite Equilibrium Points

From the proof of Lemma 3 we obtain the results of the finite equilibrium points for sys-
tems (I).

For the infinite equilibrium points we write the differential systems S
+
 in the local charts 

U1 and U2 . Then in the local chart U1 systems S
+
 write

and in the local chart U2 become

We separate the study of the infinite equilibrium points of systems S
+
 in three cases.

Case (I1
+
 ): 𝜎 > 2 or 𝜎 < −2 . Then there are only two infinite equilibrium points of sys-

tems S
+
 in the local chart U1 , namely p

±
=

�
(−� ±

√
�2 − 4)∕2, 0

�
 and the origin of the 

local chart U2 is not an infinite equilibrium point.
The eigenvalues of the equilibrium point p

+
 are −

√
�2 − 4 and �p = −(� +

√
�2 − 4)∕2 . 

If 𝜎 > 2 then 𝜆p < 0 , implying that p
+
 is a stable node, and if 𝜎 < −2 then 𝜆p > 0 , implying 

that p
+
 is a saddle.

The eigenvalues of the equilibrium point p
−
 are 

√
�2 − 4 and �p = −(� −

√
�2 − 4)∕2 . 

If 𝜎 > 2 then 𝜇p < 0 , implying that p
−
 is a saddle, and if 𝜎 < −2 then 𝜇p > 0 , implying that 

p
−
 is an unstable node.
Case (I2

+
 ): � = −2 and � = 2 . Then there is only one infinite equilibrium point of sys-

tems S
+
 in the local chart U1 , namely p = (−�∕2, 0), and the origin O of the local chart 

U2 is not an infinite equilibrium point. The eigenvalues of the equilibrium point p are 0 
and −�∕2 ≠ 0 . Therefore by [5, Theorem 2.19] the infinite equilibrium point p is a semi-
hyperbolic saddle-node.

Case (I3
+
 ): −2 < 𝜎 < 2 . Then systems S

+
 have no infinite equilibrium points in the local 

chart U1 and at the origin of the local chart U2.

(17)u̇ = −1 − 𝜎u + v − u2, v̇ = −𝜎v − uv;

u̇ = 1 + 𝜎u + u2 − uv, v̇ = uv − v2.
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Again we write the differential systems S
−
 in the local charts V1 and U2 . Then in the local 

chart V1 systems S
−
 write

and in the local chart U2 become

As we did for the systems S
+
 there are only two infinite equilibrium points of systems S

−
 in 

the local chart V1 , namely q
±
=

�
(−� ±

√
�2 + 4)∕2, 0

�
 and the origin of the local chart U2 

is not an infinite equilibrium point.
The eigenvalues of the equilibrium point q

+
 are −

√
�2 + 4 and �q = −(� +

√
�2 + 4)∕2 . 

Clearly 𝜆q < 0 , implying that q
+
 is a stable node. The eigenvalues of the equilibrium point 

q
−
 are 

√
�2 + 4 and �q = −(� −

√
�2 + 4)∕2 , therefore q

−
 is an unstable node since 𝜇q > 0.

In summary from the above discussion, we obtain the results of Table 2.

(18)u̇ = 1 − 𝜍u + v − u2, v̇ = −𝜍v − uv;

u̇ = 1 + 𝜍u − u2 − uv, v̇ = −uv − v2.

Table 2  The local phase portraits at the finite and infinite equilibrium points of the continuous piecewise 
differential systems (I)

Systems Conditions Finite equilibrium points Infinite equilibrium points

(I) (I-1): 𝜎 < −2 P
+
(stable node) p

+
(saddle)

p
−
(unstable node)

P
−
(saddle) q

+
(stable node)

q
−
(unstable node)

(I-2): � = −2 P
+
(stable node) p(semi-hyperbolic saddle-node)

P
−
(saddle) q

+
(stable node)

q
−
(unstable node)

(I-3): −2 < 𝜎 < 0 P
+
(stable focus)

P
−
(saddle) q

+
(stable node)

q
−
(unstable node)

(I-4): � = 0 P
+
(center)

P
−
(saddle) q

+
(stable node)

q
−
(unstable node)

(I-5): 0 < 𝜎 < 2 P
+
(unstable focus)

P
−
(saddle) q

+
(stable node)

q
−
(unstable node)

(I-6): � = 2 P
+
(unstable node) p(semi-hyperbolic saddle-node)

P
−
(saddle) q

+
(stable node)

q
−
(unstable node)

(I-7): 𝜎 > 2 P
+
(unstable node) p

+
(stable node)

p
−
(saddle)

P
−
(saddle) q

+
(stable node)

q
−
(unstable node)
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The Global Phase Portraits in the Poincaré Disc

We below give a discussion for passing from the local phase portraits from all the finite 
and infinite equilibrium points to the global phase portraits in the Poincaré disc.

Note by (17) and (18) that the right hand sides of the equation v̇ both have a common 
factor v, implying that the infinity is invariant, i.e, formed by orbits. Besides we observe 
that ẋ = y and ẏ = 1 on the y-axis. Then starting at points lying on the positive y-axis, all 
orbits go into the half plane x ≥ 0 while starting at points lying in the negative y-axis, all 
orbits go into the half plane x ≤ 0 . According to Table 2 and the direction of the vector 
fields shown in Figs. 5–10, we below discuss the global phase portraits in the following 
cases.

In the case (I-1) one stable separatrix of the saddle P
−
 comes from the unstable node 

p
−
 and the second stable separatrix of P

−
 comes from the unstable node q

−
 . One unstable 

separatrix of P
−
 goes to the stable node q

+
 and the second unstable separatrix of P

−
 goes to 

the stable node P
+
 . An unstable separatrix of the saddle p

+
 goes to the stable node P

+
 . The 

remaining orbits of the phase portrait are determined where they start and where they end 
by the type of stability of the equilibrium points and by the Poincaré–Bendixson theorem 
(see for instance Theorem 1.25 of [1]). Thus the global phase portrait is given in Fig. 17.

In the case (I-2) one stable separatrix of the saddle P
−
 comes from the unstable node q

−
 

and the second stable separatrix of P
−
 comes from the semi-hyperbolic saddle-node p. One 

unstable separatrix of P
−
 goes to the stable node q

+
 and the second unstable separatrix of 

P
−
 goes to the stable node P

+
 . An unstable separatrix of the saddle-node p goes to the sta-

ble node P
+
 . The remaining orbits of the phase portrait are determined where they start and 

where they end by the type of stability of the equilibrium points and by the Poincaré–Ben-
dixson theorem. Thus the global phase portrait is given in Fig. 18.

In the case (I-3) two stable separatrices of the saddle P
−
 come from the unstable node 

q
−
 . One unstable separatrix of P

−
 goes to the stable node q

+
 and the second unstable sepa-

ratrix of P
−
 goes to the stable node P

+
 . The remaining orbits of the phase portrait are deter-

mined by the type of stability of the equilibrium points and by the Poincaré–Bendixson 
theorem. Thus the global phase portrait is given in Fig. 19,

In the case (I-4) one unstable separatrix of the saddle P
−
 goes to the stable node q

+
 . One 

stable separatrix of P
−
 comes from the unstable node q

−
 . Then discussions are divided into 

seven subcases. 

