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Abstract: Prescribed burning and pyric herbivory play pivotal roles in mitigating wildfire risks,
underscoring the imperative of consistent biomass monitoring for assessing fuel load reductions.
Drone-derived surface models promise uninterrupted biomass surveillance but require complex
photogrammetric processing. In a Mediterranean mountain shrubland burning experiment, we
refined a Structure from Motion (SfM) and Multi-View Stereopsis (MVS) workflow to diminish biases
in 3D modeling and RGB drone imagery-based surface reconstructions. Given the multitude of
SfM-MVS processing alternatives, stringent quality oversight becomes paramount. We executed
the following steps: (i) calculated Root Mean Square Error (RMSE) between Global Navigation
Satellite System (GNSS) checkpoints to assess SfM sparse cloud optimization during georeferencing;
(ii) evaluated elevation accuracy by comparing the Mean Absolute Error (MAE) of six surface and
thirty terrain clouds against GNSS readings and known box dimensions; and (iii) complemented a
dense cloud quality assessment with density metrics. Balancing overall accuracy and density, we
selected surface and terrain cloud versions for high-resolution (2 cm pixel size) and accurate (DSM,
MAE = 57 mm; DTM, MAE = 48 mm) Digital Elevation Model (DEM) generation. These DEMs, along
with exceptional height and volume models (height, MAE = 12 mm; volume, MAE = 909.20 cm3)
segmented by reference box true surface area, substantially contribute to burn impact assessment
and vegetation monitoring in fire management systems.

Keywords: fire management systems; prescribed burning; pyric herbivory; fuel load reductions;
drone-derived surface models; RGB drone imagery; photogrammetric processing; 3D vegetation
modeling; optimization; quality assessments

1. Introduction

Environmental management practices that integrate prescribed burning (the controlled
use of fire in selected vegetation stands) with directed grazing (often referred to as “pyric
herbivory”) are gaining traction as means to reduce wildfire risks and foster resilient
grassland ecosystems [1–3]. Public agencies and environmental authorities are increasingly
considering the practical application of these strategies [4].

Both prescribed burning and pyric herbivory are intricate treatments, with their
efficacy largely dependent on pivotal elements such as timing and frequency [5]. These
interventions must be tailored to the specificities of local environments, underscoring the
importance of evaluating their impacts and tracking vegetation changes, especially in the
realm of prescribed burning activities.
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A vital component of monitoring these treatments is gauging the aboveground biomass
(AGB). The dynamics of AGB shed light on the workings of ecosystems [6] and are of
particular significance in studies concerning wildfires and prescribed burning, as AGB is a
primary factor determining fuel availability.

Direct measurements of AGB can be obtained through field surveys that involve
cutting and weighing vegetation [7]. Alternatively, allometric models, which correlate AGB
with quantifiable biophysical metrics like canopy height or phytovolume, offer indirect
estimations [8,9]. Yet, in landscapes marked by heterogeneity, executing field sampling for
AGB, canopy height, and phytovolume becomes challenging due to the extensive sampling
points needed [9]. As a result, satellite and mid-tier remote sensing methods, including
Light Detection and Ranging (LiDAR) systems, have become popular tools to observe
biophysical attributes in rangelands [10,11]. However, conventional imaging often falls
short in providing the spatial resolution necessary to effectively depict canopy structures
in these areas [12]. Given this limitation, drone imagery is gaining traction as a potent
alternative in the realm of prescribed burning research [8,12–16].

UAV flights offer flexibility, allowing for rapid deployment in response to specific
events like natural or controlled fires, as well as changes in environmental conditions [17,18].
Their ability to provide high temporal resolution data also makes them suitable for periodic
surveys. The use of UAVs equipped with consumer-grade RGB cameras for the generation
of Digital Elevation Models (DEMs) is on the rise, primarily because they are cost-effective
and tailored for smaller areas, such as plots spanning 5 ha [19].

