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Abstract: Two key hurdles to the adoption of Machine Learning (ML) techniques in hyperspectral
data compression are computational complexity and scalability for large numbers of bands. These
are due to the limited computing capacity available in remote sensing platforms and the high
computational cost of compression algorithms for hyperspectral data, especially when the number of
bands is large. To address these issues, a channel clusterisation strategy is proposed, which reduces
the computational demands of learned compression methods for real scenarios and is scalable for
different sources of data with varying numbers of bands. The proposed method is compatible with
an embedded implementation for state-of-the-art on board hardware, a first for a ML hyperspectral
data compression method. In terms of coding performance, our proposal surpasses established lossy
methods such as JPEG 2000 preceded by a spectral Karhunen-Loève Transform (KLT), in clusters
of 3 to 7 bands, achieving a PSNR improvement of, on average, 9 dB for AVIRIS and 3 dB for
Hyperion images.

Keywords: image compression; hyperspectral; deep learning; data compression; AVIRIS; Hyperion

1. Introduction

Hyperspectral remote sensing scenes, either captured from aeroplanes such as by
the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) or from space such as by
the Hyperion sensor on board the EO-1 satellite, are of great interest for managing earth
resources, natural disasters, or urban planning, among other applications [1]. According
to the Union of Concerned Scientists, 42 satellites launched in the last decade have been
put in orbit for the purpose of multispectral or hyperspectral Earth observation, as of May
2022 [2]. A growing number of hyperspectral images, such as those mentioned earlier,
are being captured and stored, as demand for this kind of data continues to increase in
the New Space era, which raises the pressure to develop novel compression techniques to
further reduce data volume in transmission and long-term storage. Indeed, hyperspectral
data compression is a particularly salient challenge in remote sensing, since for every
spatial pixel sensed, numerous spectral measurements are taken and stored (one for every
band). Due to the limited transmission capabilities of satellites and other remote sensing
platforms, although vast amounts of hyperspectral data could be captured, not all of it can
be transmitted down to Earth, limiting the amount of data sensed overall. For example,
the HyspIRI sensor developed by NASA can produce up to 5 TB of data per day, but
downlink capacity is limited [3]. When the bitrate constraints are especially tight, as they
most often are for hyperspectral sensors, lossy compression is considered, in which case
reconstructions must be of the highest possible quality, so as to not harm the information
contained in these images.
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In the last six years, the use of Machine Learning (ML) has produced a breakthrough
in lossy compression for natural images [4–9], surpassing techniques such as JPEG [10],
JPEG 2000 [11], and intra-frame HEVC [12]. ML compression has also been applied to
remote sensing data [13–21]. These contributions have employed models presented in [4,6]
as a baseline architecture, and are focused on different types of data. For example, some
authors adapted the ML architectures to compress monoband images with bit-depth higher
than 8 bits [13,14,20], others expanded on the baseline architectures for multispectral
sensors [15–18], and some applied them in compression of hyperspectral data [19,21].

The state of the art of ML lossy compression for remote sensing can be organised
according to whether the architecture exploits only 2D (spatial) redundancy, or both spatial
and spectral redundancy. Regarding architectures that only consider 2D data, Alves de
Oliveira et al. showed in [13] that applying the architecture proposed in [6] in a band-by-
band fashion outperforms JPEG 2000 [11] for lossy compression. Other works published
on ML compression of single-band remote sensing images include variants of the base-
line architecture for SAR data, which modify the main transform with layers other than
plain convolutions, such as residual blocks [22], or with a different structure altogether
(pyramidal structure) [23]. Regarding contributions that use both 1D and 2D information
during the learning stage, architectures for that purpose have been proposed using images
from Landsat 8 and World-View 3 sensors in lossy regimes [24], compressed sensing with a
learned decoder approaches [25], and codecs based on convolutional neural networks for
volumetric compression AVIRIS images [19,21]. In general, due to computational restric-
tions on board, a volumetric ML compression method such as [19,21,24] for hyperspectral
imaging is not practical in terms of computational cost. Furthermore, since the number
of parameters in these networks needs to be expanded to compress images with larger
numbers of bands, these methods’ complexity increases more than linearly on the number
of bands; in other words, they are not scalable on the number of bands. These restrictions
are shown in detail in Section 3.