 (i) The third separatrix of P
−
 is a homoclinic orbit at P

−
.

 (ii) The second unstable separatrix of the saddle P
−
 goes to q

+
 and the second stable 

separatrix of P
−
 comes from a limit cycle in the strip −1 < x < 0 . The limit cycle is 

also a separatrix.
 (iii) The second unstable separatrix of P

−
 goes to q

+
 and the second stable separatrix of 

P
−
 comes from the periodic orbit C ∶ (x − 1)2 + y2 = 1.

 (iv) The third separatrix of P
−
 is a homoclinic orbit at P

−
 . On the other hand the periodic 

obit close to the homoclinic orbit is also a separatrix.
 (v) The second unstable separatrix of P

−
 goes around a periodic orbit 

C ∶ (x − 1)2 + y2 = 1 and the second stable separatrix of P
−
 comes from q

−
.

 (vi) The second unstable separatrix of P
−
 goes around a limit cycle. The limit cycle is 

also a separatrix. The second stable separatrix of P
−
 comes from q

−
.

 (vii) The third separatrix of P
−
 is a homoclinic orbit at P

−
 . The remaining orbits are 

determined by the Poincaré–Bendixson theorem and by the type of stability of the 
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equilibrium points. Thus the global phase portraits of the seven subcases are shown 
in Figs. 20–26, respectively.

In the case (I-5) one stable separatrix of the saddle P
−
 comes from the unstable node q

−
 

and the second stable separatrix of P
−
 comes from the unstable node P

+
 . Two unstable 

separatrices of P
−
 go to the stable node q

+
 . By the Poincaré–Bendixson theorem and by the 

type of stability of the equilibrium points we see where the remaining orbits of the phase 
portrait start and end. Thus the global phase portrait is given in Fig. 27.

In the case (I-6) one stable separatrix of the saddle P
−
 comes from the unstable node 

q
−
 and the second stable separatrix of P

−
 comes from the unstable node P

+
 . One unstable 

separatrix of P
−
 goes to the stable node q

+
 and the second unstable separatrix of P

−
 goes 

to the semi-hyperbolic saddle-node p. A stable separatrix of the saddle-node p comes from 
the unstable node P

+
 . We determine the remaining orbits of the phase portrait by the Poin-

caré–Bendixson theorem and by the type of stability of the equilibrium points. Thus the 
global phase portrait is shown in Fig. 28.

In the case (I-7) one stable separatrix of the saddle P
−
 comes from the unstable node 

q
−
 and the second stable separatrix of P

−
 comes from the unstable node P

+
 . One unstable 

separatrix of P
−
 goes to the stable node q

+
 and the second unstable separatrix of P

−
 goes 

to the stable node p
+
 . An stable separatrix of the saddle p

−
 comes from P

+
 . By the Poin-

caré–Bendixson theorem and by the type of stability of the equilibrium points we get the 
remaining orbits of the phase portrait. Thus the global phase portrait is given in Fig. 29.

Phase Portraits in the Poincaré Disc of Systems (II)

The Finite and Infinite Equilibrium Points
As it is given in the proof of Lemma 3 the differential systems S

+
 and S

−
 have the same real 

equilibrium point P(0, 0) and P is a saddle for systems S
−
.

For systems S
+
 the eigenvalues of P are �

−
= (� −

√
�2 − 4)∕2 and 

�
+
= (� +

√
�2 − 4)∕2 . So if � ≤ −2 (respectively � ≥ 2 ) then 𝜆

−
≤ 𝜆

+
< 0 (respectively 

𝜆
+
≥ 𝜆

−
> 0 ), implying that P is a stable (respectively an unstable) node. If −2 < 𝜎 < 0 

(respectively 0 < 𝜎 < 2 ) then �
±
 are a pair of imaginary eigenvalues with negative (respec-

tively positive) real part, implying that P is a stable (respectively an unstable) focus. If 
� = 0 then �

±
 are a pair of purely imaginary eigenvalues, implying that P is a center.

For the infinite equilibrium points we write the differential systems S
+
 in the local charts 

U1 and U2 . Then in the local chart U1 systems S
+
 write

and in the local chart U2 become

We separate the study of the infinite equilibrium points of systems S
+
 in three cases.

Case (II1
+
 ): 𝜎 > 2 or 𝜎 < −2 . Then there are only two infinite equilibrium points of sys-

tems S
+
 in the local chart U1 , namely p

±
=

�
(� ±

√
�2 − 4)∕2, 0

�
 and the origin of the local 

chart U2 is not an infinite equilibrium point.

(19)u̇ = 1 − 𝜎u + u2, v̇ = −𝜎v + uv;

u̇ = −1 + 𝜎u − u2, v̇ = −uv.
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The eigenvalues of the equilibrium point p
+
 are 

√
�2 − 4 and �p = −(� −

√
�2 − 4)∕2 . 

If 𝜎 > 2 then 𝜆p < 0 , implying that p
+
 is a saddle, and if 𝜎 < −2 then 𝜆p > 0 , implying that 

p
+
 is an unstable node.
The eigenvalues of the equilibrium point p

−
 are −

√
�2 − 4 and �p = −(� +

√
�2 − 4)∕2 . 

If 𝜎 > 2 then 𝜇p < 0 , implying that p
−
 is a stable node, and if 𝜎 < −2 then 𝜇p > 0 , imply-

ing that p
−
 is a saddle.

Case (II2
+
 ): � = −2 and � = 2 . Then there is only one infinite equilibrium point of sys-

tems S
+
 in the local chart U1 , namely p =

(
�∕2, 0

)
, and the origin O of the local chart U2 

is not an infinite equilibrium point. The eigenvalues of the equilibrium point p are 0 and 
−�∕2 ≠ 0 . Therefore by [5, Theorem 2.19] the infinite equilibrium point p is a semi-hyper-
bolic saddle-node.

Case (II3
+
 ): −2 < 𝜎 < 2 . Then systems S

+
 have no infinite equilibrium points in the 

local chart U1 and at the origin of the local chart U2.
Again we write the differential systems S

−
 in the local charts V1 and U2 . Then in the local 

chart V1 systems S
−
 write

and in the local chart U2 become

As we did for the systems S
+
 there are only two infinite equilibrium points of systems S

−
 in 

the local chart V1 , namely q
±
=

�
(b̂ ±

√
b̂2 + 4)∕2, 0

�
 and the origin of the local chart U2 is 

not an infinite equilibrium point.
The eigenvalues of the equilibrium point q

+
 are 

√
b̂2 + 4 and 𝜆q = −(b̂ −

√
b̂2 + 4)∕2 . 

Clearly, 𝜆q > 0 , implying that q
+
 is an unstable node. The eigenvalues of the equilibrium 

point q
−
 are −

√
�2 + 4 and �q = −(� +

√
�2 + 4)∕2 , therefore q

−
 is a stable node since 

𝜇q < 0.
In summary from the above discussion, we obtain the results of Table 3.

