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A B S T R A C T   

We model capacity choice and utilization of a manufacturer selling products through a retailer under a revenue 
sharing contract. We derive the optimal revenue sharing contract which internalizes the impact on capacity, 
utilization choice and the final downstream price of the product and provide a valuation of the retailer and 
supplier under uncertainty in a multiperiod setting. In extensions of this framework, we analyze constraints on 
minimum delivered quantities and also build a finite-time numerical method that considers an abandonment 
option for the supplier and hold-up problems for the retailer, as well as the supplier’s option to expand capacity. 
Our model predicts higher revenue sharing ratios charged by retailers when suppliers operate in more volatile 
upstream markets, when the product is a necessity rather than a luxury good and when retailers can impose 
minimum delivered quantities. On the contrary, we find that suppliers will be able to obtain a higher revenue 
share when operating in industries with high fixed costs and for contracts of shorter horizon since hold-up 
problems for retailers increase and the retailer has to provide more incentives to suppliers not to abandon op
erations. The option to expand capacity benefits more significantly the supplier compared to the retailer. Finally, 
we consider the decisions of a vertically integrated firm showing the gains from vertical integration and 
demonstrating that the optimum vertically coordinated production can be achieved in the decentralized mul
tiperiod setup through a combination of a fee per product and revenue sharing.   

1. Introduction 

Revenue sharing contracts are quite common in practice. Their 
popularity has spiked in recent years with the increase in sales via online 
marketplaces. Revenue sharing occurs in many different types of in
dustries such as the airline industry (Fu and Zhang, 2010), video rental 
(Altug and van Ryzin, 2014; Cachon and Lariviere, 2005; Giannoccaro 
and Pontrandolfo, 2004), newspapers (Gerchak and Khmelnitsky, 
2003), electronics, e.g., Apple App Store, Google Play, or online market 
places such as Amazon.com (Bart et al., 2021). They are also used in 
franchising in sectors such as hotels, fast foods and automobile renters 
(Lal, 1990; Mathewson and Winter 1985). 

Several big retailers such as Wal Mart, Target or Ahold USA offer 
revenue sharing contracts to their suppliers through which the suppliers 
can rent shelf space and sell their products directly (Lee and Chu, 2005; 

Zhao et al., 2020). Moreover, in online marketplaces such as Amazon. 
com the retailer (Amazon) must determine revenue sharing ratios for 
different products sold on their platform. Google and Apple need to 
decide how much to charge app developers that sell applications 
through their platforms. How should these firms determine their reve
nue sharing offers to the suppliers to account for the future uncertainty 
in demand of products and the response of suppliers in deciding their 
installed capacity? And how should these contracts also account for 
volume flexibility, i.e., the possibility that suppliers may adjust the 
volume of production each period based on uncertain demand? For 
example, a supplier that is offered a low revenue share by a retailer may 
decide to install low capacity that may reduce the profitability of a 
retailer. In addition, a supplier may adjust the volume of quantities 
produced downwards in response to higher energy prices, rationalizing 
the range of products offered focusing on those offering higher profit 
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margins or simply by reducing production of a product in response to 
consumers shift in demand.2 In this paper, we propose a framework 
which accounts for the above features and thus solves an important real 
business problem faced by retailer firms in practice in determining 
optimal revenue sharing contracts. Our analysis helps understand the 
factors determining the various revenue sharing contracts observed in 
online marketplaces (e.g., revenue sharing ratios by Amazon range from 
8% for computers to 15% for books or 20% for gift cards) and also how 
Google and Apple determine the share charged to their app developers 
that sell applications through their platforms (ranging between 15% and 
30%). 

Thanks to their popularity in the real world, revenue sharing con
tracts have received considerable attention in the academic literature. 
Nevertheless, most of the studies on revenue sharing propose a static 
framework with a one-period model and a fixed quantity to be ordered, 
neglecting the ability of the firms to adjust the volume of operations 
depending on market conditions. Moreover, with the exception of a few 
studies (e.g., Cachon and Lariviere, 2001; Wang and Gerchak, 2003), 
most studies focus on production quantities only, disregarding capac
ities. On the other hand, volume flexibility has been analyzed only in the 
context of a single firm within the real options literature (e.g., Hagspiel 
et al., 2016; Ritchken and Wu, 2021; Sarkar, 2009, 2018), thus 
neglecting the effects that volume flexibility might have on other firms 
in the supply chain. To fill these gaps in the literature, we analyze a 
decentralized supply chain where the retailer firm offers a revenue 
sharing contract to a supplier firm that faces capacity and volume 
flexibility choices. Overall, the significance of our work is that we bridge 
the revenue sharing literature (e.g., Cachon and Lariviere, 2005; Gia
noccarro and Potrandolfo, 2004) with the real options literature on 
production flexibility by proposing a unified real options framework to 
analyze a revenue sharing contract within a decentralized supply chain 
under supplier volume flexibility. The innovation of our paper lies in 
that it extends these settings to multiple periods under uncertain de
mand and incorporates capacity choice and volume flexibility of sup
plier firms. In addition, in extensions of the basic framework we account 
for the common practice that retailers may impose minimum delivered 
quantities, study finite horizon contracts, the option of the supplier to 
expand capacity at an optimal time in the future and hold-up problems 
that may arise for retailers when a supplier stops the supply of products 
and abandons operations. Finally, we contribute to the revenue sharing 
literature by offering a comparison of channel performance of our 
decentralized pure revenue sharing contract with a vertically integrated 
supply chain in terms of capacity installed, produced quantities, prices 
and supply chain value within our multi-period under uncertainty 
setting with volume flexibility. We also show how a two-parameters 
revenue sharing contract with a share of revenue and a fee per prod
uct can achieve the efficiency gains of a vertically integrated supply 
chain. 

To determine the optimal revenue share of the retailer we solve a 
Stackelberg (leader-follower) game in which the retailer chooses its 
revenue sharing terms taking into account supplier’s reaction in terms of 
capacity choice and utilization rate and their repercussions on down
stream product prices. Our analysis quantifies a novel trade-off involved 
in the retailer’s choice of the optimal revenue sharing ratio in the 
presence of capacity choice and volume flexibility where besides the 
direct positive impact of a higher revenue share on retailer value the 
retailer has to balance out the negative impact on supplier’s installed 
capacity and produced quantities. We demonstrate that these trade-offs 
result in an optimal revenue sharing ratio which maximizes retailer’s 
value. Our model predicts higher revenue sharing ratios charged by 
retailers when suppliers operate in more volatile upstream markets 

where production flexibility is more valuable, or when the product is a 
necessity rather than a luxury good. On the contrary, we expect sup
pliers to be able to extract higher revenue sharing ratios when operating 
in industries characterized by high operational leverage (important 
fixed costs). To our knowledge, these are all novel predictions of our 
model. 

We also extend the model to account for the common practice that 
retailers may impose various constraints on the supplier’s production 
decision such as minimum customer demand fill rates or service levels 
(Fry et al., 2001; Wang et al., 2004). This implies that the supplier would 
need to produce and deliver a minimum quantity of goods to meet a 
certain fill rate or service level. We quantify the negative impact on 
supplier’s value of these constraints and show that when the constraints 
become binding the supplier needs to install higher capacity and engage 
in higher utilization of quantities in production. These effects benefit the 
retailer despite the dampening effect that higher quantities have on the 
prices at which the goods are sold. 

Moreover, we investigate the channel performance of our decen
tralized pure revenue sharing contract by comparing the produced 
quantities and prices in the downstream market with those of a verti
cally integrated supply chain. We analyze the supply chain gain, defined 
as the percentage difference in total supply chain value between a 
centralized channel and a decentralized channel, and how it varies with 
model parameters such as volatility of demand, demand elasticity, re
tailer’s share of the costs, etc. We show that an uncoordinated supply 
chain results in lower capacity and utilization rates and higher down
stream prices compared to the vertically integrated firm, in line with a 
double marginalization problem. The percentage supply chain gain from 
vertically integrating production ranges between 11% and 22% for the 
parameters considered. The gains from vertical integration are relatively 
higher when demand uncertainty is higher, i.e., for environments where 
production flexibility is more valuable. We therefore expect a higher 
likelihood of vertical mergers taking place when suppliers operate in 
volatile upstream markets with production flexibility. 

We also build a finite-time numerical method whose solution con
verges to the solution of our perpetual time analytical model for a suf
ficiently large horizon. We find that shorter duration contracts lead to 
lower firm values as well as lower capacity installed and utilization, 
while the revenue sharing ratio does not vary with maturity. We then 
consider an abandonment option of the supplier leading to hold-up 
problems for the retailer, as well as the supplier’s option to expand ca
pacity. We show that when the supplier has the option to abandon, the 
retailer may offer higher revenue ratios to the supplier firm to prevent a 
hold-up problem, and this results in higher capacity and utilization. The 
hold-up problem reduces retailer’s ability of using minimum delivered 
quantities to extract value from the supplier firm and becomes more 
severe for shorter-term contracts. Regarding the option to expand ca
pacity, we show that it improves retailer and supplier values and leads to 
a more conservative choice of initial capacity for the supplier firm. 

Finally, we extend our pure revenue sharing contract to a two- 
parameters revenue sharing contract that includes, besides the share 
of supplier’s revenues captured by the retailer, a fee per product paid by 
the supplier to the retailer (e.g., as a fee for using the retailer’s platform 
for selling products). Under this contract, the optimal capacity choice 
and utilization rate of the supplier coincide with the optimal choice of a 
coordinated supply chain, so that coordination is achieved. In designing 
this contract, we ensure that a win-win condition holds, i.e., both parties 
obtain a higher profit under the coordinating contract than under a pure 
revenue sharing contract, by tuning the contract parameters. However, a 
certain degree of cooperation between the parties would be needed to 
design such a contract. Our results thus extend Cachon and Lariviere 
(2005) and Gianoccarro and Potrandolfo (2004)’s results to a multi
period setting under uncertainty with capacity choice and volume 
flexibility within a two-echelon supply chain. 

The rest of this paper is organized as follows. Section 2 presents the 
related literature. Section 3 describes the framework and the 

2 See recent example in UK: https://www.theguardian.com/business 
/2022/apr/27/uk-retail-sales-slump-as-soaring-energy-prices-hit-households-c 
bi. 

N. Koussis and F. Silaghi                                                                                                                                                                                                                      

https://www.theguardian.com/business/2022/apr/27/uk-retail-sales-slump-as-soaring-energy-prices-hit-households-cbi
https://www.theguardian.com/business/2022/apr/27/uk-retail-sales-slump-as-soaring-energy-prices-hit-households-cbi
https://www.theguardian.com/business/2022/apr/27/uk-retail-sales-slump-as-soaring-energy-prices-hit-households-cbi


International Journal of Production Economics 261 (2023) 108845

3

mathematical solution for the decentralized pure revenue sharing con
tract, as well as for the vertically integrated supply chain. Section 4 
provides numerical sensitivity and our main results. Section 5 extends 
the framework to consider the case of minimum delivered quantities 
imposed by the retailer. Section 6 presents the finite-time numerical 
method solution and analyzes the option to abandon, hold-up problems 
and the option to expand capacity. Section 7 analyzes a two-parameters 
revenue sharing contract that coordinates the supply chain. Finally, 
Section 8 provides the managerial implications of our results and 
concludes. 

2. Related literature 

Our paper is related to two strands of the literature. First, we 
contribute to the literature on revenue sharing contracts. A recent sur
vey by Bart et al. (2021) summarizes the operating research literature on 
revenue sharing contracts. An important strand of this literature ana
lyzes the channel performance of revenue sharing contracts in com
parison with other types of contracts (Dana and Spier, 2001; Gerchak 
and Wang, 2004). Other studies investigate issues such as horizontal 
competition (Chakraborty et al., 2015; Kong et al., 2013; Krishnan and 
Winter 2011; Wang and Shin, 2015; Yao et al., 2008), risk/loss-averse 
supply chains (Zhang et al., 2015), asymmetric information (Gerchak 
and Khmelnitsky, 2003; Xiao and Xu, 2018) or effort and cost sharing 
(Bhaskaran and Krishnan, 2009). Recent advances in this literature 
study revenue sharing contracts for supply chains of virtual products 
(Avinadav et al., 2015a and 2015b; Tan and Carrillo, 2017), behavioral 
laboratory experiments (Katok and Wu, 2009), sustainable supply 
chains (Govindan and Popiuc, 2014; Hsueh, 2014) and carbon emissions 
(Yang and Chen, 2018). Other recent developments include Zhang et al. 
(2022) who characterize coordinating contracts that result in 
Pareto-optimal actions in a setting with risk averse agents and Ha et al. 
(2022) who study how the channel structure impacts a retailer’s 
incentive in exerting service effort. 

The revenue sharing literature has analyzed two main types of con
tracts: a wholesale-price contract with revenue sharing (Cachon and 
Lariviere, 2005) and a consignment contract with revenue sharing 
(Wang et al., 2004) which omits the wholesale price component. Our 
paper extends these settings to multiple periods under uncertain demand 
and incorporates capacity choice and volume flexibility of supplier 
firms. Relatedly, Tsay (1999) proposes quantity flexible contracts with 
commitment of the retailer to buy and the supplier to provide certain 
quantities, however their context is single period and they do not study 
revenue sharing (see also recent work by Li et al., 2021). In extensions of 
our basic framework we study a number of other features including 
finite horizon contracts and options to expand capacity, the common 
practice that retailers may impose minimum delivered quantities and 
hold-up problems in the supply chain. Similarly, Wang et al. (2021) 
study minimum order quantities, nevertheless in their setting these are 
imposed by the supplier and they have a different setup with multiple 
suppliers and buyback contracts. Interestingly however, in their analysis 
they show that suppliers can use minimum order quantities to extract 
more value from retailers (see also Tsay, 1999 and Li et al., 2021 for 
related results). We contribute with new insights by showing that the 
opposite may be true when retailers impose such minimum quantity 
requirements on delivered quantities from suppliers. This is particularly 
important for large retailers (e.g., WalMart) which have significant 
market power over supplier firms. Xu et al. (2020) provide a compre
hensive literature review of disruption risks in the supply chain which 
are usually caused by natural causes (e.g. earthquakes, hurricanes, and 
floods), due to human factors (e.g. fires, strikes, and terrorism), or legal 
disruptions (e.g. environmental laws). They provide examples of the 
significant economic impact this would cause to firms when such in
terruptions occur. Our analysis measures the economic impact of dis
ruptions focusing on hold-up problems for retailers caused by the 
potential insolvency of suppliers. 