The practical adoption of ML techniques for hyperspectral data compression presents
two key challenges: exploiting spectral correlation without incurring a too high computa-
tional cost, and scalability of the architecture in the number of spectral bands captured by
different sensors. This second challenge is to make a design with the most linear computa-
tional complexity on the number of bands, so that it may remain practical for hyperspectral
data with a larger number of bands. As explained, several works have been published on
compression of higher bit-depth images exploiting 2D redundancy, and ML compression
architectures for specific sensors with a fixed number of input bands have been proposed.
This kind of proposal often incurs a high computational cost for on-board deployment.
To address these challenges, in this paper, we propose compression in clusters of bands
as a first step in the field of practical ML hyperspectral lossy data compression, as the
complexity of the neural networks used increases quadratically with the number of input
bands. This proposal is based on the Ballé et al. architecture [6], which is applied in clusters
of three bands instead of on the entire volume at once, so as to reduce the computational
cost of the algorithm. An additional benefit is the need to decompress a reduced number of
bands when retrieving a specific band. Furthermore, in this proposal, the normalisation
stage is modified to better encode and reconstruct data acquired at different wavelengths.
This contribution surpasses the spectral KLT, followed by the JPEG 2000 coding scheme [26],
when the KLT is also applied in clusters of up to 7 bands. The contributions presented in
this paper are:

1. The compression of an image in clusters of bands is studied as a scalable reduced-
complexity compression method;

2. A novel normalisation technique (range-adaptive normalisation) is proposed to avoid
checkerboard effects in low-variance high bit depth images;

3. Using a variant of an established neural compression network, the method is eval-
uated on two hyperspectral data sources, showing it is competitive at a cluster size
compatible with off-the-shelf on-board hardware.
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The rest of the paper is structured as follows. Section 2 introduces the end-to-end
optimised transform coding paradigm this work is based upon. Section 3 describes the pro-
posed method and the ML architectures used. Section 4 reports the conducted experiments.
Finally, Section 5 provides our conclusions.

2. End-to-End Optimised Transform Coding

A successful approach for lossy image compression based on ML is end-to-end opti-
mised transform coding, a paradigm in which the image x is encoded by transforming it
to a latent domain y that is quantised into ŷ, and entropy encoded, producing a bitstream.
Then, the bitstream is entropy decoded, obtaining ŷ, and transformed back to the original
image domain, producing x̂. Two neural networks act as the encoder, ga(·, θa), and decoder,
gs(·, θs), transforms, where θa and θs are the parameters (weights) of these neural networks.
The two transforms are jointly trained to minimise compression rate and distortion between
the original and reconstructed images, hence the paradigm’s name end-to-end optimised
transform coding [7].

This is an autoencoder in a rate-distortion optimisation problem, where the rate is
the expected code length (bitrate) of the compressed representation, and distortion is
the difference between the original image x and its reconstruction x̂ under some metric,
typically mean squared error (MSE). To perform entropy coding and calculate the bitrate in
training, a prior probability model of the quantised representation is used, known to both
encoder and decoder, namely the entropy model pŷ. Assuming the entropy coding technique
is operating efficiently, the rate R can be written as a cross entropy,

R = Ex∼px

[
− log2 pŷ(Q(ga(x, θa)))

]
, (1)

where Q represents the quantisation function, typically rounding to the nearest integer [6].
The entropy model can be a fixed probability distribution, as in [4], or it can be

parameterised to adjust its probability estimate to each vector to be encoded, writing that
entropy model as pŷ,σ(·). This parameterisation σ can be computed from ŷ using another
neural network, a hyperprior. Since ŷ is needed to produce the parameterisation σ, the
auxiliary neural network is used both to calculate σ and to be encoded. In other words, after
the main transform has produced y, y is further transformed into z using a hyper-analysis
transform, ha(·, φ′a), and then quantised into ẑ = Q(z) to be transmitted as side information.
The side information ẑ is then decoded using a hyper-synthesis transform, hs(·, φ′s), into σ,
which is the parameterisation used in the entropy model to encode ŷ. Together, these two
later transforms conform the hyperprior. The rate of this side information can be calculated
as in (1), obtaining the loss function of our end-to-end optimised codec,

L(x, θ, φ) = Ex∼px

[
− log2 pŷ,σ(Q(ga(x, θa)))

− log2 pẑ
(
Q
(
ha
(

ga(x, θa), φ′a
)))

+λD(x, gs(Q(ga(x, θa)), θs))],

(2)

where λ is a parameter to regulate the rate-distortion trade-off and D(x, x̂) is the distortion
function. In the case of the Ballé et al. architecture, the prior distribution is a multivariate
Gaussian distribution with parametric scale σ [6].

