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Abstract: Roughly speaking, the Poincaré disc D2 is the closed disc centered at the origin of the
coordinates of R2, where the whole of R2 is identified with the interior of D2 and the circle of the
boundary of D2 is identified with the infinity of R2, because in the plane R2, we can go to infinity in as
many directions as points have the circle. The phase portraits of the quadratic Hamiltonian systems
in the Poincaré disc were classified in 1994. Since then, no new interesting classes of Hamiltonian
systems have been classified on the Poincaré disc. In this paper, we determine the phase portraits
in the Poincaré disc of five classes of homogeneous Hamiltonian polynomial differential systems
of degrees 1, 2, 3, 4, and 5 with finitely many equilibria. Moreover, all these phase portraits are
symmetric with respect to the origin of coordinates. We showed that these polynomial differential
systems exhibit precisely 2, 2, 3, 3, and 4 topologically distinct phase portraits in the Poincaré disc.
Of course, the new results are for the homogeneous Hamiltonian polynomial differential systems of
degrees 3, 4, and 5. The tools used here for obtaining these phase portraits also work for obtaining
any phase portrait of a homogeneous Hamiltonian polynomial differential system of arbitrary degree.

Keywords: homogeneous Hamiltonian system; phase portrait; Poincaré disc

1. Introduction and Statement of the Main Results

The centers of the polynomial differential systems of the form

ẋ = −y + Pn(x, y), ẏ = x + Qn(x, y), (1)

with Pn and Qn homogeneous polynomials of degree n have been studied for
n = 2, 3, 4, and 5. Furthermore, for n = 2, see refs.[1–6], for n = 3, see refs.[7,8], for
n = 4, see refs.[9], and for n = 5, see ref.[10]. While the centers of systems (1) of degrees 2
and 3 have been completely classified, this is not the case for the centers of degrees 4 and 5.
Moreover, for systems (1) having a center of degrees 2 and 3, their phase portraits in the
Poincaré disc have been classified in refs. [5,6] and in [11], respectively.

In a similar way to the study completed for the centers of systems (1), in this paper we
classify the phase portraits in the Poincaré disc of the homogeneous Hamiltonian systems
of degrees 1, 2, 3, 4, and 5, i.e., of the systems

ẋ = −∂Hn(x, y)
∂y

, ẏ =
∂Hn(x, y)

∂x
,

where Hn(x, y) is a homogeneous polyonomial of degree n for n ∈ {2, 3, 4, 5, and6}. We
recall that the phase portraits of the quadratic Hamiltonian systems in the Poincaré disc
were classified in [12].

Symmetry 2023, 15, 1476. https://doi.org/10.3390/sym15081476 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym15081476
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0001-6745-2747
https://orcid.org/0000-0002-9511-5999
https://doi.org/10.3390/sym15081476
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym15081476?type=check_update&version=1


Symmetry 2023, 15, 1476 2 of 13

Roughly speaking, the Poincaré disc is the closed disc centered at the origin of coordi-
nates of R2 of radius one. where the interior of this disc has been identified with R2 and its
boundary, the circle S1, with the infinity of R2. Note that in the plane, we can go to infinity
in as many directions as points have the circle S1. Any polynomial differential system can
be extended analytically to the Poincaré disc, and in this way we can study its dynamics in
a neighborhood of infinity. For more details on the Poincaré disc, see Chapter 5 of [13] or
Section 2.2.

In the following theorem, we provide the phase portraits in the Poincaré disc of all the
homogeneous Hamiltonian differential systems of degree 1, 2, 3, 4 and 5.

Theorem 1. The phase portraits in the Poincaré disc of the homogeneous Hamiltonian systems
with finitely many equilibria of degree n are given in Figure n, for n = 1, 2, 3, 4, 5.

Theorem 1 is proved in Sections 3–7.
We note that the phase portraits in the Poincaré disc of other classes of Hamiltonian

systems have also been studied by other authors; see, for instance, refs. [14,15].

2. Preliminaries and Basic Results

In this section, we present some basic results and notations that are necessary for
proving our results.

2.1. Poincaré Compactification

In this subsection, we recall notations and results that we shall use for studying the
orbits near infinity of a planar polynomial differential system.

Let X (x, y) = (P(x, y), Q(x, y)) be a polynomial vector field of degree n, and we
consider its analytic extension p(X ) to S2.

For studying the extended vector field p(X ) on the sphere
S2 = {y = (y1, y2, y3) ∈ R3 : y2

1 + y2
2 + y2

3 = 1} we consider six local charts, namely
Uk = {y ∈ S2 : yk > 0}, Vk = {y ∈ S2 : yk < 0} for k = 1, 2, 3, with the local diffeo-
morphisms φk : Uk → R2 and ψk : Vk → R2 given by φk(y) = ψk(y) = (ym/yk, yn/yk) for
m < n and m, n 6= k. We use the notation (u, v) for the value of φk(y) or ψk(y) for all k, thus
(u, v) means different things according with the local chart that we are considering.

In the local chart (U1, F1) the expression of the differential system associated to the
vector field p(X ) is

u̇ = vn
[
−uP

(
1
v

,
u
v

)
+ Q

(
1
v

,
u
v

)]
, v̇ = −vn+1P

(
1
v

,
u
v

)
.

While the expression of of the differential system associated with the vector field p(X )
in the local chart (U2, F2) is

u̇ = vn
[

P
(

u
v

,
1
v

)
− uQ

(
u
v

,
1
v

)]
, v̇ = −vn+1Q

(
u
v

,
1
v

)
;

Finally, the expression of the differential system associated to the vector field p(X) in
the local chart (U3, F3) is

u̇ = P(u, v), v̇ = Q(u, v).