Secondly, we contribute to the growing literature that applies the 
real options approach to operations research (for a review see Trigeorgis 
and Tsekrekos, 2018). A significant part of this literature has focused on 
the optimal timing of capacity decisions. Early work in this area includes 
Dangl (1999) for single stage capacity choice of a monopolist and recent 
extensions include Chronopoulos et al. (2017) who extend this setting to 
stepwise investment in capacity and Lavrutich (2017) who considers 
capacity choice with duopoly competition. Another important focus of 
study of this literature has been the analysis of volume flexibility which 
has been investigated in the context of a single firm within the real 
options literature (Hagspiel et al., 2016; Ritchken and Wu, 2021; Sarkar, 
2009, 2018). Our work is closely related to Hagspiel et al. (2016) who 
analyze optimal capacity choice and production flexibility, to Sarkar 
(2018) who identifies a firm’s optimal degree of operating leverage 
(DOL) under investment and production flexibility, and to Ritchken and 
Wu (2021) who introduce corporate debt and analyze the impact of 
production flexibility on leverage and capital structure. De Giovanni and 
Massabò (2018) incorporate both downside and upside volume flexi
bility in this context. Our work extends this strand of the literature in a 
supply chain context by adding the retailer firm and focusing on the 
capacity and volume flexibility choices of upstream firms. Thus, while 
the previous literature has focused on studying these issues for single 
firms or has considered competition among firms in the same industry, 
our focus is on the interactions between the retailer and supplier within 
the supply-chain through revenue sharing contracts that incorporate 
real options of capacity choice and volume flexibility of the supplier 
firm. Our framework thus provides a connection of the revenue sharing 
literature with the real options literature on capacity choice and pro
duction flexibility in a supply chain setting. 

3. The model 

3.1. The model setup 

Τhe price of the good sold in the downstream market in period t is pt 
per unit of goods sold and given by the iso-elastic inverse demand 
function: 

pt = xtqt
ε (1)  

where − 1 < ε < 0 is a measure of price sensitivity and xt represents the 
demand shock. The elasticity of demand which is usually defined as the 
percentage sensitivity of quantity demanded to price changes is thus 
(

1
|ε|

)
. Thus, a higher |ε| implies a more inelastic demand. Since |ε| < 1 

this implies that our focus is on 1
|ε| > 1, i.e., an elastic demand where an 

increase in prices by 1% causes a more than 1% decrease in quantity. In 
line with previous literature, demand is assumed elastic since if demand 
were inelastic profits would tend to infinity as the quantities tend to 
zero. The same iso-elastic demand was used in Aguerrevere (2009), Dixit 
and Pindyck (1994), Dobbs (2004) and Silaghi and Sarkar (2021). For a 
review of the implications of different forms of demand functions on 
firms’ capacity choice see Huberts et al. (2015). The demand shock xt 
affecting the price per unit at which the goods can be sold in the 
downstream market follows a Geometric Brownian motion (GBM 
hereafter): 

dxt

xt
= μdt + σdZ (2)  

where μ is the expected rate of change, σ is the volatility and dZ is a 
standard increment of a Weiner process. The demand shock xt can be 
interpreted as the relative strength of the demand in the downstream 
market. We assume risk-neutrality, with r denoting the risk-free interest 
rate, and that r > μ such that there is a rate of return shortfall similar to a 
convenience yield δ = r – μ. A higher δ (while keeping r constant) cap
tures a lower rate of growth of the good’s demand. We assume that the 
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supplier selects the optimal capacity Q at t = 0. In order to select its 
capacity, the supplier needs to incur a one-time investment cost of kQη, 
where Q is the capacity of the goods (i.e., maximum units of goods that 
can be produced per unit time), Qη is the amount of capital required to 
produce at that capacity (with η > 1), and the cost of capital is $k per 
unit. For simplicity, we assume that the optimal capacity is installed at 
an exogenous given threshold x0. In later sections of the paper we study 
a supplier with a choice of initial capacity and an option to expand ca
pacity at an optimal timing using our finite-time numerical model. The 
supplier firm faces both fixed costs of production c, as well as variable 
costs v. Due to variable costs, following the capacity choice the supplier 
selects the level of utilization of capacity qt by maximizing its profits (see 
analysis that follows on determining the optimal qt). Following Hagspiel 
et al. (2016) (see p.97), we assume that the decision relating the volume 
of production qt is contemporaneous to the realization of demand shock 
xt, i.e., performed once the firm has knowledge of the demand realiza
tion. With this note in mind, we drop the use of time subscripts from the 
subsequent analysis. The firm can either produce below full capacity, q 
< Q, in which case the level of production q varies with the demand 
shock x or at full capacity, with q = Q. This type of flexibility is 
important in many settings including, among others, car manufacturing 
(Hagspiel et al., 2016). The manufacturer produces the goods and sells 
them to the market through a retailer under a revenue sharing contract. 
We do not incorporate abandonment timing in the main analytical 
framework since the supplier can adjust the volume of production to 
limit losses when demand is not favorable. Thus, adding the optimal 
timing of stopping production will likely not have any major impact 
unless fixed costs are significant. We nevertheless provide the impact of 
an exit/abandon option in the presence of fixed costs in our finite-time 
numerical analysis. 

The retailer incurs variable costs cR per unit sold. We model the 
decision making of the two firms as a Stackelberg (leader-follower) 
game in which the retailer acting as the Stackelberg leader first chooses 
how much to charge the supplier by selecting its share of the revenue α 
obtained from each unit sold in the downstream market. This is the only 
choice variable for the retailer in the problem. In turn, the choice of α 
affects the capacity and utilization of capacity (i.e., production) de
cisions of the supplier and the price of goods in the downstream 
markets.3 

3.2. The model solution 

Since the retailer obtains a fraction α from the value of each unit sold 
this means that (1 − α) remains to the supplier. The profits per dt in
terval for the supplier are then as follows: πS = ((1 − α)p − v )q − c =

(1 − α)xqε+1 − vq − c. Maximizing the profits with respect to q results in 

the optimal level of q =
(
(1− α)x(ε+1)

v

)− 1/ε 
. It can be seen that dq

dx > 0, dq
dv <

0, dq
dα < 0, while dq

dε is indeterminate. The analytic expressions for all de
rivatives are shown in Appendix B. These effects are intuitive. For 
example, a higher level of demand (x) will result in a higher utilization 
of capacity, while a higher level of variable costs results in a lower ca
pacity utilization. In addition, when the share of revenues of the retailer 
increases this creates an incentive for the supplier firm to reduce the 
quantities delivered. Careful inspection of the expression dq

dε reveals that 

dq
dε > 0 when the share of revenue demanded by the retailer is relatively 
low and/or the relative of the price to cost ratio (x/v) is high (indicating 
suppliers with relatively high profit margins). On the contrary, when the 
retailer extracts a high revenue share and/or the supplier has little profit 
margins then the supplier reacts by reducing quantities produced when 
demand becomes more elastic (i.e., dq

dε < 0). As we will show later on, 
these same factors appear to influence whether the supplier is more 
profitable in more elastic or inelastic markets. 

The corresponding price is p = xqε = v
(1− α)(ε+1) . Note that the final 

downstream price adds a constant mark-up 1
(1− α)(ε+1) > 1 over the vari

able cost v (where ε > − 1 is needed to ensure a positive mark-up). This 
mark-up increases as the share of revenue of the retailer increases thus 
highlighting the double marginalization effect in place. This mark-up 
also increases as the price sensitivity ε (in absolute terms) increases (i. 
e., as the demand becomes more inelastic). We find that dp

dv > 0, dp
dα > 0, 

dp
dε < 0. Substituting prices and quantities into supplier profit we obtain 

πS = A x− 1/ε − c, where A = −
( vε

ε+1
) (

(1− α)(ε+1)
v

)− 1/ε
. In line with eco

nomic intuition, the supplier’s profits depend on parameters as follows: 
dπS
dx > 0, dπS

dv < 0, dπS
dα < 0. However, the impact of elasticity, dπS

dε is inde
terminate and depends on the share of revenues claimed by the retailer 
and the relative level of x relative to v. More thorough analysis of dπS

dε 
shows that when the share claimed by the retailer is high and x relative 
to v is low, then dπS

dε < 0, but when the share claimed by the retailer is low 
and when x is sufficiently higher than v, then dπS

dε > 0. Thus, when the 
supplier operates with relatively high profit margins then its profit
ability is further enhanced by a more elastic demand (and vice versa). 

We observe that q increases with x 
(

dq
dx > 0

)
, however it cannot in

crease beyond Q which is the maximum capacity level. Assuming that 
the maximum capacity level is reached at x = x then using the optimal 

quantities we find that Q =
(

x(1− α)(ε+1)
v

)− 1/ε
, which implies that the 

maximum capacity is reached at x = v
(1− α)(ε+1)Qε. Note that the threshold 

where full capacity is reached depends on the variable cost of production 
v, the installed capacity Q, the retailer’s share of the price α and the 
elasticity of demand ε, as follows: dx

dv > 0, dx
dQ > 0, dx

dα > 0 and dx
dε is inde

terminate. Intuitively, a higher variable cost of production v, higher 
installed capacity Q, and higher retailer’s share of the price α results in 
the supplier postponing production at full capacity. A more elastic de
mand results in an acceleration of the supplier firm entering into full 
scale operations when the installed capacity is small, while when the 
installed capacity is large a more elastic demand results in the supplier 
postponing switching to full capacity. 

There are two operating regions depending on whether x < x or x ≥

x as follows: 

Region 1: x < x: p = v
(1− α)(ε+1), q =

(
(1− α)x(ε+1)

v

)− 1/ε 
and πS =

A x− 1/ε − c, with A = −
( vε

ε+1
) (

(1− α)(ε+1)
v

)− 1/ε
. 

Region 2: x ≥ x: p = xQε, q = Q and πS = (1 − α)xQε+1 − vQ − c. 
Since we assume that there is no working capital (e.g., inventory or 

credit) the profits are equivalent to cash flows. Following standard ar
guments in the real options literature (see Dixit and Pindyck, 1994) the 
supplier firm value Si(x) satisfies the following differential equations 
depending on the region of operation: 

rSi(x) = (r − δ)xSi
′

(x) +
σ2

2
x2S′′

i (x) + πSi, i = 1, 2. (3)  

where the last term denotes the cash flows received per dt. 
The following proposition presents the supplier value in both re

gions. 

Proposition 1. (Value of the supplier firm) 

3 One could also consider a model with retailer capacity and utilization 
choice in which the revenue sharing ratio is decided by the supplier acting as 
the Stackelberg leader. Earlier versions of the paper modeled such a framework. 
Such a setting would apply for example to franchising where the share of 
revenues claimed by a large multinational franchise firm (e.g., McDonalds) 
which acts as a supplier of a product affects the capacity of a local franchisee (e. 
g., by determining its store size or number of stores opened). The supplier 
would face a similar trade off in setting the optimal revenue sharing ratio in line 
with insights in Altug and van Ryzin (2014). 
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The supplier value is given by: 

Region 1, x < x :

S1(x) =
A

r +
( r − δ

ε
)
− 0.5σ2

( 1
ε
) ( 1

ε + 1
)x− 1/ε −

c
r
+ Ω1xβ1

(4)  

Region 2, x ≥ x :

S2(x) =
(1 − α)xQε+1

δ
−

c + vQ
r

+ Ω2xβ2
(5)  

where β1 =
1
2
−
(r − δ)

σ2 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
(r − δ)

σ2 −
1
2

)2

+
2r
σ2

√

> 1 (6a)  

β2 =
1
2
−
(r − δ)

σ2 −

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
(
(r − δ)

σ2 −
1
2

)2

+
2r
σ2

√

< 0 (6b)  

and Ω1 and Ω2 are determined from the following boundary conditions: 

S1(x) = S2(x) (Value − matching) (7)  

S′

1(x) = S′

2(x) (Smooth − pasting) (8)   

Proof. The particular solutions in equations (4) and (5) are obtained 
by applying the differential equation in (3) the particular solution 
Si(x) = A0 + A1x + A2x− 1

ε . Ω1 and Ω2 are obtained by applying (7) and 
(8) respectively using equations (4) and (5) (see Appendix A for the 
detailed expressions). 

The term Ω1xβ1 captures the adjustment in value when the supplier 
moves to full capacity in region 2, while the term Ω2xβ2 captures the 
option to reduce the utilization of capacity below full capacity at level 
q<Q. 

At time zero the value of the supplier firm is given by: 

SNet
1 (x) = maxQ{S1(x) − kQη }, if x < x (9)  

else, if x ≥ x, the value of the supplier firm is given by: 

SNet
2 (x) = maxQ {S2(x) − kQη } for x ≥ x (10)  

Since x depends on Q, to find the optimal capacity we run various levels 
of capacity based on a dense grid of Q values where we apply (9) or (10) 
depending on the region being x < x or x ≥ x. Then the maximum value 
among supplier values among all grid levels defines the optimal ca
pacity, as well as the operating region since it determines x where the 
firm operates. 

We next move to the retailer. When the supplier is in region 1 (below 
full capacity), the retailer firm has the following profits per period πR =

(αp − cR)q = αxqε+1 − cRq. The optimal quantity level is given by the 
supplier’s optimization which resulted in q =

(
(1− α)x(ε+1)

v
)− 1/ε (for x < x) 

and the corresponding price is p = xqε = v
(1− α)(ε+1) . Thus, the profit per 

dt for the retailer is: πR = Вx− 1/ε where: 

В=
( αv
(1 − α)(ε + 1)

− cR

)((1 − α)(ε + 1)
v

)− 1/ε 

The comparative statics for the retailer are as follows: dπR
dx is inde

terminate, dπR
dcR

< 0, dπB
dα is indeterminate, dπR

dv is indeterminate and dπR
dε is 

indeterminate. Retailer’s profits increase with the demand shock as long 
as the retailer’s operating cost cR is relatively low to allow for positive 
margins and they decrease with retailer operating costs. The overall 
effect of the upstream variable costs on retailer’s profit depends on 
which of the following two effects dominate. On the one hand, 
increasing variable costs reduces quantities produced which has a 
negative impact on retailer profit. On the other hand, it also increases 

the price which positively affects retailer profit. Increasing retailer’s 
revenue share has similar opposite indirect effects on retailer profits, in 
addition to a direct positive effect. In Appendix B, we show that dπR

dv < 0 
and dπR

dα < 0 when cR is relatively small. Intuitively this implies that the 
effect of reduced quantities on the profitability of the retailer is more 
important than price increases when the retailer has high profit margins 
(implied by lower cR). Finally, the effect of elasticity depends on 
parameter values, as in the case of the supplier. 