The gradient of Q(·) is zero almost everywhere; thus, in order to use gradient descent
for optimisation, the problem needs to be relaxed. A common approach is to use additive
uniform noise to replace the quantisation function; thus, in training, Q is defined as

Q(x) = x + ε such that ε ∼ U
(
−1

2
,

1
2

)
, (3)
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where U
(
− 1

2 , 1
2

)
is a multivariate uniform probability distribution. This rate-distortion

optimisation problem is formally represented as a variational autoencoder (VAE) [27], where
the encoder is understood to be an inference model and the decoder is read as a probabilistic
generative model. Further details can be found in [6].

3. Proposed Method

The proposed method is based on the Ballé et al. architecture [6] shown in Figure 1.
In that figure, blocks labelled “Conv N × k × k/s” indicate convolution with N filters
using k× k kernels with a stride of length s, and the arrow indicates downsampling or
upsampling. General Divisive Normalisation (GDN) and Rectified Linear Units (ReLU) are
used as activation functions. This proposal modifies the baseline in two aspects: one layer
is removed from the hyperprior network, and the normalisation layer is modified. Inspired
by the work of Alves de Oliveira et al. [13], our networks have a different number of filters
in the hidden layers (N) and in the latent space (M). This allows us to increase the size
of the latent space relative to the input space, while greatly reducing the computational
cost of the network with respect to using the sample architecture applied to the entire
spectrum. This architecture is used to compress hyperspectral images in clusters of three
bands at a time, which is less computationally costly than feeding all the bands at once.
The motivation for the computational cost reduction stems from the need to increase the
number of filters in the network in proportion to the number of input image bands; this
arises from the increased number of features to extract from the data (larger N) as well as
to keep the ratio between the number of input samples and the number of output samples
at a reasonable level (larger M). The complexity reduction resulting from this strategy is
detailed in Section 3.2.

Figure 1. Architecture from [6] with variable normalisation.

3.1. Range-Adaptive Normalisation Layer

In ML image processing, data are normalised between 0 and 1 before being fed to the
neural network to avoid issues such as exploding gradients in backpropagation [28]. In
current ML compression architectures, 8 bit-depth images are normalised by dividing them
by the dynamic range—from now on uniform normalisation—as

x′b,j,i =
xb,j,i

2B − 1
, (4)

where x and x′ are the input image and the normalised data, respectively. Indexes b, j
and i denote the number of bands, rows and columns, and B the bit-depth of the sensor.
However, for 16 bit hyperspectral images, bands contain data acquired by the sensor at
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different wavelengths, which is translated in data with different magnitude ranges that may
not, in general, span the whole nominal range. Thus, employing (4) for 16 bit hyperspectral
scenes with low variance will produce skewed normalised data.

When 16-bit images are decompressed using convolutional autoencoders, they tend to
produce checkerboard artefacts, especially in low-variance data. This effect is produced
because of the way the images are reconstructed using transposed convolution [29]. A simi-
lar artefact has been addressed using sub-pixel convolution [30] or resize-convolution [29].
However, in this context, these solutions may also produce checkerboard artefacts in low-
variance data. Our proposed solution is range-adaptive normalisation instead of using (4),
which is calculated as

x′b,j,i =
xb,j,i −MINb

MAXb −MINb + 1
. (5)

Range-adaptive normalisation consists of normalising every band b independently,
according on the minimum and maximum sample values in said bth band, denoted as MINb
and MAXb, respectively. Note that MINb and MAXb must be stored for each of the k bands
as side information. This side information is two 16-bit values per input band, a negligible
amount overall. In the denominator, 1 is added for the special case of MINb = MAXb to
avoid division by 0.