The singular or equilibrium points on the circle of infinity of the Poincaré disc are
called the infinite singular points. Of course, the singular points in the interior of the
Poincaré disc are called the finite singular points.

We recall that for studying the singular points at infinity, we only need to study the
infinite singular points in the chart U1 and the origin of the chart U2; for more details, see
Chapter 5 of ref. [13].
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2.2. Phase Portraits on the Poincaré disc

In this subsection, we are going to see how to characterize the phase portraits in the
Poincaré disc of all the homogeneous Hamiltonian systems of degrees 1, 2, 3, 4, and 5.

The separatrix of p(X ) are all the orbits of the circle at infinity, the singular or equilib-
rium points, the limit cycles, and the orbits that lie in the boundary of a hyperbolic sectors,
i.e., the two separatrices of a hyperbolic sector.

Neumann in [16] shows that the set of all separatrices S(p(X )) of the vector field
p(X ), is closed.

The canonical regions of p(X ) are the open connected components of D2 \ S(p(X )).
The set formed by the union of S(p(X )) plus one orbit chosen from each canonical region is
called a separatrix configuration of p(X ). When there is an orientation preserving or reversing
homeomorphism that maps the trajectories of S(p(X )) into the trajectories of S(p(Y))
we say that the two separatrices configurations S(p(X )) and S(p(Y)) are topologically
equivalent.

The next result is mainly due to Markus [17], Neumann [16], and Peixoto [18].

Theorem 2. The phase portraits in the Poincaré disc of two compactified polynomial differential
systems p(X ) and p(Y) with finitely many separatrices are topologically equivalent if and only if
their separatrix configurations S(p(X )) and S(p(Y)) are topologically equivalent.

2.3. Homogeneous Polynomial Hamiltonian Systems

It is well known that the flow of the Hamiltonian systems in the plane preserves the
area (see, for instance, ref. [19]). Furthermore, it is known that the local phase portrait of
any equilibrium point of an analytic planar differential system is either a focus, a center,
or a finite union of hyperbolic, parabolic, and elliptic sectors (see, for instance, ref. [13]).
Therefore, any equilibrium point of a planar polynomial Hamiltonian system is either a
center or a finite union of hyperbolic sectors.

In order to do the phase portrait in the Poincaré disc of a planar homogeneous polyno-
mial Hamiltonian system, first we must determine the real linear factors of the Hamiltonian
of the system. These linear factors provide invariant straight lines through the origin of
coordinates; the endpoints of these straight lines are the infinite singular points of the
homogeneous polynomial Hamiltonian systems. Moreover, these straight lines separate
the Poincaré disc into sectors, with a vertex at the origin of coordinates, and in each one
of these sectors we have a hyperbolic sector. If the homogeneous Hamiltonian has no real
linear factors, then the origin of coordinates is a center.

3. Proof of Theorem 1 for n = 1

Without loss of generality, we assume that all the homogeneous Hamiltonian systems
that we consider have their infinite singularities in the local chart U1; if this is not the case,
do a rotation.

We consider the linear homogeneous Hamiltonian system

ẋ = −bx− 2cy, ẏ = 2ax + by, (2)

where a, b, c and d are real parameters. This system has the Hamiltonian function
H2(x, y) = ax2 + bxy + cy2.

We know that the singular points at infinity for any polynomial differential system

ẋ = P(x, y), ẏ = Q(x, y),

Occur at the points (x, y, 0) on the equator of the Poincaré sphere satisfying
xQn(x, y)− yPn(x, y) = 0, see Chapter 5 of [13]. In particular for the homogeneous Hamil-
tonian system (2) of degree 1 they occur at

x(2ax + by)− y(−bx− 2cy) = 2H2(x, y).
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Furthermore, to study the infinite equilibrium points of such a differential system,
we have to compute the real linear factors of the homogeneous Hamiltonian polynomial
H2(x, y), which has three different kinds of linear factors summarized in the following cases.

In the proof of Theorem 1 for all the degrees, we shall assume that the values ri 6= 0,
βk 6= 0, ri 6= rj, with i = 1 . . . , 6, i 6= j, and k = 1, 2, 3.

I. If H2(x, y) has two real linear factors (x − r1y)(x − r2y) with
r1 < r2, so H2(x, y) = a(x− r1y)(x− r2y) and system (2) becomes

ẋ = x(ar1 + ar2)− 2ar1r2y, ẏ = −ay(r1 + r2) + 2ax, (3)

it is clear that this system has a hyperbolic saddle at (0, 0) with eigenvalues±a(r1− r2).
In the chart U1 system (3) becomes

u̇ = 2a(r1u− 1)(r2u− 1), v̇ = −a(r1 + r2 − 2r1r2u)v.

This system has a stable and an unstable hyperbolic node at (1/r1, 0) and (1/r2, 0),
with eigenvalues 2a(r1 − r2), a(r1 − r2) and 2a(r2 − r1), a(r2 − r1), respectively. Then
its phase portrait is given in Figure 1a.

II. If H2(x, y) has two linear complex factors x2 − 2αxy + (α2 + β2)y2, so
H(x, y) = a(x2 − 2αxy + (α2 + β2)y2), and system (2) written as

ẋ = 2aαx− ay
(

2α2 + 2β2
)

, ẏ = 2ax− 2aαy. (4)

This system has a center at (0, 0) with eigenvalues±2aβi. In the chart U1 system (4) be-
comes

u̇ = 2a
(
(α2 + β2)u2 − 2αu + 1

)
, v̇ = 2av

(
−α + (α2 + β2)u

)
.

This system has no singularities, and its phase portrait is given in Figure 1b.
III. If H2(x, y) has a double real linear factor x− r1y, so H(x, y) = a(x− r1y)2. In this case

system (2) becomes
ẋ = 2r1(x− r1y), ẏ = 2(x− r1y).

