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Abstract: The use of simulation and reinforcement learning can be viewed as a flexible approach to
aid managerial decision-making, particularly in the face of growing complexity in manufacturing
and logistic systems. Efficient supply chains heavily rely on steamlined warehouse operations, and
therefore, having a well-informed storage location assignment policy is crucial for their improvement.
The traditional methods found in the literature for tackling the storage location assignment problem
have certain drawbacks, including the omission of stochastic process variability or the neglect of
interaction between various warehouse workers. In this context, we explore the possibilities of
combining simulation with reinforcement learning to develop effective mechanisms that allow for the
quick acquisition of information about a complex environment, the processing of that information,
and then the decision-making about the best storage location assignment. In order to test these
concepts, we will make use of the FlexSim commercial simulator.

Keywords: warehouse operations; hybrid algorithms; simulation; reinforcement learning; optimization

1. Introduction

Manufacturing and logistic systems play a pivotal role in companies, serving as
the backbone of their operations. Effective management of manufacturing and logistic
systems is crucial for meeting customer demand, reducing costs, improving operational
efficiency, and gaining a competitive advantage in the market. In today’s ever-evolving
landscape of manufacturing and logistic systems, characterized by increasing complexity
and interdependencies, simulation has emerged as a powerful and versatile tool that can
significantly aid managerial decision-making [1]. Simulation serves as a powerful tool for
accurately modeling and analyzing intricate and dynamic systems that exhibit non-linear
interactions. Among various simulation approaches, discrete-event simulation (DES) is
widely adopted across multiple industries. A plethora of commercial simulators such as
Simio, AnyLogic, FlexSim, and others, as well as non-commercial ones like SimPy and
Salabim, provide robust capabilities for DES modeling. The potential of these simulators
can be greatly amplified by integrating them with advanced optimization or machine
learning tools. Connecting DES platforms with external programming languages such as
Python or R can enhance simulation modeling by leveraging additional mathematical and
algorithmic capabilities, thereby enabling more sophisticated analyses and insights [2].

Reinforcement learning (RL) [3] is an increasingly popular field of machine learning
in artificial intelligence, which studies how intelligent agents ought to take actions in an
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environment with the aim of maximizing the cumulative reward. RL has plenty of appli-
cations in a wide range of fields such as natural language processing, image processing,
recommendation systems, and marketing, among others. In the context of warehouse oper-
ations, RL can be used for various applications to optimize and automate tasks, improve
efficiency, and reduce costs [4]. Some examples of RL applications in this context include
inventory management (decisions on when to reorder, how much to reorder, and where to
store items), order picking optimization (decisions on the most efficient routes for order
picking), warehouse layout optimization (decisions on the arrangement of aisles, racks, and
storage areas), autonomous guided vehicles routing, energy management (decisions on
energy usage, such as scheduling equipment operations, adjusting temperature setpoints,
and optimizing lighting), and quality control (decisions on item inspection based on factors
such as item characteristics, inspection history, and inspection costs).

Combining advanced simulation environments and RL can be used for training an
agent to find efficient policies that take into account realistic conditions such as those present
in a warehouse. In this context, our work explores the potential of combining the well-
established commercial simulation software FlexSim [5] and various RL implementations,
programmed in Python [6]. FlexSim has several advantages that make it suitable for this
project: (i) the focus on warehouse and manufacturing applications; (ii) the visual aspect,
which facilitates the validation and also boosts managerial decision-making and insights
by graphically showing the content of the model and the progress of the simulation; and
(iii) the option to communicate with Python [7]. On the other hand, Python stands out
as an open source, platform-independent, and general-purpose programming language.
It offers plenty of comprehensive packages for data analysis, machine learning, scientific
computing, and application development, among others. We present a case study where a
dynamic version of the storage location assignment problem [8] is addressed. It illustrates
the benefits and limitations of this approach and boosts a discussion on its potential in
warehouse operations.

The work presented in this paper serves as a feasibility demonstration, in which the
integration of two elements (namely, FlexSim and Python) that have not been previously
documented as working together in scientific literature is showcased. This novel com-
bination posed non-trivial challenges to the case study analyzed, i.e., learning from the
realistic feedback of a commercial software implementation is not guaranteed. As reported
in the related work section, the use of simplified simulation environments is a common
approach, and consequently, the use of a more realistic model for the RL environment
can be considered as the main contribution of this study. The second contribution is the
resolution of a dynamic version of the storage location problem without using any prior
knowledge and with a relatively small effort, at least for the validation instance considered.
This problem, for a more realistic instance, is very difficult, or even intractable, using
traditional methods. The study also covers a performance discussion, where the validation
instance is scaled up, and the results are reassessed. The final contribution of this article
is devoted to indicating where further research effort could go. In fact, this work can be
seen as the first step in order to lay the ground for more advanced studies, in particular in
the use of commercial simulation software in the context of digital twin optimization. The
selection of a simplified case was carried out on purpose in order to be able to demonstrate
its feasibility, to validate the effectiveness of the RL approach, and to provide a benchmark
on the topic.

The rest of the paper is structured as follows. Section 2 reviews recent work on the
combination of simulation and RL applied to warehouse operations. Afterward, Section 3
describes the algorithmic implementation for combining simulation and reinforcement
learning. The case study is described in Section 4. Finally, Section 5 discusses open
research lines in this area, while Section 6 highlights the most important findings and
draws some conclusions.
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2. Related Work

As the demand for fast and efficient warehouse operations continues to grow, there is
a pressing need for advanced optimization techniques. In recent years, there has been an
increasing number of publications on the use of RL and simulation related to warehouse
operations (see Figure 1).

Figure 1. Documents by year in the Scopus database. Search query: “reinforcement learning”,
“simulation”, and “warehouse” appear in the title, abstract, or keywords; the documents are either
conference papers or articles; and the language is English. Information retrieved on 18 April 2023.