The capability of range-adaptive normalisation in removing the aforementioned arte-
fact is evaluated using a factorised-prior model [4]. Figure 2 depicts the rate-distortion
results comparing JPEG 2000, and [4] with uniform normalisation, sub-pixel convolution,
and range-adaptive normalisation for Landsat 8 and AVIRIS images. Results indicate that
range-adaptive normalisation performs on-par with sub-pixel convolution, especially in
images such as AVIRIS, where ranges do not fully exploit the full dynamic range. Although
sub-pixel convolution achieves good performance in lossy compression, it continues to
produce the checkerboard artefact in low-variance bands—bands whose samples span a
narrow range relative to the dynamic range—while the proposed range-adaptive normali-
sation variant does not, as Figure 3 shows. The number of bands with these characteristics
depends on the sensor. For example, in AVIRIS data, there are around 50 or more such
bands. Such bands can contain useful information, despite spanning a narrow section
of the dynamic range, and due to their low variance, there is less tolerance to error in
these samples.

Figure 2. PSNR results of models trained and tested for band-by-band compression of Landsat 8
OLI and AVIRIS images.
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Figure 3. Crop of AVIRIS scene f090710t01p00r09rdn-b band 110, compressed at 0.05 bits per
sample (bps).

3.2. Complexity Reduction

The computational complexity of the proposed method may be calculated by counting
the number of operations per spatial pixel performed by our neural network, as in [13],
considering k input bands and N and M as the hidden and latent numbers of filters from
the architecture in Figure 1. In our experiments for three-band images and work by other
authors [13] on single-band images, the numbers of filters used follows the linear relation
N = 32(k + 1) and M = 128k, which can be extrapolated to estimate the size of the network
needed to compress clusters of k bands.

Table 1 details such a calculation. There, filters in and filters out stand for the number
of bands the input and output of each layer has. The number of kernels in a layer is the
product of those two numbers. The size of those kernels is either 5× 5 or 3× 3, as indicated
in Figure 1. The number of parameters of a convolutional layer is then calculated as

Nparams = Nin × Nout × K2, (6)

where K is the size of the kernel. The number of parameters in GDN layers is calculated
identically to (6), adding Nout. Finally, the FLOPs/pixel is calculated as

FLOPs/pixel =
Nparams

S2 , (7)

where S is the stride accumulated until that layer in each spatial direction, so S = 2 in the
first convolutional and GDN layers, S = 4 in the second convolutional and GDN layers,
etc. This stride length is then reversed in the transposed convolution (TConv) and inverse
GDN (iGDN) layers.
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Table 1. Detailed complexity of the proposed architecture for k input bands.

Layer Filters In Filters Out Parameters FLOPs/Pixel

Norm. k k 0 k

Conv k 32 (k + 1) 800 k (k + 1) 200 k (k + 1)
GDN 32 (k + 1) 32 (k + 1) 1024 (k + 1)2 + 32 256 (k + 1)2 + 8 (k + 1)
Conv 32 (k + 1) 32 (k + 1) 25,600 (k + 1)2 1600 (k + 1)2

GDN 32 (k + 1) 32 (k + 1) 1024 (k + 1)2 + 32 64 (k + 1)2 + 2 (k + 1)
Conv 32 (k + 1) 32 (k + 1) 25,600 (k + 1)2 400 (k + 1)2

GDN 32 (k + 1) 32 (k + 1) 1024 (k + 1)2 + 32 16 (k + 1)2 + (k+1)
2

Conv 32 (k + 1) 128 k 102,400 k (k + 1) 400 k (k + 1)

HConv 128 k 128 k 147,456 k2 576 k2

HConv 128 k 128 k 409,600 k2 400 k2

THConv 128 k 128 k 409,600 k2 400 k2

THConv 128 k 128 k 147,456 k2 576 k2

TConv 128 k 32 (k + 1) 102,400 k (k + 1) 400 k (k + 1)

iGDN 32 (k + 1) 32 (k + 1) 1024 (k + 1)2 + 32 16 (k + 1)2 + (k+1)
2

TConv 32 (k + 1) 32 (k + 1) 25,600 (k + 1)2 400 (k + 1)2

iGDN 32 (k + 1) 32 (k + 1) 1024 (k + 1)2 + 32 64 (k + 1)2 + 2 (k + 1)
TConv 32 (k + 1) 32 (k + 1) 25,600 (k + 1)2 1600 (k + 1)2

iGDN 32 (k + 1) 32 (k + 1) 1024 (k + 1)2 + 32 256 (k + 1)2 + 8 (k + 1)
TConv 32 (k + 1) k 800 k (k + 1) 200 k (k + 1)