A DEM provides a digital representation of a topographic surface. It is typically a geo-
referenced grid that mirrors a specific section of Earth or another solid entity [20]. Broadly
speaking, DEMs capture two main surfaces: the Digital Terrain Model (DTM), which
portrays the bare ground; and the Digital Surface Model (DSM), which reflects the highest
surface, whether that be vegetation or other natural or manmade features [21]. The creation
of DEMs involves interpolating dense point clouds, which are formed using photogram-
metric techniques such as Structure from Motion (SfM) [22–28] and Multi-View Stereopsis
(MVS) [29,30]. Owing to their utility, DEMs have found applications across various geosci-
entific domains, including topographic mapping [31,32], geomorphology [33], forestry [34],
precision agriculture [35], rangeland management [36], and disaster response [37], to name
a few.

Generating a DSM might seem like a direct task, but the setting of MVS parameters
for dense surface point cloud reconstruction plays a crucial role in determining DSM
quality [38]. One of the enduring challenges is differentiating 3D points that represent
vegetation from those indicating terrain, which complicates the classification of Dense
Terrain Point Clouds (DTPCs) needed to create a DTM. Numerous filtering techniques
and interpolation methods have been explored for this purpose, with varying degrees of
success across different applications [39–44].

An essential product of this process is the Canopy Height Model (CHM), which pro-
vides insight into canopy height variations by subtracting the DTM from the DSM. The
combination of UAV technology with RGB cameras and standard SfM-MVS procedures
has emerged as a cost-efficient method for producing highly precise and spatially detailed
DEMs. This technique has shown effectiveness for a wide range of vegetation types, from
2 cm tall grasses to multi-meter shrubs and trees. Its applications span various environ-
ments, including grasslands [7,9,35,44,45], floodplains [46], and dryland shrubberies [41],
and it is used for estimating phytovolume in grasslands [36], as well as Mediterranean
forests [13].

The effectiveness of DEMs is determined by a plethora of factors throughout the
SfM-MVS workflow. These influencing elements range from the design of the experi-
mental flight [47] and camera configurations [48] to the quantity and spread of Ground
Control Points (GCPs) [49]. Furthermore, environmental conditions [18], the nature of
the land cover [39], chosen SfM processing techniques [50], techniques to filter the point
cloud [38,40,41], and interpolation strategies [43] all contribute to the final quality of the
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DEMs. Even though UAV-based photogrammetric and LiDAR techniques have proven
valuable in evaluating the effects of prescribed burns [12–16,33,51,52], there is a noticeable
gap in research focusing on the operational and processing nuances of SfM-MVS in produc-
ing DEMs under such conditions. This means that our understanding of the quality and
applicability of these DEMs remains limited.

In our pursuit to bridge the knowledge gap surrounding DEM generation in the
context of prescribed burning, we embarked on a study set against the backdrop of a
Mediterranean mountain shrubland, subject to both prescribed burning and pyric herbivory
treatments. Through a single UAV flight, we collected RGB images to craft DEMs and
associated CHMs.

Our research zeroes in on two key objectives:

1. To implement an optimized SfM-MVS process tailored to minimize biases in elevation
and height, resulting in high-fidelity surface models with a pixel size of just 2 cm/px,
derived from RGB imagery captured during a single UAV flight.

2. To delve into the ramifications of different SfM-MVS processing permutations on the
quality of the 3D models and surface reconstructions, shedding light on the merits
and limitations of our chosen optimization strategy.

Our work holds significant sway in this arena by placing a strong emphasis on the
quality of surface models—a factor that directly influences our prowess in gauging post-fire
vegetation shifts and recovery dynamics, as well as ascertaining the efficacy of interventions
like controlled burns and pyric herbivory. This is of paramount importance in protected
areas, such as the Montseny Natural Park, ensconced within Biosphere Reserves. Here,
astute fire management is non-negotiable to safeguard the region’s rich ecological tapestry.
Through rigorous and transparent scrutiny, our study aims to fortify trust in UAV-powered
photogrammetric outcomes.

2. Materials and Methods
2.1. Study Area

The study area was situated at Pla de la Calma (44◦44′4147′′ N, 2◦18′222′′ E; Figure 1),
a plateau located at an elevation of 1185 m within the Montseny Natural Park. This Park
is part of the Montseny Biosphere Reserve in the Northeastern Iberian Peninsula. The
region experiences a humid Mediterranean climate, characterized by an average annual
temperature of 10 ◦C and a total annual precipitation of 850 mm (classified as Cfb in the
Köppen–Geiger system). The landscape is composed of a diverse mosaic of grassland,
Quercus ilex forest, and shrubland patches, as indicated by the Copernicus Land Monitoring
Services’ 2018 Corine Land Cover dataset (CLC 2018).