2.1. Early Work on RL with Simulation for Warehouse Operations

One of the first studies on the combination of simulation with RL was carried out by
Kinoshita et al. [9], who proposed a novel approach for automated warehouse manage-
ment using autonomous block agents with field intelligence. The field intelligence was
developed through a RL process, allowing the agents to optimize the loading and ordering
of crates. The simulation results demonstrated the adaptive process of field intelligence,
mutual agent interactions, and the optimization of the automatic warehouse. Another early
work was proposed by Rao et al. [10], which presented a simulation-based methodology
for studying decentralized supply chain decision-making problems using stochastic game
models. The authors used RL techniques to find near-optimal policies for non-zero sum
stochastic games. The methodology was shown to be effective in capturing the short-term
behavior of non-zero sum stochastic games, providing insights into the practical appli-
cations of inventory planning in warehouses. Later, focusing on large-scale data centers,
Yan et al. [11] explored the application of RL in run-time scheduling to optimize energy
consumption. By carefully optimizing RL algorithms, the authors demonstrated significant
energy savings in IT equipment while maintaining performance. The study showcased the
potential of RL in reducing operational costs and improving energy efficiency in warehouse
data centers. In warehouse management problems, Estanjini et al. [12] presented a novel
approximate dynamic programming algorithm. The algorithm utilized a least squares tem-
poral difference learning method and operated on imperfect state observations. Simulation
results confirmed the effectiveness of the algorithm in minimizing operating costs and
outperforming existing heuristics in warehouse management. Similarly, Dou et al. [13]
proposed a hybrid solution for intelligent warehouses, combining genetic algorithm-based
task scheduling with RL-based path planning for multi-robot systems. The simulation
results demonstrated the effectiveness of the proposed approach in optimizing travel time
and overall system efficiency. The combination of simulation models with RL continued
to advance with the work carried out by Rabe and Dross [14], which presented a deci-
sion support system (DSS) for logistics networks based on a data-driven discrete-event
simulation model. The authors integrated RL into the DSS using SQL queries and a data
warehouse to measure key performance indicators. The study provided a foundation for
developing RL agents that can enhance decision-making in logistics networks. In another
study, Wang et al. [15] proposed a novel incremental learning scheme for RL in dynamic
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environments where reward functions can change over time. The scheme aimed to adapt
the optimal policy to accommodate environmental changes. The authors demonstrated the
improved adaptability and applicability of RL in dynamic environments through simula-
tion experiments in maze navigation and intelligent warehouse systems. In manufacturing
scheduling, Drakaki and Tzionas [16] presented a method using Timed Colored Petri Nets
and RL. The scheduling agent employed the Q-learning algorithm to search for optimal
solutions. Through simulation experiments and performance evaluation, the proposed
method showed promise in addressing manufacturing system adaptation and evolution in
warehouse environments.

2.2. Applications of RL with Simulation in Warehouse Operations

Kono et al. [17] introduced an automatic policy selection method for transfer learning
in RL, based on spreading activation theory. The proposed method enhanced the adapt-
ability of RL algorithms in transfer learning. Simulation results validated the effectiveness
of the proposed activation function and spreading sequence in automated policy selection.
The combination also expanded to address specific tasks within warehouses with Li et al. [18],
which focused on task selection in material handling and presented a deep reinforcement
learning (DRL) methodology for autonomous vehicles in a warehouse context. The authors
conducted simulation-based experiments to train and evaluate the capabilities of the pro-
posed method. The results demonstrated the efficacy of the DRL approach for task selection
in material handling scenarios. More recently, Sartoretti et al. [19] introduced PRIMAL, a
framework that combined reinforcement and imitation learning to teach fully decentralized
policies for multi-agent path-finding (MAPF) in warehouse automation. PRIMAL utilized
demonstrations from an expert planner, reward shaping, and environment sampling during
training. The framework scaled to different team sizes and world dimensions, enabling
implicit coordination and reactive path planning. The study demonstrated the effectiveness
of PRIMAL on randomized worlds with up to 1024 agents, highlighting its advantages over
centralized planning approaches. Li et al. [20] presented a Deep Q-network (DQN)-based
model for dispatching and routing autonomous mobile robots in warehouse environments.
The DQN model outperformed traditional shortest travel distance rules by considering
traffic conflicts, task completion makespan, and system mean time. Through discrete
event simulation experiments, the study validated the effectiveness of the DQN model in
improving task selection and performance in warehouse settings. Moreover, the integration
of RL into supply chain control was explored by Barat et al. [21]. The authors proposed an
RL controller trained through closed-loop multi-agent simulation. The framework aimed to
maximize product availability while minimizing wastage under constraints. By combining
RL with an actor-based multi-agent simulation, the study demonstrated the efficacy of
the approach in controlling supply chain networks and optimizing warehouse operations.
Another method was proposed by Sun and Li [22], which introduced an end-to-end path
planning method for automated guided vehicles (AGVs) in intelligent logistics warehouses.
This method utilized a DRL approach, combining visual image and LIDAR information.
The algorithm employed a DQN with prioritized experience replay and a double DQN
with the dueling architecture. Simulation experiments demonstrated the effectiveness of
the proposed method in handling unknown and dynamic environments, improving AGV
path planning in warehouses. Moreover, the challenge of learning decentralized policies for
multi-robot tasks in warehouses was addressed by Xiao et al. [23]. The proposed approach
was a macro-action-based decentralized multi-agent double deep recurrent Q-net (MacDec-
MADDRQN). The method leveraged a centralized Q-net for action selection and allowed
for centralized or decentralized exploration. The study demonstrated the advantages of
the approach through simulation results, achieving near-centralized results and successful
deployment of real robots in a warehouse task. Similarly, Yang et al. [24] proposed a DQN
algorithm for multi-robot path planning in unmanned warehouse dispatching systems. The
algorithm combined Q-learning, an empirical playback mechanism, and productive neural
networks. The improved DQN algorithm showed faster convergence and better learning
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solutions for path-planning problems in multi-robot scenarios. Following the exploration
of reinforcement learning in warehouse management, Ushida et al. [25] presented a method
for transferring policies learned in simulation to real-world control of an Omni wheel robot
in a warehouse environment. RL was used to acquire state-action policies for obstacle
avoidance and reaching a destination. The proposed method utilized transfer learning
to refine action control on real robots, addressing uncertainties in the real environment.
Experimental results validated the effectiveness of the acquired policy in a real-world
setting. In another multi-AVG scenario, Shen et al. [26] proposed the MAA3C algorithm,
combining the A3C algorithm with an attention mechanism, for multi-AGV path planning
in warehouse environments. The algorithm incorporated advantages functions, entropy,
and both centralized and decentralized exploration. Simulation results demonstrated the
superiority of the MAA3C algorithm in terms of convergence and average reward, effec-
tively optimizing path planning and collaboration of multiple AGVs in warehouses. Newaz
and Alam [27] addressed task and motion planning (TAMP) in stochastic environments.
The proposed method utilized MDPs and a DRL algorithm to synthesize high-level tasking
policies and low-level control policies for quad rotors in a warehouse setting. The method
achieved near-centralized results and efficiently accomplished tasks through physics-based
simulations, highlighting the effectiveness of the approach. Similarly, Peyas et al. [28] pre-
sented the application of Deep Q-learning (DQL) to address navigation, obstacle avoidance,
and space utilization problems in autonomous warehouse robots. The model was tested for
single-robot and multi-robot cases, showcasing successful navigation, obstacle avoidance,
and space optimization in warehouse environments through 2D simulation experiments.
Building upon automated warehouse systems, Ha et al. [29] presented a scheduling system
that utilized an AGV. The system incorporated a genetic algorithm (GA) for task scheduling
and a Q-Learning algorithm for path planning. The introduction of a Collision Index (CI),
based on AGV locations, in the GA’s fitness function enhanced safety. The simulations
demonstrated the effectiveness of the CI in optimizing time, efficiency, and safety in
an automated warehouse system. In the context of multi-robot tasks in warehouses,
Liu et al. [30] addressed multi-agent path finding (MAPF) in formation. The authors
proposed a decentralized partially observable RL algorithm that used a hierarchical struc-
ture to decompose the task into unrelated sub-tasks. They introduced a communication
method to facilitate cooperation among agents. Simulation experiments demonstrated
the performance of their approach compared with other end-to-end RL methods, with
scalability to larger world sizes. Furthermore, Ushida et al. [31] focused on developing an
autonomous mobile robot for warehouse environments. Five learning types were applied
in a hybrid static and dynamic environment in simulations, with the aim of verifying the
effectiveness of these learning methods. The research laid the groundwork for learning in
an actual machine and demonstrated the potential of RL for path planning and obstacle
avoidance. In a similar manner, Lee and Jeong [32] explored the application of RL tech-
nology for optimizing mobile robot paths in warehouse environments with automated
logistics. The authors compared the results of experiments conducted using two basic
algorithms and utilized RL techniques for path optimization. The findings contributed to
understanding the characteristics and differences of RL algorithms, providing insights
for future developments. Addressing the dynamic scheduling problem of order pick-
ing in intelligent unmanned warehouses, Tang et al. [33] proposed a hierarchical Soft
Actor–Critic algorithm. The algorithm incorporated sub-goals and two learning levels,
with the actor maximizing expected intrinsic reward and entropy. Experimental results
demonstrated the effectiveness of the proposed algorithm in improving multi-logistics
AGV robots’ collaboration and reward in sparse environments.