This system has the straight line x − r1y = 0 filled of singularities, so it is not the
subject of study of our paper.

This completes the proof of Theorem 1 for n = 1.

(a) (b)

Figure 1. Symmetric phase portraits with respect to the origin of coordinates of the homogeneous
Hamiltonian systems of degree 1.

4. Proof of Theorem 1 for n = 2

In this section, we are interested in studying the quadratic homogeneous Hamiltonian
systems with finitely many equilibria that can be written as

ẋ = −bx2 − 2cxy− 3dy2, ẏ = 3ax2 + 2bxy + cy2, (5)

with a, b, c and d real parameters. Its corresponding Hamiltonian function is
H3(x, y) = ax3 + bx2y + cxy2 + dy3.
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The infinite singularities of this system are determined by the real linear factors of
xẏ− yẋ = −3H3(x, y), which can have four different kinds of linear factors. Where we
shall see that in the next cases I and II the system has a finitely many equilibria, while in
the last cases III and IV it has infinitely many equilibria and we do not study them.

I. If H3(x, y) has three simple real linear factors (x − r1y)(x − r2y)(x − r3y) with
r1 < r2 < r3, so H3(x, y) = a(x − r1y)(x − r2y)(x − r3y). In this case system (5) be-
comes

ẋ = (r1 + r2 + r3)x2 + 2(−r1r2 − r1r3 − r2r3)xy + 3r1r2r3y2,
ẏ = 3x2 − 2(r1 + r2 + r3)xy− (−r1r2 − r1r3 − r2r3)y2,

(6)

which has one finite singularity at the origin of coordinates. In the chart U1 system (6)
writes

u̇ = −3(−1 + r1u)(−1 + r2u)(−1 + r3u),
v̇ = −v

(
r1 + r2 + r3 − 2(r1r2 + 2r1r3 + 2r2r3)u + 3r1r2r3u2).

This system has three hyperbolic nodes at (1/r1, 0), (1/r2, 0) and (1/r3, 0) with alterna-
tive kind of stability because their corresponding eigenvalues are
3(r2 − r1)(r1 − r3)/r1 and (r2 − r1)(r1 − r3)/r1, 3(r1 − r2)(r2 − r3)/r2 and
(r2 − r1)(r2 − r3)/r1, and 3(r1 − r3)(r3 − r2)/r3 and (r3 − r1)(r3 − r2)/r1 respectively.
Then the phase portrait is given in Figure 2a.

II. If H3(x, y) has one simple real linear factor x − r1y and two complex linear factors
x2 − 2αxy + y2(α2 + β2), so H3(x, y) = a(x− r1y)(x2 − 2αxy + y2(α2 + β2)), and sys-
tem (5) becomes

ẋ = x2(2α + r1)− 2xy
(
α2 + β2 + 2αr1

)
+ 3y2(α2 + β2)r1,

ẏ = −2xy(2α + r1) + y2(α2 + β2 + 2αr1
)
+ 3x2,

(7)

which has one singular point at the origin of coordinates that we can determine its
local phase portrait by determining the local phase portrait of the infinite singularities.
In the chart U1 system (7) written as

u̇ = −3(−1 + r1u)(1− 2uα + (α2 + β2)u2),
v̇ = −v

(
2α + 3r1

(
α2 + β2)u2 − 2

(
α2 + β2 + 2αr1

)
u + r1

)
.

The only singularity of this system is (1/r1, 0) which is a node with eigenvalues
−3(α2 + β2 + r2

1 − 2αr1)/r1, and −(α2 + β2 + r2
1 − 2αr1)/r1. So its phase portrait is

given in Figure 2b.

III. If H3(x, y) has one double real linear factor x− r1y and one simple real linear factor
x − r2y with r1 < r2, then H3(x, y) = a(x − r1y)2(x − r2y), and system (5) can be
written as

ẋ = (x− r1y)((2r1 + r2)x− 3r1r2y),
ẏ = (x− r1y)(3x− (r1 + 2r2)y).

In this case the system has infinitely many singularities on the straight line x− r1y = 0.

IV. If H3(x, y) has one triple real linear factor (x− r1y)3, so H3(x, y) = a(x− r1y)3. In this
case system (5) can be written as

ẋ = 3r1(x− r1y)2, ẏ = 3(x− r1y)2.

As in the previous case this system has the straight line x − r1y = 0 filled with
equilibrium points, so we ignore it.

This completes the proof of Theorem 1 for n = 2.
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(a) (b)

Figure 2. Symmetric phase portraits with respect to the origin of coordinates of the homogeneous
Hamiltonian systems of degree 2.

5. Proof of Theorem 1 for n = 3

In this section we are interested in studying the cubic homogeneous Hamiltonian
systems with finitely many equilibria given by

ẋ = −2bx2y− 3cxy2 − dx3 − 4ey3, ẏ = 4ax3 + 2cxy2 + by3 + 3dx2y, (8)

where a, b, c, d and e are real parameters. Its corresponding Hamiltonian function is
H4(x, y) = ax4 + bxy3 + cx2y2 + dx3y + ey4.

The infinite singularities of this system are the real linear factors of
xẏ− yẋ = −4H4(x, y), which can have nine different kinds of linear factors.