The Global Phase Portraits in the Poincaré Disc

Similar to systems (I), by (19) and (20) we see that the right hand sides of the equation v̇ 
both have a common factor v, implying that the infinity is formed by orbits. Further check 
that ẋ = −y and ẏ = 0 on the y-axis. Then starting at points lying on the positive y-axis, all 
orbits go into the half plane x ≤ 0 while starting at points lying in the negative y-axis, all 
orbits go into the half plane x ≥ 0 . On the other hand for systems S

−
 there are the horizon-

tal isocline H ∶ x = 0 and the vertical isocline V ∶ y = b̂x . Also for systems (19) there are 
two invariant lines u = (� ±

√
�2 − 4)∕2 , and for systems (20) there are two invariant lines 

u = (b̂ ±
√
b̂2 + 4)∕2 . According to Table 3 we below discuss the global phase portraits in 

the following cases.
In the case (II-1) two separatrices respectively lying on the line y = ((� +

√
�2 − 4)∕2)x 

and y = ((b̂ −
√
b̂2 + 4)∕2)x are the orbits at the boundary of a hyperbolic sector at P. One 

stable separatrix of the saddle P in the half plane x ≤ 0 comes from the unstable node q
+
 

lying on the line y = ((b̂ +
√
b̂2 + 4)∕2)x . One unstable separatrix of the saddle p

−
 lying 

on the line y = ((b̂ −
√
b̂2 + 4)∕2)x goes to the stable node P in the half plane x ≤ 0 . The 

(20)u̇ = −1 − b̂u + u2, v̇ = −b̂v + uv;

u̇ = −1 + b̂u + u2, v̇ = uv.
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remaining orbits of the phase portrait are determined where they start and where they end 
by the type of stability of the equilibrium points and by the Poincaré–Bendixson theorem. 
Thus the global phase portrait is shown in Fig. 30.

Note that for the remain cases (II-2)–(II-7) the phase portrait is the same as the case 
(II-1) in the half plane x ≤ 0 . In the half plane x ≥ 0 the phase portrait is studied in what 
follows.

In the case (II-2) one unstable separatrix of the saddle-node p goes to the stable node 
P in the half plane x ≥ 0 , which lies on the line y = (�∕2)x . The remaining orbits of the 
phase portrait are determined by the type of stability of the equilibrium points and by the 
Poincaré–Bendixson theorem. Thus the global phase portrait is shown in Fig. 31.

In cases (II-3)–(II-5) there is no separatrices in the half plane x ≥ 0 . The remaining orbits 
of the phase portrait are determined by the type of stability of the equilibrium points and by 
the Poincaré–Bendixson theorem. Thus the global phase portraits of these three cases are 
given in Fig. 32.

In the case (II-6) one stable separatrix of the saddle-node p comes from the unstable node 
P in the half plane x ≥ 0 lying on the line y = (�∕2)x . We get the remaining orbits of the 
phase portrait by the type of stability of the equilibrium points and by the Poincaré–Bendixson 
theorem. Thus the global phase portrait is shown in Fig. 33.

Table 3  The local phase portraits at the finite and infinite equilibrium points of the continuous piecewise 
differential systems (II)

Systems Conditions Finite equilibrium points Infinite equilibrium points

(II) (II-1): 𝜎 < −2 P(stable node) p
+
(unstable node)

p
−
(saddle)

P(saddle) q
+
(unstable node)

q
−
(stable node)

(II-2): � = −2 P(stable node) p(semi-hyperbolic saddle-node)
P(saddle) q

+
(unstable node)

q
−
(stable node)

(II-3): −2 < 𝜎 < 0 P(stable focus)
P(saddle) q

+
(unstable node)

q
−
(stable node)

(II-4): � = 0 P(center)
P(saddle) q

+
(unstable node)

q
−
(stable node)

(II-5): 0 < 𝜎 < 2 P(unstable focus)
P(saddle) q

+
(unstable node)

q
−
(stable node)

(II-6): � = 2 P(unstable node) p(semi-hyperbolic saddle-node)
P(saddle) q

+
(unstable node)

q
−
(stable node)

(II-7): 𝜎 > 2 P(unstable node) p
+
(saddle)

p
−
(stable node)

P(saddle) q
+
(unstable node)

q
−
(stable node)
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In the case (II-7) a separatrix is one of the orbits at the boundary of a hyperbolic sector 
at P lying on the line y = ((� −

√
�2 − 4)∕2)x in the half plane x ≥ 0 . One stable separa-

trix of the saddle p
+
 comes from the unstable node P in the half plane x ≥ 0 lying on the 

line y = ((� +

√
�2 − 4)∕2)x . We get the remaining orbits of the phase portrait by the type of 

stability of the equilibrium points and by the Poincaré–Bendixson theorem. Thus the global 
phase portrait is shown in Fig. 34.

Phase Portraits in the Poincaré Disc of Systems (III)

The Finite and Infinite Equilibrium Points

As it is given in the proof of Lemma 3 the differential systems S
+
 have the virtual equi-

librium point P
+
= (−1,−a) , while the differential systems S

−
 have the virtual equilib-

rium point P
−
= (1, b).

Doing the change (x, y, t) → (−x, y, t) , systems (III) become

S
+
∶ ẋ = 𝜍x + y, ẏ = x + 1, if x ≥ 0, and

S
−
∶ ẋ = 𝜎x + y, ẏ = −x + 1, if x ≤ 0.

Table 4  The local phase portraits at the finite and infinite equilibrium points of the continuous piecewise 
differential systems (III)

Systems Conditions Finite equilibrium points Infinite equilibrium points

(III) (III-1): 𝜎 < −2 P
+
(stable node) p

+
(unstable node)

p
−
(saddle)

P
−
(saddle) q

+
(unstable node)

q
−
(stable node)

(III-2): � = −2 P
+
(stable node) p(semi-hyperbolic saddle-node)

P
−
(saddle) q

+
(unstable node)

q
−
(stable node)

(III-3): −2 < 𝜎 < 0 P
+
(stable focus)

P
−
(saddle) q

+
(unstable node)

q
−
(stable node)

(III-4): � = 0 P
+
(center)

P
−
(saddle) q

+
(unstable node)

q
−
(stable node)

(III-5): 0 < 𝜎 < 2 P
+
(unstable focus)

P
−
(saddle) q

+
(unstable node)

q
−
(stable node)

(III-6): � = 2 P
+
(unstable node) p(semi-hyperbolic saddle-node)

P
−
(saddle) q

+
(unstable node)

q
−
(stable node)

(III-7): 𝜎 > 2 P
+
(unstable node) p

+
(saddle)

p
−
(stable node)

P
−
(saddle) q

+
(unstable node)

q
−
(stable node)



 Differential Equations and Dynamical Systems

1 3

Systems S
+
 are the same that systems S

−
 of systems (I), while systems S

−
 are the same that 

systems S
+
 of systems (I). So from the results of systems (I) for the finite and infinite equi-

librium points of systems (III) we get Table 4.