Denorm. k k 0 k

Table 2 shows the total addition of the number of parameters and FLOPs/pixel. Due
to the need to increase the number of filters in the network in proportion to the number
of input bands, the complexity increases quadratically with respect to the number of
input bands. A larger number of input bands means compressing fewer clusters. Given
the number of bands in the image, n, our network encodes d n

k e clusters. As a result,
the overall number of operations per spatial pixel by the encoder is as in Equation (8),
which is clearly monotonically increasing with respect to k. Thus, using larger clusters
results in greater computational cost. The number of floating-point operations (FLOPs) per
sample—operations per pixel per band—is equal to those per pixel divided by the number
of bands, n.

dn
k
e(3912k2 + 5283k + 2348) FLOPs/pixel ≈ 3912kn + 5283n + 2348

n
k

FLOPs/pixel (8)

Considering images with 224 bands compressed using a single 224-band cluster
(AVIRIS) requires 881,581 FLOPs/sample, while using three-band clusters would require
17,802 FLOPs/sample to encode, thus the proposed method provides a 98% reduction in
complexity in this particular case. On the other hand, the Mijares et al. 2021 method [31]
for AVIRIS data in four-band clusters requires 18,097 FLOPs/sample, more complex than
the proposed method. For completeness sake, we also mention that this complexity is
two orders of magnitude higher than that of the CCSDS 122.1-B-1 or JPEG 2000 stan-
dards [32,33]. This number of encoder operations of the proposed method (three-band
clusters) is compatible with an embedded implementation on board using hardware, such
as the Movidius Myriad 2 from Intel [13], and, by extension, with more capable and efficient
state-of-the-art hardware.
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Table 2. Addition of complexity of the proposed architecture for k input bands.

Parameters FLOPs/Pixel

Total 1.4 · 106 k2 + 4.2 · 105 k + 105 7.8 · 103k2 + 1.1 · 104 k + 4.7 · 103

Encoder 7.1 · 105 k2 + 2.1 · 105 k + 5.4 · 104 3.9 · 103 k2 + 5.3 · 103 k + 2.3 · 103

The complexity of the proposed method can be compared to that in [19]; when also
applied to 224-band AVIRIS images, we would have the results in Table 3. Note that we
have made an assumption on the size of the convolutional kernels as being 5 × 5, since
that is not explicitly mentioned in their paper. Observe that their convolutions are applied
before downsampling (which is performed with a Max Pool layer), which makes them
costlier. This complexity translates to 3445 FLOPs/sample. Indeed, this appears much
lower than our proposed method, however the dimensionality reduction performed by
this transform is 448:1 which, if we use 32-bit values, would give us a maximum bitrate
of 0.07 bps, not considering any additional reduction by an arithmetic coder as is used.
To compress at higher bitrates, as needed in practice, this architecture needs to be scaled
up in the number of filters used. To compress at an absolute maximum of 1 bps, this
scaling has to be ×14, which would yield the complexity in Table 4. That corresponds to
92,415 FLOPs/sample, much larger than we can use.

Table 3. Detailed complexity of the Dua et al. 2021 [19] architecture for 224-band data.

Layer Filters In Filters Out Parameters FLOPs/Pixel

Norm. 224 224 0 224

Conv 224 128 716,800 716,800
ReLU 128 128 0 128
Conv 128 64 204,800 51,200
ReLU 64 64 0 64
Conv 64 32 51,200 3200
TanH 32 32 0 32

TConv 32 64 51,200 3200
ReLU 64 64 0 64
TConv 64 64 102,400 6400
ReLU 64 64 0 64
TConv 64 128 204,800 51,200
ReLU 128 128 0 128
TConv 128 128 409,600 102,400
ReLU 128 128 0 128
TConv 128 224 716,800 716,800
ReLU 224 224 0 224
TConv 224 224 1,254,400 1,254,400
ReLU 224 224 0 224

Denorm. 224 224 0 224

Total 3,712,000 2,906,880
Encoder 972,800 771,648
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Table 4. Detailed complexity of the Dua et al. 2021 [19] architecture for 224-band data, scaled ×14 for
≤1 bps compression.