2.3. Advancements in RL with Simulation for Warehouse Operations

Li et al. [34] investigated the deployment of a Virtual Warehouse using Kubernetes
and Docker. The authors employed an RL algorithm to optimize the placement of the
Virtual Warehouse, adapting to changing environmental conditions. Simulation model-
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ing was used to train the model and to obtain the optimal warehouse placement. The
research highlighted the superiority of the RL algorithm in Kubernetes warehouse place-
ment. DRL was another technique proposed by Ren and Huang [35], which presented
an optimal path-planning algorithm for mobile robots in warehouses. The algorithm
combined potential fields guidance with DRL to collect high-quality training data and
to improve data efficiency. Simulation results demonstrated the successful navigation
and obstacle avoidance capabilities of the DRL algorithm in warehouse environments.
Similarly, Balachandran et al. [36] presented an autonomous navigation system for an au-
tonomous mobile robot (AMR) in a warehouse environment. The system utilized a DQN
algorithm trained with LIDAR-based robot models in a ROS Gazebo environment. The re-
sults demonstrated the successful navigation of the mobile robot in unknown environments
through simulation and real-life experiments. Shifting the focus to transaction sequencing,
Arslan and Ekren [37] focused on transaction sequencing in a tier-to-tier Shuttle-based
Storage and Retrieval System (SBSRS). The authors proposed a DQL method to optimize
the transaction selection of shuttles. By comparing the performance of DQL with heuristic
approaches, such as first-come-first-serve (FIFO) and shortest process time (SPT) rules, the
study demonstrated the advantages of DQL in reducing process time and improving the
efficiency of the SBSRS. Continuing research in mobile robotic applications, Lewis et al. [38]
addressed the challenge of autonomous navigation in mobile robotic applications. The
authors proposed a novel approach that combined RL with object detection for collision-
free point-goal navigation. The reward function was designed to grant rewards based on
successful object detection with varying confidence levels. The results indicated significant
improvements in point-goal navigation behavior compared with simpler reward function
designs. In the context of task scheduling in automated warehouses, Ho et al. [39] focused
on heterogeneous autonomous robotic (HAR) systems. The authors proposed a DRL-based
algorithm using proximal policy optimization (PPO) to achieve optimal task scheduling.
Additionally, a federated learning algorithm was introduced to enhance the performance of
the PPO agents. Simulation results demonstrated the superiority of the proposed algorithm
in terms of average queue length compared with existing methods. Later, Zhou et al. [40]
addressed the order batching and sequencing problem in warehouses, a known NP-hard
problem. The authors proposed an improved iterated local search algorithm based on
RL to minimize tardiness. The algorithm incorporated an operator selecting scheme and
adaptive perturbation mechanism to enhance global search ability. Extensive simulation
experiments demonstrated the effectiveness and efficiency of the proposed approach com-
pared with state-of-the-art methods. Similarly, Cestero et al. [41] presented Storehouse, a
customizable environment for warehouse simulations designed to optimize warehouse
management using RL techniques. The environment was validated against state-of-the-art
RL algorithms and compared with human and random policies. The findings demon-
strated the effectiveness of Storehouse in optimizing warehouse management processes.
Choi et al. [42] focused on the cooperative path control of multiple AGVs in warehouse
systems. The authors proposed a QMIX-based scheme that utilized cooperative multi-agent
RL algorithms. Novel techniques, including sequential action masking and additional
local loss, were introduced to eliminate collision cases and to enhance collaboration among
individual AGVs. Simulation results confirmed the superiority of the proposed scheme
in various layouts, highlighting the importance of cooperation among AGVs. Another
approach was proposed by Elkunchwar et al. [43], which addressed the autonomous source
seeking capability for small unmanned aerial vehicles (UAVs) in challenging environments.
Inspired by bacterial chemotaxis, a simple gradient-following algorithm was employed for
source seeking while avoiding obstacles. Real-time demonstrations showcased the success
rate of the algorithm in navigating towards fire or light sources while maintaining obstacle
avoidance. Moving to warehouse operations, Wang et al. [44] proposed a hybrid picking
mode for real-time order picking in warehouse centers. Multiple picking stations were
utilized to handle a large number of orders arriving at inconsistent quantities. The authors
designed a RL algorithm called PRL to address the challenges of real-time order arrivals.
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Numerical simulations demonstrated the algorithm’s ability to handle a large number of or-
ders simultaneously and to improve picking efficiency. Similarly, Y. Ekren and Arslan [45]
presented an RL approach, specifically Q-learning, for transaction scheduling in a shuttle-
based storage and retrieval system (SBS/RS). The proposed approach outperformed static
scheduling approaches, demonstrating its effectiveness in improving the performance of
SBS/RS. Furthermore, Yu [46] focused on the logistics transportation scheduling of fresh
products. A DNQ algorithm based on a pointer network was proposed to solve the efficient
logistics scheduling problem in fresh product distribution service centers. Simulation
experiments validated the algorithm’s accuracy and stability, making it suitable for ad-
dressing complex logistics and transportation scheduling problems. Shifting to energy
efficiency in mobile edge networks, Sun et al. [47] addressed this challenge by proposing
an intelligent caching strategy based on DRL. The strategy utilized a DQN framework to
design an intelligent content caching policy. By reducing duplicate content transmissions
between edge networks and a remote cloud, the proposed strategy significantly enhanced
the energy efficiency of mobile edge networks. Continuing the investigation of bridging
the gap between simulation and real environments, Ushida et al. [48] focused on proposed
a transfer learning method to improve the action control of an Omni wheel robot in real
environments. The effectiveness of the acquired policy was verified through experiments,
demonstrating the potential of sim-to-real transfer learning in supporting real-world appli-
cations of RL. Exploring the sparse reward problem in learning paths for multiple mobile
robots in automated warehouses, Lee et al. [49] employed a multi-agent RL (MARL) ap-
proach. The proposed dual reward model incorporated complex actions and various routes
to enhance learning progress and to mitigate the sparse reward problem. Experiments
conducted in a simulated automated warehouse environment validated the effectiveness
and stability of the proposed reward model method. Liang et al. [50] focused on effective
resource allocation in Industrial Internet of Things (IIoT) systems. A DQN-based scheme
was proposed to optimize bandwidth utilization and energy efficiency. The DQN model
utilized deep neural networks (DNNs) and Q-learning to select appropriate actions for im-
proving resource allocation. Simulation results demonstrated the efficacy of the proposed
scheme in enhancing both bandwidth utilization and energy efficiency compared with
other representative schemes. More recently, Guo and Li [51] presented an intelligent path-
planning model for AGV-UAV transportation in smart warehouses using DRL. The model
utilized proximal policy optimization with covariance matrix adaptation (PPO-CMA) in the
imitation learning and DRL networks. Simulation experiments conducted in warehousing
scenarios validated the performance of the proposed model in optimizing transportation
routes for AGV-UAV collaboration. Finally, Yan et al. [52] introduced a methodology for
optimizing control strategies in vehicular systems using DRL. The methodology utilized a
variable-agent, multi-task approach and was experimentally validated on mixed autonomy
traffic systems. The study demonstrated the efficacy of the proposed methodology in
improving control strategies, surpassing human driving baselines.

