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Abstract: This paper discusses an orienteering optimization problem where a vehicle using electric
batteries must travel from an origin depot to a destination depot while maximizing the total reward
collected along its route. The vehicle must cross several consecutive regions, with each region
containing different types of charging nodes. A charging node has to be selected in each region,
and the reward for visiting each node—in terms of a ‘satisfactory’ charging process—is a binary
random variable that depends upon dynamic factors such as the type of charging node, weather
conditions, congestion, battery status, etc. To learn how to efficiently operate in this dynamic
environment, a hybrid methodology combining simulation with reinforcement learning is proposed.
The reinforcement learning component is able to make informed decisions at each stage, while the
simulation component is employed to validate the learning process. The computational experiments
show how the proposed methodology is capable of design routing plans that are significantly better
than non-informed decisions, thus allowing for an efficient management of the vehicle’s battery
under such dynamic conditions.

Keywords: orienteering problem; battery management; electric vehicle; reinforcement learning; simulation

1. Introduction

Modern transportation and logistics systems call for efficient vehicle routing solu-
tions that can adapt to dynamic and uncertain conditions. This is particularly relevant for
electric vehicles (EVs), which are gaining popularity due to their potential for reducing
transportation costs and minimizing environmental impact. The increasing adoption of EVs
has sparked a revolution in the automotive industry, offering a sustainable alternative to
conventional internal combustion engine vehicles [1]. However, these vehicles face several
challenges when it comes to real-time route planning under dynamic scenarios, such as
the need to consider weather conditions, traffic or on-site congestion, and travel time. In
addition, as EVs rely heavily on batteries for their power supply, effective battery man-
agement is crucial to ensure optimal performance, an extended battery life, and enhanced
driving range. Moreover, the need for an efficient battery management system (BMS) calls
for a cutting-edge technology combined with a more refined software. Any BMS has to
consider the uncertainty associated with the availability of charging stations along the
route. Finding reliable charging infrastructure can be a daunting task, as charging stations
are still relatively scarce in many areas. This lack of widespread charging infrastructure
poses a significant obstacle for EV owners, as it restricts the number of feasible options.

For long-distance routes, there comes a time when the vehicle needs to face the
problem of choosing the next charging station point. This can be challenging given the
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environmental dynamic conditions mentioned above. The distinction becomes crucial,
especially for aged batteries, when considering charging up having a 60% charge level
versus charging up having a 20% level. Therefore, an ‘optimal’ route towards the charging
station point should be taken into account, so that given the distance from the current
location to the station, the congestion and weather conditions, and the available chargers,
the goal is to maximize the lifespan of the batteries while ensuring a charging time that is
acceptable, as discussed in Abdollahi et al. [2].

Initially proposed by Golden et al. [3], the orienteering problem (OP) is named after
the sport of orienteering, where a runner selects specific points to navigate between within
a given time limit. The OP involves a vehicle that begins at a depot, traverses a set of nodes,
and finally reaches a destination depot, with the objective of maximizing the total reward
earned from visiting the nodes. The problem becomes more challenging as the vehicle has
a limited distance or time to cover the path from the origin node to the destination node.
The OP and its extension to multiple vehicles, the team orienteering problem, have found
relevance in modern applications such as unmanned aerial vehicles and road EVs with
limited battery capacity [4,5]. This paper explores a dynamic OP where a single vehicle
must travel from an origin to a destination while visiting specific charging nodes along the
way to ensure it can reach its final destination (Figure 1). The vehicle needs to pass through
multiple regions and, since a region represents a set of clustered charging stations, it makes
sense to assume that it will only visit one charging station per region. Once charged at a
station, it can then resume its travel to the next region until it finally reaches the destination
node. Each region contains different types of charging nodes, e.g., alternating current (AC)
level 2, direct current (DC) fast, superchargers, etc. The reward associated with visiting
each charging node is represented by a binary random variable, indicating whether or not
the vehicle arrived at the charging node within the ‘optimal’ charging window to prolong
the battery’s lifespan and to complete the charging process in a reasonable time period. In
order to consider realistic context conditions, it is assumed that the probability of receiving
a positive reward at each charging node depends on dynamic factors such as: (i) weather
conditions along the route to the charger; (ii) congestion on the road or at the charging
station; (iii) travel time from the vehicle’s current position to the charger’s location; and (iv)
the age of the battery.

Figure 1. An orienteering problem with 3 regions and 5 potential charging nodes per
region.