The Global Phase Portraits in the Poincaré Disc

Similar to systems (I) we check ẋ = −y and ẏ = 1 on the y-axis. Then starting at points 
lying on the positive y-axis all orbits go into the half plane x ≤ 0 , while starting at 
points lying in the negative y-axis all orbits go into the half plane x ≥ 0 . On the other 
hand the infinity is formed by orbits. According to Table 4 we below discuss the global 
phase portraits in the following cases.

In the case (III-1) an unstable separatrix of the saddle p
−
 goes to the stable node q

−
 . 

The remaining orbits of the phase portrait are determined where they start and where 
they end by the type of stability of the equilibrium points and by the Poincaré–Bendix-
son theorem. Thus the global phase portrait is given in Fig. 35.

In the case (III-2) an unstable separatrix of the saddle-node p goes to the stable node 
q
−
 . By the type of stability of the equilibrium points and by the Poincaré–Bendixson 

theorem we get the remaining orbits of the phase portrait. Thus the global phase portrait 
is given in Fig. 36.

In the case (III-3)–(III-5) there is no separatrices in the phase portrait. All orbits 
leave q

+
 for q

−
 . Thus the global phase portrait is shown in Fig. 37.

In the case (III-6) a stable separatrix of the saddle-node p comes from the unstable 
node q

+
 . The remaining orbits of the phase portrait are determined by the type of stabil-

ity of the equilibrium points and by the Poincaré–Bendixson theorem. Thus the global 
phase portrait is shown in Fig. 38.

In the case (III-7) a stable separatrix of the saddle p
+
 comes from the unstable node 

q
+
 . Similarly we get the remaining orbits of the phase portrait. Thus the global phase 

portrait is shown in Fig. 39.

Phase Portraits in the Poincaré Disc of Systems (IV)

The Finite and Infinite Equilibrium Points

From the proof of Lemma  3 we obtain the results of the finite equilibrium points for 
systems (IV).

For the infinite equilibrium points we write the differential systems S
+
 in the local 

charts U1 and they become

and in the local chart U2 they become

We separate the study of the infinite equilibrium points of systems S
+
 in two cases.

Case (IV1
+
 ): � ≠ 1 . Then there is only one infinite equilibrium point of systems S

+
 

in the local chart U1 , namely p = (−�∕(� − 1), 0), and the origin O of the local chart U2 
is an infinite equilibrium point. The eigenvalues of the equilibrium point p are −1 and 

(21)u̇ = 𝜎 + (𝜍 − 1)u + uv, v̇ = −v + v2;

u̇ = (1 − 𝜍)u − v − 𝜎u2, v̇ = −𝜍v − 𝜎uv.
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� − 1 . Thus p is a stable node if 𝜍 < 1 and a saddle if 𝜍 > 1 . The eigenvalues of the equi-
librium point O are 1 − � and −b . Then O is an unstable node if 𝜍 < 0 , a semi-hyperbolic 
saddle-node if � = 0 , a saddle if 0 < 𝜍 < 1 , and a stable node 𝜍 > 1.

Case (IV2
+
 ): � = 1 . We consider two subcases: � ≠ 0 and � = 0 . In the first subcase 

there is no infinite equilibrium point in the local chart U1 , but the origin O of the local 
chart U2 is an infinite equilibrium point. Moreover the eigenvalues of O are 0 and −1 , 
implying that it is a semi-hyperbolic saddle-node. In the second subcase all points on 
the u-axis are infinite equilibrium points in the local chart V1 for systems S

+
 . Since the 

eigenvalues at each one of these equilibrium points are 0 and −1 ≠ 0 , by the normally 
hyperbolic equilibrium points theorem (see [8]) it follows that at each one of these equi-
librium points ends an orbit. The origin of the local chart U2 is also an equilibrium point 
inside the continuum of equilibrium points at infinity with eigenvalues 0 and −1 , so the 
same conclusion for it.

Again we write the differential systems S
−
 in the local charts V1 and U2 . Then in the local 

chart V1 systems S
−
 write

and in the local chart U2 become

As we did for the systems S
+
 we separate the study of the infinite equilibrium points of 

systems S
−
 in two cases.

Case (IV1
−
 ): � ≠ −1 . Then there is only one infinite equilibrium point of systems S

−
 in 

the local chart V1 , namely q = (�∕(� + 1), 0), and the origin O of the local chart U2 is an 
infinite equilibrium point. The eigenvalues of the equilibrium point q are 1 and � + 1 . Then 
q is a saddle if 𝜍 < −1 and an unstable node if 𝜍 > −1 . The eigenvalues of the equilibrium 
point O are −1 − � and −b . Then O is an unstable node if 𝜍 < −1 , a saddle if −1 < 𝜍 < 0 , a 
semi-hyperbolic saddle-node if � = 0 and a stable node 𝜍 > 0.

Case (IV2
−
 ): � = −1 . Again we consider two subcases: � ≠ 0 and � = 0 . In the first sub-

case there is no infinite equilibrium point in the local chart U1 , but the origin O of the local 
chart U2 is an infinite equilibrium point. Moreover the eigenvalues of O are 0 and 1, imply-
ing that it is a semi-hyperbolic saddle-node. In the second subcase all points on the u-axis 
are infinite equilibrium points in the local chart V1 for systems S

−
 . Since the eigenvalues at 

each one of these equilibrium points are 0 and 1 ≠ 0 , by the normally hyperbolic equilib-
rium points theorem at each one of these equilibrium points starts an orbit. At the origin of 
the local chart U2 we also have a semi-hyperbolic saddle-node.

In summary from the above discussion, we obtain the results of Table 5.

The Global Phase Portraits in the Poincaré Disc

First we see ẋ = −1 on the y-axis. Then starting at points lying on the y-axis all orbits 
go into the half plane x < 0 . On the other hand the infinity as always is formed by orbits 
because the equations v̇ of equations (21) and (22) have a common factor v. According to 
Table 5 we divide the study of the global phase portraits in the following cases.