For x > x, the supplier produces at full capacity, q = Q and the 
corresponding price is p = xQε, and πR = (αp − cR)Q = αxQε+1 − cRQ. 

The retailer value satisfies the following differential equation: 

rRi(x)= (r − δ)xRi
′

(x)+
σ2

2
x2R′′(x)

i + πRi, i= 1, 2 (11) 

The following proposition derives the value of the retailer. 

Proposition 2. (Value of the retailer firm) 

Region 1, x < x :

R1(x) =
B

r +
( r − δ

ε
)
− 0.5σ2

( 1
ε
) ( 1

ε + 1
)x− 1/ε + ΩR

1 xβ1
(12)  

Region 2, x ≥ x :

R2(x) =
αxQε+1

δ
−

cRQ
r

+ ΩR
2 xβ2

(13) 

where the solutions for ΩR
1 and ΩR

2 are determined from equations 

R1(x) = R2(x) (Value − matching) (14)  

R′

1(x) = R′

2(x) (Smooth − pasting) (15)   

Proof. The particular solutions in equations (12) and (13) are obtained 
by applying the differential equation in (11) the particular solution 
Ri(x) = A0 + A1x + A2x− 1

ε . ΩR
1 and ΩR

2 are obtained by applying (14) and 
(15) respectively using equations (12) and (13) (see appendix A). 

Note that the condition in equation (15) is a continuity (not an 
optimality) condition since the retailer value depends on the optimal 
choice of capacity of the supplier as described in equations (9) and (10) 
which also define the optimal threshold x. 

Finally, for comparison, we calculate the value of the firm if there is 
vertical integration. The vertically integrated profit per period in region 1 
(unconstrained) is as follows: πV =(p − v − cR)q − c= xqε+1− (v+cR)q − c.

Maximizing the profits with respect to q results in the optimal level of qV =

(
x(ε+1)
v+cR

)− 1/ε 
and the corresponding price is pV = xqε

V = v+cR
(ε+1) . Substituting 

this into profit we obtain πV =AV x− 1/ε − c where AV = −

(
(v+cR)ε

ε+1
)(

(ε+1)
v+cR

)− 1/ε
. A comparison of the vertically integrated firm with the 

non-coordinated profits of the supplier shows that the share of revenues of 
the retailer does not affect the optimally produced quantities nor the 
downstream prices. However, now the downstream operating cost cR en
ters the picture; the higher the cost cR, the lower the produced quantities 
and the higher the price in the downstream market. 

Assuming that the maximum capacity level is reached at x = xV then 

using the optimal quantities we find that QV =
(

xV (ε+1)
v+cR

)− 1/ε 
which im

plies that the maximum capacity is reached at xV = v+cR
(ε+1)Qε

V
. Note that the 

threshold where full capacity is reached depends on the variable cost of 
production v, the retailer’s variable cost cR, the price sensitivity of de
mand ε, the installed capacity QV as follows: dxV

dv > 0, dxV
dcR

> 0, dxV
dε is 

indeterminate and dxV
dQV

> 0. 
The value of the vertically integrated firm satisfies the following 
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differential equation: 

rVi(x)= (r − δ)xVi
′

(x)+
σ2

2
x2V ′′

i (x)+ πV i, i= 1, 2 (16) 

The following proposition derives the value of the vertically inte
grated firm. 

Proposition 3. (The value of the vertically integrated firm) 

Region 1, x < xV :

V1(x) =
AV

r +
( r − δ

ε
)
− 0.5σ2

( 1
ε
) ( 1

ε + 1
)x− 1/ε −

c
r
+ Ψ 1xβ1

(17)  

Region 2, x ≥ xV :

V2(x) =
xQV

ε+1

δ
−

c + (v + cR)QV

r
+ Ψ 2xβ2

(18) 

where β1 and β2 are given by (6a) and (6b) and Ψ1 and Ψ2 are 
determined from the following boundary conditions: 

V1(xV) = V2(xV) (Value − matching) (19)  

V
′

1(xV) = V
′

2(xV) (Smooth − pasting) (20)   

Proof. The particular solutions in equations (17) and (18) are obtained 
by applying the differential equation in (16) the particular solutions 
Vi(x) = A0 + A1x + A2x− 1

ε . Ψ1 and Ψ2 are obtained by applying (19) and 
(20) respectively using equations (17) and (18) (see Appendix A). 

At time zero the value of the vertically integrated firm is given by: 

VNet
1 (x) = maxQV {V1(x) − kQV

η }, if x < xV (21)  

else, if x ≥ x, the value of the vertically integrated firm is given by: 

VNet
2 (x) = maxQV {V2(x) − kQV

η }, for x ≥ xV (22)  

Since xV depends on QV , to find the optimal capacity we run various 
levels of capacity based on a dense grid of QV values and check whether 
x < x in which case apply (21), else we apply (22). Then the maximum 
value among firm values among all grid levels defines the optimal ca
pacity, as well as the operating region (since it determines xV) where the 
firm operates. 

3.3. Interactions between supplier and retailer firm 

In this section we provide a quantification of the trade-offs involved 
for the retailer firm when choosing the share of revenue taking into 
consideration the interactions with the supplier firm. Formally, one can 
take the derivative of the retailer function in Proposition 2 which de
pends on the present value of the profits (captured by the particular 
solution), as well as on the flexibility of the supplier to switch between 
operating regions. These later effects are incorporated in ΩR

1xβ1 and 
ΩR

2xβ2 in Proposition 2, however due to the non-linearities involved, the 
expression of the derivative with respect to α is complicated. Instead, we 
try to gauge the trade-offs by breaking down the direct revenue effects 
and the effect of switching between regions below. 

In the region where the supplier operates unconstrained, the re
tailer’s profits are: 

πR =(αp − cR)q (23) 

By using total differentiation of the retailer profits we obtain the 
following: 

dπR

da
= pq
⏟⏞⏞⏟
>0

+αq
dp
dα⏟⏞⏞⏟
>0

+ (αp − cR)
dq
dα⏟⏞⏞⏟
<0

(24) 

Equation (24) shows that the retailer faces the following trade-offs 
when deciding to increase its share of revenues α.4 On the positive 
side, increasing α increases the revenue gained if quantities and prices 
are held fixed (first term) and increases the revenues due to higher prices 
(second term). On the negative side however, increasing α has an 
adverse effect on profits due to lower quantities produced and delivered 
by the supplier (third term). Similar trade-offs hold when firms are in 
region 2 (supplier operates at full capacity) and equations (23) and (24) 
hold, albeit q is replaced for Q and only numerical comparative statics 
(not analytical) are available. 

In addition to the above direct effects on profits there are also some 
non-linear effects that complicate the retailer’s decision. These effects 
relate to the switching options that the supplier has between partial and 
full utilization of capacity and the level of its capacity choice. Although 
it is not possible to identify fully these non-linearities, we note some 
insights. First, we found earlier that dx

da > 0 which implies that the higher 
the revenue share claimed by the retailer the longer the delay of the 
supplier switching to full capacity. In addition, dQ

da < 0 which shows that 
capacity is reduced when the retailer claims a larger revenue share. The 
combination of the above direct and indirect trade-offs determines the 
choice of the optimal revenue share offer that the retailer makes to the 
supplier firm. 

4. Numerical analysis 

We next provide sensitivity results and the implications of the model 
relating to the optimal revenue sharing offer of the retailer and the ca
pacity and utilization of capacity of the supplier, as well as the prices of 
goods in the downstream markets. We assume the following base case 
parameters: x = 10, σ = 0.2, v = 1, c = 0, cR = 1, ε = − 0.7, k = 3, η =

2, r = 0.05, δ = 0.03. Our base parameters used for r, δ and σ are in line 
with other real options models (e.g., Mauer and Sarkar, 2005; Hackbarth 
and Mauer, 2011). η is the same as in Nishihara et al. (2019). A positive k 
alongside η determines an optimal capacity level for the supplier. The 
elasticity parameter ε is similar to Aguerrevere (2009) and Dobbs 
(2004).5 We initially set c = 0 to avoid cases of negative profits when the 
volume of production is zero (we analyze c > 0 in our sensitivity anal
ysis). The relative level between x and v is set to retain positive values for 
both the supplier and retailer firms at various revenue sharing levels. 
Throughout the analysis we run a dense grid search for optimal capacity 
choice with increments of Q of 0.01. Similarly, for the share of revenues 
of the retailer we run a dense grid search with increments of α of 0.01. 

4.1. Baseline results 

Fig. 1 shows retailer values as a function of the retailer claimed share 
of revenues α. The figure highlights our first important result regarding 
the existence of an optimal revenue sharing ratio, which is summarized 
as follows. 

Result 1. There is an optimal sharing level α that maximizes the value 
of the retailer. The optimal sharing level α balances: a) the direct posi
tive impact of a higher α on retailer revenues, b) the negative impact of a 

4 Note that taking the derivative of the retailer’s profits with respect to α is 
equivalent to taking the derivative of the particular solution of the retailer with 
respect to α. Indeed, we have that πR = Вx− 1/ε, while the particular solution for 
the retailer in region 1 is B

r+(r− δ
ε )− 0.5σ2(1

ε)(
1
ε+1)

x− 1
ε  

5 Aguerrevere (2009) uses ε = − 0.625 and Dobbs (2004) an ε = − 0.5. Note 
that the choice of ε values are restricted so that r +

( r− δ
ε
)
− 0.5σ2( 1

ε
)( 1

ε +1
)
> 0 

so that the particular solution in region 1 of Proposition 1 remains positive. 
Hagspiel et al. (2016) and Sarkar (2009) use a linear demand function and they 
also need to impose some constraints to maintain positive values on particular 
solutions. Specifically, they need to assume a high r and small μ and σ to 
maintain positive values for the particular solutions. 
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higher α on supplier’s optimal capacity and production, c) the positive 
impact on prices due to lower quantities produced, and d) a negative 
effect caused by a delay in the supplier firm moving to full capacity. 

Our result is related to previous work on quantity flexible contracts. 
For example, in Tsay (1999) a retailer operating in a single period 
context provides a planning of forecasted quantities to be purchased 
which may not be materialized when uncertainty unfolds unfavorably 
(see also recent work by Li et al., 2021). They show that in such a case 
the risks are shifted on the supplier which will internalize this and 
consequently adjust its capacity of production downwards. Relatedly, in 
our context the supplier bears the cost of installing capacity when in fact 
capacity may not be fully utilized in future production. However, in 
contrast to this line of work which proposes quantity flexible contracts 
with commitment of the retailer to buy and the supplier to provide 
certain quantities, we focus on revenue sharing contracts. In particular, 
we analyze how the retailer internalizes the impact of a revenue share 
contract on the supplier’s installed capacity given that the supplier 
controls the volume of production in a multiperiod context with un
certain demand. 

In order to better understand the forces involved in determining 
Result 1, i.e., the optimal level α, Table 1 Panel A shows how the main 

variables of the model change as the share of revenues claimed by the 
retailer (α) changes. The bold line shows the optimal pricing (revenue 
sharing) choice for the retailer firm. We observe that when the share of 
revenues of the retailer is low, the supplier selects a high capacity level 
and a high utilization rate. Actually, when α ≤ 0.3 the supplier starts 
operations at full capacity (Region 2). As α increases, the supplier re
duces both the optimal capacity level and the optimal production level. 
The low quantities produced result in an increase in the price of the final 
good sold. 

For the retailer, an increase in α thus implies the following trade-offs. 
On the one hand, there is a direct positive effect, since the retailer is 
capturing a larger fraction of the revenues. Moreover, we have an 
additional indirect positive effect due to the resulting increase in the 
price, which increases per unit profit. On the other hand, we have an 
indirect negative effect since quantities sold decrease, which decreases 
net revenues. In addition, the supplier postpones entering into full ca
pacity for higher α (notice that x increases with α). For small increases in 
α the positive effect dominates. However, at relatively large values of α 
the negative impact of low quantities dominates the positive effect of a 
higher per unit profit. Hence, we obtain an optimal level of α. Although 
the optimal revenue sharing ratio that we find in the benchmark case is 
relatively high compared to percentages observed in practice, when 
incorporating supplier’s option to abandon and finite maturity horizon 
we obtain revenue sharing ratios as low as 20% in line with practice (see 
Section 6). 

An interesting managerial question is to investigate how likely it is 
for a supplier firm to hit the full capacity threshold over a certain period 
T. To investigate this, we simulate 5000 firms. For the GBM dynamics we 
use the following to generate sample paths xt = xt− 1 exp (μ dt+σ

̅̅̅̅̅
dt

√
Zt)

where Zt ∼ N(0, 1) and x(0) = x0 is the initial price using a dt = 1 
(yearly) for a period T = 20 years. We then count all cases where xt > x 
over this period. Our analysis revealed that only 1.48% of supplier firms 
will hit the full capacity boundary over that period showing that a 
manager should expect that most of time the firm will remain under full 
capacity for quite long periods of time. 

4.2. Fixed revenue sharing contract 

To understand how different economic conditions affect supplier’s 
optimal selection of capacity and its utilization rate for a given revenue 
sharing contract, we first run sensitivity results with respect to model 
parameters for a given α. We use a value of α = 0.4, instead of 0.79, the 
optimal α value for the benchmark parameter values, because it allows 
us to better illustrate the entire model including both regions, below and 
at full capacity. 