I. If H4(x, y) has four simple real linear factors (x− r1y)(x− r2y)(x− r3y)(x− r4y) with
r1 < r2 < r3 < r4, so H3(x, y) = a(x − r1y)(x − r2y)(x − r3y)(x − r4y). In this case
system (8) becomes

ẋ = x3(r1 + r2 + r3 + r4) + 2x2y(−r1r2 − r1r3 − r1r4 − r2r3 − r2 − r3r4)
+3xy2(r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4)− 4r1r2r3r4y3,

ẏ = −3x2y(r1 + r2 + r3 + r4)− 2xy2(−r1r2 − r1r3 − r1r4 − r2r3 − r2r4
−r3r4)− y3(r1r2r3 + r1r2r4 + r1r3r4 + r2r3r4) + 4x3,

(9)

this system has one finite singularity at the origin of coordinates. In the chart U1
system (9) written as

u̇ = 4(−1 + r1u)(−1 + r2u)(−1 + r3u)(−1 + r4u),
v̇ = −v(−r1 − r2 − r3 − r4 + (2r1r2 + 2r1r3 + 2r2r3 + 2r1r4 + 2r2r4 + 2r3r4)u

+(−3r1r2r3 − 3r1r2r4 − 3r1r3r4 − 3r2r3r4)u2 + 4r1r2r3r4u3).

This system has four hyperbolic nodes (1/r1, 0), (1/r2, 0), (1/r3, 0) and (1/r4, 0) with
eigenvalues (4(r2 − r1)(r1 − r3)(r1 − r4))/r2

1 and (r2 − r1)r1 − r3r1 − r4)/r2
1, (4(r1 −

r2)(r2 − r3)(r2 − r4))/r2
2 and (r1 − r2)(r2 − r3)(r2 − r4)/r2

2, (4(r1 − r3)(r3 − r2)(r3 −
r4))/r2

3 and ((r1 − r3)(r3 − r2)(r3 − r4))/r2
3, and (4(r1 − r4)(r4 − r2)(r4 − r3))/r2

4 and
(r1 − r4)r4 − r2r4 − r3)/r2

4, respectively, and these singularities have alternate kind of
stability. The phase portrait is given of Figure 3a.

II. If H4(x, y) has two simple real linear factors (x − r1y)(x − r2y) with r1 < r2 and
two complex linear factors x2 − 2αxy + y2(α2 + β2), so H4(x, y) = a(x − r1y)(x −
r2y)

(
x2 − 2αxy + y2(α2 + β2)), and system (8) takes the form

ẋ = x3(2α + r1 + r2) + 2x2y
(
−α2 − β2 − 2αr1 − r1r2 − 2αr2

)
+3xy2(α2r1 + β2r1 + 2αr1r2 + α2r2 + β2r2

)
+ 4y3(α2(−r1)r2

−β2r1r2
)
,

ẏ = −3x2y(2α + r1 + r2)− 2xy2(−α2 − β2 − 2αr1 − r1r2 − 2αr2
)

−y3(α2r1 + β2r1 + 2αr1r2 + α2r2 + β2r2
)
+ 4x3.

(10)
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This system has one finite singularity at the origin of coordinates. In the chart U1
system (10) writes

u̇ = 4(r1u− 1)(r2u− 1)
(
α2u2 + β2u2 − 2αu + 1

)
,

v̇ = v(−2α + u3(4α2r1r2 + 4β2r1r2
)
− u2(3α2r1 + 3β2r1 + 6αr1r2 + 3α2r2 + 3β2r2

)
+u

(
2α2 + 2β2 + 4αr1 + 2r1r2 + 4αr2

)
− r1 − r2).

It is easy to show that this system has two nodes with alternate kind of stabil-
ity at (1/r1, 0) and (1/r2, 0) with eigenvalues (4(r2 − r1)

(
α2 + β2 + r2

1 − 2αr1
)
)/r2

1
and ((r2− r1)

(
α2 + β2 + r2

1 − 2αr1
)
)/r2

1, and (4(r1− r2)
(
α2 + β2 + r2

2 − 2αr2
)
)/r2

2 and
((r1 − r2)

(
α2 + β2 + r2

2 − 2αr2
)
)/r2

2, respectively. See its phase portrait in Figure 3b.

III. If H4(x, y) has four complex linear factors
(

x2 − 2α1xy + y2(α2
1 + β2

1)
)(

x2 − 2α2x y
+ y2(α2

2 + β2
2)
)
, so

H4(x, y) = a
(

x2 − 2α1xy + y2(α2
1 + β2

1)
)(

x2 − 2α2xy + y2(α2
2 + β2

2)
)

.

In this case system (8) becomes

ẋ = −a
(
2y

(
α2

1 + β2
1
)
− 2α1x

)(
(x− α2y)2 + β2

2y2)− a
(
(x− α1y)2 + β2

1y2)(
2y

(
α2

2 + β2
2
)
− 2α2x

)
,

ẏ = 2a
(
(x− α2y)

(
(x− α1y)2 + β2

1y2)+ (x− α1y)
(
(x− α2y)2 + β2

2y2)).
(11)

This system has one finite singularity at the origin of coordinates. In the chart U1
system (11) has no singularities. Thus the phase portrait is given in Figure 3c.

IV. If H4(x, y) has two double complex linear factors
(
x2 − 2αxy + y2(α2 + β2)

)2, so

H3(x, y) = a
(

x2 − 2αxy + y2(α2 + β2)
)2, and its corresponding Hamiltonian system

also has the phase portrait given in Figure 3c.
In the following cases V, VI, VII, VIII, and IX we will see that system (8) has infinitely
many singularities, which are not the subject of our work.

V. If H4(x, y) has two double real linear factors (x− r1y)2(x− r2y)2, so the Hamiltonian
has two straight lines x− r1y = 0 and x− r2y = 0 filled of singularities.

VI. If H4(x, y) has one double real linear factor (x − r1y)2 and two simple linear fac-
tors (x− r2y)(x− r3y), then the Hamiltonian system has the line x− r1y = 0 filled
of singularities.

VII. If H4(x, y) has one triple real linear factor (x− r1y)3 and one simple real factor (x−
r2y), then the Hamiltonian system has infinitely many singularities at x− r1y = 0.