In the case (IV-1) one stable separatrix of the saddle P
+
 comes from the unstable node O 

in the positive y-direction and the second stable separatrix of P
+
 comes from the unstable 

node O in the negative y-direction. One unstable separatrix of P
+
 goes to the stable node p 

(22)u̇ = −𝜎 + (𝜍 + 1)u + uv, v̇ = v + v2;

u̇ = −(1 + 𝜍)u − v + 𝜎u2, v̇ = −𝜍v + 𝜎uv.
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Table 5  The local phase portraits at the finite and infinite equilibrium points of the continuous piecewise 
differential systems (IV)

Systems Conditions Finite equilibrium points Infinite equilibrium points

(IV) (IV-1): 𝜍 < −1 P
+
(saddle) p(stable node)

O(unstable node)
P
−
(stable node) q(saddle)

O(unstable node)
(IV-2): � = −1, P

+
(saddle) p(stable node)

          𝜎 < 0 O(unstable node)
P
−
(stable node)

O(semi-hyperbolic saddle-node)
(IV-3): � = −1, P

+
(saddle) p(stable node)

          � = 0 O(unstable node)
P
−
(stable node) u-axis(starts an orbit)

O(starts an orbit)
(IV-4): � = −1, P

+
(saddle) p(stable node)

          𝜎 > 0 O(unstable node)
P
−
(stable node)

O(semi-hyperbolic saddle-node)
(IV-5): −1 < 𝜍 < 0 P

+
(saddle) p(stable node)

O(unstable node)
P
−
(stable node) q(unstable node)

O(saddle)
(IV-6): 0 < 𝜍 < 1 P

+
(unstable node) p(stable node)

O(saddle)
P
−
(saddle) q(unstable node)

O(stable node)
(IV-7): � = 1, P

+
(unstable node)

          𝜎 < 0 O(semi-hyperbolic saddle-node)
P
−
(saddle) q(unstable node)

O(stable node)
(IV-8): � = 1, P

+
(unstable node) u-axis(ends an orbit)

          � = 0 O(ends an orbit)
P
−
(saddle) q(unstable node)

O(stable node)
(IV-9): � = 1, P

+
(unstable node)

          𝜎 > 0 O(semi-hyperbolic saddle-node)
P
−
(saddle) q(unstable node)

O(stable node)
(IV-10): 𝜍 > 1 P

+
(unstable node) p(saddle)

O(stable node)
P
−
(saddle) q(unstable node)

O(stable node)
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and the second unstable separatrix of P
+
 goes to the stable node P

−
 . An unstable separatrix 

of the saddle q goes to P
−
 . The remaining orbits of the phase portrait are determined where 

they start and they end by the type of stability of the equilibrium points and by the Poin-
caré–Bendixson theorem. Thus the global phase portrait is shown in Fig. 40.

In the case (IV-2) one stable separatrix of the saddle P
+
 comes from the semi-hyperbolic 

saddle-node O in the positive y-direction and the second stable separatrix of P
+
 comes 

from the unstable node O in the negative y-direction. One unstable separatrix of P
+
 goes to 

the stable node p and the second unstable separatrix of P
+
 goes to the stable node P

−
 . The 

remaining orbits of the phase portrait are determined by the type of stability of the equi-
librium points and by the Poincaré–Bendixson theorem. Thus the global phase portrait is 
shown in Fig. 41.

In the case (IV-3) one stable separatrix of the saddle P
+
 comes from the unstable node 

O in the positive y-direction of the half plane x ≥ 0 and the second stable separatrix of P
+
 

comes from the equilibrium point O in the negative y-direction of the half plane x ≥ 0 . One 
unstable separatrix of P

+
 goes to the stable node p and the second unstable separatrix of P

+
 

goes to the stable node P
−
 . The infinity of x ≤ 0 is filled with equilibrium points. At each 

one of these infinite equilibrium points starts an orbit going to P
−
 . The remaining orbits of 

the phase portrait are determined by the type of stability of the equilibrium points and by 
the Poincaré–Bendixson theorem. Thus the global phase portrait is shown in Fig. 42.

In the case (IV-4) one stable separatrix of the saddle P
+
 comes from the unstable node 

O in the positive y-direction in the half plane x ≥ 0 and the second stable separatrix of P
+
 

comes from the unstable node O in the negative y-direction. One unstable separatrix of P
+
 

goes to the stable node p and the second unstable separatrix of P
+
 goes to the stable node 

P
−
 . An unstable separatrix of the saddle-node O in the positive y-direction goes to the sta-

ble node P
−
 . The remaining orbits of the phase portrait are determined by the type of sta-

bility of the equilibrium points and by the Poincaré–Bendixson theorem. Thus the global 
phase portrait is shown in Fig. 43.

In the case (IV-5) one stable separatrix of the saddle P
+
 comes from the saddle-node O 

in the positive y-direction and the second stable separatrix of P
+
 comes from the saddle-

node O in the negative y-direction. An unstable separatrix of P
+
 goes to the stable node 

p and the second unstable separatrix of P
+
 goes to the stable node P

−
 . One unstable sepa-

ratrix of the saddle-node O in the positive y-direction goes to the stable node P
−
 and an 

unstable separatrix of the saddle-node O in the negative y-direction goes to P
−
 . By the type 

of stability of the equilibrium point and by the Poincaré–Bendixson theorem we get the 
remaining orbits of the phase portrait. Thus the global phase portrait is shown in Fig. 44.

In the case (IV-6) one stable separatrix of the saddle P
−
 comes from the unstable node q 

and the second stable separatrix of P
−
 comes from the unstable node P

+
 . One unstable sep-

aratrix of P
−
 goes to the saddle-node O in the positive y-direction and the second unstable 

separatrix of P
−
 goes to the saddle-node O in the negative y-direction. A stable separatrix 

of the saddle-node O in the positive y-direction comes from P
+
 and a stable separatrix of 

the saddle-node O in the negative y-direction comes from P
+
 . Similarly we get the remain-

ing orbits of the phase portrait by the type of stability of the equilibrium points and by the 
Poincaré–Bendixson theorem. Thus the global phase portrait is shown in Fig. 45.

In the case (IV-7) one stable separatrix of the saddle P
−
 comes from the unstable node 

q and the second stable separatrix of P
−
 comes from the unstable node P

+
 . One unstable 

separatrix of P
−
 goes to the saddle-node O in the positive y-direction of the half plane 

x ≤ 0 and the second unstable separatrix of P
−
 goes to the stable node O in the negative 

y-direction. An stable separatrix of the saddle-node O in the positive y-direction comes 
from P

+
 . The remaining orbits of the phase portrait are determined by the type of stability 
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of the equilibrium points and by the Poincaré–Bendixson theorem. Thus the global phase 
portrait is shown in Fig. 46.

In the case (IV-8) one stable separatrix of the saddle P
−
 comes from the unstable node 

q and the second stable separatrix of P
−
 comes from the unstable node P

+
 . One unstable 

separatrix of P
−
 goes to the stable node O in the positive y-direction of the half plane x ≤ 0 

and the second unstable separatrix of P
−
 goes to the stable node O in the negative y-direc-

tion of the half plane x ≤ 0 . The infinity of x ≥ 0 is filled with equilibrium points. At each 
one of these infinite equilibrium points arrives an orbit starting at P

+
 . The remaining orbits 

of the phase portrait are determined by the type of stability of the equilibrium points and 
by the Poincaré–Bendixson theorem. Thus the global phase portrait is shown in Fig. 47.

In the case (IV-9) one stable separatrix of the saddle P
−
 comes from the unstable node 

q and the second stable separatrix of P
−
 comes from the unstable node P

+
 . One unstable 

separatrix of P
−
 goes to the stable node O in the positive y-direction and the second unsta-

ble separatrix of P
−
 goes to the saddle-node O in the negative y-direction. A stable separa-

trix of the saddle-node O in the negative y-direction comes from P
+
 . Similar to the above, 

we get the remaining orbits of phase portrait. Thus the global phase portrait is shown in 
Fig. 48.