In Table 1, a classification of the studies presented in this section is provided. The
classification is conducted according to three different categories, namely, (i) whether the
application is related to an improvement at the supply-chain or warehouse (macro) level,
or the application is related to improvements to the navigation of robots or autonomous
vehicles; (ii) whether the RL component makes use of DNNs; and (iii) whether the sim-
ulation component used is a dedicated simulation software. By “dedicated simulation
software”, we refer herein to the use of a separate environment (third-party) in which the
programmed RL algorithm interacts and learns from. This taxonomy allows for deriving
some interesting insights about the context of the present study. There is an approximately
equal split between papers covering warehouse/supply chain and the autonomous vehicle
navigation area. Also, approximately half of the papers make use of DNN, being nonethe-
less more common in the context of autonomous vehicle navigation. Finally, the use of
dedicated simulation software is not commonly found in the literature, with only 20% of
studies making use of it. The reasons are obviously the increased complexity of handling
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the inter-software communication and the potentially richer environment from which the
agent needs to learn, as exemplified in the present work with FlexSim.

Table 1. Taxonomical classification of the papers found in the literature review.

References Warehouse /Supply Chain
Management

AGV /Robot
Motion Use DNN Dedicated Simulation

Software

Kinoshita et al. [9] X

Rao et al. [10] X Arena

Yan et al. [11] X

Estanjini et al. [12] X

Dou et al. [13] X

Rabe and Dross [14] X SimChain

Wang et al. [15] X

Drakaki and Tzionas [16] X X

Kono et al. [17] X

Li et al. [18] X X

Sartoretti et al. [19] X

Li et al. [20] X X

Barat et al. [21] X

Sun and Li [22] X X

Xiao et al. [23] X X

Yang et al. [24] X X

Ushida et al. [25] X

Shen et al. [26] X X

Newaz and Alam [27] X X CoppeliaSim

Peyas et al. [28] X X

Ha et al. [29] X

Liu et al. [30] X

Ushida et al. [31] X X

Lee and Jeong [32] X

Tang et al. [33] X X

Li et al. [34] X CloudSim

Ren and Huang [35] X X

Balachandran et al. [36] X X Gazebo

Arslan and Ekren [37] X X

Lewis et al. [38] X X NVIDIA Isaac Sim

Ho et al. [39] X X

Zhou et al. [40] X

Cestero et al. [41] X X

Choi et al. [42] X X

Elkunchwar et al. [43] X

Wang et al. [44] X

Y. Ekren and Arslan [45] X Arena

Yu [46] X X

Sun et al. [47] X X

Ushida et al. [48] X

Lee et al. [49] X X

Liang et al. [50] X X

Guo and Li [51] X X Unity

Yan et al. [52] X X SUMO
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3. Reinforcement Learning in FlexSim

In complex real-life warehouse environments, there are decisions that are oftentimes
made by humans, based on their current knowledge and their intuition. Some of these
decisions could potentially be handled by so-called artificial intelligence. Let us consider
a couple of examples: a worker might need to decide where to place a product in an
intermediate storage area before the item can be processed by some equivalent working
stations or a worker needs to decide what product to pick up next from a given set of
orders. In both situations, the sheer amount of information and the interaction patterns to
be handled can easily surpass the capacity of a single human mind, resulting in inefficient
processes. Therefore, if a RL agent is trained in order to make the right decisions in
such a complex contexts, it could enhance the efficiency of the overall warehouse system.
Even though there are many applications that could benefit from this line of research,
there are not many studies integrating simulation and RL algorithms in the context of
warehouse management and, in particular, to solve a dynamic version of the storage
location assignment problem. Furthermore, to the best of the authors’ knowledge, there
are no studies in the literature that illustrate the combination of FlexSim and RL for
such purpose.

Being a simulation tool, FlexSim is not specifically designed to provide implementa-
tions of particular RL algorithms developed in the scientific literature. Nonetheless, it is
straightforward to consider the possibility of using FlexSim as the environment in which ex-
ternal RL agents train and learn. One of the main reasons to use FlexSim as an environment
for RL is that it helps to create very detailed models of logistic environments very easily.
For instance, the daily operations of a large warehouse could be modelled with relatively
small effort and to a level of detail that would be difficult if they were to be modelled from
scratch using a generic programming language or an open source alternative. In order to
combine both software, a communication protocol is required between FlexSim and the
outer world, so that an external program that executes a RL framework can incorporate
a FlexSim simulation as a training environment. For that purpose, FlexSim allows com-
munication with external processes via sockets, using its internal programming language,
FlexScript. In Figure 2, the classical state–action–reward RL scheme is adapted in order to
illustrate the methodology followed in this study. This is also shown in Algorithm 1, where
the reinforcement learning loop is repeated during t timesteps until the training finishes.
This framework is generic and will allow us, in Section 4.3, to train and compare different
RL Models using the same FlexSim environment.