Fig. 2 shows the effect of volatility which highlights some interesting 
real options effects relating to operational flexibility. A higher volatility 

Fig. 1. Optimal share of retailer]. Notes: Parameters used r = 0.05, δ = 0.03, σ 
= 0.2, v = 1, c = 0, cR = 1, x = 10, k = 3, η = 2, εB = − 0.7. 

Table 1 
Sensitivity with respect to the share of revenues of the retailer (α) Panel A: Non-cooperative values Panel B: Vertical integration.  

α x Region SNet(x) R Q q (q/Q) Price (p)

0.2 45.03 2 288.648 42.25 3.18 3.18 1.00 4.45 
0.3 47.93 2 243.28 89.80 2.88 2.88 1.00 4.77 
0.4 51.65 1 199.56 133.60 2.56 2.32 0.90 5.56 
0.5 56.38 1 157.73 172.78 2.24 1.78 0.80 6.67 
0.6 62.75 1 118.12 205.54 1.89 1.30 0.69 8.33 
0.7 77.78 1 81.213 229.48 1.52 0.86 0.57 11.11 
0.79 111.11 1 50.89 239.84 1.17 0.52 0.44 15.87 
0.8 116.67 1 47.732 239.68 1.12 0.48 0.43 16.67 
0.9 233.33 1 19.095 223.42 0.67 0.18 0.27 33.33  

xV Region VNet(x) QV qV (qV/ QV) Price (pV) Gain 
14.75 1 335.87 3.11 1.78 0.57 6.67 15.5% 

Notes: We assume the following base case parameters: x = 10, σ = 0.2, v = 1, c = 0, cR = 1, ε = − 0.7, k = 3, η = 2, r = 0.05, δ = 0.03. In Panel A, we show values 
varying α (share of supplier in revenues). Panel B shows the optimal values under vertical integration. Gain is calculated as (VNet(x)– (SNet(x) + R))/(SNet(x) þ R). Q 
increments of 0.01.  

N. Koussis and F. Silaghi                                                                                                                                                                                                                      



International Journal of Production Economics 261 (2023) 108845

8

creates a more valuable operational flexibility option for the supplier 
firm in varying the level of production. A higher volatility thus increases 
the optimal capacity choice and despite the delay in moving to full ca
pacity (x increases), the values of both the retailer and supplier improve. 
This is beneficial for both the retailer and the supplier since both count 
on the option to switch to full capacity when demand is favorable which 
is more valuable when volatility is high (while on the downside both 
firms are protected from losses due to volume flexibility, i.e., the ability 
to reduce production). At low enough volatility the firm starts at full 
capacity (see case of low volatility equal to only 8%) but operates at the 
lowest capacity and highest price levels. An increase in volatility from 
this low level of volatility increases capacity, however, the firm does not 
utilize all capacity and hence the firm moves to region 1 (below full 
capacity). Note that the downward jump in the price from the 8% 
volatility to 10% volatility reflects the change in capacity and utilization 
from a region of lower capacity and production (utilization) q to a higher 
capacity and higher production q. Further increases in volatility do not 
change q and p (firm continues in region 1) despite the higher installed 
capacity. A larger volatility thus makes it more likely for the firm to 
move from region 2 (full capacity) to region 1 (this is despite the in
crease in the threshold x). 

Although surprising at first sight, the aforementioned effect of 
volatility stems from the importance of supplier production flexibility 
captured in our setting and is in line with previous literature (Hagspiel 

et al., 2016). Under more volatile demand environments the supplier 
firm installs more capacity in order to be able to react in future favorable 
scenarios. Our analysis can help explain, for example, why Tesla 
installed a significant capacity for the production of electric cars even 
when demand for electric cars remained highly uncertain (see Randall, 
2021). We summarize the following important result. 

Result 2a. (Effect of downstream volatility for fixed contracts). The 
retailer and supplier values increase with σ. The supplier’s capacity Q 
and utilization increases with σ (flattens out for high σ). 

Next, we also highlight the effect of elasticity which has important 
implications for different types of products (e.g., luxury vs. necessities). 
A higher absolute value of ε implying a more inelastic demand, i.e., a 
lower 1

|ε| (e.g., implying the product becomes more of a necessity) has a 
significant negative impact on both capacity and utilization (see Fig. 3). 
Thus, at higher absolute value of ε the price increases due to the lower 
quantities produced. The overall impact on retailer and supplier value 
depends on which of the two effects (lower quantities or higher price) 
dominates and we generally have a U-shape effect on values: for low 
absolute ε (more elastic demand) retailer and supplier values decrease 
since the impact on quantities is relatively more important than the 
impact on prices. However, this reverses for more inelastic demand 
levels (higher absolute ε). 

We summarize a second result concerning the effect of elasticity of 

Fig. 2. Sensitivity with respect to volatility σ Notes: Parameters used r = 0.05, δ = 0.03, v = 1, c = 0, cR = 1, x = 10, k = 3, η = 2, εB = − 0.7, α = 0.4.  
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demand. 

Result 2b. (Effect of elasticity of demand for fixed contracts). The 
retailer and supplier have a U-shape with respect to absolute value of ε 
(more inelastic demand). The supplier’s capacity Q and utilization de
creases with respect to the absolute value of ε. 

Some other parameters have very intuitive effects and are not shown 
for brevity. All sensitivities are available upon request. We discuss 
briefly some findings which are in line with economic intuition. For 
example, higher initial demand level x or lower level of variable costs v 
result in an improvement in the value of the retailer and supplier firm 
and an increase in capacity (Q) and utilization (q). A higher cost for 
installing capacity k reduces the level of capacity of the supplier and has 
an adverse effect on both the retailer and supplier firm. A higher fixed 
cost of production for the supplier c does not change the supplier’s ca
pacity or utilization and thus has no effect on the threshold x, the price 
of goods sold in the downstream market, nor on retailer value. However, 
higher fixed costs reduce the supplier firm value because even when 
reducing the volume of production to zero in unfavorable demand 
states, the supplier still needs to incur a fixed operational cost. In Section 
6 we consider the supplier having the option to truncate the downside 
losses with an abandonment option and potential hold up problems for 

the retailer firm. A higher δ which implies a reduction in demand growth 
adversely affects capacity levels (Q). This has a negative effect on both 
the retailer and the supplier values. A higher cR reduces only the retailer 
value and has no other impact on supplier’s policy or values. Finally, a 
higher r acts in the opposite direction of δ since it effectively implies a 
higher drift in demand. A higher η acts in the same direction as k since it 
implies higher costs of installing capacity. 

4.3. Optimal revenue sharing contract 

In this section we allow the retailer to optimize its pricing policy by 
optimally selecting α. That is, the retailer firm anticipates supplier’s 
capacity and utilization decisions, and hence we solve a Stackelberg 
leader-follower type of game by optimizing retailer’s claim of revenue 
share (see Section 3.3). There are counterbalancing forces in place when 
the retailer decides to change its share α in response to a parameter 
change since this causes a reaction in the supplier’s capacity and utili
zation. Due to these counterbalancing forces, there is relatively small 
variation in optimal α. For example, when σ increases from 10% to 50% 
the optimal α only increases by 3% (from 79% to 82%). We find that the 
above effects for σ are magnified for higher v. Table 2 illustrates the 
effect of volatility which highlights some interesting trade-offs that need 

Fig. 3. Sensitivity with respect to price elasticity Notes: Parameters used r = 0.05, δ = 0.03, σ = 0.2, v = 1, c = 0, cR = 1, x = 10, k = 3, η = 2, α = 0.4.  
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to be considered by the retailer firm when adjusting α at different 
volatility levels. We demonstrate the results for a higher v compared to 
the base case since the effects are more pronounced and thus easier to 
illustrate. Similar directional effects hold for our base case parameters as 
can be seen in reported results in Appendix C. 

For a given revenue share, a higher σ increases the capacity of the 
supplier which improves retailer value even if its share of revenues re
mains unchanged (see earlier discussion relating to Fig. 2). Thus, the 
retailer’s decision of increasing α involves a trade-off. While increasing α 
has a direct positive effect on revenues, it also has a negative impact on 
produced quantities due to lower capacity and utilization of the sup
plier. This negative impact is however also mitigated by the positive 
effect on prices of lower quantities produced. Despite the counter
balancing forces, as shown in the results of Table 2, the retailer will 
generally find preferable to increase its optimal claimed share for higher 
volatility. For example, when volatility increases from 10% to 20% the 
share of the retailer increases from 71% to 75%. Had the retailer not 
increased its share the supplier would choose an optimal capacity Q =
0.87, a utilization rate of 5.8% and the resulting price in the market 
would be 80.46. The retailer would then have a value of 150.36. Instead, 
we observe that it is optimal to increase its share from 71% to 75%, 
which despite the slight decrease in capacity and utilization (Q drops to 
0.78 and utilization to 5.3%) results in a higher retailer value of 151.15 
since there is a higher resulting equilibrium price of 93.33. 

The above trade-offs characterize how the retailer chooses optimal α 
when there is a variation in other model parameters. For example, at a 
higher demand level x the supplier would increase optimal capacity and 
utilization if α remained fixed. Thus, the retailer would face a similar 
dilemma in increasing α since it would have a counterbalancing effect on 
optimal capacity and utilization. We have found that for some param
eters these counterbalancing forces create no discernible variation in α, 
while for others the effects show a clearer direction. We provide the 
following result which summarizes the effects of model parameters on 
the optimal share of revenues where a clearer directional pattern could 
be determined. All sensitivity results are shown in Appendix C. 

Result 3. (Optimal revenue sharing contract). The optimal share of 
revenues α increases with σ, cR, the absolute value of ε , r, and η and 
decreases with v and δ. The optimal revenue sharing contract exhibits 
low variation to other model parameters. 

Result 3 has important implications for the design of optimal con
tracts for retailer firms. It suggests when there should be a significant 
adjustment in the claim of optimal share of revenues in response to 
different market conditions. For example, the results generally suggest 
that retailers would require a higher optimal share for necessities (more 
inelastic) compared to luxury (more elastic) products, while they will 
tend to require a lower share of revenues when the variable costs of 
production of the supplier are high or when the demand growth is 
smaller. Importantly, the result also shows that there is no significant 
variation in optimal α for other parameters and thus a one-for-all con
tract offered by the retailer to supplier firms may not be far from an 
optimal choice for the retailer in these situations. Thus, in cases where 
the retailer faces significant costs of discerning information (e.g., about 
the demand level in the supplier’s market), offering the same contract to 

all supplier firms will not be far from the optimal choice. This is in line 
with anecdotal evidence. For example, Amazon charges the same fee to 
multiple products belonging to different categories. 

4.4. Gains from vertical integration 

We now analyze the gains from vertical integration. In Table 1, Panel 
B we provide the solution with vertical integration for the base case 
parameters. We observe that vertical integration results in an 
improvement in capacity (Q) relative to the optimal solution with non- 
coordinated production of α = 0.79. The gain in overall value of inte
grating production relative to the sum of retailer and supplier values 
with no coordination is 15.5%. We also note that the vertically inte
grated firm produces higher quantities, and this results in a reduction in 
the price of the good offered in the market. We summarize the following 
main result. 

Result 4a. (Coordinated vs. non-coordinated production). Relative to 
the non-coordinated production, integration of production results in an 
improvement in capacity and quantities produced, a gain in overall 
value relative to the sum of retailer and supplier values and a lower price 
of the good offered in the market. 

Result 4a is in line with the double marginalization problem of dis
integrating production where positive mark-ups are added in different 
stages of production resulting in higher prices (see Spengler, 1950 and 
Tirole, 1988, ch.4). Tsay (1999) has shown (see Proposition 4b) that 
with non-coordinated production the supplier’s installed capacity is 
lower than the one under coordination (see also Li et al., 2021, p.4 for a 
similar result). However, our framework allows for further insights 
regarding the sensitivity of these gains with respect to model parameters 
within a context of revenue sharing and multiperiod production flexi
bility that also provides managerial insights with respect to environ
ments where vertically integrating production will be most beneficial. 

Due to the counterbalancing effect on supplier’s capacity and utili
zation that the retailer needs to consider for adjusting optimal α in 
response to changes in parameter values (discussed in the previous 
section), there is a small variation in gains from vertical integration. The 
gains from vertical integration for alternative model parameters for 
which we have obtained clearer directional effects are summarized in 
Result 4b (see Appendix C for all sensitivity results). 

Result 4b. (Gains from vertical integration). The gains for vertical 
integration are higher with higher σ, v and r and lower δ, cR and lower 
absolute value of ε. The gains are almost invariant to other model 
parameters. 

We note that there are generally higher gains from vertical integra
tion when volatility is high, i.e., when operational flexibility is more 
valuable. However, due to counterbalancing forces involved in the 
choice of the retailer firm regarding α the gains are not substantially 
different and range from about 15% for low volatility (σ = 0.1) to about 
19% for very volatile demand (σ = 0.4) (see Appendix C). Since gains 
from vertically integrating production do not vary substantially with 
volatility this implies that the managerial decision to vertically integrate 
production would not be particularly beneficial especially when one 

Table 2 
Optimal revenue sharing contract for different levels of volatility of demand.  

σ α x Region SNet R Q (q/Q) Price (p)

0.1 0.71 40.12 1 39.06 128.07 0.37 0.137 80.46 
0.2 0.75 78.43 1 37.45 151.15 0.78 0.053 93.33 
0.3 0.77 101.45 1 39.82 174.89 1 0.037 101.45 
0.4 0.79 123.28 1 41.23 198.97 1.16 0.028 111.11 
0.5 0.8 140.19 1 43.83 220.86 1.3 0.023 116.67 

Notes: We assume the following base case parameters: x = 10, v = 7, c = 0, cR = 1, ε = − 0.7, k = 3, η = 2, r = 0.05, δ = 0.03. Q increments of 0.01.  
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considers integration costs. Also, a higher volatility is not generally 
beneficial for end consumers in a decentralized setting. This is because 
despite the higher capacity installed when operational flexibility is 
present, a possible lower utilization rate may actually result in prices 
being higher for end consumers. 