The study took place within a designated experimental area covering 7.23 hectares,
dedicated to the investigation of prescribed fire as a management tool for reducing fuel
load, promoting pasture growth, and enhancing landscape diversity. Additional details
about this experimental area can be found on the OPEN2PRESERVE website (https://
open2preserve.eu/, accessed on 9 December 2022).

The original vegetation cover consisted of dense Mediterranean mountain shrubland,
primarily comprised of heather species (Erica scoparia L., E. arborea L. and Calluna vulgaris
(L.) Hull), juniper (Juniperus communis L.), and ferns (Pteridium aquilinum (L.) Kuhn), in-
terspersed with patches of sparse grassland. However, this vegetation was subjected to
prescribed burning on 28 February 2019, followed by gridding activities on 30 July 2019
and 16 June 2020 (Figure 2).

https://open2preserve.eu/
https://open2preserve.eu/
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Figure 1. The figure displays the study area’s location within the Montseny Natural Park, a Bio-
sphere Reserve. Pla de la Calma, the area of interest, is indicated by the yellow circle. 

 
Figure 2. (a–c) This sequence of RGB orthomosaics (0.01 m/px.) illustrates the process of the treat-
ment and subsequent gridding. (d) Specific details of the controlled prescribed burning treatment 
conducted by the fire brigade of the Generalitat de Catalunya. (e) Close-up details of the gridding 
process carried out by environmental agents. (f) Rendered 3D point cloud representation of the 
study area after gridding. 

Figure 1. The figure displays the study area’s location within the Montseny Natural Park, a Biosphere
Reserve. Pla de la Calma, the area of interest, is indicated by the yellow circle.
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Figure 2. (a–c) This sequence of RGB orthomosaics (0.01 m/px.) illustrates the process of the
treatment and subsequent gridding. (d) Specific details of the controlled prescribed burning treatment
conducted by the fire brigade of the Generalitat de Catalunya. (e) Close-up details of the gridding
process carried out by environmental agents. (f) Rendered 3D point cloud representation of the study
area after gridding.
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2.1.1. UAV Flight

On 6 July 2020, RGB images were acquired using a Sony ILCE-7RM2 camera (Sony
Corporation, Tokyo, Japan) (refer to Supplementary Table S1) mounted on a hexacopter
equipped with an open Pixhawk controller. The flight path was initially designed using
QgroundControl Version v4.2.4 (developed by PX4 AutoPilot), with a ground sampling
distance set at 2 cm/px and a front and side overlap of 75%. Further refinement of
the flight plan was carried out using the R-package uavRmp (R version 4.3.1) (https:
//gisma.github.io/uavRmp/, accessed on 30 August 2023) in conjunction with the official
2 m × 2 m DTM from the Institut Cartogràfic i Geològic de Catalunya (ICGC, 2017). This
refinement ensured a constant altitude of 66 m above ground level (agl). The actual flight
execution was performed using Mission Planner (ArduPilot Dev Team, 2020), with a cruise
speed of 6 m/s between waypoints. Additional details of the flight plan are available in
Supplementary Table S2.

The UAV mission was configured for automatic flight mode according to the prede-
fined settings outlined in Supplementary Table S3. The digital camera was mounted on a
gimbal (RCTimer ASP 2-Axis Nex-GH5 with an open-source brushless Gimbal Controller,
https://github.com/stefanlippuner/bl_gimbal, accessed on 30 August 2023) within the
aircraft’s fuselage. The camera was oriented nadir and parallel (0◦) to the flight path. Image
capture occurred at a solar elevation of 54.51◦, well above the recommended minimum of
35◦ [18]. The camera’s aperture (F-stop) and sensor sensitivity (ISO) were automatically
adjusted based on the available illumination during the mission, while the shutter speed
was manually set to 1/1000.

To ensure precise georeferencing, the camera was synchronized with GNSS, using
a Ublox M8N GPS with a compass designed for Pixhawk (YOUFLYstore). This allowed
for the recording of time, planimetric (xy), and altimetric (z) coordinates specific to each
captured image, referenced to the WGS84 ellipsoid. Images were recorded in jpeg format
and saved on a memory card.