In the case (IV-10) one stable separatrix of the saddle P
−
 comes from the unstable node 

q and the second stable separatrix of P
−
 comes from the unstable node P

+
 . One unstable 

separatrix of P
−
 goes to the stable node O in the positive y-direction and the second unsta-

ble separatrix of P
−
 goes to the stable node O in the negative y-direction. A stable sepa-

ratrix of the saddle p comes from P
+
 . Similarly we get the remaining orbits of the phase 

portrait by the type of stability of the equilibrium points and by the Poincaré–Bendixson 
theorem. Thus the global phase portrait is shown in Fig. 49.

Phase Portraits in the Poincaré Disc of Systems (V)

The Finite and Infinite Equilibrium Points

From the proof of Lemma  3 we see that systems S
+
 have the virtual equilibrium points 

P
+
= (−1, �∕�) and systems S

−
 have the virtual equilibrium point P

−
= (1, �∕�).

Note that systems S
+
 of systems (V) are the same that systems S

−
 of systems (IV) if we 

regard � as −� . While systems S
−
 of systems (V) are also the same that systems S

+
 of sys-

tems (IV). So from the results of systems (IV) for the finite and infinite equilibrium points 
of systems (V) we get Table 6.

The Global Phase Portraits in the Poincaré Disc

According to Table 6 we below discuss the global phase portraits in the following cases.
In the case (V-1) an unstable separatrix of the saddle p goes to the stable node q. The 

remaining orbits of the phase portrait are determined where they start and they end by the 
type of stability of the equilibrium points and by the Poincaré–Bendixson theorem. Thus 
the global phase portrait is shown in Fig. 50.

In the case (V-2) an unstable separatrix comes from the saddle-node O in the negative 
y-direction and goes to the stable node q. The remaining orbits of the phase portrait are 
determined by the type of stability of the equilibrium points and by the Poincaré–Bendix-
son theorem. Thus the global phase portrait is shown in Fig. 51.
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Table 6  The local phase portraits at the finite and infinite equilibrium points of the continuous piecewise 
differential systems (V)

Systems Conditions Finite equilibrium points Infinite equilibrium points

(V) (V-1): 𝜍 < −1 P
+
(stable node) p(saddle)

O(unstable node)
P
−
(saddle) q(stable node)

O(unstable node)
(V-2): � = −1, P

+
(stable node)

         𝜎 < 0 O(semi-hyperbolic saddle-node)
P
−
(saddle) q(stable node)

O(unstable node)
(V-3): � = −1, P

+
(stable node) u-axis(starts an orbit)

         � = 0 O(starts an orbit)
P
−
(saddle) q(stable node)

O(unstable node)
(V-4): � = −1, P

+
(stable node)

         𝜎 > 0 O(semi-hyperbolic saddle-node)
P
−
(saddle) q(stable node)

O(unstable node)
(V-5): −1 < 𝜍 < 0 P

+
(stable node) p(unstable node)

O(saddle)
P
−
(saddle) q(stable node)

O(unstable node)
(V-6): 0 < 𝜍 < 1 P

+
(saddle) p(unstable node)

O(stable node)
P
−
(unstable node) q(stable node)

O(saddle)
(V-7): � = 1, P

+
(saddle) p(unstable node)

         𝜎 < 0 O(stable node)
P
−
(unstable node)

O(semi-hyperbolic saddle-node)
(V-8): � = 1, P

+
(saddle) p(unstable node)

         � = 0 O(stable node)
P
−
(unstable node) u-axis(ends an orbit)

O(ends an orbit)
(V-9): � = 1, P

+
(saddle) p(unstable node)

         𝜎 > 0 O(stable node)
P
−
(unstable node)

O(semi-hyperbolic saddle-node)
(V-10): 𝜍 > 1 P

−
(saddle) p(unstable node)

O(stable node)
P
+
(unstable node) q(saddle)

O(stable node)
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In the case (V-3) the infinity of x ≥ 0 is filled with equilibrium points. At each one of 
these infinite equilibrium points starts an orbit going to the stable node q. Thus the global 
phase portrait is shown in Fig. 52.

In the case (V-4) an unstable separatrix comes from the saddle-node O in the negative 
y-direction and goes to the stable node q. We similarly get the remaining orbits of the phase 
portrait by the type of stability of the equilibrium points and by the Poincaré–Bendixson 
theorem. Thus the global phase portrait is shown in Fig. 53.

In the case (V-5) an unstable separatrix comes from the saddle-node O in the positive 
y-direction and goes to the stable node q. An unstable separatrix comes from the saddle-
node O in the negative y-direction and goes to q. The remaining orbits in the phase portrait 
are determined by the type of stability of the equilibrium points and by the Poincaré–Ben-
dixson theorem. Thus the global phase portrait is shown in Fig. 54.

In the case (V-6) an unstable separatrix comes from the unstable node p and goes to the 
saddle-node O in the positive y-direction. Another unstable separatrix comes from p and 
goes to the saddle-node O in the negative y-direction. The remaining orbits in the phase 
portrait are determined by the type of stability of the equilibrium points and by the Poin-
caré–Bendixson theorem. Thus the global phase portrait is shown in Fig. 55.

In the case (V-7) an unstable separatrix comes from the unstable node p and goes to the 
saddle-node O in the positive y-direction. We get the remaining orbits by the type of sta-
bility of the equilibrium points and by the Poincaré–Bendixson theorem. Thus the global 
phase portrait is shown in Fig. 56.

In the case (V-8) the infinity of the half plane x ≤ 0 is filled with equilibrium point. At 
each one of these infinite equilibrium points arrives an orbit starting at the unstable node p. 
Thus the global phase portrait is shown in Fig. 57.

In the case (V-9) an unstable separatrix comes from the unstable node p and goes to 
the saddle-node O in the negative y-direction. We obtain the remaining orbits by the type 
of stability of the equilibrium points and by the Poincaré–Bendixson theorem. Thus the 
global phase portrait is shown in Fig. 58.

In the case (V-10) a stable separatrix of the saddle q come from the unstable node p. We 
similarly get the remaining orbits by the type of stability of the equilibrium points and by 
the Poincaré–Bendixson theorem. Thus the global phase portrait is shown in Fig. 59.

Phase Portraits in the Poincaré Disc of Systems (VI)

The Finite and Infinite Equilibrium Points

As it is given in the proof of Lemma 3 we obtain the results of the finite equilibrium points 
for systems (VI).

For the infinite equilibrium points we write the differential systems S
+
 in the local charts 

U1 and become

and in the local chart U2 become

We separate the study of the infinite equilibrium points of systems S
+
 in two cases.

u̇ = 𝜎 + (𝜍 − 1)u, v̇ = −v;

u̇ = (1 − 𝜍)u − 𝜎u2, v̇ = −𝜍v − 𝜎uv.
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Case (VI1
+
 ): � ≠ 1 . Then there is only one infinite equilibrium point of systems S

+
 in 

the local chart U1 , namely p = (−�∕(� − 1), 0) and the origin O of the local chart U2 is an 
infinite equilibrium point. The eigenvalues of the equilibrium point p are −1 and � − 1 . 
Thus p is a stable node if 𝜍 < 1 , and a saddle if 𝜍 > 1 . The eigenvalues of the equilibrium 
point O are 1 − � and −b . Then O is an unstable node if 𝜍 < 0 , a semi-hyperbolic saddle-
node if � = 0 , a saddle if 0 < 𝜍 < 1 and a stable node 𝜍 > 1.