5. Minimum quantities delivered imposed by the retailer 

We now consider the case in which the retailer may impose various 
constraints on the supplier’s production decision such as minimum 
customer demand fill rates or service levels (Fry et al., 2001; Wang et al., 
2004). Therefore, the supplier would need to produce and deliver a 
minimum quantity of goods Qmin to meet a certain fill rate or service 
level. Just like before, the supplier also has capacity constraints with a 
maximum capacity Q which is reached at x = v

(1− a)(ε+1)Qε. Assuming that 
the minimum quantity level is reached at x = xmin then using the mini

mum quantity Qmin =
( xmin(1− a)(ε+1)

v
)− 1/ε implies that the minimum ca

pacity is reached at xmin = v
(1− a)(ε+1)Qmin

ε. In principle one could add also 
an abandonment threshold for the supplier which when reached it stops 
production altogether. Instead, we analyze the case of abandonment 
option and potential hold-up issues in the finite-time numerical model of 
the next section. Note also that we are assuming Qmin < Q so that xmin <

x. Nevertheless, in extreme cases the minimum quantity required by the 
buyer could be so high that it might affect the supplier’s optimal ca
pacity choice such that q = Q = Qmin. 

There are now three operating regions as follows: 
Region 1: x < xmin, p = xQmin

ε, q = Qmin and πS = (1 − α)xQmin
ε+1 −

vQmin − c. 
Region 2: xmin < x < x, p = v

(1− α)(ε+1), q =
( x(1− α)(ε+1)

v
)− 1/ε and πS =

A x− 1/ε − c, with A = −
( vε

ε+1
)(

(1− α)(ε+1)
v

)− 1/ε. 
Region 3: x ≥ x, p = xQε, q = Q and πS = (1 − α)xQε+1 − vQ − c. 
The supplier firm value Si(x) satisfies the following differential 

equation within regions: 

rSi(x)= (r − δ)xSi
′

(x)+
σ2

2
x2Si

′′(x)+ πSi, i= 1, 2, 3 (25) 

where the last term denotes the cash flows received under that region. 

Proposition 4. (Value of the supplier and optimal capacity choice with 
minimum delivered quantities) 

The supplier value is given by: 

Region 1, x < xmin :

S1(x) =
(1 − a)xQmin

ε+1

δ
−

c + vQmin

r
+ Ω1xβ1

(26)  

Region 2, xmin < x < x :

S2(x) =
A

r +
( r − δ

ε
)
− 0.5σ2

( 1
ε
) ( 1

ε + 1
)x− 1/ε −

c
r
+ Ω2xβ1 + Ω3xβ2

(27)  

Region 3, x ≥ x :

S3(x) =
(1 − a)xQε+1

δ
−

c + vQ
r

+ Ω4xβ2
(28)  

and Ω1, Ω2, Ω3, Ω4 are determined from the following boundary con
ditions: 

S1(xmin) = S2(xmin) (Value − matching region 1 and 2) (29)  

S′

1(xmin) = S
′

2(xmin) (Smooth − pasting region 1 and 2) (30)  

S2(x) = S3(x) (Value − matching region 2 and 3) (31)  

S′

2(x) = S′

3(x) (Smooth − pasting region 2 and 3) (32) 

Proof. Similar to the proof of Proposition 1. 

At time zero the value of the supplier firm is given by: 

SNet
1 (x) = maxQ {S1(x) − kQη }, if x < xmin (33)  

SNet
2 (x) = maxQ {S2(x) − kQη }, for xmin < x < x (34)  

SNet
3 (x) = maxQ {S3(x) − kQη }, x ≥ x (35)  

Since x and xmin depend on Q and Qmin to find the optimal capacity we 
run various levels of capacity based on a dense grid and check which of 
the three regions apply to calculate the net value of the supplier. Then 
the maximum value among supplier values among all grid levels defines 
the optimal capacity, as well as the operating region where the firm 
starts to operate. 

The value of the retailer is derived in a similar way. The following 
proposition derives the value of the retailer. 

Proposition 5. (Value of the retailer firm with minimum delivered 
quantities) 

Region 1, x < xmin :

R1(x) =
axQmin

ε+1

δ
−

cRQmin

r
+ ΩR

1 xβ1
(36)  

Region 2, xmin < x < x :

R2(x) =
B

r +
( r − δ

ε
)
− 0.5σ2

( 1
ε
) ( 1

ε + 1
)x− 1/ε + ΩR

2 xβ1 + ΩR
3 xβ2

(37)  

Region 3, x ≥ x :

R3(x) =
axQε+1

δ
−

cRQ
r

+ ΩR
4 xβ2

(38)  

where the solutions for ΩR
1 , ΩR

2 , ΩR
3 and ΩR

4 are determined from the 
following boundary conditions: 

R1(xmin) = R2(xmin) (Value − matching region 1 and 2) (39)  

R
′

1(xmin) = R
′

2(xmin) (Smooth − pasting region 1 and 2) (40)  

R2(x) = R3(x) (Value − matching region 2 and 3) (41)  

R′

2(x) = R′

3(x) (Smooth − pasting region 2 and 3) (42)  

Proof. Similar to the proof of Proposition 2. 

In Table 3 we investigate numerically the effect of minimum deliv
ered quantities imposed by the retailer. For Qmin = 0, we obtain our base 
case framework in which there were no minimum requirements for the 
quantities delivered. Indeed, comparing the values obtained for Qmin = 0 
in Table 3 with those in bold in Table 1 corresponding to an optimal α of 
0.79, we can see that they coincide. 

As the minimum delivered quantity increases supplier value de
creases while the retailer value increases. For Qmin = 0.5 the constraint is 
not binding at the current level of x, the supplier chooses both a capacity 
and a utilization level above the minimum delivered quantity. The 
quantity produced is between the minimum delivered quantity and the 
capacity level, i.e., Qmin < q < Q (region 2). Although not binding at t =
0, the constraint on minimum quantities Qmin = 0.5 may become bind
ing subsequently if demand drops below xmin . Thus, we observe a slight 
decrease in the value of the supplier due to the imposed constraint. As 
the minimum delivered quantity increases further to Qmin = 1 the 
constraint becomes binding at t = 0 and the supplier produces the 
minimum delivered quantity, which is below full capacity. Therefore, 
the firm is in region 1, q = Qmin < Q. For even higher values of the 
minimum delivered quantity such as 1.5 or 2, the constraint affects not 
only the quantities produced by the supplier, but also its capacity. In this 
case, the supplier firm decides to set up an optimal capacity level equal 
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to the minimum delivered quantity, q = Q = Qmin. 
In sum, the minimum delivered quantity provides a tool for the 

retailer to improve its value over the supplier. We summarize the 
following result. 

Result 5. (Minimum delivered quantity). When the retailer has the 
ability to impose minimum delivered quantities, then it can reduce the 
supplier’s ability to choose capacity and its production flexibility and 
extract more value from the supplier firm. 

Our analysis provides new insights with respect to the use of mini
mum order quantities as a tool used by supply chain members to extract 
value from partners in the network. Wang et al. (2021) (see also Tsay, 
1999, Proposition 4b) show that suppliers can use minimum order 
quantities to extract more value from retailers, while our analysis fo
cuses on how retailers may use this to extract value from their suppliers. 
In the next section we investigate the impact of an abandonment option 
for the supplier firm and potential hold-up problems that mitigate the 
power of the retailer firm in extracting value from the supplier firm by 
imposing minimum delivered quantities. 

6. Finite horizon 

6.1. Abandonment option and hold-up problem for retailer 

The perpetual horizon assumption allowed for analytic solutions. 
However, the optimal sharing contract may change when the supplier 
expects a finite horizon supply of goods to the retailer. In addition, it is 
worth investigating how the optimal revenue sharing contract and 
retailer and supplier values change when the supplier decides to inter
rupt (abandon) the production of goods creating a hold-up problem for 
the retailer. These issues may become important when the supplier faces 
fixed costs of production and minimum delivered quantities since the 
retailer may suffer a hold-up cost of re-establishing a contact with other 
potential suppliers when the supplier abandons operations. In order to 
address the aforementioned issues, we formulate the problem in a finite 
horizon using a binomial tree approach. 

We build a binomial tree describing the evolution of the demand 
shock starting from x = x0. Since the demand shock x follows a GBM, we 
use a standard formulation of the lattice parameters for the up and down 
jumps and the up and down probabilities (see Cox et al., 1979) which 
requires that u = exp (σ

̅̅̅̅̅
dt

√
), d = 1

u, pu =
exp ((r− δ)dt− d

u− d , where dt = T
N with 

T denoting the finite operational horizon of the supplier firm and N 
denoting the number of steps used in the binomial tree. We keep track of 
the following information at each node of the binomial tree: demand 
prices (p), retailer value (R), supplier value (S), supplier’s optimal vol
ume of production (q) and supplier’s decision (D) between operation (O) 
and abandonment of operations (A). All variables notation used in 
earlier section is kept the same for consistency. In addition, in this sec
tion we allow for a cost cp incurred by the retailer if the supplier 
abandons operations which intends to capture hold-up costs. These 

hold-up costs may for example capture search costs for establishing a 
new agreement with other potential suppliers when the supplier stops 
the supply of goods. In sum, the numerical approach of this section al
lows for finite horizon contracts, abandonment of the contract by the 
supplier firm and potential hold-up costs for the retailer when the con
tract is interrupted by the supplier firm. 

Like in models of capital structure (e.g., Leland, 1994), abandonment 
is endogenously chosen by the supplier to maximize its firm value. We 
start in the last period T so that supplier value is calculated as follows: 

ST =max [[((1 − α)pT − v)qT − c]dt, 0]

where pT = xTqε and xT = x0 uN+1− idi− 1 with i = 1,2,…N the possible 
states of the demand shock (from the highest to the lowest values). The 
optimal quantity is selected to maximize the profits of the period as 

follows: qT =
(
(1− α)xT(ε+1)

v
)− 1/ε. If the capacity is not binding qT holds, 

otherwise we replace quantity with qT = Q. If ST > 0 then retailer value 
is RT = (apT − cR)qT dt otherwise if ST = 0 (i.e., supplier abandons op
erations) then RT = − cp and DT=

′′A′′. Note that the retailer incurs a 
possible cost if the supplier abandons operations which can be set to zero 
for comparison with the base case model of the earlier section. 

To solve the problem, we move backwards in periods prior to last t <
T where the supplier value is calculated as follows: 

St =max [[((1 − α)pt − v)q − c]dt+ S̃t, 0]

where pt = xtqε and xt = x0 u(n – j)d(j− 1) with n = N − 1,N − 2,….1 
describing the tree steps going backwards from T-1 to period 0. The 

optimal produced quantity maximizes period profits is given by qt =
(
(1− α)xt(ε+1)

v
)− 1/ε unless qt > Q in which case qt = Q. In addition, 

S̃t = [puSt+dt,u +pdSt+dt,d]exp (− rdt) describes the expected present value 
of the supplier’s value by weighing the supplier value on the next lattice 
step if demand shock goes up (u) or down (d). The supplier operates 
when St > 0 in which case Rt = (apt − cR)q dt, otherwise if St = 0 the 
supplier abandons operations and RT = − cp and DT=

′′A′′. At t = 0 we 
note that the supplier incurs capacity costs hence its net value at t = 0 is 
SNet

0 = S0 − kQη. 
To optimize the capacity choice of the supplier we run a dense grid 

search for different Q choices and select the Q that maximizes the sup
plier net value. Similarly, we run a numerical search to optimize the 
retailer’s choice of the optimal revenue share α given the supplier’s 
optimal capacity and operational choices. 

Table 4 shows the numerical simulations by varying the operational 
horizon of the supplier using the same assumptions as in the analytical 
model, i.e., no abandonment (fixed costs are zero) and no cost incurred 
at abandonment by the retailer firm. First, we note that there is a sig
nificant difference in the value of the retailer and supplier values and 
capacity and utilization choices for shorter horizons. However, the 
optimal revenue share remains rather stable irrespective of horizon. As 
expected, the numerical model solution converges very close to the 

Table 3 
Various level of minimum delivered quantities with fixed revenue share ratio α  

Qmin Region xmin x x SNet R Q q Price (p) α 

0 2 0 10 17.72 50.89 239.84 1.17 0.52 15.87 0.79 
0.5 2 9.77 10 17.72 50.00 242.82 1.17 0.52 15.87 0.79 
1 1 15.87 10 17.72 47.18 250.26 1.17 1.00 10 0.79 
1.5 1 21.08 10 21.09 42.30 267.39 1.50 1.50 7.53 0.79 
2 1 25.79 10 25.79 34.18 284.20 2.00 2.00 6.16 0.79 

Notes: We assume the following base case parameters: x = 10, σ = 0.2, v = 1, c = 0, cR = 1, ε = − 0.7, k = 3, η = 2, r = 0.05, δ = 0.03. The share of revenues α is 
fixed as in the base case at 0.79. Q is optimally chosen (increments of search 0.01).  
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analytic solution when the horizon is sufficiently large to approximate 
the perpetual horizon (T = 200). This is reassuring that we can use the 
model to further investigate the impact of supplier abandonment option 
and hold-up costs. 

In Table 5, panel A we investigate the impact of the abandonment 
option by varying the fixed costs of the supplier. With higher fixed costs 
the supplier may stop production if demand drops sufficiently low. Thus, 
with higher fixed costs incurred by the supplier we find that the retailer 
offers better terms involving a higher revenue share to the supplier to 
avoid a hold-up. We show in unreported results that this result is 
amplified for shorter horizons, e.g., when T = 15 the retailer may need 
to offer as much as 80% of revenues when fixed costs of the supplier are 
high. The higher revenue share gained by the supplier leads to higher 
installed capacity, higher utilization and lower downstream prices when 
the supplier faces higher fixed costs. In Panel B, we investigate the case 
where the retailer faces higher hold-up costs (e.g., in order to establish a 
relationship with another supplier when the supplier abandons opera
tions). In the presence of this hold-up risk we find that the retailer may 
offer improved revenue sharing terms to the supplier which gives further 
incentives for the supplier to increase capacity and utilization. In Panel 
C, we investigate the impact of minimum delivered quantities in the 
presence of an abandonment option. With minimum delivered quanti
ties set by the retailer the optimal revenue share does not appear to 
change and the retailer is able to extract more value while the supplier is 
hurt. However, compared to the previous section where there was no 
abandonment option, we notice that the option to abandon limits the 
losses incurred by the supplier and reduces the value increase for the 
retailer. Based on aforementioned analysis we summarize the following 
result. 