In line with the growing interest in this subject, in 2022, FlexSim released a version
of its software that simplifies the work of setting up FlexSim as an environment for RL
training. The software now contains a graphical user interface in which the different
elements required for training an RL algorithm can be easily set up, namely, the observation
space, the reward function, and the actions. The interface provided can communicate with
an external program, written in any programming language, which in turn is required to
have the corresponding functions or methods for exchanging messages with FlexSim.
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Figure 2. Schematic representation of the reinforcement learning framework implemented and
simplified view of the use case.

Algorithm 1 Reinforcement learning framework.
Input: Environment, Agent
Output: Agent . The trained Agent with the learned Policy

1: initialize(Agent)
2: while t ≤ maxTimeStep do . Equivalent to running ∼ N Episodes
3: st, rt ← initialize(Environment) . Start a new Episode = instance of FlexSim
4: while isFinished(Environment) 6= true do
5: Agent← updatePolicy(st, rt) . Learning from current state and reward
6: at ← chooseAction(Agent, st) . Using the best available Policy
7: t + 1← step(Environment, at)
8: st+1, rt+1 ← observe(Environment)
9: st, rt ← st+1, rt+1

10: t← t + 1
11: close(Environment)
12: return Agent
13: end

4. Case Study

This section provides a detailed description of the case study used to illustrate the
application of RL algorithms in a FlexSim simulated environment. Firstly, the warehouse
environment is explained, outlining the different elements contained in it and the configu-
ration of the main RL components, namely, actions, observations, and rewards. After that,
three different but well-known RL algorithms were trained within it, in order to observe the
difference in performance. In order to do so, the case study is divided in a small validation
instance and a larger performance instance. Finally, the outcomes of the RL training and a
brief discussion on performance are presented. All implemented algorithms are coded in
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Python and run on a Windows 10 operating system, with an i7-10750H CPU 2.60 GHz and
16 GB RAM. FlexSim version 22.1.2 was employed for the simulation model.

4.1. Use Case Description

The case study developed in this work is a simplified but dynamic version of a storage
location assignment problem (SLAP), where items arrive at an entry point and have to
be stored in different racks. In the most generic version, the goal of the SLAP is to define
the optimal allocation for items in the available locations in a given warehouse, while
considering the impact of this allocation on the handling cost or the storage space efficiency.
The use of predefined policies (e.g., random, fixed, or class-based) is one of the most
common approaches for dealing with the SLAP in a real-life warehouse context. In the
version presented herein, the location assignment needs to be made upon the arrival of
the items, as opposed to being predefined for the entire warehouse. This means that the
problem is, in that sense, dynamic because the policy can change with time depending on
the current status of the warehouse. The dynamism just described increases the difficulty
of solving the SLAP, which could be arduous to solve using classic methods for warehouse
optimization, such as metaheuristics. This type of dynamic problem, which requires
real-time decision-making, could be potentially better addressed by employing either
learnheuristics [53] or, as proposed in this paper, an RL agent that learns the policy to be
applied given the status of the warehouse and the incoming items. In order to compensate
for the additional difficulty of the use case problem definition, a minimalistic problem
set-up will be considered, as shown in Figure 3.

The available locations of the warehouse are reduced to only four locations in which
the incoming products can be placed. The rate at which the items arrive to the input
point is fixed, and the type of products that arrive belong to four different categories (A,
B, C, and D), depending on how frequently they are received in (or shipped out from)
the warehouse. The movement frequency is assigned to the items according to a certain
probability distribution, in particular, items of type A arrive and are requested with a 50%
chance, items of type B arrive and are requested with 31% probability, items type C arrive
and are requested with 13% probability, and items type D arrive and are requested with 6%
probability. Furthermore, the capacity of the racks is limited to 50 items. This implies that,
given the relative position of the rack with respect to the input and output points, there
are locations (racks) in the warehouse that are more convenient than others depending on
the product type and the space available. Hence, the goal is to let an artificial intelligence
autonomously learn what are the most convenient locations for the next arriving product
given the current status of the warehouse. In order to verify if the artificial intelligence (i.e.,
the trained RL model) is actually learning the best possible policy, a couple of benchmark
policies were defined. These are the random policy (Algorithm 2) and the greedy policy
(Algorithm 3). In Section 4.5, the results of these policies are compared against the result
from the RL framework shown in Algorithm 1.

This simplified setting has some advantages for the purposes of this work: (i) the time
for training the algorithm can be reduced, since the FlexSim simulation can run to termina-
tion very quickly, allowing for more learning episodes to be employed; (ii) the number of
factors influencing the evolution of the simulation is limited, so the decisions made by the
RL agent can still be interpreted to a great extent by researchers and practitioners; (iii) the
performance of policy obtained can be validated, given the fact that a very effective policy
for this warehouse set-up is known beforehand, namely, a greedy policy; and (iv) a simple
and well-defined warehouse scenario, for which the performance metric is easy to obtain,
could be employed as a benchmark instance for future research efforts. On the last point, a
FlexSim simulation environment could be added to a collection of environments used for
validation and benchmarking of RL algorithms, such as the one available for the Python
Gym library, which is presented below.
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Figure 3. Schematic representation of the use case (top) and screenshot of the simulation set-up
(bottom). It can be seen that the positions of the input (IN) and output (OUT) points make the first
storage location the most appropriate for reducing the traveled distance of the operators, if no other
restriction is considered.