To address the aforementioned dynamic orienteering problem, this paper proposes
the combination of simulation with reinforcement learning (RL) [6] to emulate how the
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system would perform in a real-life scenario. Our approach involves training a machine
learning model, which can be a slow process in a real-life scenario. Hence, to illustrate
how this learning process works, a simulation experiment is proposed. The simulation
allows us to emulate how the learning process would occur in a real-life scenario and test
the quality of the learning models employed in our approach. Thus, the main contribution
of this paper is the combination of reinforcement learning with simulation to illustrate how
to make informed decisions in a dynamic OP with electric vehicles and binary random
rewards that can be influenced by several factors, including their battery status.

The remainder of the paper is structured as follows: Section 2 gives a more extensive
context on the types of EVs and their integration into the ongoing transportation network,
current research in the field, battery capacity, materials and charging time, and several
factors that might influence the state of the battery. Section 3 provides a brief review of OPs.
Section 4 describes the problem in a more formal way. Section 5 introduces the numerical
case study that is considered. Section 6 discusses the details of the simulation experiment
as well as the reinforcement learning algorithm employed. Section 7 analyzes the results
obtained in our computational test. Finally, Section 8 highlights the main conclusions of
our work and suggests open research lines.

2. Some Technical Details on EVs

The transportation sector accounted for 23% of energy-related emissions in 2019 [7].
The largest source of transport emissions are road vehicles, predominantly powered by
internal combustion engines. Since EVs are a promising mitigation technology to reduce the
impact on climate change, air pollutants, and noise [8], researchers have shown significant
interest in studying EV energy consumption due to its importance for understanding the
efficiency, performance, and environmental impact [9,10]. Several models can be used to
calculate energy consumption in EVs, and Qi et al. [11] classified them into three main
categories: analytical, statistical, and computational models. While accurate estimation
and prediction of EVs’ range is crucial for driver confidence and planning, the design and
optimization of charging infrastructure networks also play an important role in ensuring
efficient charging processes and minimizing energy consumption. There are several types
of EVs available on the market [12]. These range from conventional vehicles with no
electric components to fully EVs, including hybrid electric vehicles (HEVs) as well as
battery electric vehicles (BEVs). Each type has its own advantages and considerations, and
the choice depends on factors such as driving habits, range requirements, the availability
of charging infrastructure, and personal preferences.

As discussed in [13], BEVs produce zero tailpipe emissions but require charging
infrastructure to recharge their batteries. The battery is the core component of an EV,
especially for BEVs, and can be categorized by qualities such as its specific energy, specific
power, capacity, voltage, and chemistry [14]. Battery modeling is quite complex and many
models have been developed: empirical, equivalent circuit, physics-based, and high level
stochastic [15]. The initial technology used was a lead–acid battery that was soon replaced
because of its drawbacks such as having low energy density and being heavy. Nickel-
based batteries were introduced soon after as a mature technology, but they have longer
recharging times and poor performance in cold weather. Currently, lithium-based batteries
are the most common and widely adopted in the EV industry [16]. Even though some
methods have been proposed to predict the remaining useful life of lithium batteries [17],
there are still several open issues with their use: in particular, their safety as well as
environmental impact concerns.

One of the main challenges raised by BEVs is to obtain acceptable driving ranges. The
state of charge (SOC) measurement is particularly important as it indicates the maximum
driving range. The capacity of EV batteries can range from around 20 kWh in smaller
electric cars to over 100 kWh in larger, high-end electric vehicles. However, accurately
estimating driving distance is difficult, and factors such as the vehicle’s efficiency, driving
style, and weather conditions also influence the actual driving range achieved [18,19]. The
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optimal SOC range in batteries can vary depending on the specific type of lithium-based
battery chemistry and the desired operating parameters [20]. According to Koltermann
et al. [21], the capabilities are limited at the border areas of the SOC. The results show
that batteries can only safely deliver full power without a detrimental impact on their
health and longevity at between 20–80% of the SOC. At both ends, the battery exhibits
much higher polarization impedance [22]. The maximum SOC is usually set to ensure
safe operation and prevent overcharging, stress on the material, or elevated operating
temperatures [23]. Likewise, the minimum SOC tries to avoid an unexpected system
shutdown or loss of power that can occur due to low voltage levels and the risk of cell
imbalance. In addition, maintaining a low SOC can potentially contribute to driver anxiety.
Advancements in charging infrastructure are also reducing concerns about range anxiety
by providing faster and more accessible charging options for EV owners [24]. However, the
number of charging stations is still relatively limited, so predicting the best place to charge
the vehicle in dynamic conditions is important. There are several charging technologies
available for EVs depending on the different power levels an EV can be charged to [25].
Level 1 charging (120 V AC) uses a household electrical outlet and provides around 1.4 to
1.9 kW. It provides the slowest charging rate for EVs. Level 2 charging (240 V AC) requires
a compatible charging station or wall-mounted charger. It delivers power ranging from
3.3 kW to 22 kW. Level 3 or DC fast charging stations can provide charging powers ranging
from 50 kW to over 350 kW. The vehicle’s onboard charger and charging port specifications
will determine the maximum charging rate it can accept. Among other factors, a vehicle’s
charge time depends on the level of the charger and the type of EV. According to the U.S.
Department of Transportation [26], to reach an 80% battery level from empty can take
between 40 and 50 h for a BEV, and between 5 and 6 h for a plug-in HEV (with a Level 1
charger). Likewise, it can take between 4 and 10 h for a BEV and between 1 and 2 h for a
plug-in HEV (with a Level 2 charger). Finally, it can take between 20 min and 1 h for a BEV
(with a Level 3 charger).