Result 6. (Hold-up effects). In the presence of an abandonment option 
of the supplier the retailer faces a hold-up problem and may offer higher 
revenue incentives to the supplier firm which result in higher capacity 

and utilization. The hold-up problem reduces retailer’s ability of using 
minimum delivered quantities to extract value from the supplier firm. 

Our analysis extends earlier work (see a review by Xu et al., 2020) on 
disruption risks in the supply chain which has usually focused on risks 
outside the control of the network (e.g., natural causes, worker strikes or 
changes in environmental laws). We provide the framework to measure 
the economic impact of possible disruptions focusing on hold-up prob
lems that can occur due to insolvency of the supplier. Our context can be 
extended to measure the impact of other sources of disruption risk in the 
supply chain. 

6.2. Expansion of capacity option 

Now assume that the supplier has the option to expand capacity Q by 
e > 1 to become Qe = eQ at cost X = k(Qe − Q)

η. The option has matu
rity T1 < T but can be exercised at an optimal time before T1. 

We start from the last period assuming that the option to expand has 
been exercised so we have that the supplier’s value with expanded ca
pacity Se

T is given by: 

Se
T =max

[[(
(1 − α)pe

T − v
)
qe

T − c
]
dt, 0

]

The optimal quantity is selected to maximize the profits of the period 
as follows: qe

T =
(
(1− α)xT (ε+1)

v

)− 1/ε unless the capacity is binding in which 
case qe

T = Qe and pe
T = xT(qe

T)
ε and xT = x0 uN+1− idi− 1 with i = 1, 2,…N 

denoting the possible states of the demand shock. If Se
T > 0 then retailer 

value is Re
T = (ape

T − cR)qe
T dt otherwise if Se

T = 0 and Re
T = − cp and 

DT=
′′A′′. Applying the same procedure as in the no growth case, we then 

proceed backwards to t = T1 and calculate all values under the expanded 
capacity case for any T1 ≤ t < T by adding the cash flows of the period, 
calculating the expected continuation by weighing with up and down 
probabilities and making the necessary adjustments depending on 

Table 4 
Finite horizon model: sensitivity with respect to the operational horizon of the supplier firm.  

T α SNet R Q q (q/Q) Price (p) Region 

5 0.8 5.910 29.366 0.30 0.30 1.00 23.23 2 
10 0.8 10.581 53.529 0.40 0.40 1.00 18.99 2 
15 0.8 14.845 76.125 0.50 0.48 0.96 16.67 1 
20 0.8 18.702 96.684 0.60 0.48 0.80 16.67 1 
50 0.8 34.800 178.140 0.90 0.48 0.54 16.67 1 
100 0.8 45.018 228.729 1.10 0.48 0.44 16.67 1 
200 0.8 48.118 241.356 1.10 0.48 0.44 16.67 1 

Notes: We assume the following base case parameters: x = 10, σ = 0.2, v = 1, c = 0, cR = 1, ε = − 0.7, k = 3, η = 2, r = 0.05, δ = 0.03. The share of revenues α and 
capacity choice Q are optimized based on increments of 0.1. The solutions are based on the binomial model solution with dt = T/N = 1 year.  

Table 5 
Finite horizon model: sensitivity with respect to the fixed costs, hold-up costs, minimum delivered quantities and expansion option.    

α SNet R Q q (q/Q) Price (p) Region 

A. Fixed cost sensitivity  
c = 0 0.8 48.12 241.36 1.1 0.48 0.44 16.67 1  
c = 5 0.6 32.21 165.32 1.7 1.30 0.76 8.33 1  
c = 10 0.5 6.30 113.93 1.9 1.78 0.94 6.67 1 

B. Hold-up costs of the retailer 
c = 5 cp = 5 0.6 32.21 163.40 1.7 1.30 0.76 8.33 1  

cp = 15 0.5 67.23 160.44 2.2 1.78 0.81 6.67 1 
C. Minimum delivered quantities 
c = 5 Qmin = 2 0.6 30.79 171.64 2 2.00 1.00 6.16 2  

Qmin = 3 0.6 20.13 184.47 3 3.00 1.00 4.63 2 
D. Expansion option 
c = 5 e = 1.5 0.6 37.52 172.14 1.6 1.30 0.81 8.33 1  

e = 3 0.6 40.15 175.99 1.6 1.30 0.81 8.33 1 

Notes: We assume the following base case parameters: x = 10, σ = 0.2, v = 1, cR = 1, ε = − 0.7, k = 3, η = 2, r = 0.05, δ = 0.03, T = 200. The share of revenues α 
and capacity choice Q are optimized based on increments of 0.1. The solutions are based on the binomial model solution with dt = T/N = 1 year.  
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whether the supplier firm operates or not under the new expanded ca
pacity level. 

At the maturity of the growth option T1 we investigate whether the 
growth option is worth being exercised as follows: Se

T1
= max [Se

T1
− X,

ST1 ]. If the option is exercised then DT1=
′′E′′, else the firm remains with 

the decision followed under the no growth path in which case we write 
DT1=

′′W′′ (wait). Note that DT1=
′′E′′ implies that the firm operates under 

the expanded capacity with qe
T1

=
(
(1− α)xT1 (ε+1)

v

)− 1/ε 
unless the capacity 

is binding in which case qe
T1

= Qe. In case DT1=
′′W′′ the firm operates 

under the no-growth policy quantities qT1 =
(
(1− α)xT1 (ε+1)

v

)− 1/ε 
if capac

ity is not binding, otherwise we replace quantity with qT = Q. Case 
DT1=

′′W′′ also captures the possibility that the firm abandons if ST1 = 0. 
At any other period t < T1 we investigate whether the option is exercised 

early or whether the supplier firm waits for one more period by calculating 

Se
t =max

[
[(
(1 − α)pe

t − v
)
qe

t − c
]
dt+S

∼e
t − X, [((1 − α)pt − v)q − c ]dt+S

∼

t ,0
]

where S̃
e
t denotes the expected continuation value if the firm does not 

expand at t. 
At t = 0 we ensure that initial capacity cost is paid so have SNet

0 =

Se
t − kQη. Note that at t = 0 the supplier needs to incur the base (initial) 

capacity cost anyway in order to be able to at least operate under a no 
growth capacity level. 

To optimize the capacity choice of the supplier we run a dense grid 
search for different Q choices picking the one that maximizes the sup
plier net value accounting for the supplier’s option to expand. We run a 
numerical search to optimize the retailer’s choice of the optimal revenue 
share α given the supplier’s optimal capacity and operational choices 
which include the option to expand. 

Table 5 shows that the option to expand improves supplier’s value 
and may make the supplier somewhat more conservative in its choice of 
initial capacity. For the range of expansion factors considered the value 
improvement for the supplier is substantial, ranging between 16% and 
24%. We find that the retailer also benefits from the potential to increase 
capacity, albeit the improvement in value is less and ranges between 4% 
and 6% for the parameters considered. 

Interestingly, we find that the retailer’s optimal revenue share is not 
very sensitive to the supplier’s option to expand, rather the retailer 
maintains its revenue sharing proposition and gains from supplier’s 
expansion when this is materialized. 

Result 7. (Expansion of capacity). The option to expand improves 
retailer and supplier values and leads to a more conservative choice of 
initial capacity for the supplier firm. The retailer’s optimal revenue 
share is not very sensitive to the expansion factor of revenues. 

The real options literature has studied the option to expand capacity 
in the context of a single firm. (e.g., Dangl, 1999; Hagspiel et al., 2016; 
Chronopoulos et al., 2017). In contrast, we study the revenue-sharing 
implications of the option to expand capacity in the supply chain. Our 
analysis shows how a supplier’s option to expand capacity affects the 
revenue sharing contract proposed by the retailer and how it also affects 
the initial and subsequent capacity levels of the supplier. 

7. Coordination in the supply chain 

Previous literature on revenue sharing has proposed two-parameters 
revenue sharing contracts consisting of a wholesale price and a revenue 
sharing ratio as a coordination mechanism in the supply chain (Cachon 
and Lariviere, 2005; Giannoccaro and Potrandolfo, 2004, among 
others). Such contracts are shown to coordinate the supply chain, that is, 
to reach the maximum supply chain profit attainable under vertical 
integration. 

In a similar fashion, our model can be extended to incorporate a fee 
paid by the supplier to the retailer for each product sold through the 

retailer. This type of per product fees which are combined with revenue 
sharing is used by many online platforms such as Amazon.6 Such a 
revenue sharing contract can be shown to also achieve coordination in 
the supply chain in our framework under supplier production flexibility. 
In the rest of this section, we derive the contract that can coordinate the 
supply chain similarly to previous literature. 

We modify the benchmark model by assuming that the retailer re
ceives not only a fraction α of the supplier revenues, but also a fee w per 
unit. Regarding notation, we will use the upper index c to denote retailer 
and supplier values under the coordinated case. 

The profits per dt interval for the supplier are then as follows: πc
S =

((1 − α)p − w − v)q − c = (1 − α)xqε+1 − (w + v)q − c. Maximizing the 
profits with respect to q results in the optimal level of q =
(
(1− α)x(ε+1)

w+v
)− 1/ε. 

The retailer firm has the following profits per period πc
R = (αp + w −

cR)q = αxqε+1 + (w − cR)q. 
Summing the profits of the retailer and the supplier we obtain the 

vertically integrated profit per period: πV = (p − v − cR)q − c 
= xqε+1 − (v+cR)q − c. Maximizing the profits with respect to q results 

in the optimal level of qV =
(

x(ε+1)
v+cR

)− 1/ε
. 

Hence, to achieve channel coordination, we need that the optimal 
quantity chosen by the supplier q corresponds to the quantity that op
timizes the SC total profit qV. This happens if the supplier offers the 
retailer a fee per product equal to: 

w=(1 − α)(v+ cR) − v= cR − α(v+ cR)< cR (43)  

Therefore, under the two-parameters revenues sharing contract, the 
supplier offers the retailer a fee lower than the retailer’s marginal cost 
cR, but in exchange the retailer receives a fraction α of the supplier’s 
revenue. 

From equation (43) we can see that w+ v = (1 − α)(v + cR), that is, 
the total cost of the supplier consisting of its own variable costs plus the 
fee paid to the retailer represents a fraction 1 − α of the total variable 
costs of the whole supply chain. Thus, the supplier shares both the 
revenues and variable costs of the supply chain in the same proportion. 
Since under the coordination contract the supplier will choose the same 
quantity as the supply chain, q = qV and p = pV , we can express the 
supplier’s profits as a function of the total supply chain profit: πc

S = (1 −

α)πV − αc. Indeed, substituting w + v = (1 − α)(v+cR) into the supplier’s 
profit πc

S = ((1 − α)p − w − v)q − c, we get πc
S = (1 − α)pq − (1 −

α)(v + cR)q − c = (1 − α)(p − v − cR)q − c = (1 − α)πV − αc. 
Thus, the revenue sharing contract makes the supplier’s profit 

function an affine transformation of the supply chain’s profit function. 
Assuming that the maximum capacity level is reached at x = x then 

using the optimal quantities we find that Q =
(

x(ε+1)
v+cR

)− 1/ε
, which implies 

that the maximum capacity is reached at x = xV = v+cR
(ε+1)Qε. 

We have two operating regions for the supplier depending on 
whether x < x or x ≥ x as follows: 

Region 1: x < x: p = pV = v+cR
ε+1 , q = qV =

(
x(ε+1)
v+cR

)− 1/ε 
and πc

S = (1 −

α)AV x− 1/ε − c. 
Region 2: x ≥ x: p = xQε, q = Q and πc

S = (1 − α)xQε+1 − (1 − α)(v +

cR)Q − c. 
Similar to the benchmark model, the supplier firm value Sc

i (x) sat
isfies the following differential equations depending on the region of 
operation: 

rSc
i (x) = (r − δ)xSc

i
′

(x) +
σ2

2
x2Sc′′

i (x) + πc
Si, i = 1, 2. (44)  

6 See https://sell.amazon.com/pricing. 
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Proposition 6. (Value of the supplier firm under a coordinating 
contract). 

The supplier value function is given by: 
Region 1, x < x: 

Sc
1(x)=

(1 − α)AV

r +
(

r− δ
ε

)
− 0.5σ2

(
1
ε

)(
1
ε + 1

)x− 1/ε −
c
r
+ Ωc

1xβ1 (45) 

Region 2, x ≥ x: 

Sc
2(x)=

(1 − α)xQε+1

δ
−

c + (1 − α)(v + cR)Q
r

+ Ωc
2xβ2 (46)  

and Ωc
1 and Ωc

2 are determined from the following boundary conditions: 

Sc
1(x) = Sc

2(x) (Value − matching) (47)  

Sc
1
′

(x) = Sc′
2 (x) (Smooth − pasting) (48) 

Proof. The particular solutions in equations (45) and (46) are ob
tained by applying the differential equation in (44) the particular so
lution Sc

i (x) = A0 + A1x + A2x− 1
ε . Ωc

1 and Ωc
2 are obtained by applying 

(47) and (48) respectively using equations (45) and (46) (see 
Appendix D). 

As with profit functions, we can also express the value functions of 
the supplier as a function of the supply chain value, and it can be shown 
that a similar relationship holds as in the following corollary. 

Corollary 1. The supplier’s value function is an affine transformation 
of the supply chain’s value function under a coordinating contract: 

Sc
1(x)= (1 − α)V1(x) −

αc
r

(49)  

Sc
2(x)= (1 − α)V2(x) −

αc
r

(50)   

Proof. It follows directly from Ωc
1 = (1 − α)Ψ1 and Ωc

2 = (1 − α)Ψ2 
(see Appendix D). 

Therefore, the supplier will also choose the same optimal capacity as 
the vertically integrated supply chain, Q = QV. 

In a similar fashion, it can be shown for the retailer that: 

Rc
1(x)= αV1(x) +

αc
r

and Rc
2(x) = αV2(x) +

αc
r 

Hence, if the revenue sharing contract satisfies the condition given in 
equation (43) for the fee per product, then it will achieve channel co
ordination regardless of the value of α, which should however belong to 
the interval (0,1). 