Layer Filters In Filters Out Parameters FLOPs/Pixel

Norm. 224 224 0 224

Conv 224 1792 10,035,200 10,035,200
ReLU 1792 1792 0 1792
Conv 1792 896 40,140,800 10,035,200
ReLU 896 896 0 896
Conv 896 448 10,035,200 627,200
TanH 448 448 0 448
TConv 448 896 10,035,200 627,200
ReLU 896 896 0 896
TConv 896 896 20,070,400 1,254,400
ReLU 896 896 0 896
TConv 64 1792 40,140,800 10,035,200
ReLU 1792 1792 0 1792
TConv 1792 1792 80,281,600 20,070,400
ReLU 1792 1792 0 1792
TConv 1792 224 10,035,200 10,035,200
ReLU 224 224 0 224
TConv 224 224 1,254,400 1,254,400
ReLU 224 224 0 224

Denorm. 224 224 0 224

Total 222,028,800 63,983,584
Encoder 60,211,200 20,700,960

4. Experimental Results

In the field of remote sensing data compression, there are three main established lossy
compression standards: JPEG 2000 [11], CCSDS 122.1-B-1 [32], and CCSDS 123.0-B-2 [34].
For hyperspectral data, using the Karhunen–Loève Transform (KLT) for spectral decorre-
lation in combination with a Discrete Wavelet Transform (DWT) for spatial decorrelation
(such as in JPEG 2000) is in widespread use as well [35–37], where KLT + JPEG 2000 out-
performs KLT + CCSDS 122.1-B-1 and CCSDS 123.0-B-3. Therefore, JPEG 2000 and KLT
+ JPEG 2000 are chosen as benchmarks for coding hyperspectral remote sensing images.
Other neural compression of hyperspectral data proposals, such as [19], are of much higher
computational cost than our method, or what can be assumed in onboard compression,
and thus are not included in our comparison.

Two data sets from different sensors are used in our experiments. For the AVIRIS
sensor, a collection of calibrated scenes [38] from a variety of sites across North America
is used, consisting of 180 scenes for training and 20 scenes for testing. All of the scenes
are 512× 512 pixels with 224 spectral bands, for a total of 21 GB of training data. For the
Hyperion sensor deployed in the EO-1 NASA mission, 71 scenes are used for training and
13 for testing, obtained from the United States Geological Survey (USGS) Earth Explorer [39].
The pre-processing described in [26] is applied to these images to eliminate line artefacts [40].
Scenes from this sensor are 1024× 256 pixels and have 242 spectral bands, adding to a total
of 9 GB of training data.

All the models tested were trained for no less than 15.000 iterations on each dataset
using Adam [41] as our optimizer, with MSE as the distortion metric in the loss function.
Since our proposed model is applied in clusters of three bands, in order to produce a fair
comparison, the KLT is also applied in clusters of three bands. JPEG 2000 can either be
applied to each of these clusters independently or to the full spectrally transformed volume.
Since our models do not allocate bits across clusters, the first of those options makes a
fair comparison. Our models can be found in a GitHub repository (https://github.com/
smijares/mblbcs2023, accessed on 25 July 2023).

https://github.com/smijares/mblbcs2023
https://github.com/smijares/mblbcs2023
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Figure 4 depicts the average compression Peak Signal-to-Noise Ratio (PSNR) results
of full volumes in clusters of three bands for AVIRIS and Hyperion images. The vertical
and horizontal axes provide the PSNR and the rate in bits per sample (bps), respectively.
Similarly, Figure 5 depicts the average compression Relative Squared Error (RSE) results,
which is another metric based on Mean Squared Error (MSE). The PSNR is calculated
as PSNR = 20 log10

(
216−1√

MSE

)
, while the RSE is calculated as RSE = MSE

1
N ∑N

i=1(xi−x̄)2 , where

x̄ is the mean of the values in the image. These plots provide results for JPEG 2000,
when the KLT is applied to clusters of three bands, and the transformed clusters are
independently compressed with JPEG 2000 (3-band KLT + JPEG 2000) and, when the KLT
is applied to clusters of three bands and the transformed, clusters are compressed with
JPEG 2000 considering the whole volume (three-band KLT + Full volume JPEG 2000). For
the proposed method, we set parameters N = 128 and M = 384. The proposed method
achieves competitive results compared to KLT + JPEG 2000 applied in clusters of three
bands in both types of data, surpassing it by 9 dB PSNR on average in AVIRIS data and
by 3 dB PSNR in Hyperion images. Furthermore, the proposed method can match the
performance of three-band KLT + JPEG 2000 applied to the full volume.