EV penetration causes significant issues on the power distribution grid, such as an
increase in power demand, system losses, voltage drops, equipment overloading, and
stability impact [27]. At the same time, some exciting opportunities appear with EV deploy-
ment on the smart grid, such as grid flexibility through vehicle-to-grid (V2G) technology,
demand response, and the integration of renewable energy sources [25]. V2G mode allows
EVs to discharge power back to the grid. This can support grid balancing, frequency
regulation, and voltage stabilization. The weather conditions directly affect the battery
temperature [28], the climate control [29], and the charging efficiency [30]. Extreme weather
conditions can affect the temperature of the EV’s battery. High temperatures can increase
the risk of the battery overheating, which may reduce its performance and lifespan. Like-
wise, very cold temperatures can decrease the battery’s efficiency and capacity temporarily.
EVs often rely on climate control systems to maintain a comfortable cabin temperature.
This includes features such as air conditioning in hot weather and heating in cold weather.
The use of these systems can impact the overall energy consumption and range of the
vehicle. Extreme temperatures can also affect the efficiency of charging systems. Con-
gestion can generate an increase in the stop-and-go driving style. This can lead to more
energy-intensive acceleration and braking, and thus result in increased energy consumption
and a higher load on the battery, potentially reducing its overall range [31]. In addition,
when stuck in congestion, EVs may be required to idle for extended periods, especially in
situations where traffic is at a standstill. Idling consumes energy from the battery to power
auxiliary systems such as climate control and entertainment systems. Prolonged idling can
drain the battery charge faster and reduce the available range [32].

3. Related Work on Vehicle Orienteering Problems

The orienteering problem was first introduced by Golden et al. [3], who proved it to be NP
hard. Early research examined the deterministic version of the problem within the framework
of vehicle routing, where one vehicle chooses the nodes to visit and the order of visits within
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a defined time frame. In contrast, research on the stochastic OP is relatively recent. The first
study to include stochasticity in the OP was conducted by Ilhan et al. [33], which assumed
that only node rewards were stochastic. Other researchers, including Campbell et al. [34],
Papapanagiotou et al. [35], Verbeeck et al. [36], or Evers et al. [37], focused on cases where
service and travel times were stochastic, with service times typically incorporated into travel
times. Several approaches have been employed to solve the stochastic orienteering problem,
including a combination of branch and bound algorithms with local search [34] and local search
simulations [38]. Further refinements were made to these methods, with Varakantham and
Kumar [39] utilizing a sample average approximation technique to improve on the results of
Lau et al. [38]. Additionally, Zhang et al. [40] expanded the method of Campbell et al. [34] to
include time windows for arriving at nodes. Gama and Fernandes [41] introduced a solution
to the orienteering problem with time windows, employing Pointer Network models trained
through reinforcement learning. A comprehensive review of the orienteering problem and its
variants can be found in Gunawan et al. [42]. Still, to the best of our knowledge, our work is
the first one that proposes the combined use of RL and simulation to deal with a version of
the problem with stochastic rewards that depend upon dynamic conditions. In our view, this
dynamic OP with stochastic rewards has relevant applications to scenarios involving EVs that
require an efficient management of their batteries.

4. Modeling the Dynamic OP with Binary Random Rewards

Let G = (V, E) be a directed graph with node set V and edge set E. Node O ∈ V
is the origin node, while node D ∈ V is the destination node. Each node i ∈ V \ {O, D}
has a reward ri associated with it, which is a binary random variable that takes the value
1 with probability pi and 0 with probability 1− pi. Let us denote this by region Rk, with
k ∈ K = {1, 2, . . . , |K|}, a subset of V \ {O, D}. The problem is to find a path P that starts
at O and ends at D, maximizes the expected total reward collected along the path, and
visits at most one node in each region Rk. In our case, the reward is based on extending the
battery’s lifespan [21], as well as on completing the charging process within a certain time
interval. Thus, the probability of obtaining a reward for a recharging node i depends on
the type of node as well as on the current status at the region Rk. This status is determined
by dynamic context conditions, i.e., pi = f (i, Rk) for an unknown (black-box) function f .