Algorithm 2 Random policy.
Input: Item, Locations
Output: Location . Location ∈ Locations to which the Item is assigned

1: while isAssigned(Item) 6= true do
2: k← randomUniformBetween(1, count(Locations))
3: Location← selectLocation(Locations, k)
4: if isFull(Location) = true then
5: Locations← removeLocation(Locations, Location)
6: else
7: Location← assignItem(Location, Item)

8: return Location
9: end

Algorithm 3 Greedy policy.
Input: Item, Locations
Output: Location

1: while isAssigned(Item) 6= true do
2: k←minDistance(Locations, Item)
3: Location← selectLocation(Locations, k)
4: if isFull(Location) = true then
5: Locations← removeLocation(Locations, Location)
6: else
7: Location← assignItem(Location, Item)

8: return Location
9: end
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4.2. Simulation Environment

In Figure 2 and in Algorithm 1, how the classical RL loop (action–state–reward)
was embedded in a communication framework between the Python RL algorithm and
the FlexSim environment is shown. The simulation model contained two pickers, one
dedicated to the input activity and one dedicated to the output activity. Given that only one
product is picked during each travel, there is no requirement for a specific routing policy.
Instead, the optimal route between the input or output point and the racks is determined
using the A∗ algorithm, avoiding collision with the various obstacles present (namely, racks
and the other worker). To prevent overcomplicating the model, the rest of the parameters,
such as pickers’ average speed or processing times, were left to the FlexSim default values.
As described in Section 4.1, the action to be taken by the RL agent is the warehouse location
where to place the next item. This means that the action space is discrete and can take an
integer value between 1 and 4, representing each one of the four racks shown in Figure 3.
In order to learn from the environment, the current state of all the location are sent back as
observations to the learning agent. This means that the observation space is also discrete,
consisting in the integer amount of product of each type per rack. The incoming item is
also sent as part of the observations. The observation of the environment status is made
every time that a new item arrives (set at a fixed interval), and the information of the new
item is also included in the observation, codified as an integer (type A = 1, type B = 2, etc.).
Finally, the reward used for updating the RL policy is based on the distance workers need
to travel within the warehouse to position and retrieve the items. The objective function
or metrics used to evaluate and optimize SLAP can vary depending on the specific goals
and requirements of the problem. Some common objective metrics include travel distance,
retrieval time, space utilization, and handling costs. In many studies reviewed by [8],
the total travel distance is commonly employed as the objective metric. Hence, in this
case study, we adopt the travel distance as the reward function for our RL algorithms.
In particular, the main driver for the reward is the inverse of the difference between the
travelled distance in the current time step and the previous time step, so that a higher
reward is obtained when the difference is smaller. Following the classical RL notation, the
formula for the selected reward can be expressed as follows:

rt = R(st, st−1, at−1) =
C

d(at−1, st)− d(at−1, st−1)
, (1)

where rt is the actual reward obtained at time-step t, which is a function R that depends
on the current state st, the previous action at−1, and previous state st−1. The function is
calculated based on a constant C, which can be tuned to aid the learning, and the difference
in total traveled distance d between current and previous state. We decided to refer the
reward to the previous state and previous action in order to maintain the Markov property
and to ensure that the agent is learning within a Markov Decision Process where the current
state is dependent only upon the previous state and action.

4.3. Reinforcement Learning Implementations

Following the example provided by FlexSim on their web page (https://docs.flexsim.
com/en/22.1/ModelLogic/ReinforcementLearning/KeyConcepts/KeyConcepts.html, ac-
cessed on 26 August 2023), the case study presented herein used the Python OpenAI Gym
library [54] and the Stable-Baselines3 implementations of RL algorithms [55]. Gym is an
open source Python library that provides a standard API to communicate between RL algo-
rithms and a collection of environments which simulate various real-world situations, in
this case with FlexSim. Similarly, Stable-Baselines3 is a popular open source Python library
built on top of PyTorch, providing a collection of state-of-the-art RL algorithms. It is part of
the Stable-Baselines project, which aims to offer reliable and well-tested implementations
of various RL algorithms, making it easy for researchers and practitioners to experiment
with and apply these algorithms to their specific problems. Three different RL algorithms

https://docs.flexsim.com/en/22.1/ModelLogic/ReinforcementLearning/KeyConcepts/KeyConcepts.html
https://docs.flexsim.com/en/22.1/ModelLogic/ReinforcementLearning/KeyConcepts/KeyConcepts.html
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from Stable-Baselines3 were employed in this paper: (i) Advantage Actor Critic (A2C),
(ii) Proximal Policy Optimization (PPO), and (iii) Deep Q-Network (DQN) algorithms.

A2C is an on-policy reinforcement learning algorithm that combines elements of both
policy gradient methods and value function approximation [56]. It involves training an
actor (policy) network and a critic (value) network simultaneously. The actor is respon-
sible for selecting actions, while the critic evaluates the value of state–action pairs. The
advantage function, which represents how much better or worse an action is compared
with the average action in a given state, plays a crucial role in A2C. During training, the
actor network is updated using the policy gradient technique to maximize the expected
cumulative reward. The critic network is updated to minimize the difference between
the estimated value function and the actual cumulative reward. A2C often exhibits good
sample efficiency and is relatively easy to implement compared with other algorithms.
PPO is an on-policy RL algorithm that addresses some of the limitations of traditional
policy gradient methods [57]. PPO optimizes the policy by iteratively updating it in a way
that avoids large policy updates, which could lead to instability during training. The key
idea behind PPO is to clip the objective function during optimization to prevent drastic
changes in the policy. This clipping, referred to as the “surrogate objective”, ensures that
the updated policy remains close to the previous one. PPO also uses multiple epochs of
mini-batch updates to improve data efficiency. DQN is an off-policy Q-learning algorithm
that leverages deep neural networks to approximate the Q-function, which estimates the
expected cumulative reward for each state–action pair [58]. DQN introduced the idea of
using deep learning to represent the Q-function, allowing it to handle high-dimensional
state spaces like images. The algorithm employs an experience replay buffer to store and
sample transitions from past interactions with the environment. It uses a target network
with delayed updates to stabilize the training process. During training, DQN minimizes
the mean squared error between the Q-value predictions and the target Q-values, which
are calculated using the Bellman equation.

4.4. Training Results

In the current study, the total number of time steps used for training the models was
fixed to 200,000, and the simulation time of FlexSim model was fixed to 5000 s. In addition,
all three different RL algorithm hyperparameters were set to the default values provided
via Stable-Baselines3. In fact, the hyperparameters were left unmodified since a good
performance was expected with the default hyperparameter values.

Figure 4 shows the average reward obtained during the training process for three
different RL algorithms, where the horizontal and vertical axes represent the timesteps
of the training process and the obtained average reward, respectively. Notice that for
every RL algorithm, as the training time advances, the average reward tends to increase,
finally reaching an average reward of around 85. This trend indicates that the agent has
learned how to place items based on the received reward, until the reward cannot be
further increased. The differences in learning behavior observed among the three RL
algorithms can be attributed to the underlying design and optimization strategies of the
algorithms. The A2C algorithm’s behavior seems the most efficient, as in the initial phase
of the training process, there is a very short descending trend in the average reward,
corresponding to the exploration phase. Subsequently, as the training time advances, the
average reward increases steadily, quickly reaching a plateau for the rest of the training
process. Similarly, the PPO algorithm exhibits a short exploration phase in the initial
training process, and as the training time advances, the average reward increases steadily.
However, the average reward oscillates in the later stages of training, indicating that the
PPO algorithm incorporates some exploration during the exploitation phase. In contrast,
the DQN algorithm behaves somewhat differently from the other RL algorithms. The
ample descending trend in the mean reward in the initial phase of the training process
can be attributed to a long exploration phase, where the agent explores suboptimal actions
and learns from its mistakes. Once it has collected sufficient data, the algorithm starts
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exploiting the learned Q-values and improves its performance. This is not surprising, as
DQN is a value-based algorithm that learns to approximate the optimal Q-value function
using a deep neural network. This approach generally requires more training time than
A2C and PPO due to the algorithm’s need to explore the state–action space to learn the
optimal Q-values.