Nevertheless, this revenue sharing contract that coordinates the 
supply chain will only be accepted by the two parties if they both obtain 
higher values under this contract compared to the uncoordinated case. 
Hence, the value of α has to satisfy a win-win condition (Giannoccaro 
and Potrandolfo, 2004): πc

S ≥ πS and πc
R ≥ πR. 

The first inequality is equivalent to (1 − α)πV − αc ≥ πS, which im
plies: 

α ≤
πV − πS

πV + c
(51) 

The second inequality is equivalent to α(πV + c) ≥ πR, which implies: 

α ≥
πR

πV + c
(52) 

Combining equations (44) and (45) we obtain: 

α ∈

[
πR

πV + c
,
πV − πS

πV + c

]

(53) 

A revenue-sharing contract (w,α) that satisfies equations (43) and 
(53) will thus not only coordinate the supply chain, but also be preferred 
by both the retailer and the supplier. We illustrate this case numerically 
in Fig. 4. We can see that the α that coordinates the supply chain lies in 
the interval (0.72, 0.86), with a corresponding fee per product ranging 
between (-0.71, -0.43). Note that the coordinating fee is actually nega
tive. Indeed, from equation (43) it follows that the fee will be negative, i. 
e., w < 0, whenever α > cR

v+cR
. For our parameter values cR

v+cR
= 0.5, thus it 

follows that the fee will be negative whenever the retailer captures more 
than half of the revenues. This is in line with the results of Cachon and 
Lariviere (2005). A negative fee implies that the retailer is actually 
subsidizing the supplier. Intuitively, if the supplier’s share of the chan
nel’s cost is high, then the supplier has already a low profit margin 
before the retailer takes a slice of revenue. If the retailer wants to claim a 
large share of revenues, it must subsidize the supplier. As Cachon and 
Lariviere (2005) argue, if we want to rule out a negative fee, then a 
positive cost for the supplier establishes a floor on supplier profit under 
coordinating contracts. 

The ultimate contract design, the actual contract parameters chosen 
by the two parties, will depend on the relative bargaining power of the 
supply chain parties. However, as pointed out by Giannoccaro and 
Potrandolfo (2004), it is important to stress that the implementation of 
this contract requires a certain degree of cooperation among the supply 
chain parties during the contract design phase. 

8. Conclusion 

In this paper we bridge the revenue sharing literature with the real 
options literature on production flexibility. We propose a unified real 
options framework to analyze a revenue sharing contract within a 
decentralized supply chain under supplier production flexibility and 
demand uncertainty. We find that the double marginalization problem is 
exacerbated under supplier production flexibility. Indeed, a pure reve
nue sharing contract exhibits losses of around 11%–22% for the pa
rameters considered compared to a vertically integrated supply chain, 
with lowest losses when the supplier firm operates at full capacity. 

We contribute to the literature by analyzing a multiperiod setting 
under uncertainty and supplier production flexibility and by providing a 
valuation of both the retailer and supplier firm. In addition, we show 
how to incorporate minimum delivered quantity constraints which 
capture many real-world retailer requirements. We quantify the impact 
of minimum delivered quantity constraints on supplier’s capacity 

Fig. 4. A two-parameters coordinating contract (fee per product and revenue 
sharing)Notes: Parameters used r = 0.05, δ = 0.03, σ = 0.2, v = 1, c = 0, cR =

1, x = 10, k = 3, η = 2, εB = − 0.7. 
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choices, capacity utilization and prices in the downstream markets. 
Furthermore, we also build a finite-time numerical model which con
siders supplier’s option to abandon as well as its option to expand ca
pacity and their effect on the revenue sharing contract. Moreover, we 
extend prior work by showing that a coordinating contract which 
combines a fee per product and revenue sharing exists in a multiperiod 
setting under uncertainty and production flexibility. However, such a 
contract would require a certain degree of cooperation between the 
retailer and supplier. 

Our findings provide several practical and managerial implications. 
First of all, we provide guidance to managers of retailers on the design of 
optimal revenue sharing contracts. When setting its claim of supplier 
revenues, the retailer should account for the negative impact this will 
cause due to lower installed capacity of the supplier, a reduction in 
utilization and a delay in the supplier firm entering full capacity mode. 
Managers of retail firms should also consider a mitigating factor of this 
negative impact on revenues which is the higher downstream prices. 
Moreover, our results suggest that retailers should require a higher 
optimal share for necessities (more inelastic) compared to luxury (more 
elastic) products, while they should require a lower share of revenues 
when the variable costs of production of the supplier are high or when 
the demand growth is smaller. On the contrary, a one-for-all contract 
might not be far from the optimal choice for a retailer facing significant 
costs of discerning information (e.g., about the demand level in the 
supplier’s market or supplier’s cost of capital). This is in line for example 
with Amazon’s practice of charging the same fee to multiple products 
belonging to different categories. Our analysis also highlights that 
minimum delivered quantities is an important tool for the retailer to 
extract part of the value from the supplier since it allows the retailer to 
retain a certain level of quantities sold and thus guarantee a certain level 
of revenues. Even if not binding initially, a minimum quantity constraint 
imposed may become binding subsequently as uncertainty unfolds. 
Nevertheless, if the constraint becomes too restrictive the supplier may 
interrupt the supply. Indeed, hold-up problems limit the retailer’s ability 
to use minimum delivered quantities imposed on supplier firms. 

Secondly, from the supplier’s side, our analysis suggests that man
agers of supplier firms should pay considerable attention to their options 
to abandon operations and to expand their initial capacity. The 

supplier’s option to abandon operations may allow the supplier to 
extract better terms from the retailer, i.e., a higher revenue sharing ratio, 
since abandonment can cause hold-up problems for the retailer. Such 
hold-up problems are expected to have stronger effects for shorter ho
rizon contracts. Additionally, when setting its initial capacity, the sup
plier should take into account the option to expand its capacity in the 
future, as this flexibility can improve both its value and the one of the 
retailer. 

Finally, our analysis suggests that retailers offering a subsidy to 
suppliers on the fee per product provides room to the supplier to in
crease its supplied quantities and bring them closer to the optimal level 
that could be achieved under coordination. This allows the retailer to 
claim a larger revenue share which will also be acceptable by the sup
plier firm (since the subsidy and increased capacity and volume leads to 
an improvement of its value). To our knowledge, subsidies on the fee per 
product provided to suppliers is not a common practice and is thus 
something which large retailers (e.g., WalMart or online platforms such 
as Amazon) who have ample cash resources could consider, thus 
enabling cash constrained small suppliers to expand offered quantities at 
a mutual benefit. 

Our setting has overlooked several issues which could be addressed 
in future research. First, we focus on a single retailer and single supplier. 
It would be interesting to investigate how competition in either the 
upstream or downstream markets affects the design of the revenue 
sharing contract under supplier production flexibility. In addition, we 
have focused on a two-stage supply chain with supplier production 
flexibility so future work could enrich the framework to consider a 
three-stage supply chain. 
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Appendix 

Appendix A. Valuation benchmark model 

We provide the expressions for Ω1, Ω2 determined from the boundary conditions given in equations (7) and (8): 

Ω1 =
1

(β1 − β2)xβ1

⎡

⎢
⎣

(
1
ε + β2

)
A

r +
(

r− δ
ε

)
− 0.5σ2

(
1
ε

)(
1
ε + 1

)x− 1/ε +
(1 − α)xQε+1

δ
(1 − β2)+ β2

vQ
r

⎤

⎥
⎦ (A1a)  

Ω2 =
1

xβ2

⎡

⎢
⎣

A
r +

(
r− δ

ε

)
− 0.5σ2

(
1
ε

)(
1
ε + 1

)x− 1/ε −
c
r
−
(1 − α)xQε+1

δ
+

c + vQ
r

+Ω1xβ1

⎤

⎥
⎦ (A1b) 

ΩR
1 and ΩR

2 in equations (12) and (13) are given as follows: 

ΩR
1 =

1
(β1 − β2)xβ1

⎡

⎢
⎣

(
1
ε + β2

)
B

r +
(

r− δ
ε

)
− 0.5σ2

(
1
ε

)(
1
ε + 1

)x− 1/ε +
αxQε+1

δ
(1 − β2)+ β2

cRQ
r

⎤

⎥
⎦ (A2a)  

ΩR
2 =

1
xβ2

⎡

⎢
⎣

B
r +

(
r− δ

ε

)
− 0.5σ2

(
1
ε

)(
1
ε + 1

)x− 1/ε −
αxQε+1

δ
+

cRQ
r

+ΩR
1 xβ1

⎤

⎥
⎦ (A2b) 

Ψ1 and Ψ2 in equations (17) and (18) are given by: 
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Ψ 1 =
1

(β1 − β2)x
β1
V

⎡

⎢
⎣

(
1
ε + β2

)
AV

r +
(

r− δ
ε

)
− 0.5σ2

(
1
ε

)(
1
ε + 1

)x− 1/ε
V +

xV Qε+1
V

δ
(1 − β2)+ β2

(v + cR)QV

r

⎤

⎥
⎦ (A3a)  

Ψ 2 =
1

xβ2
V

⎡

⎢
⎣

AV

r +
(

r− δ
ε

)
− 0.5σ2

(
1
ε

)(
1
ε + 1

)x− 1/ε
V −

c
r
−

xV Qε+1
V

δ
+

c + (v + cR)QV

r
+Ψ 1xβ1

V

⎤

⎥
⎦ (A3b)  

Appendix B. Sensitivities of profits, quantities, prices and switching thresholds with parameters 

Quantities 

∂q
∂x

= −
1
εx

(
(1 − α)x(ε + 1)

v

)− 1/ε

> 0  

∂q
∂v

=
1/ε

(ε + 1)(
1
ε)
(
(1− α)x

v

)(1
ε)v

< 0  

∂q
∂α=

1/ε

(ε + 1)(
1
ε)(1 − α)

( x(1− α)
v

)(1
ε)
< 0  

∂q
∂ε =

ln ((1− a)x(ε+1)
v

ε2 − 1
ε(ε+1)

((1− a)x(ε+1)
v )

1/ε . The sign is indeterminate. However, ∂q
∂ε < 0 for high α or/and low xv and vice versa. 

Prices 

∂p
∂v

=
1

(1 − α)(ε + 1)
> 0  

∂p
∂α=

v
(ε + 1)(α − 1)2 > 0  

∂p
∂ε =

v
(α − 1)(ε + 1)2 < 0  

Switching threshold 

∂x
∂v

=
1

(1 − α)(ε + 1)Qε > 0.

∂x
∂Q

= −
εvQ− (ε+1)

(ε + 1)(1 − α)> 0  

∂x
∂α=

v
(ε + 1)Qε(α − 1)2 > 0  

∂x
∂ε = −

ln(Q)v
(1− α)Qε(ε+1) −

v
(1− a)Qε(ε+1)2

. The sign is indeterminate. However, for Q > 1 ∂x
∂ε < 0. 

Supplier profits in Region 1 

∂πS

∂x
=

vx− (
1
ε+1)

(ε + 1)
(
(1− α)(ε+1)

v

)1/ε > 0.

∂πS

∂v
= −

1

x(
1
ε)
(
(1− α)(ε+1)

v

)(1
ε)
< 0  

∂πS

∂α = −
1

x(
1
ε)
(
(1− α)(ε+1)

v

)1
ε+1

< 0  
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∂πS
∂ε = −

v(ln((1− a)(ε+1)
v )+ln (x))

x(
1
ε)ε(ε+1)((1− α)(ε+1)

v )
1/ε

. The sign is indeterminate. However, for high enough α and/or low xv we get ∂π
∂ε < 0 and vice-versa. 

Retailer’s profits in Region 1 

∂πR
∂x = −

( av
(1− a)(ε+1)− CR)x− (1

ε− 1)

ε((1− α)(ε+1)
v )

1/ε . The sign is indeterminate. However, it is expected that ∂πR
∂x > 0 when cR is small (cR→0). 

∂πR

∂CR
= −

1
(
(1− α)(ε+1)

v

)1
εx(

1
ε)
< 0  

∂πR
∂v = −

x(
1
ε)(αv+(α− 1)cR)

(α− 1)ε((1− α)(ε+1)
v )(

1
ε)v

. The sign is indeterminate. It is expected that ∂πR
∂v < 0 when cR is small (cR→0) or when its value relative to v is small.∂πR

∂α =

x(−
1
ε)((v+cRε+cR)α+εv− cRε− cR

)

ε(ε+1)((ε+1)(1− α)
v )(

1
ε)(α− 1)2

. The sign is indeterminate. It is expected that ∂πR
∂α < 0 when cR is small (cR→0). 

∂πR

∂ε =
− x(

1
ε)
(
(α − 1)cRε + αv + (α − 1)cR

)
ln
(
(1− α)(ε+1)

v

)
+ ((1 − α)cR ln(x) − av + (1 − α)cR

)
ε +

(
(1 − α)cR − αv)ln (x)

(α − 1)ε2(ε + 1)
(
(1− α)(ε+1)

v

)
(1

ε)

Optimal switching threshold 

∂xV

∂v
=

1
QV

ε(ε + 1)
> 0  

∂xV

∂cR
=

1
QV

ε(ε + 1)
> 0  

∂xV

∂ε =
− (v + cR)(ln(QV)ε + ln(QV) + 1 )

QV
ε(ε + 1)2 . The sign is indeterminate

∂xV

∂ε < 0 when QV > 1  

∂xV

∂QV
= −

ε(v + cR)QV
− (ε+1)

ε + 1
> 0  

Appendix C. Supplementary material for Results 3 and 4b 

This appendix supports Result 3 (Optimal revenue sharing contract sensitivities) and Result 4b (gains from vertical integration). Parameters used 
are r = 0.05, δ = 0.03, σ = 0.2. v = 1, ε = − 0.7, c = 0, cR = 1, x = 10, k = 3, η = 2. We use Q increments of 0.01 for optimizing Q.   