Let xi be a binary decision variable that takes the value 1 if node i is visited along the
path P, and 0 otherwise. Let eij be a binary decision variable that takes the value 1 if there
is an arc from node i to node j 6= i along the path P, and 0 otherwise. Then, the problem
can be formulated as follows:

max ∑
i∈V\{O,D}

ri pixi (1)

subject to:

∑
i∈V\{O}

eOi = 1 (2)

∑
j∈V\{i,O}

eij − ∑
j∈V\{i,D}

eji = 0 ∀i ∈ V \ {O, D} (3)

∑
j∈V\{D}

ejD = 1 (4)

∑
i∈Rk

xi = 1 ∀k ∈ K (5)

xi ∈ {0, 1} ∀i ∈ V (6)

eij ∈ {0, 1} ∀(i, j) ∈ E (7)



Batteries 2023, 9, 416 6 of 16

The objective function Equation (1) maximizes the expected total reward collected
along the path P. Constraint Equations (2) and (4) ensure that the path starts at the origin
node O and ends at the destination node D, respectively. Constraint Equation (3) ensures
that the flow of the path P is conserved at each node i ∈ V \ {O, D}, i.e., the number of
incoming arcs is equal to the number of outgoing arcs. Constraint Equation (5) ensures that
at most one node in each region Rk is visited. Constraint Equations (6) and (7) enforce the
binary variables.

5. A Numerical Case Study

Consider a dynamic OP, with binary random demands y ∈ {0, 1}, similar to the one
represented in Figure 1. Let us assume that a vehicle must now cross six consecutive
regions, with each region containing five different types of charging nodes, each type with a
different probability of obtaining a reward. In accordance with Section 2, let us assume that
such probability will depend on a vector of factors that describe the context conditions at
each region–node pair, which are: battery age, congestion, weather, battery status, and time
of charge. The logistic sigmoid function σ(z) = 1

1+e−z maps real-valued numbers to a range
between 0 and 1. In particular, for each type of node i ∈ {1, 2, . . . , 5}, let us assume that
the real-life probability of obtaining a reward pi is modeled as a logistic function f , which
is defined for each region, k1i to k6i (Table 1), and each of the following factors: (i) battery
age (cycles) ba ∈ {10, 1000}; (ii) current battery status (in %) bei ∈ {0, 100}; (iii) congestion
ci ∈ {0, 1} (where c = 1 represents high congestion and c = 0 represents low congestion);
(iv) weather conditions wk ∈ {0, 1} (where w = 1 represents good weather and w = 0
represents bad weather); and (v) time of charge (in hours) tci ∈ (0, 30). Hence, the real-life
probability pi of obtaining a reward when visiting a node of type i in region Rk under
context conditions (ba, bei, ci, wk, tci) is given by:

pi =
1

1 + exp(−(k1iwk + k2ici + k3itci + k4iba + k5i(20− |bei − 20|) + k6i))
(8)

For each of the five considered nodes, Figure 2 shows the real probability of obtaining
a reward of 1 when the node is visited under different combinations of congestion, weather
conditions, battery age, and battery status. Notice also that charging time has a great
influence on this probability for all nodes since the objective is to extend the lifetime of
the battery without compromising the time at which the vehicle reaches its destination.
Moreover, the node offering a higher probability of reward might vary according to the
current weather, congestion, and other conditions in the region.

Table 1. Real-life parameters for each node type (coefficients of the associated logistic
function).

Node
Type k1i k2i k3i k4i k5i k6i

1 3.0 −0.5 −0.4 −0.0010 −0.00010 3.5

2 1.5 −0.1 −0.41 −0.0004 −0.00030 4.5

3 3.5 −0.1 −0.43 −0.0012 −0.00010 4.5

4 2.0 −0.2 −0.50 −0.0009 −0.00035 4.0

5 4.5 −0.9 −0.42 −0.0008 −0.00030 3.0

Despite the fact that the function f that represents the real probability of obtaining a
reward has been properly defined, this will not usually be possible in a real-life application.
In effect, the real-life parameters shown in Table 1 will be unknown in many practical appli-
cations. Then, given a vector x of five factors associated with a region–node combination,
the goal will be to predict y, i.e., ŷ = P(y = 1|x), so the next charging node i to be visited
can be selected using this estimated probability. Hence, from this point on, it is assumed
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that the true values of the parameters k1i to k6i are unknown, and a reinforcement learning
algorithm is proposed in order to predict the real probability of obtaining a reward. In a
real-life application, the algorithm achieves this predictive capacity by making decisions,
observing the associated outcomes, and then learning from these interactions with reality.
In online RL, the learning agent interacts directly with the environment in real-time. The
agent makes decisions, receives feedback (rewards), and updates its policy based on the
observed outcomes. The agent explores (tries out different options) and exploits (selects
the best-known option) the environment simultaneously, making decisions and adapting
its behavior as it interacts with the environment. In order to illustrate this learning process,
simulation is employed to emulate this interaction between the algorithm and reality. A
total of 10, 000 trips were simulated.