Case (VI2
+
 ): � = 1 . We consider two subcases: � ≠ 0 and � = 0 . In the first subcase 

there is no infinite equilibrium point in the local chart U1 , but the origin O of the local chart 
U2 is an infinite equilibrium point. Moreover the eigenvalues of O are 0 and −1 , implying 
that it is a semi-hyperbolic saddle-node. In the second subcase all points on the u-axis are 
infinite equilibrium points in the local chart V1 for systems S

+
 . Since the eigenvalues at 

each one of these equilibrium points are 0 and −1 ≠ 0 , it follows that at each one of these 
equilibrium points ends an orbit. The origin of the local chart U2 is also an equilibrium 
point inside the continuum of equilibrium points at infinity with eigenvalues 0 and −1 , so 
the same conclusion for it.

Again we write the differential systems S
−
 in the local charts V1 and U2 . Then in the local 

chart V1 systems S
−
 write

and in the local chart U2 become

As we did for the systems S
+
 we separate the study of the infinite equilibrium points of 

systems S
−
 in two cases.

Case (VI1
−
 ): � ≠ −1 . Then there is only one infinite equilibrium point of systems S

−
 

in the local chart V1 , namely q = (�∕(� + 1), 0) and the origin O of the local chart U2 is an 
infinite equilibrium point. The eigenvalues of the equilibrium point q are 1 and � + 1 . Then 
q is a saddle if 𝜍 < −1 and an unstable node if 𝜍 > −1 . The eigenvalues of the equilibrium 
point O are −1 − � and −b . Then O is an unstable node if 𝜍 < −1 , a saddle if −1 < 𝜍 < 0 , a 
semi-hyperbolic saddle-node if � = 0 and a stable node 𝜍 > 0.

Case (VI2
−
 ): � = −1 . Again we consider two subcases: � ≠ 0 and � = 0 . In the first sub-

case there is no infinite equilibrium point in the local chart U1 , but the origin O of the local 
chart U2 is an infinite equilibrium point. Moreover the eigenvalues of O are 0 and 1, imply-
ing that it is a semi-hyperbolic saddle-node. In the second subcase all points on the u-axis 
are infinite equilibrium points in the local chart V1 for systems S

−
 . Since the eigenvalues 

at each one of these equilibrium points are 0 and 1 ≠ 0 , at each one of these equilibrium 
points starts an orbit. At the origin of the local chart U2 we also have a semi-hyperbolic 
saddle-node.

In summary from the above discussion, we obtain the results of Table 7.

The Global Phase Portraits in the Poincaré Disc

Note that ẋ = 0 and ẏ = 𝜍y when x = 0 . This implies that the y-axis is invariant, i.e., the 
y-axis is formed by orbits. According to Table 7 we divide the study of the global phase 
portraits in the following cases.

In the case (VI-1) one stable separatrix of the saddle-node P lying on the positive y-axis 
comes from the unstable node O in the positive y-direction, while the second stable sepa-
ratrix of P lying on the negative y-axis comes from the unstable node O in the negative 

u̇ = −𝜎 + (𝜍 + 1)u, v̇ = v;

u̇ = −(1 + 𝜍)u + 𝜎u2, v̇ = −𝜍v + 𝜎uv.
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Table 7  The local phase portraits at the finite and infinite equilibrium points of the continuous piecewise 
differential systems (VI)

Systems Conditions Finite equilibrium points Infinite equilibrium points

(VI) (VI-1): 𝜍 < −1 P(saddle) p(stable node)
O(unstable node)

P(stable node) q(saddle)
O(unstable node)

(VI-2): � = −1, P(saddle) p(stable node)
          𝜎 < 0 O(unstable node)

P(stable node)
O(semi-hyperbolic saddle-node)

(VI-3): � = −1, P(saddle) p(stable node)
          � = 0 O(unstable node)

P(stable node) u-axis(starts an orbit)
O(starts an orbit)

(VI-4): � = −1, P(saddle) p(stable node)
          𝜎 > 0 O(unstable node)

P(stable node)
O(semi-hyperbolic saddle-node)

(VI-5): −1 < 𝜍 < 0 P(saddle) p(stable node)
O(unstable node)

P(stable node) q(unstable node)
O(saddle)

(VI-6): 0 < 𝜍 < 1 P(unstable node) p(stable node)
O(saddle)

P(saddle) q(unstable node)
O(stable node)

(VI-7): � = 1, P(unstable node)
          𝜎 < 0 O(semi-hyperbolic saddle-node)

P(saddle) q(unstable node)
O(stable node)

(VI-8): � = 1, P(unstable node) u-axis(ends an orbit)
          � = 0 O(ends an orbit)

P(saddle) q(unstable node)
O(stable node)

(VI-9): � = 1, P(unstable node)
          𝜎 > 0 O(semi-hyperbolic saddle-node)

P(saddle) q(unstable node)
O(stable node)

(VI-10): 𝜍 > 1 P(unstable node) p(saddle)
O(stable node)

P(saddle) q(unstable node)
O(stable node)
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y-direction. The unstable separatrix of the saddle q goes to P. The unstable separatrix of P 
goes to the stable node p. The remaining orbits of the phase portrait are determined where 
they start and they end by the type of stability of the equilibrium points and by the Poin-
caré–Bendixson theorem. Thus the global phase portrait is shown in Fig. 60.

In the case (VI-2) one stable separatrix of P comes from the unstable node O in the 
positive y-direction and the second stable separatrix of P comes from the saddle-node 
O in the negative y-direction. An unstable separatrix of P goes to the stable node p. The 
remaining orbits of the phase portrait are determined by the type of stability of the equi-
librium points and by the Poincaré–Bendixson theorem. Thus the global phase portrait 
is shown in Fig. 61.

In the case (VI-3) one stable separatrix of P lying on the positive y-axis comes from 
the unstable node O in the positive y-direction of the half plane x ≥ 0 and the second 
stable separatrix of P lying on the negative y-axis comes from the unstable node O in 
the negative y-direction of the half plane x ≥ 0 . An unstable separatrix of the saddle P 
in the half plane x ≥ 0 goes to the stable node p. The infinity of x ≤ 0 is filled with equi-
librium points. At each one of these equilibrium points starts an orbit going to the stable 
node P in the half plane x ≤ 0 . The remaining orbits of the phase portrait are deter-
mined by the type of stability of the equilibrium points and by the Poincaré–Bendixson 
theorem. Thus the global phase portrait is shown in Fig. 62.