Figure 4. Comparison of the mean reward evolution during training for three different RL algorithms
using the use case simulation as environment.

4.5. Validation Results

Table 2 show the main results obtained for the use case when applying the different
trained policies. The first metric evaluated is simply the distance traveled by the operators,
which is used as a reward for the learning, as explained above. The second one is the
number of processed items during the time defined for each simulation episode. In order
to evaluate the productivity and efficiency of a warehouse (or any production system in
general), a very common metric is the throughput, which evaluates the number of items
processed per unit time. This is provided as the last metric in the table, which is equivalent
to the number of items since the simulation time for each episode is fixed.

Table 2. Main results of the validation use case, comparing the different benchmark policies (random
and greedy) against the RL agent learned policy (PPO, DQN, and A2C).

Policy Distance Traveled (m) Items Processed Throughput (Items/min)

Random 7763 172 2.06
Greedy 6680 241 2.89
PPO 6801 241 2.89
DQN 6894 241 2.89
A2C 6676 241 2.89

The random policy (see Algorithm 2) can be considered the lower bound for evaluating
the learning performance of the RL algorithm. On the other hand, the greedy policy (see
Algorithm 3) can be used as a reference for the performance of the RL policies. This is
because, if the available space within each rack is not limited, the greedy strategy is in
fact the best possible strategy: the items would be placed and retrieved from the first rack,
minimizing the traveled distance. However, due to the fact that a restriction in the number
of items per rack was introduced, the greedy strategy is not the best possible strategy. The
reason is that placing all items in the first rack regardless of their movement class (A, B,
C, and D) or the state of the racks could result in filling up the first rack and being forced
to place less frequent incoming items further away, which then are to be retrieved from
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those far away positions. On the contrary, if some space is saved in the first rack for the
less frequent items, they can be input and output directly from the first rack, reducing the
overall travel distance. It can be seen that the results for the different RL policies match
and, in the case of the A2C algorithm, even slightly improving those of the greedy policy.
This means that the RL agents are indeed learning from the underlying structure of the
problem and proposing a very competitive policy. For illustrative purposes, Figure 5 shows
the graphical outputs of the simulation for the untrained (random) and the trained RL
policy (PPO), so they can be compared visually. With this simple but effective use case,
it is demonstrated that the use of standard RL libraries in combination with advanced
simulation environments can be used for training an artificial intelligence to find efficient
policies that take into account realistic conditions such as those present in a warehouse.

Figure 5. Screenshot of the result (a) when the random policy is used and (b) when the trained
RL policy (PPO) is used. It can be seen that in (a) that products are stored without following an
assignment logic (at random) in all four racks. In (b), most items are placed in the first two racks,
resulting in a reduced overall travel distance for the operators.

4.6. Performance Discussion

In order to understand the implications of scaling up the validation use case in the
algorithm’s performance, an extended simulation instance was developed as shown in
Figure 6. The RL training procedure described in Algorithm 1 was undertaken using
the new instance and the RL implementations already presented in Section 4.3. It can be
observed that the number of racks was doubled, from four to eight racks, which could
represent a more realistic warehouse instance. The rest of the elements present in the
simulation were kept the same (workers, input and output points, etc.) so that the impact
of the increase in warehouse size can be fairly assessed. Also, the reward function defined
in Equation (1) and the RL hyperparameters (learning rates, discount factors, etc.) were
kept unmodified. It is important to note that the main aim of this section is not to compare
the different RL implementation to find the “best” one but, rather, to showcase what there
are the differences between them and how the algorithm performance was affected by the
increase in size of the validation instance.

Figure 6. Screenshot of the simulation environment considered for evaluating the performance of the
RL algorithm in bigger instances. The eight racks were distributed in two rows and four columns.



Algorithms 2023, 16, 408 17 of 22

The three RL implementations presented in Section 4.3 were able to learn and provide
very similar result in the extended instance. This meant that the different RL algorithms
“understood” the simulation environment context and maximized their expected reward in
the successive training episodes until the learning rate stabilized. Nonetheless, significant
differences could be observed between the three different RL implementations in terms
of their learning profile, as it is shown in Figure 7, where the curves were normalized, i.e.,
scaled so that the values fall between 0 and 1. This adjustment was performed because the
absolute value of the reward is not important (it depends on a constant and the distance
covered according to Equation (1)); the critical aspect is to understand if the RL agent
is learning a policy that can provide good actions that can lead to increase in reward in
the following environment states. The normalization allows for comparing the learning
behavior across different instances, with potentially different distances between racks. It is
important to note that the computational effort is equivalent in both the validation use case
(four racks) and the performance use case (eight racks) simply because the length of the
training is a parameter that can be adjusted. As in the validation case (see Section 4.4), the
number of timesteps for training was set to 200,000.

One interesting result is the fact that both the DQN and the A2C algorithms displayed
a very similar training behavior in both instances, suggesting that their learning profile
was not significantly affected by the increased size of the warehouse. This is very likely
linked to the use of the default hyperparameters, which controls how the algorithm train
and learn from the simulation environment. A noticeable difference between both instances
for those RL algorithms are the “ripples” that can be observed in the eight-rack instance
curves. These undulations on the curves could be interpreted as the increased difficulty
that the RL agent finds to the learning in the bigger instance, i.e., finding the best rack for a
given item given that the current status is not as simple due to the larger observational and
action spaces and, hence, the learning progress is not as stable. On the other hand, the PPO
algorithm displayed a difference in behavior between both instances. In spite of the overall
shape being very similar, the PPO algorithm in the eight-rack instance presents a delay of
about 50,000 timesteps, making the slope of learning progress much less steep. Also, the
decrease in mean reward after reaching the plateau (signifying an exploratory phase of the
training) is much deeper in the eight-rack instance for the same reasons provided for the
uneven curves in the DQN and A2C algorithms. However, even if the learning curves are
similar (or almost equivalent in the DQN and A2C implementations), this does not mean
that the quality of the learning is the same as in the validation use case, as can be seen in
Table 3.

Figure 7. Comparison of the normalized mean reward evolution during training for the three
RL algorithms in both the validation environment (four racks) and the performance environment
(eight racks).
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Table 3. Main results of the extended use case, comparing the different benchmark policies (random
and greedy) against the RL agent learned policy (PPO, DQN, and A2C).