At each region Rk, the algorithm must select a node type i to visit. This selection
is based on the current estimate of the expected reward for each node type i, and the ε
parameter controls the balance between exploration and exploitation. Specifically, with
probability 1− ε, the algorithm selects the node type with the highest expected reward
(exploitation), and with probability ε, it selects a node type at random (exploration). After
selecting a node type, the algorithm receives feedback from reality (the simulation in our
case) in the form of a binary reward, and updates its estimate of the expected reward for
each node type accordingly.

In the computational experiments a hybrid gradient boosting with decision trees
model is utilized to estimate the expected reward for each region–node combination based
on the feedback provided by the simulation environment. During the simulation, random
values are generated to emulate the context conditions of each region. Then, using the
black-box function f , the response that would be obtained in a real-life environment is
estimated. The algorithm uses this response to iteratively enhance the model that predicts,
for each node and contextual values, the probability of obtaining a reward. Thus, for
example, suppose that after several simulation runs, the algorithm learns that nodes of
type 1 are the most rewarding under good weather and low congestion conditions, nodes
of type 2 are the most rewarding under bad weather and high congestion, nodes of type
3 are the most rewarding under good weather and high congestion, nodes of type 4 are
the most rewarding under bad weather and low congestion, and nodes of type 5 are the
most rewarding under any other context condition, it then adjusts its policy accordingly
and continues to improve over time.

A conceptual schema summarizing the described methodology is provided in Figure 3.
The simulation component provides new testing conditions for the RL component to make
decisions (step 1). The RL component makes decisions by selecting the next charging node
in the routing plan (step 2). Then, the black-box function emulating real life is employed
to check the real impact of the decision suggested by the RL agent (step 3) and provide
feedback to it (step 4). Finally, the simulation of a new scenario is activated and the process
is repeated until a complete solution (a selection of charging nodes connecting the origin
depot with the destination depot) is built. At this stage, the entire loop is iterated for a
number of runs. As more and more runs are executed, the more trained the RL model
becomes and, hence, the better its decisions are in terms of which charging node has to be
visited next according to the vector of factors.
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Figure 2. Real probabilities of obtaining a reward of 1 for each node and combination of
factors.
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Figure 3. A conceptual schema of the proposed methodology.

6. Simulation and Algorithm Details

Using the Python programming language as a base, this section provides insights on
the reinforcement learning algorithm employed to predict the probability of reward for
each node and contextual conditions. It also describes the simulation process utilized to
illustrate how the learning process works in a practical application. Notice that only the
key parts of the code are provided here.

Listing 1 defines a multivariate logistic function, real_reward_p, which provides the
real probability of obtaining a binary reward of 1 for a given node, based on the inputs
weather conditions, congestion, battery age, expected battery, and charging time. This
function acts as a black-box model (unknown for the learning algorithm) that emulates
reality. This logistic function takes in a node, weather (0 or 1 where 1 is good weather and
0 is bad), congestion (0 or 1 where 1 is high congestion and 0 is low congestion), battery
age (an integer between 10 and 1000), expected battery (an integer between 0 and 100), and
charging time (an integer between 1 and 40) as parameters. Inside the function, a linear
combination of the parameters and some weights stored in the params dictionary for that
node are computed. The result of the linear combination is passed through the sigmoid
function 1/(1 + np.exp(−linear_comb)) to obtain a probability of obtaining a reward of 1
for that node given the input parameters. For instance, if the parameters associated with
a giving node i are k1i = 4, k2i = −0.5, k3i = −0.45, k4i = −0.001, k5i = −0.0004, and
k6i = 3.5, then real_reward_p(i, 1, 0, 20, 10, 20) would return the probability of obtaining a
reward of 1 for node i when the weather is good, congestion is low, the charging time is 40,
the age of the battery is 10 cycles, and the battery status is 20.