VIII. If H4(x, y) has one real linear factor of multiplicity four (x− r1y)4, then the Hamilto-
nian system has the straight line x− r1y = 0 filled up with singularities.

IX. If H4(x, y) has one double linear factor (x − r1y)2 and two complex linear factors
x2 − 2αxy + y2(α2 + β2), then the Hamiltonian system has a straight line of singulari-
ties x− r1y = 0.

This completes the proof of Theorem 1 for n = 3.
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(a) (b) (c)

Figure 3. Symmetric phase portraits with respect to the origin of coordinates of the homogeneous
Hamiltonian systems of degree 3.

6. Proof of Theorem 1 for n = 4

In this section, we are interested in studying the quartic homogeneous Hamiltonian
systems with finitely many equilibria given by

ẋ = −bx4 − 2cx3y− 3dx2y2 − 4exy3 − 5 f y4,
ẏ = 5ax4 + 4bx3y + 3cx2y2 + 2dxy3 + ey4,

(12)

where a, b, c, d, e and f are real parameters. Its corresponding Hamiltonian function is
H5(x, y) = ax5 + bx4y + cx3y2 + dx2y3 + exy4 + f y5.

The infinite singularities of this system (12) are determined by the real linear factors
of xẏ− yẋ = −5H5(x, y) that can have twelve different kinds of linear factors. We shall
see that only the three cases I, II, III, and IV of system (12) have finitely many equilibria,
and the remaining cases have infinitely many singular points.

I. If H5(x, y) has five simple real linear factors (x− r1y)(x− r2y)(x− r3y)(x− r4y)(x−
r5y), with r1 < r2 < r3 < r4 < r5, so H5(x, y) = a(x − r1y)(x − r2y)(x − r3y)(x −
r4y)(x− r5y), and system (12) becomes

ẋ = r1 + r2 + r3 + r4 + r5)x4 + 2x3y(−r1r2 − r1r3 − r1r4 − r1r5 − r2r3
−r2r4 − r2r5 − r3r4 − r3r5 − r4r5) + 3x2y2(r1r2r3 + r1r2r4 + r1r2r5
+r1r3r4 + r1r3r5 + r1r4r5 + r2r3r4 + r2r3r5 + r2r4r5 + r3r4r5)
+4xy3(−r1r2r3r4 − r1r2r3r5 − r1r2r4r5 − r1r3r4r5 − r2r3r4r5)
+5r1r2r3r4r5y4,

ẏ = −4x3y(r1 + r2 + r3 + r4 + r5) + 3x2y2(r1r2 + r1r3 + r1r4 + r1r5
+r2r3 + r2r4 + r2r5 − r3r4 + r3r5 + r4r5)− 2xy3(r1r2r3 + r1r2r4
+r1r2r5 + r1r3r4 + r1r3r5 + r1r4r5 + r2r3r4 + r2r3r5 + r2r4r5 + r3r4r5)
−y4(−r1r2r3r4 − r1r2r3r5 − r1r2r4r5 − r1r3r4r5 − r2r3r4r5) + 5x4,

(13)

This system has one finite singularity at the origin of coordinates. In the chart U1
system (13) writes

u̇ = −5(r1u− 1)(r2u− 1)(r3u− 1)(r4u− 1)(r5u− 1),
v̇ = −(r1 + r2 + r3 + r4 + r5)v + (2r1r2 + 2r1r3 + 2r2r3 + 2r1r4 + 2r2r4 + 2r3 r4

+2r1r5 + 2r2r5 + 2r3r5 + 2r4r5)uv + (−3r1r2r3 − 3r1r2r4 − 3r1r3 r4

−3r2r3r4 − 3r1r2r5 − 3r1r3r5 − 3r2r3r5 − 3r1r4r5 − 3r2r4r5 − 3r3r4r5)u2 v
+(4r1r2r3r4 + 4r1r2r3r5 + 4r1r2r4r5 + 4r1r3r4r5 + 4r2r3r4r5)u3v− 5r1r2r3r4r5u4v.

It is easy to check that this system has five hyperbolic nodes at (1/r1, 0), (1/r2, 0),
(1/r3, 0), (1/r4, 0) and (1/r5, 0) with alternative kind of stability. See its phase portrait
in Figure 4a.

II. If H5(x, y) has three simple linear factors (x − r1y)(x − r2y)(x − r3y), with
r1 < r2 < r3 and two complex linear factors (x2 − 2αβxy + (α2 + β2)y2), so

H5(x, y) = a(x− r1y)(x− r2y)(x− r3y)(x2 − 2αβxy + (α2 + β2)y2).
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System (12) becomes

ẋ = x4(2α + r1 + r2 + r3) + 2x3y
(
− α2 − β2 − 2αr1 − r1r2 − r1r3

−2αr2 − r2r3 − 2αr3
)
+ 3x2y2(α2r1 + β2r1 + 2αr1r2 + r1r2r3

+2αr1r3 + α2r2 + β2r2 + 2αr2r3 + α2r3 + β2r3
)
− 4xy3(α2r1r2

+β2r1r2 + 2αr1r2r3 + α2r1r3 + β2r1r3 + α2r2r3 + β2r2r3
)
+ 5y4(

α2r1r2r3 + β2r1r2r3
)
,

ẏ = −4x3y(2α + r1 + r2 + r3) + 3x2y2(α2 + β2 + 2αr1 + r1r2 + r1r3 + 2αr2
+r2r3 + 2αr3

)
− 2xy3(α2r1 + β2r1 + 2αr1r2 + r1r2r3 + 2αr1r3 + α2r2

+β2r2 + 2αr2r3 + α2r3 + β2r3
)
− y4(α2(−r1)r2 − β2r1r2 − 2αr1r2r3

−α2r1r3 − β2r1r3 − α2r2r3
−β2r2r3

)
+ 5x4.