σ α x Region SNet(x) R Q (q/Q) Price (p) Qv (qv/Qv) Price vertical (pv) Gain 

0.1 0.79 15.65 1 48.48 231.48 0.98 0.53 15.87 2.69 0.66 6.67 0.15 
0.2 0.79 17.72 1 50.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.15 
0.3 0.81 20.62 1 47.62 252.39 1.26 0.36 17.54 3.52 0.51 6.67 0.17 
0.4 0.82 22.85 1 47.29 264.96 1.35 0.31 18.52 3.87 0.46 6.67 0.19 
0.5 0.82 24.25 1 49.83 276.83 1.47 0.28 18.52 4.15 0.43 6.67 0.18 

cR α x Region SNet(x) R Q (q/Q) Price (p) Qv (qv/Qv) Price vertical (pv) Gain 

0.2 0.78 17.31 1 54.10 249.46 1.21 0.46 15.15 3.58 1.00 4.10 0.22 
0.4 0.79 17.72 1 50.89 246.99 1.17 0.44 15.87 3.43 0.87 4.67 0.21 
0.6 0.79 17.72 1 50.89 244.61 1.17 0.44 15.87 3.30 0.74 5.33 0.19 
0.8 0.79 17.72 1 50.89 242.22 1.17 0.44 15.87 3.20 0.65 6.00 0.17 
1 0.79 17.72 1 50.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.15 
1.2 0.81 18.51 1 44.61 237.57 1.08 0.41 17.54 3.03 0.51 7.33 0.16 
1.4 0.82 19.03 1 41.55 235.48 1.04 0.40 18.52 2.95 0.47 8.00 0.16 
1.6 0.82 19.03 1 41.55 233.48 1.04 0.40 18.52 2.89 0.42 8.67 0.15 
1.8 0.82 19.03 1 41.55 231.49 1.04 0.40 18.52 2.83 0.39 9.33 0.13 
2 0.82 19.03 1 41.55 229.50 1.04 0.40 18.52 2.78 0.36 10.00 0.12 
2.2 0.82 19.03 1 41.55 227.51 1.04 0.40 18.52 2.73 0.33 10.67 0.11 
2.4 0.83 19.47 1 38.53 225.54 0.99 0.39 19.61 2.68 0.31 11.33 0.12 

r α x Region SNet(x) R Q (q/Q) Price (p) Qv (qv/Qv) Price vertical (pv) Gain 

0.05 0.79 17.72 1 50.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.15 
0.06 0.8 19.05 1 49.87 249.23 1.21 0.40 16.67 3.31 0.54 6.67 0.16 
0.07 0.81 20.39 1 48.38 257.28 1.24 0.36 17.54 3.49 0.51 6.67 0.17 
0.08 0.81 21.08 1 49.87 263.88 1.3 0.34 17.54 3.65 0.49 6.67 0.17 
0.09 0.81 21.65 1 51.14 269.40 1.35 0.33 17.54 3.78 0.47 6.67 0.17 

(continued on next page) 
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(continued ) 

σ α x Region SNet(x) R Q (q/Q) Price (p) Qv (qv/Qv) Price vertical (pv) Gain 

0.1 0.82 22.85 1 48.78 274.46 1.35 0.31 18.52 3.89 0.46 6.67 0.18 
0.11 0.82 23.32 1 49.70 278.70 1.39 0.30 18.52 3.99 0.45 6.67 0.18 

v α x Region SNet(x) R Q (q/Q) Price (p) Qv (qv/Qv) Price vertical (pv) Gain 

0.25 0.85 6.75 2 42.84 281.99 1.32 1.00 8.23 3.54 0.99 4.17 0.13 
0.5 0.82 10.89 1 48.27 265.06 1.26 0.89 9.26 3.36 0.80 5.00 0.13 
0.75 0.81 14.69 1 47.65 251.19 1.17 0.58 13.16 3.22 0.67 5.83 0.15 
1 0.79 17.72 1 50.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.15 
1.25 0.79 21.21 1 48.23 230.43 1.1 0.34 19.84 3.01 0.50 7.50 0.17 
1.5 0.78 23.99 1 49.00 222.15 1.08 0.29 22.73 2.92 0.44 8.33 0.17 
1.75 0.79 27.78 1 44.25 215.07 1 0.23 27.78 2.84 0.40 9.17 0.20 
2 0.78 30.30 1 45.44 209.00 1 0.21 30.30 2.78 0.36 10.00 0.20 
2.25 0.78 33.37 1 44.00 203.51 0.97 0.18 34.09 2.72 0.33 10.83 0.21 
2.5 0.77 35.47 1 45.36 198.46 0.97 0.16 36.23 2.66 0.30 11.67 0.20 
2.75 0.77 38.17 1 44.17 193.82 0.94 0.15 39.86 2.61 0.28 12.50 0.21 
3 0.77 41.01 1 43.10 189.77 0.92 0.13 43.48 2.57 0.26 13.33 0.22 
3.25 0.76 42.90 1 44.60 186.04 0.93 0.12 45.14 2.52 0.24 14.17 0.21 
3.5 0.76 45.51 1 43.66 182.54 0.91 0.11 48.61 2.48 0.23 15.00 0.21 

δ α x Region SNet(x) R Q (q/Q) Price (p) Qv (qv/Qv) Price vertical (pv) Gain 

0.01 0.83 39.91 1 172.56 1025.90 2.76 0.14 19.61 8.07 0.22 6.67 0.20 
0.02 0.81 24.59 1 78.07 412.74 1.62 0.28 17.54 4.54 0.39 6.67 0.18 
0.03 0.79 17.72 1 50.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.15 
0.04 0.79 14.28 1 34.24 162.93 0.86 0.60 15.87 2.33 0.77 6.67 0.15 
0.05 0.8 12.33 1 23.64 120.95 0.65 0.74 16.67 1.87 0.95 6.67 0.16 
0.06 0.79 10.58 1 19.76 95.06 0.56 0.92 15.87 1.58 1.00 7.26 0.15 

η α x Region SNet(x) R Q (q/Q) Price (p) Qv (qv/Qv) Price vertical (pv) Gain 

1.1 0.75 26.72 1 67.56 267.03 2.7 0.25 13.33 11.87 0.15 6.67 0.16 
1.2 0.76 24.27 1 63.08 261.20 2.22 0.28 13.89 9.19 0.19 6.67 0.17 
1.3 0.76 22.48 1 62.51 256.62 1.99 0.31 13.89 7.42 0.24 6.67 0.16 
1.4 0.77 21.27 1 58.56 252.83 1.73 0.34 14.49 6.18 0.29 6.67 0.17 
1.5 0.78 20.41 1 54.84 249.57 1.53 0.36 15.15 5.29 0.34 6.67 0.17 
1.6 0.79 19.89 1 51.31 246.99 1.38 0.37 15.87 4.62 0.39 6.67 0.18 
1.7 0.79 19.18 1 51.17 244.75 1.31 0.39 15.87 4.10 0.44 6.67 0.17 
1.8 0.79 18.56 1 51.05 242.72 1.25 0.41 15.87 3.70 0.48 6.67 0.16 
1.9 0.79 18.14 1 50.96 241.30 1.21 0.43 15.87 3.37 0.53 6.67 0.16 
2 0.79 17.72 1 50.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.15 
2.1 0.8 17.70 1 47.69 238.50 1.09 0.44 16.67 2.89 0.62 6.67 0.16 
2.2 0.8 17.48 1 47.66 237.69 1.07 0.45 16.67 2.70 0.66 6.67 0.15 
2.3 0.82 18.26 1 41.54 236.91 0.98 0.42 18.52 2.54 0.70 6.67 0.17 
2.4 0.8 17.02 1 47.63 236.02 1.03 0.47 16.67 2.41 0.74 6.67 0.14 
2.5 0.82 17.87 1 41.57 235.56 0.95 0.44 18.52 2.29 0.78 6.67 0.16 

k α x Region SNet(x) R Q (q/Q) Price (p) Qv (qv/Qv) Price vertical (pv) Gain 

1 0.8 26.02 1 51.78 261.84 1.89 0.26 16.67 5.23 0.34 6.67 0.16 
2 0.8 20.67 1 49.25 248.05 1.36 0.35 16.67 3.77 0.47 6.67 0.16 
3 0.79 17.72 1 50.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.15 
4 0.8 16.43 1 46.63 233.83 0.98 0.49 16.67 2.71 0.66 6.67 0.16 
5 0.81 15.66 1 42.80 229.21 0.85 0.53 17.54 2.44 0.73 6.67 0.18 
6 0.81 14.74 1 42.14 225.38 0.78 0.57 17.54 2.24 0.80 6.67 0.18 
6 0.81 14.74 1 42.14 225.38 0.78 0.57 17.54 2.24 0.80 6.67 0.18 
7 0.8 13.63 1 44.45 221.85 0.75 0.64 16.67 2.08 0.86 6.67 0.16 
8 0.8 13.11 1 43.92 219.35 0.71 0.68 16.67 1.95 0.92 6.67 0.16 

x α x Region SNet(x) R Q (q/Q) Price (p) Qv (qv/Qv) Price vertical (pv) Gain 

5 0.8 12.59 1 19.09 96.56 0.67 0.27 16.67 1.85 0.36 6.67 0.16 
10 0.79 17.72 1 50.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.15 
15 0.81 22.97 1 75.94 406.56 1.47 0.54 17.54 4.21 0.76 6.67 0.18 
20 0.81 26.68 1 110.50 589.32 1.82 0.66 17.54 5.23 0.92 6.67 0.18 
25 0.82 30.82 1 137.62 784.82 2.07 0.74 18.52 6.18 1.00 6.99 0.19 
30 0.81 33.04 1 186.80 991.09 2.47 0.87 17.54 7.08 1.00 7.62 0.17 
35 0.81 35.80 1 227.78 1205.49 2.77 0.97 17.54 7.94 1.00 8.21 0.17 
40 0.82 39.40 2 252.22 1427.78 2.94 1.00 18.80 8.76 1.00 8.76 0.19 
45 0.82 41.89 2 293.26 1656.68 3.21 1.00 19.89 9.55 1.00 9.27 0.19 
50 0.81 43.17 2 359.38 1891.50 3.62 1.00 20.32 10.31 1.00 9.77 0.17 

c α x Region SNet(x) R Q (q/Q) Price (p) Qv (qv/Qv) Price vertical (pv) Gain 

0 0.79 17.72 1 50.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.15 
0.5 0.79 17.72 1 40.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.16 
1 0.79 17.72 1 30.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.16 
1.5 0.79 17.72 1 20.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.17 
2 0.79 17.72 1 10.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.17 
2.5 0.79 17.72 1 0.89 239.84 1.17 0.44 15.87 3.11 0.57 6.67 0.18  
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Appendix D. Coordination 

We provide the expressions for Ωc
1, Ωc

2 determined from the boundary conditions given in equations (47) and (48). Knowing that under the 
coordinating contract we have that x = xV , q = qV and p = pV , we obtain: 

Ωc
1 =

1
(β1 − β2)x

β1
V

(1 − α)

⎡

⎢
⎣

(
1
ε + β2

)
AV

r +
(

r− δ
ε

)
− 0.5σ2

(
1
ε

)(
1
ε + 1

)x−
1
ε

V +
xV Qε+1

δ
(1 − β2)+ β2

(v + cR)Q
r

⎤

⎥
⎦ (A4a)  

Ωc
2 =(1 − α) 1

xβ2
V

⎡

⎢
⎣

AV

r +
(

r− δ
ε

)
− 0.5σ2

(
1
ε

)(
1
ε + 1

)x−
1
ε

V −
c
r
−

xV Qε+1

δ
+

c + (v + cR)Q
r

+Ψ 1xβ1
V

⎤

⎥
⎦ (A4b) 

To continue the proof, we will first assume that Q = QV and in the end prove that this is indeed the case. Assuming Q = QV we get that Ωc
1 =

(1 − α)Ψ1 and Ωc
2 = (1 − α)Ψ2. Substituting these expressions into the supplier values given by equations (45) and (46) we obtain the relationship 

between supplier value and supply chain value given in equations (49) and (50). From these relationships it directly follows that the supplier will 
choose the same optimal capacity as the supply chain, i.e., Q = QV , as initially assumed. 

References 

Aguerrevere, F.L., 2009. Real options, product market competition, and asset returns. 
J. Finance 64 (2), 957–983. 

Altug, M.S., van Ryzin, G., 2014. Is revenue sharing right for your supply chain? Calif. 
Manag. Rev. 56 (4), 53–81. 

Avinadav, T., Chernonog, T., Perlman, Y., 2015a. The effect of risk sensitivity on a supply 
chain of mobile applications under a consignment contract with revenue sharing and 
quality investment. Int. J. Prod. Econ. 168, 31–40. 

Avinadav, T., Chernonog, T., Perlman, Y., 2015b. Consignment contract for mobile apps 
between a single retailer and competitive developers with different risk attitudes. 
Eur. J. Oper. Res. 246 (3), 949–957. 

Bart, N., Chernonog, T., Avinadav, T., 2021. Revenue-sharing contracts in supply chains: 
a comprehensive literature review. Int. J. Prod. Res. 59 (21), 6633–6658. 

Bhaskaran, S.R., Krishnan, V., 2009. Effort, revenue, and cost sharing mechanisms for 
collaborative new product development. Manag. Sci. 55 (7), 1152–1169. 

Cachon, G.P., Lariviere, M.A., 2001. Contracting to assure supply: how to share demand 
forecasts in a supply chain. Manag. Sci. 47 (5), 629–646. 

Cachon, G.P., Lariviere, M.A., 2005. Supply chain coordination with revenue-sharing 
contracts: strengths and limitations. Manag. Sci. 51 (1), 30–44. 

Chakraborty, T., Chauhan, S.S., Vidyarthi, N., 2015. Coordination and competition in a 
Common retailer channel: wholesale price versus revenue-sharing mechanisms. Int. 
J. Prod. Econ. 166, 103–118. 

Chronopoulos, M., Hagspiel, V., Fleten, S.E., 2017. Stepwise investment and capacity 
sizing under uncertainty. Spectrum 39 (2), 447–472. 

Cox, J., Ross, A., Rubinstein, M, 1979. Option pricing: A simplified approach. Journal of 
Financial Economics 7 (3), 229–263. 

Dana, J.D., Spier, K.E., 2001. Revenue sharing and vertical control in the video rental 
industry. J. Ind. Econ. 49 (3), 223–245. 

Dangl, T., 1999. Investment and capacity choice under uncertain demand. Eur. J. Oper. 
Res. 117 (3), 415–428. 
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