In a similar fashion, Listing 2 defines a CatBoost model (gradient boosting with
decision trees) [43] to predict the probabilities of obtaining a reward of 1 for a given
node–region pair and context inputs. In order to train the model, the data are divided
into two sets: training and testing. The training set is utilized to construct the model,
while the test data serve the purpose of preventing overfitting by employing an early
stopping strategy [44]. The model’s performance improves significantly when more data
are available. To ensure calibrated probabilities, Platt scaling is applied to fine-tune the
model’s probability outputs [45]. This model acts as a white-box one that aims at predicting
how reality will behave, i.e., it tries to predict the real-life probability provided by the black-
box function described in Listing 1. Given that the CatBoost Python library is employed,
it is possible to use the inbuilt function predict_proba to generate predictions. Notice,
however, that a different predictive model—e.g., a neural network—could have been used
as a white box.
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Listing 1. Python code illustrating the black box used to compute the real probability of
reward.
1 # Logistic functions (one per node type) defining the probability of obtaining a

binary reward of 1
2 # weather (1 = good , 0 = bad), congestion (1 = high , 0 = low), battery age (10 to

1000) , time of charge (1 to 40), battery status (0 to 100)
3 # ex: p(reward = 1 / N1) = 1 / (1 + exp(-(4 * weather + -0.5 * congestion + -0.001 *

battery age + -0.15 * expected battery + -0.0004 * time + 3.5)))
4 def real_reward_p(node , weather , congestion , batery_age , battery_status , time): %

Attention AE: battery is spelt incorrectly here. The authors should check if this
is correct.

5 linear_comb = np.dot(params[node], [weather , congestion ,batery_age , time , (20-abs(
battery_status -20)), 1])

6 return 1 / (1 + np.exp(-linear_comb)) # probability of obtaining a reward of 1

Listing 2. Python code illustrating the trained model used to predict the probability of
reward.
1 # Train a CatBoost classifier to predict the probability of reward
2 # Split the data in train and test (80 -20) and uses early stopping to avoid

overfitting
3 # To predict probabilities correctly we apply Platt Scaling to calibrate the model
4 def fit_catboost_model(node , X, y):
5 model = CatBoostClassifier(loss_function="Logloss",max_depth =5, iterations =1000,

early_stopping_rounds =50, eval_metric="Logloss")
6 node_X = X[X[’node’] == node].drop(columns =[’node’])
7 node_y = y[X[’node’] == node]
8 node_y = [1 if i == True else 0 for i in node_y]
9 X_train , X_val , y_train , y_val = train_test_split(node_X , node_y , test_size =0.2,

random_state =42)
10 model.fit(X_train , y_train , eval_set =(X_val , y_val), verbose=False)
11 calibrated_model = CalibratedClassifierCV(model , cv=’prefit ’, method=’sigmoid ’)
12 calibrated_model.fit(X_val , y_val)
13 return calibrated_model
14 # Predict the probabilities of obtaining reward = 1 on each node for a new context
15 def predict_reward_p(node , weather , congestion , battery_age , battery_status , time):
16 model = models[node]
17 return model.predict_proba ([[ weather , congestion , battery_age , battery_status ,

time ]]) [0][1]

The code in Listing 3 defines a Python function called select_node_eps that selects a
node from a dictionary predicted_reward_p based on a slightly modified epsilon-greedy
strategy. The function takes in two optional parameters: eps, the value of epsilon used in the
epsilon-greedy algorithm, and uniform, a Boolean flag that specifies whether to choose the
node uniformly at random among all nodes with the same probability. The function first
sorts the nodes in descending order based on their corresponding probability of reward.
It then checks whether a random number between 0 and 1 is greater than eps. If it is, the
function returns the node with the highest probability of reward (i.e., the first element in
the sorted list). If the random number is less than or equal to eps, the function randomly
selects a node from the sorted list, either uniformly or non-uniformly depending on the
value of the uniform flag. If uniform is True, the function selects a node uniformly at random.
If uniform is False, the function selects the node with the second highest probability of
reward (i.e., the best ‘alternative’). This function is typically used in reinforcement learning
algorithms to balance the exploration and exploitation of different nodes based on their
predicted rewards. Still, other strategies, such as the Thompson sampling [46], could also
be used instead.