2.1.2. Reference Objects

A series of boxes were strategically placed within the study area as reference objects
to assess and compare the accuracy of height and volume in the resulting products (refer to
Table 1).

Table 1. Description of the dimensions and heights of the boxes as reference objects.

Reference Object Height (cm) Dimensions (cm) Volume (cm3) Upper Side Area (cm2) No. of Boxes

Low box 15 20 × 30 × 15 0.009 600 7
High box 25 30 × 40 × 25 0.03 1200 6

Extra-high box 30 25 × 40 × 30 0.03 1000 1

2.1.3. GNSS Measurements: Ground Control Points and GNSS Validation Points

In preparation for the UAV flight, we strategically positioned 12 GCPs across the study
area (as depicted in Figure 3). These GCPs were accurately georeferenced using a Leica
Zeno 20 GNSS device (Leica Geosystem AG, Heerbrug, Switzerland) equipped with a
Real-Time Kinematic (RTK) differential correction system. The RTK system was connected
to the RTKAT service provided by the ICGC, ensuring centimetric accuracy in both the
horizontal (xy) and vertical (z) positioning.

https://gisma.github.io/uavRmp/
https://gisma.github.io/uavRmp/
https://github.com/stefanlippuner/bl_gimbal
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Figure 3. (a) An overview of the study area, including the distribution of Ground Control Points
(GCPs) represented by check points and control points. (b) A close-up view of the rubber objects
utilized as both check points and control points. (c) A zoomed-in detail of the rubber objects.

To facilitate georeferencing and evaluation of the sparse cloud, we used twelve
50 cm × 50 cm rubber objects designed in black and yellow (as shown in Figure 3b,c).

For evaluating dense clouds, DEMs, and CHM, we used another 59 additional inde-
pendent GCPs as GNSS validation points; 14 served to evaluate the Dense Surface Point
Cloud (DSPC), DSM, and CHM; and the remaining 45 were used for assessing the DTPC
and DTM).

2.2. SfM-MVS Method Outline

The Structure from the Motion and Multi-View Stereopsis (SfM-MVS) method was
employed to generate point clouds, from which DSMs, DTMs, and orthomosaics were
derived. This process was performed using Agisoft Metashape Professional version 1.7.2,
along with Metashape Python scripts provided by [50].

The conventional Metashape SfM workflow (illustrated in Figure 4) operates based
on the principles of binocular stereoscopy [23]. It begins with image alignment, utilizing
algorithms such as SIFT and SURF [53] for feature extraction and feature matching to
identify tie points within multiple overlapping and randomly acquired images [26]. This
creates a sparse cloud projected in photogrammetry coordinates, lacking scale, orientations,
and true positions. To introduce scale, orientation, and georeferencing to the sparse cloud,
GNSS-surveyed GCPs with xyz positions, as well as camera positions and orientations
acquired during image capture, are used [28]. Practically, a minimum of three GCPs per
image overlay and previously surveyed camera positions from the field (see Section 2.1.3)
are required to linearly transform the sparse cloud from photogrammetric coordinates to a
true coordinate system. This transformation involves a single scale parameter and three
rotation and translation parameters [31].
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Figure 4. (a) Illustrates the optimized workflow for the Metashape Structure from Motion (SfM)
(Ludwig et al, 2020 [50]). (b) Represents the Metashape Multi-View Stereopsis (MVS) testing process
and the final evaluation of the generated Digital Elevation Models (DEMs) and Canopy Height
Models (CHMs) in this study.

In this SfM workflow, the low accuracy and spatial distribution of tie points sometimes
can hinder the estimation of camera orientation, potentially leading to nonlinear deforma-
tions within the georeferenced sparse cloud [54]. To tackle this challenge, this study em-
ployed a novel optimization method that is designed to enhance the georeferencing process
of the sparse cloud [50]. This approach focuses on minimizing the error of georeferencing
check points within the sparse cloud by identifying the optimal filter parameters. Conse-
quently, only tie points with low reprojection errors are used. This application is available
as a Python module for MetashapeTools (https://github.com/envima/MetashapeTools/,
accessed on 30 August 2023).