Figure 4. PSNR performance of models trained and tested for compression in clusters of 3 bands of
AVIRIS and Hyperion images.

Figure 5. RSE performance of models trained and tested for compression in clusters of 3 bands of
AVIRIS and Hyperion images.

Measuring the spectral angle (SA) of our reconstructions, the proposed method also
outperforms KLT + JPEG 2000 in clusters of three bands. Figure 6 depicts SA at different
rates for the same techniques and configurations as in Figure 4. Figures 7 and 8 show a visual
comparison of different bands for the AVIRIS and Hyperion sensors, respectively. It is clear
our models produce better reconstructions at higher-variance bands, where KLT + JPEG 2000
tends to blur certain details which our models kept (such as the river in the AVIRIS image),
while at lower-variance bands, our models and KLT + JPEG 2000 perform more on par.
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Figure 6. Spectral angle performance of models trained and tested for compression in clusters of
3 bands of AVIRIS and Hyperion images.

Figure 7. Reconstruction of some selected bands from AVIRIS scene f090710t01p00r09rdn-b using our
method, with zoom-in to better appreciate some od the differences. The overall image is compressed
at 0.11 bps and overall reconstruction PSNR is 60.92 dB.



Remote Sens. 2023, 15, 4422 12 of 15

Figure 8. Reconstruction of some selected bands from Hyperion scene EO1H1980182017066110K3
using our method, with zoom-in to better appreciate some od the differences. The overall image was
compressed at 0.05 bps and overall reconstruction loss was 63.78 dB PSNR.

The proposed method for compressing the images in clusters of three bands not only
surpasses KLT + JPEG 2000 when applied on those same clusters, but can also perform
on par with KLT + JPEG 2000 applied in clusters of 7 bands, and the Mijares et al. 2021
method [31] for AVIRIS data in four-band clusters, as shown in Table 5 for AVIRIS data and
in Table 6 for Hyperion data.

Table 5. Average compression performance comparison on AVIRIS data.

Compression Method PSNR at 0.1 bps PSNR at 0.3 bps

JPEG 2000 52.74 dB 55.41 dB

3 bands KLT + JPEG 2000 55.42 dB 59.54 dB
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Table 5. Cont.

5 bands KLT + JPEG 2000 57.01 dB 62.57 dB

7 bands KLT + JPEG 2000 61.26 dB 67.66 dB

Mijares et al. 2021 [31] (4 bands) 58.47 dB 65.45 dB

Proposed method (3 bands) 61.96 dB 68.61 dB

Table 6. Average compression performance comparison on Hyperion data.

Compression Method PSNR at 0.05 bps PSNR at 0.45 bps

JPEG 2000 57.56 dB 67.23 dB

3 bands KLT + JPEG 2000 60.37 dB 70.05 dB

5 bands KLT + JPEG 2000 62.28 dB 71.64 dB

7 bands KLT + JPEG 2000 64.23 dB 73.25 dB

Proposed method (3 bands) 64.91 dB 74.24 dB

5. Conclusions

In this work, a novel method for the compression of hyperspectral remote sensing
images based on neural networks and a clustering strategy is proposed. This codec is
competitive with key conventional methods such as KLT + JPEG 2000 on AVIRIS and
Hyperion data. The proposal of compression in clusters of bands is scalable to images with
any number of bands, as opposed to using these architectures with an arbitrary number
of input bands, which is impractical as the number of parameters in the network would
be scaled accordingly. Such a clustering approach is a first step in practical compression
techniques to be deployed in scenarios with limited resources, such as on-board satellites.
The proposed method in this paper could be implemented to run in state-of-the-art on-
board hardware at the present date. Furthermore, range-adaptive normalisation alone is a
highly effective method for enhancing the performance of convolutional neural networks
in compression of low-variance 16-bit images, which in turn avoids checkerboard artefacts
in low-variance images that other tested architectures produce. Results here presented
serve as a starting point for lower-complexity designs that could be deployed on-board
while remaining competitive with present in-use standards such as KLT + JPEG 2000.
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Abbreviations
The following abbreviations are used in this manuscript:

AVIRIS Airborne Visible/Infrared Imaging Spectrometer
KLT Karhunen–Loève Transform
ML Machine Learning
PSNR Peak Signal-to-Noise Ratio
SA Spectral Angle
FLOPs Floating Point Operations
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