The code in Listing 4 simulates the generation of new regions in our route and selects
the node to visit. The code uses a for loop to iterate over the number of observations
specified by the variable n_obs. At each iteration, it simulates weather conditions, con-
gestion, battery age, expected battery, and charging time. The code then selects nodes
using a round-robin (balanced) selection method for the first n_update iterations. From
that point on, it uses a trained model and the epsilon-greedy strategy to select the next
node. The code then simulates the real probability of reward when this node is selected
and updates the accumulated regrets. Since rewards are binary, the expected reward for
each node is computed as the estimated probability of success. The code records the new
data, increasing the size of observations for X (predictors), y (response), and z (regrets),
and updates the models every n_update iterations.
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Listing 3. Python code illustrating a modified epsilon-greedy strategy.
1 # Selects a node from nodes based on an epsilon -greedy strategy
2 def select_node_eps(predicted_reward_p , eps=0.1, uniform=True): # default epsilon
3 # sort nodes from higher to lower probability of reward
4 sorted_dict = dict(sorted(predicted_reward_p.items(), key=lambda x: x[1], reverse=

True))
5 sorted_list = list(sorted_dict.keys())
6 if random.random () > eps:
7 return sorted_list [0] # choose the node with the highest probability
8 elif uniform:
9 return random.choice(sorted_list)

10 else: # choose the node with the second highest probability
11 return sorted_list [1]

Listing 4. Python code illustrating the core part of the simulation.
1 # Simulate the generation of new routes and select the node
2 for i in range(n_obs):
3 a_weather = random.randint ([0, 1])
4 a_congestion = random.randint ([0, 1])
5 a_battery_age = random.randint (10, 1000)
6 a_battery_status = random.randint(0, 100)
7 a_time = random.randint(start_time , end_time) # includes end_time
8 # Round -robin (balanced) selection of first n_update nodes
9 if i+1 < n_update:

10 selected_node = list(nodes)[0]
11 for node in nodes:
12 if n_selected[node] < n_selected[selected_node ]:
13 selected_node = node
14 # Caution !: for this stage , we’ll use real p as predicted so we can

estimate regrets
15 predicted_reward_p[node] = real_reward_p(node , a_weather , a_congestion ,

a_battery_age , a_battery_status , a_time)
16 n_selected[selected_node] = n_selected[selected_node] + 1
17 else: # after the first model update , we can predict probabilities and select node
18 for node in nodes:
19 if i+1 == n_update: # set an initial model for node when n_update is

reached
20 models[node] = fit_catboost_model(node , X, y)
21 predicted_reward_p[node] = predict_reward_p(node , a_weather , a_congestion ,

a_battery_age , a_battery_status , a_time)
22 selected_node = select_node_eps(predicted_reward_p , 0.1, True)
23 # Simulate the real probability of reward when this node is selected
24 real_reward = random.random () < real_reward_p(selected_node , a_weather ,

a_congestion ,a_battery_age , a_battery_status , a_time)
25 # Update accum. regrets. Since rewards are binary , E[reward(node)] = estimated P(

success / node)
26 regrets = regrets + (max(predicted_reward_p.values ()) - predicted_reward_p[

selected_node ])
27

28 # Record the new data , thus increasing the size of observations for X, y, and z
29 new_data = {’weather ’: a_weather , ’congestion ’: a_congestion ,
30 ’battery_age ’:a_battery_age ,
31 ’battery_status ’: a_battery_status ,
32 ’time’: a_time ,’node’: selected_node ,
33 ’reward ’: real_reward ,’regrets ’: regrets}
34

35 new_df = pd.DataFrame(new_data , index =[0])
36 df = pd.concat ([df, new_df], ignore_index=True)
37 X = df[[’weather ’, ’congestion ’,’battery_age ’,’battery_status ’, ’time’, ’node’]]
38 y = df[’reward ’]. astype(bool) # make sure it is a bool data type
39

40 # Update the models every n_update observations
41 if (i+1) % n_update == 0 and i+1 > n_update:
42 for node in nodes:
43 models[node] = fit_catboost_model(node , X, y)

7. Computational Experiments

Table 2 shows a comparison between the predicted and the actual (real-life) probability
of obtaining a reward of 1 for a randomly selected set of nodes and factor configurations.
This table confirms that the trained model is capable of estimating the real-life probability
with a relatively low average error.

After training the predictive model, it is possible to apply it to the proposed case study
on dynamic OP with binary random rewards. Whenever the EV reaches a new region and
receives updated contextual information such as weather, congestion, battery age, expected
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battery, and time of charge, it will use the predictive model to select one of the nodes with a
higher probability of obtaining a reward. Since selecting a node in one region might affect
our options in subsequent regions, following a greedy approach in each region—i.e., always
selecting the node with the highest expected reward at each step—would not necessarily
lead us to an optimal solution for the entire trip. In a situation such as this, it is often
convenient to employ diversification strategies based on biased randomization and agile
optimization techniques [47].

Table 2. Predicted vs. actual probabilities of reward.

Node
Type Weather Congest. Batt. Age

(Cycles)
Batt.