(14)

System (14) has one finite singularity at the origin of coordinates. In the chart U1
system (14) written as

u̇ = −5(r1u− 1)(r2u− 1)(r3u− 1)
(
α2u2 + β2u2 − 2αu + 1

)
,

v̇ = 2α + 5r1r2r3u4(α2 + β2)− 4u3(α2r1r2 + β2r1r2 + 2αr1r2r3 + α2r1 r3
+β2r1r3 + α2r2r3 + β2r2r3

)
+ 3u2(α2r1 + β2r1 + 2αr1r2 + r1r2r3 + 2αr1 r3

+α2r2 + β2r2 + 2αr2r3 + α2r3 + β2r3
)
− 2u

(
α2 + β2 + 2αr1 + r1r2 + r1 r3

+2αr2 + r2r3 + 2αr3
)
+ r1 + r2 + r3.

We can easily verify that this system has three hyperbolic nodes at
(1/r1, 0), (1/r2, 0) and (1/r3, 0) with alternative kind of stability. Consequently its
phase portrait is given in Figure 4b.

III. If H5(x, y) has one simple real linear factor (x− r1y) and four complex factors (x2 −
2α1xy+ y2(α2

1 + β2
1))(x2− 2α2xy+ y2(α2

2 + β2
2)), so H5(x, y) = a(x− r1y)(x2− 2α1xy+

y2(α2
1 + β2

1))(x2 − 2α2xy + y2(α2
2 + β2

2)), and system (12) becomes

ẋ = −a(x− r1y)(2y(α2
1 + β2

1)− 2α1x)((x− α2y)2 + β2
2y2)− (x− r1y)

((x− α1y)2 + β2
1y2)(2y(α2

2 + β2
2)− 2α2x) + r1((x− α1y)2 + β2

1y2)
((x− α2y)2 + β2

2y2)),
ẏ = a(2(x− r1y)(x− α2y)(x2 − 2α1xy + y2(α2

1 + β2
1)) + 2(x− r1y)

(x− α1y)(x2 − 2α2xy + y2(α2
2 + β2

2)) + (x2 − 2α1xy + y2(α2
1 + β2

1))
(x2 − 2α2xy + y2(α2

2 + β2
2))).

(15)

This system has one finite singularity at the origin of coordinates. In the chart U1
system (15) has one infinite hyperbolic node at (1/r1, 0). So its phase portrait is given
in Figure 4c.

IV. If H5(x, y) has one simple real linear factor (x− r1y) and double complex linear factors
(x2− 2αxy+ y2(α2 + β2))2, so H5(x, y) = (x− r1y)(x2− 2αxy+ y2(α2 + β2))2, and its
corresponding Hamiltonian system also has the phase portrait given in Figure 4c.
In the following cases of the Hamiltonian H5(x, y) the corresponding Hamiltonian
system has infinitely many singular points, and we do not consider them.

V. H5(x, y) has one double real linear factor and three simple real linear factors.

VI. H5(x, y) has two double real linear factors and one simple real linear factor.

VII. H5(x, y) has one triple real linear factor and two simple real linear factors.

VIII. H5(x, y) has one triple real linear factor and one double real linear factor.

IX. H5(x, y) has one real linear factor of multiplicity four and one simple real linear factor.

X. H5(x, y) has one real linear factor of multiplicity five.

XI. H5(x, y) has one double real linear factor, one simple real linear factor and two complex
linear factors.

XII. H5(x, y) has one triple real linear factor and two complex linear factors.
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This completes the proof of Theorem 1 for n = 4.

(a) (b) (c)

Figure 4. Symmetric phase portraits with respect to the origin of coordinates of the homogeneous
Hamiltonian systems of degree 4.

7. Proof of Theorem 1 for n = 5

In this section, we are interested in studying the quintic homogeneous Hamiltonian
systems with finitely many equilibria given by

ẋ = −bx5 − 2cx4y− 3dx3y2 − 4ex2y3 − 5 f xy4 − 6gy5,
ẏ = 6ax5 + 5bx4y + 4cx3y2 + 3dx2y3 + 2exy4 + f y5,

(16)

where a, b, c, d, e, f and g are real parameters. Its corresponding Hamiltonian function is
H6(x, y) = ax6 + bx5y + cx4y2 + dx3y3 + ex2y4 + f xy5 + gy6.

The infinite singularities of this system (16) are determined by the real linear factors
of xẏ− yẋ = −6H6(x, y) that can have sixteen different kinds of linear factors. Where we
shall see that only the four cases I, II, III and IV system (16) have finitely many equilibria,
and the remaining cases have infinitely many singular points.

I. If H6(x, y) has six simple non zero real linear factors (x − r1y)(x − r2y)(x − r3y)(x −
r4y)(x− r5y)(x− r6y), with r1 < r2 < r3 < r4 < r5 < r6, so H6(x, y) = a(x− r1y)(x−
r2y)(x− r3y)(x− r4y)(x− r5y)(x− r6y), and system (16) becomes

ẋ = x5(r1 + r2 + r3 + r4 + r5 + r6) + 2x4y(−r1r2 − r1r3 − r1r4
−r1r5 − r1r6 − r2r3 − r2r4 − r2r5 − r2r6 − r3r4 − r3r5 − r3r6
−r4r5 − r4r6 − r5r6) + 3x3y2(r1r2r3 + r1r2r4 + r1r2r5 + r1r2r6
+r1r3r4 + r1r3r5 + r1r3r6 + r1r4r5 + r1r4r6 + r1r5r6 + r2r3r4
+r2r3r5 + r2r3r6 + r2r4r5 + r2r4r6 + r2r5r6 + r3r4r5 + r3r4r6
+r3r5r6 + r4r5r6) + 4x2y3(−r1r2r3r4 − r1r2r3r5 − r1r2r3r6
−r1r2r4r5 − r1r2r4r6 − r1r2r5r6 − r1r3r4r5 − r1r3r4r6 − r1r3r5r6
−r1r4r5r6 − r2r3r4r5 − r2r3r4r6 − r2r3r5r6 − r2r4r5r6 − r3r4r5r6)
+5xy4(r1r2r3r4r5 + r1r2r3r4r6 + r1r2r3r5r6 + r1r2r4r5r6
+r1r3r4r5r6 + r2r3r4r5r6)− 6r1r2r3r4r5r6y5,