Policy Distance Traveled (m) Items Processed Throughput (Items/min)

Random 8813 172 2.06
Greedy 6663 241 2.89
PPO 8302 241 2.89
DQN 7084 241 2.89
A2C 8704 241 2.89

As in the validation use case (four racks), the RL agents managed to correctly allocate
the incoming items, keeping the warehouse throughput at its optimal value, which is the
same as the greedy heuristic (see Algorithm 3). Nonetheless, the final travelled distance is
greater than that of the greedy heuristic in all cases (and, as expected, always smaller than
the random heuristic), with the DQN implementation being the one that provided the best
results in terms of distance. For the four-rack validation instance, the A2C implementation
managed to find a policy that, while keeping the optimal throughput, also reduced the
travelled distance with respect to the greedy heuristic (see Section 4.5). In the extended
instance (eight racks), due to the increased observation and action space, finding such a
favorable policy was much more complicated. In any case, this study demonstrates that
the learning capacity is maintained for the proposed RL algorithm, even under significant
modifications to the environment (i.e., doubling the number of racks). The impact in
performance due to a change in the environment is not straightforward to quantify due to
the number of factors involved, and the difference between different RL implementations.
Furthermore, it is common practice in the RL community to treat each problem instance
as a problem on its own, with the necessary parameter tuning and reward calibration to
achieve a satisfactory learning. In our case, a careful comparison has been carried out by
keeping all factors equal except the number of racks available (which was doubled), finding
that the performance is maintained in terms of throughput, but that the travelled distance
performance, measured as the difference between the algorithm result and the greedy
algorithm result), dropped for all RL implementations. The greatest loss in performance
was for the A2C algorithm, with a 31% reduction, followed by the PPO algorithm, with a
23% reduction. Finally, the DQN algorithm, with the use of deep neural networks and a
longer exploratory phase, maintained performance, with only a 3% drop in performance.

5. Key Applications and Open Research Lines

Simulation has been increasingly used in warehouse operations. Some of the key
applications include the following:

• Process Optimization: analyze and optimize various processes, such as receiving,
put-away, picking, packing, and shipping. Managers can identify bottlenecks, test
process changes, etc.;

• Layout and Design: design and optimize the layout, including the placement of racks,
shelves, etc.;

• Resource Allocation: optimize the allocation of resources, such as labor, equipment,
and space;

• Inventory Management: analyze and optimize inventory management strategies, such
as reorder points, safety stock levels, and order quantities;

• Demand Forecasting: simulate demand patterns and forecast inventory requirements;
• Labor Planning and Scheduling: optimize labor planning and scheduling;
• Equipment and Automation: evaluate the impact of equipment and automation

technologies, such as conveyor systems, automated guided vehicles, and robots.
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The main applications of RL in warehouse operations include the following:

• Warehouse Management: optimize tasks such as inventory management, order pick-
ing, and routing;

• Autonomous Robots: train autonomous robots for tasks such as automated material
handling, order fulfillment, and package sorting. Robots can learn how to navigate in
complex warehouse environments, handle different types of items, and interact with
other equipment and personnel;

• Resource Allocation: optimize the allocation of resources such as labor, equipment,
and space;

• Energy Management: optimize energy consumption, which can have a significant
impact on operational costs. For example, an agent can learn to control the usage
of lighting, heating, and ventilation, based on occupancy, time of day, and other
environmental factors;

• Safety and Security: for example, an agent can learn to detect and respond to safety
hazards, such as obstacles in pathways, spills, or damaged equipment.

The combination of advanced simulation environments and RL represents a new field
that remains to be completely explored. Here are a few promising research directions:

• Wider range of applications in warehouse operations. As manufacturing and logistics
systems grow more complex and businesses seek to remain both competitive and
sustainable, the increasing availability of data as well as new technologies through
Industry 4.0 is expected to open up a wider range of applications in warehouse
operations. This will give rise to a greater number of decision variables, objective
functions, and restrictions.

• Emergence of DRL. DRL holds significant potential over traditional RL due to its
ability to handle high-dimensional and complex state spaces through deep neural
networks. DRL allows for more efficient and automated feature extraction, enabling
the model to learn directly from raw data.

• Distributed and parallel techniques. Distributed and parallel RL can accelerate the
learning process by allowing multiple agents to learn concurrently. Moreover, this
approach can improve scalability, as it enables RL algorithms to handle larger and more
complex state spaces. Finally, distributed and parallel RL can provide robustness and
fault tolerance, as multiple agents can work in parallel, and failures or perturbations
in one agent do not necessarily disrupt the entire learning process.

• Explicability. Explicability is important for building trust and acceptance of RL sys-
tems, as users may be hesitant to adopt decision-making systems that lack transparency
and understanding. In addition, it can aid in understanding and diagnosing model
behaviour, facilitating debugging, troubleshooting, and identifying potential biases or
ethical concerns. Lastly, explicability can be crucial for compliance with regulatory
requirements in domains where transparency and accountability are essential.

• Metaheuristics. Metaheuristics hold potential for various applications in RL. Firstly,
they can be used for hyperparameter tuning in RL algorithms to optimize the perfor-
mance of agents. Secondly, metaheuristics can be employed for policy search, where
they can explore the policy space to find promising policies for RL agents. Lastly, they
can aid in solving complex problems in RL with high-dimensional state and action
spaces, where traditional RL algorithms may struggle, by providing effective search
strategies for discovering good policies. The combination of RL with metaheuristics
and simheuristics [59] is also an open challenge.

6. Conclusions

Simulation has emerged as a powerful tool for optimizing decision-making in ware-
houses, for instance, by analyzing and optimizing various processes, including receiving,
put-away, picking, packing, and shipping. By creating virtual models of warehouses and
simulating different scenarios, managers can identify bottlenecks and test process changes,
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among others. In particular, the combination of simulation and RL offers a flexible approach
for training intelligent agents in complex and dynamic environments, while mitigating
challenges associated with replicating difficult or expensive scenarios in the real world.
This paper showcases the integration of the FlexSim commercial simulator and the RL
OpenAI Gym library in Python. Thus, we deliberately focus on a simplified version of the
SLAP to highlight the connection between both components to demonstrate its feasibility.
The effectiveness of the approach is validated through a set of experiments. However,
enhancing the case study to reflect more complex and realistic scenarios is crucial for its
broader applicability and relevance to practical settings.

Several avenues for future research can be identified, which could be categorized into
three key domains: (i) enriching the SLAP modelization to describe more realistic and
large-scale problems, showing that the combination of FlexSim with RL can handle these
problems efficiently to deliver good performance in real-world contexts; (ii) conducting a
more extensive series of experiments to compare various scenarios; and (iii) examining the
performance of different RL algorithms and conducting sensitivity analyses to explore the
impact of different algorithmic parameters.
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