In the case (VI-4) one stable separatrix of P comes from the saddle-node O in the 
positive y-direction and the second stable separatrix of P comes from the unstable node 
O in the negative y-direction. An unstable separatrix of P goes to the stable node p. The 
remaining orbits of the phase portrait are determined by the type of stability of the equi-
librium points and by the Poincaré–Bendixson theorem. Thus the global phase portrait 
is shown in Fig. 63.

In the case (VI-5) one stable separatrix of P comes from the saddle-node O in the 
positive y-direction and the second stable separatrix of P comes from the saddle-node 
O in the negative y-direction. An unstable separatrix of P goes to the stable node p. The 
remaining orbits of the phase portrait are determined by the type of stability of the equi-
librium points and by the Poincaré–Bendixson theorem. Thus the global phase portrait 
is shown in Fig. 64.

In the case (VI-6) one unstable separatrix of P goes to the saddle-node O in the posi-
tive y-direction and the second unstable separatrix of P goes to the saddle-node O in 
the negative y-direction. A stable separatrix of P comes from the unstable node q. The 
remaining orbits of the phase portrait are determined by the type of stability of the equi-
librium points and by the Poincaré–Bendixson theorem. Thus the global phase portrait 
is shown in Fig. 65.

In the case (VI-7) one unstable separatrix of P goes to the saddle-node O in the posi-
tive y-direction and the second unstable separatrix of P goes to the stable node O in the 
negative y-direction. A stable separatrix of P comes from the unstable node q. On the 
other hand by the type of stability of the equilibrium points and by the Poincaré–Ben-
dixson theorem we get the remaining orbits of the phase portrait. Thus the global phase 
portrait is shown in Fig. 66.

In the case (VI-8) one unstable separatrix of P goes to the stable node O in the posi-
tive y-direction of the half plane x ≤ 0 and the second unstable separatrix of P goes to 
the stable node O in the negative y-direction of the half plane x ≥ 0 . A stable separatrix 
of P comes from the unstable node q. The infinity of x ≥ 0 is filled with equilibrium 



 Differential Equations and Dynamical Systems

1 3

points. At each one of these infinite equilibrium points arrives an orbit starting at the 
unstable node P in the half plane x ≥ 0 . By the type of stability of the equilibrium 
points and by the Poincaré–Bendixson theorem we get the remaining orbits of the phase 
portrait. Thus the global phase portrait is shown in Fig. 67.

In the case (VI-9) a stable separatrix of P comes from the unstable node q. One 
unstable separatrix of P goes to the stable node O in the positive y-direction. The sec-
ond unstable separatrix of P goes to the saddle-node O in the negative y-direction. By 
the type of stability of the equilibrium points and by the Poincaré–Bendixson theo-
rem we get the remaining orbits of the phase portrait. Thus the global phase portrait is 
shown in Fig. 68.

In the case (VI-10) a stable separatrix of P comes from the unstable node q in the half 
plane x ≤ 0 . One unstable separatrix of P lying on the positive y-axis goes to the stable node 

Fig. 17  S = 15,R = 4

Fig. 18  S = 13,R = 4
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O and the second unstable separatrix of P lying on the negative y-axis goes to the stable node 
O in the half plane x ≤ 0 . The stable separatrix of the saddle p comes from P. We obtain the 
remaining orbits of the phase portraits by the type of stability of the equilibrium points and by 
the Poincaré–Bendixson theorem. Thus the global phase portrait is shown in Fig. 69.

The Distinct Topologically Equivalent Phase Portraits

In this section we summarize the results on the distinct topological equivalent phase por-
traits from Figs. 17 to 69.

By the separatrix configuration of the phase portrait in Theorem 2 we have the follow-
ing XIX categories 

Fig. 19  S = 10,R = 3

Fig. 20  S = 9,R = 3
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 I. Figures 17, 29, 40 and 49 are topologically equivalent;
 II. Figures 18 and 41 are topologically equivalent;
 III. Figures 19 and 27 are topologically equivalent;
 IV. Figures 20 and 26 are topologically equivalent;
 V. Figures 21, 22, 24 and 25 are topologically equivalent;
 VI. Figure 23;
 VII. Figures 28, 43, 46 and 48 are topologically equivalent;
 VIII. Figures 30, 34, 60 and 69 are topologically equivalent;
 IX. Figures 31, 33, 61, 63, 66 and 68 are topologically equivalent;

Fig. 21  S = 11,R = 4

Fig. 22  S = 11,R = 4
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 X. Figure 32;
 XI. Figures 35, 39, 50 and 59 are topologically equivalent;
 XII. Figures 36, 38, 51, 53, 56 and 58 are topologically equivalent;
 XIII. Figure 37;
 XIV. Figures 42 and 47 are topologically equivalent;
 XV. Figures 44 and 45 are topologically equivalent;
 XVI. Figures 52 and 57 are topologically equivalent;
 XVII. Figures 54 and 55 are topologically equivalent;
 XVIII. Figures 62 and 67 are topologically equivalent;
 XIX. Figures 64 and 65 are topologically equivalent.

Fig. 23  S = 10,R = 3

Fig. 24  S = 11,R = 4
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This proves the first part of Theorem  1 and Fig.  1 comes from Figs.  17,  18,  19, 
20, 21, 23, 28, 30, 31, 32, 35, 36, 37, 42, 44, 52, 54, 62, 64.

Fig. 25  S = 11,R = 4

Fig. 26  S = 9,R = 3
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Fig. 27  S = 10,R = 3

Fig. 28  S = 13,R = 4
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Fig. 29  S = 15,R = 4

Fig. 30  S = 13,R = 4
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Fig. 31  S = 10,R = 3

Fig. 32  S = 7,R = 2

Fig. 33  S = 10,R = 3
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Fig. 34  S = 13,R = 4

Fig. 35  S = 9,R = 2
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Fig. 36  S = 7,R = 2

Fig. 37  S = 9,R = 1
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Fig. 38  S = 7,R = 2

Fig. 39  S = 9,R = 2
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Fig. 40  S = 15,R = 4

Fig. 41  S = 13,R = 4
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Fig. 42  S = ∞

Fig. 43  S = 13,R = 4



Differential Equations and Dynamical Systems 

1 3

Fig. 44  S = 16,R = 5

Fig. 45  S = 16,R = 5
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Fig. 46  S = 13,R = 4

Fig. 47  S = ∞
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Fig. 48  S = 13,R = 4

Fig. 49  S = 15,R = 4
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Fig. 50  S = 9,R = 2

Fig. 51  S = 7,R = 2
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Fig. 52  S = ∞

Fig. 53  S = 7,R = 2
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Fig. 54  S = 10,R = 3

Fig. 55  S = 10,R = 3
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Fig. 56  S = 7,R = 2

Fig. 57  S = ∞
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Fig. 58  S = 7,R = 2

Fig. 59  S = 9,R = 2
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Fig. 60  S = 13,R = 4

Fig. 61  S = 10,R = 3
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Fig. 62  S = ∞

Fig. 63  S = 10,R = 3
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Fig. 64  S = 12,R = 3

Fig. 65  S = 12,R = 3
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Fig. 66  S = 10,R = 3

Fig. 67  S = ∞
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