Status (%)
Charge

Time (h) Predicted Actual Error

5 1 0 467 98 18 0.283 0.3974 0.1145

5 0 1 228 82 22 0.032 0.0007 0.0314

1 1 1 69 16 29 0.065 0.0034 0.0616
3 0 1 98 30 17 0.0499 0.0462 0.0038

1 0 0 107 79 25 0.0506 0.0014 0.0493

4 1 1 378 31 22 0.0273 0.0039 0.0234

5 0 1 486 3 15 0.0363 0.0101 0.0263

5 0 1 373 66 21 0.0309 0.0009 0.03

4 0 0 224 92 28 0.0262 0.0 0.0261

5 0 0 235 64 5 0.7532 0.6724 0.0808

1 1 1 354 22 23 0.0544 0.0278 0.0267

5 0 0 402 28 18 0.0312 0.0075 0.0237

3 0 1 196 31 3 0.9524 0.9465 0.0058

3 0 1 464 20 4 0.947 0.8929 0.054

3 1 0 58 44 4 0.9667 0.998 0.0313

4 0 0 234 59 29 0.0261 0.0 0.0261

4 1 1 314 59 7 0.7149 0.8833 0.1684

2 1 1 56 26 19 0.0691 0.1282 0.0591

5 1 1 159 52 28 0.0341 0.005 0.029

5 1 1 349 6 3 0.9603 0.9937 0.0334

Average: 0.0452

A total of 10,000 trips for the case study were simulated, which considered six regions
and five types of nodes per region. Figure 4 shows boxplots with the expected accumu-
lated reward for solutions generated by our approach (in which the trip is guided by the
predictive model) and a non-guided approach (in which a node is randomly chosen in
each region). Hence, while solutions proposed by our methodology show an average
value of 2.83 and a standard deviation of 1.02 for the expected accumulated reward, solu-
tions provided by a non-guided approach show an average value of 2.37 and a standard
deviation of 0.99 for the expected accumulated reward. As expected, a t-test provides a
t-statistic = 32.44, with an associated p-value = 4.82 ∗ 10−225, which clearly indicates that
the solutions generated by our reinforcement learning approach are significantly better
than the ones constructed without taking into account the dynamic contextual conditions.

Figure 5 illustrates a comparative analysis between a non-guided solution and the
route provided by our approach. The blue nodes (N1, N2, N3, N4, N5) in the figure
represent the chargers in each region, and the weight of the edges in the graph represents
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the real probabilities of reward based on the original solution. Notably, the selections made
by our approach consistently demonstrate higher probabilities of obtaining rewards.

Figure 4. Boxplots for comparing our guided routing solutions with non-guided ones.

Figure 5. Visual representation of our guided routing solution and a non-guided one.

8. Conclusions

This paper proposes a hybrid methodology combining simulation and reinforcement
learning to explore a vehicle orienteering problem with binary random rewards and dy-
namic conditions. This problem is discussed in the context of electric vehicles that, while
covering a long trip, have to cross different regions and choose, in each of these region, a
charging station with a high probability of reward. The challenge lies in the fact that the
reward for visiting each charging node is a binary random variable and depends on dy-
namic context conditions, such as: weather conditions, road or on-site congestion, current
battery status, etc. In order to emulate the learning process in real-life conditions under
uncertainty, a simulation is employed. Thus, a black-box model is used to estimate the
real-life probability of obtaining a reward for each node based on the dynamic context
conditions at a given time. A reinforcement learning mechanism is then employed to make
informed decisions at each stage of the problem, and a logistic regression model is used
to predict the aforementioned probabilities. Through the simulation results, it is shown
that the proposed reinforcement learning approach can effectively learn to make informed
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decisions based on the dynamic context conditions. The computational experiments show
that a statistically significant improvement is obtained when the proposed approach is
utilized. All in all, the proposed approach can be useful in a range of real-life scenarios
such as transportation logistics, delivery services, and resource allocation.

One potential direction is to explore more complex models for the probability of ob-
taining a reward, such as neural networks or models that account for additional context
conditions. To mitigate some of the downsides of the strategy chosen in this paper (ε
greedy), various enhancements could be carried out, such as using decaying exploration
rates or dynamically adjusting the exploration rate based on the agent’s learning progress.
Another potential area for future work is to investigate the impact of different reinforce-
ment learning algorithms and strategies on the performance of the model. For example,
analyzing different exploration strategies (beyond the epsilon-greedy strategy used in this
study) may lead to more efficient learning and better decision making. Furthermore, it
may be valuable to consider the use of more advanced optimization techniques, such as
metaheuristics and simheuristics [48], that can be combined with the reinforcement learning
approach introduced in this paper. Finally, this study focused on a single vehicle traveling
through a fixed set of regions. Future work could explore more complex scenarios, such
as the involvement of multiple vehicles, i.e., a dynamic team orienteering problem with
stochastic rewards.
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