ẏ = −5x4y(r1 + r2 + r3 + r4 + r5 + r6)− 4x3y2(−r1r2 − r1r3 − r1r4
−r1r5 − r1r6 − r2r3 − r2r4 − r2r5 − r2r6 − r3r4 − r3r5 − r3r6 − r4r5
−r4r6 − r5r6)− 3x2y3(r1r2r3 + r1r2r4 + r1r2r5 + r1r2r6 + r1r3r4
+r1r3r5 + r1r3r6 + r1r4r5 + r1r4r6 + r1r5r6 + r2r3r4 + r2r3r5
+r2r3r6 + r2r4r5 + r2r4r6 + r2r5r6 + r3r4r5 + r3r4r6 + r3r5r6
+r4r5r6)− 2xy4(−r1r2r3r4 − r1r2r3r5 − r1r2r3r6 − r1r2r4r5
−r1r2r4r6 − r1r2r5r6 − r1r3r4r5 − r1r3r4r6 − r1r3r5r6 − r1r4r5r6
−r2r3r4r5 − r2r3r4r6 − r2r3r5r6 − r2r4r5r6 − r3r4r5r6)
−y5(r1r2r3r4r5 + r1r2r3r4r6 + r1r2r3r5r6 + r1r2r4r5r6 + r1r3r4r5r6
+r2r3r4r5r6) + 6x5.

(17)
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This system has one finite singularity at the origin of coordinates. In the chart U1
system (17) writes

u̇ = 6(r1u− 1)(r2u− 1)(r3u− 1)(r4u− 1)(r5u− 1)(r6u− 1),
v̇ = v(6r1r2r3r4r5r6u5 − 5u4(r1r2r3r4r5 + r1r2r3r4r6 + r1r2r3r5r6 + r1r2r4r5 r6

+r1r3r4r5r6 + r2r3r4r5r6) + 4u3(r1r2r3r4 + r1r2r3r5 + r1r2r3r6 + r1r2r4 r5
+r1r2r4r6 + r1r2r5r6 + r1r3r4r5 + r1r3r4r6 + r1r3r5r6 + r1r4r5r6 + r2r3r4 r5
+r2r3r4r6 + r2r3r5r6 + r2r4r5r6 + r3r4r5r6)− 3u2(r1r2r3 + r1r2r4 + r1r2 r5
+r1r2r6 + r1r3r4 + r1r3r5 + r1r3r6 + r1r4r5 + r1r4r6 + r1r5r6 + r2r3r4 + r2r3 r5
+r2r3r6 + r2r4r5 + r2r4r6 + r2r5r6 + r3r4r5 + r3r4r6 + r3r5r6 + r4r5r6)
+2u(r1r2 + r1r3 + r1r4 + r1r5 + r1r6 + r2r3 + r2r4 + r2r5 + r2r6 + r3 r4
+r3r5 + r3r6 + r4r5 + r4r6 + r5r6)− r1 − r2 − r3 − r4 − r5 − r6).

It is easy to check that this system has six hyperbolic nodes at (1/r1, 0), (1/r2, 0),
(1/r3, 0), (1/r4, 0), (1/r5, 0) and (1/r6, 0) with alternative kind of stability. Then its
phase portrait is given in Figure 5a.

II. If H6(x, y) has four simple real linear factors (x − r1y)(x − r2y)(x − r3y)(x − r4y),
with r1 < r2 < r3 < r4 and two complex (x2 − 2αxy + y2(α2 + β2)), so H6(x, y) =
a(x− r1y)(x− r2y)(x− r3y)(x− r4y)(x2 − 2αxy + y2(α2 + β2)), and system (16) be-
comes

ẋ = x5(2α + r1 + r2 + r3 + r4) + 2x4y
(
− α2 − β2 − 2αr1 − r1r2

−r1r3 − r1r4 − 2αr2 − r2r3 − r2r4 − 2αr3 − r3r4 − 2αr4
)
+ 3x3y2(

α2r1 + β2r1 + 2αr1r2 + r1r2r3 + r1r2r4 + 2αr1r3 + r1r3r4 + 2αr1r4
+α2r2 + β2r2 + 2αr2r3 + r2r3r4 + 2αr2r4 + α2r3 + β2r3 + 2αr3r4
+α2r4 + β2r4

)
+ 4x2y3(− α2r1r2 − β2r1r2 − 2αr1r2r3 − r1r2r3r4

−2αr1r2r4 − α2r1r3 − β2r1r3 − 2αr1r3r4 − α2r1r4 − β2r1r4 − α2r2r3
−β2r2r3 − 2αr2r3r4 − α2r2r4 − β2r2r4 − α2r3r4 − β2r3r4

)
+ 5xy4(

α2r1r2r3 + β2r1r2r3 + 2αr1r2r3r4 + α2r1r2r4 + β2r1r2r4
+α2r1r3r4 + β2r1r3r4 + α2r2r3r4 + β2r2r3r4

)
+ 6y5(α2(−r1)r2r3r4

−β2r1r2r3r4
)
,

ẏ = −5x4y(r1 + r2 + r3 + r4 + r5 + r6)− 4x3y2(−r1r2 − r1r3 − r1r4
−r1r5 − r1r6 − r2r3 − r2r4 − r2r5 − r2r6 − r3r4 − r3r5 − r3r6 − r4r5
−r4r6)− 3x2y3(r1r2r3 + r1r2r4 + r1r2r5 + r1r2r6 + r1r3r4 + r1r3r5
+r1r3r6 + r1r4r5 + r1r4r6 + r1r5r6 + r2r3r4 + r2r3r5 + r2r3r6 + r2r4r5
+r2r4r6 + r2r5r6 − r5r6 + r3r4r5 + r3r4r6 + r3r5r6 + r4r5r6)
−2xy4(−r1r2r3r4 − r1r2r3r5 − r1r2r3r6 − r1r2r4r5 − r1r2r4r6 − r1r2r5r6
−r1r3r4r5 − r1r3r4r6 − r1r3r5r6 − r1r4r5r6 − r2r3r4r5 − r2r3r4r6
−r2r3r5r6 − r2r4r5r6 − r3r4r5r6)− y5(r1r2r3r4r5
+r1r2r3r4r6 + r1r2r3r5r6 + r1r2r4r5r6 + r1r3r4r5r6 + r2r3r4r5r6) + 6x5.

(18)

System (18) has one singular point at the origin of coordinates. In the chart U1
system (18) writes

u̇ = 6(r1u− 1)(r2u− 1)(r3u− 1)(r4u− 1)
(
α2u2 + β2u2 − 2αu + 1

)
,

v̇ = v(−2α + 6r1r2r3r4u5(α2 + β2)− 5u4(α2r1r2r3 + β2r1r2r3 + 2αr1r2r3 r4

+α2r1r2r4 + β2r1r2r4 + α2r1r3r4 + β2r1r3r4 + α2r2r3r4 + β2r2r3r4
)
+ 4u3(α2r1 r2

+β2r1r2 + β2r2r4 + r1r2r3r4 + 2αr1r2r4 + α2r1r3 + β2r1r3 + 2αr1r3r4 + α2r1 r4

+β2r1r4 + α2r2r3 + β2r2r3 + 2αr2r3r4 + α2r2r4 + 2αr1r2r3 + α2r3r4 + β2r3r4
)

−3u2(α2r1 + β2r1 + 2αr1r2 + r1r2r3 + r1r2r4 + 2αr1r3 + r1r3r4 + 2αr1r4 + α2 r2

+β2r2 + 2αr2r3 + r2r3r4 + 2αr2r4 + α2r3 + β2r3 + 2αr3r4 + α2r4 + β2r4
)

+2u
(
α2 + β2 + 2αr1 + r1r2 + r1r3 + r1r4 + 2αr2 + r2 r3

+r2r4 + 2αr3 + r3r4 + 2αr4
)
− r1 − r1 − r3 − r4).

It is clear that this system has four hyperbolic nodes at (1/r1, 0), (1/r2, 0), (1/r3, 0)
and (1/r4, 0) with alternative kind of stability. Its phase portrait is given in Figure 5b.
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III. If H6(x, y) has two simple real linear factors (x − r1y)(x − r2y), with r1 < r2 and
four complex linear factors (x2 − 2α1xy + y2(α2

1 + β2
1))(x2 − 2α2xy + y2(α2

2 + β2
2)), so

H6(x, y) = a(x− r1y)(x− r2y)(x2 − 2α1xy + y2(α2
1 + β2

1))(x2 − 2α2xy + y2(α2
2 + β2

2)).
In this case system (16) becomes

ẋ = −a(x− r1y)(x− r2y)(2y(α2
1 + β2

1)− 2α1x)((x− α2y)2 + β2
2y2)

−(x− r1y)(x− r2y)((x− α1y)2 + β2
1y2)(2y(α2

2 + β2
2)− 2α2x)

+r2(x− r1y)((x− α1y)2 + β2
1y2)((x− α2y)2 + β2

2y2) + r1(x− r2y)
((x− α1y)2 + β2

1y2)((x− α2y)2 + β2
2y2)),

ẏ = a(2(x− r1y)(x− r2y)(x− α2y)(x2 − 2α1xy + y2(α2
1 + β2

1))
+2(x− r1y)(x− r2y)(x− α1y)(x2 − 2α2xy + y2(α2

2 + β2
2))

+(x− r1y)(x2 − 2α1xy + y2(α2
1 + β2

1))(x2 − 2α2xy + y2(α2
2 + β2

2))
+

(x− r2y)(x2 − 2α1xy + y2(α2
1 + β2

1))(x2 − 2α2xy + y2(α2
2 + β2

2))).

(19)

This system has one finite singularity at the origin of coordinates. In the chart U1
system (19) has two hyperbolic nodes at (1/r1, 0) and (1/r2, 0) with an alternative
kind of stability. Its phase portrait is given in Figure 5c.

IV. If H6(x, y) has two simple real linear factors and two double complex linear factors,
in a similar way to III we obtain the phase portrait of Figure 5c.

V. If all the linear factors of H6(x, y) are complex, then its phase portrait is given in
Figure 5d.

In all the other cases different from the cases I to V the homogeneous polynomial
H6(x, y) has at least one double real linear factor and consequently the Hamiltonian
system has infinitely many singularities.

In summary Theorem 1 is proved for n = 5.

(a) (b) (c) (d)

Figure 5. Symmetric phase portraits with respect to the origin of coordinates of the homogeneous
Hamiltonian systems of degree 5.

8. Conclusions

The main objective of our research revolves around the classification of the phase
portraits of five categories of Homogeneous Hamiltonian differential systems of degrees
1, 2, 3, 4, and 5, characterized by a finite number of equilibria. The focus of our study is
to present novel results specifically related to the homogeneous Hamiltonian polynomial
differential systems with degrees 3, 4, and 5.
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