An orthomosaic is a detailed and geometrically accurate image of an area, composed of
multiple photos that have been orthorectified. Within this framework, once the optimized

https://github.com/envima/MetashapeTools/
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sparse cloud has been estimated, the next step is to produce an orthomosaic. This is
achieved by projecting the georeferenced images onto a mesh, interpolated from using the
optimized tie points from the sparse cloud. This ensures that the resulting image accurately
represents the actual surface, without distortions and at a uniform scale.

The MVS approach, relaying on multiple depth maps (refer to Appendix A), is tailored
to automatically reconstruct 3D objects from various images [29]. It employs an optimized
sparse cloud to consolidate individual depth maps into a cohesive 3D model [30]. Factors
such as image resolution, overlap, and the chosen depth filter determine the capacity
of MVS to produce dense clouds of varying magnitudes, affecting both the elevation
accuracy of each point and the density of the resulting cloud [38]. The confidence of a point
within this cloud stems from the number of depth maps supporting its position. Points
corroborated by numerous maps are deemed more trustworthy, having been verified from
different angles. On the other hand, points supported by fewer maps may be considered
unreliable or even spurious. The precision of these maps improves with the caliber of the
images and the degree of overlap, guaranteeing the validation of each point from multiple
perspectives. Decisions regarding confidence thresholds and how to achieve high reliability
in the points are interconnected processes. They hinge on a blend of quality image capture
practices and the appropriate software adjustments.

The final output of the dense cloud generation process is a DEM. If all points within the
dense point cloud are retained, the outcome is a DSM, whereas the removal of non-ground
points results in a DTM.

Throughout each step of this standard SfM-MVS process, there are multiple con-
figurable parameters and options that influence the outcome in terms of sparse cloud
accuracy [54], dense point cloud quality [38], DEM grid structure [42], and orthomosaic
quality [50].

2.2.1. Optimized Sparse Cloud in SfM

Before starting the SfM procedure, we imported the geolocated images into Metashape.
We then assessed the image quality based on the sharpness of the most focused areas in
each image and removed any redundant images from the process [55].

The SfM process starts by estimating a sparse cloud through image alignment, employ-
ing Metashape algorithms like Aerial Triangulation (AT) and Bundle Block Adjustments
(BBA). This step hinges on automatically detecting distinct features within each image—
such as edges, corners, or unique textural patterns—and matching them across overlapping
images using tie points. After these features are pinpointed in individual images, they
are correlated across multiple images. This cross-referencing facilitates triangulations,
leading to the reconstruction of points in a three-dimensional space and resulting in the
initial sparse cloud. It is vital to note that every tie point in the SfM process comes with
quality attributes, including reprojection error (RE), reconstruction uncertainty (RU), and
projection accuracy (PA) (see Supplementary Table S6). These attributes play a fundamental
role in optimizing the sparse clouds. Specifically, RE gauges the alignment between a
reprojected point in an image and its actual location, making it a key factor for the precision
of adjustments. RU sheds light on the uncertainty related to the three-dimensional position
of a point. Meanwhile, PA evaluates how accurately a point is projected onto an image,
taking camera orientations into account. To enhance the estimates of camera positions for
each image, we used the “highest precision alignment” option in MetashapeTools (refer to
Supplementary Table S4).

To georeference the sparse cloud to a WGS84 coordinate system, we interactively
identified the positions of the 12 pre-surveyed GCP targets within the images (refer to
Section 2.1.3). Given the restricted precision of the image telemetry data, we utilized the
recorded coordinates from the field survey. Each GCP was marked interactively across at
least eight images. With the transformation update tool, we executed a linear transformation
of the sparse cloud during the georeferencing, employing a similarity transformation
that incorporated three translation and rotation parameters alongside a singular scaling
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parameter. In this phase, 8 of the GCPs functioned as control points, whereas the remaining
4 acted as check points to assess the geolocation precision of the sparse cloud.

Adhering to the methodology presented in [50], the optimization of sparse clouds
in SfM enhances accuracy by excluding points surpassing a specific error threshold and
re-optimizing camera positions. A trade-off emerges between the rigidity of the quality
threshold and the count of points preserved in the sparse cloud. Applying exceedingly
stringent standards might detrimentally affect the 3D transformation quality due to ex-
cessive point removal. The iterative refinement begins with a moderate filtering of the
sparse cloud, guided by predetermined threshold values. For our investigation, the initial
settings for RE, RU, and PA stood at 1, 50, and 10, in that order. Following this, both camera
parameters and their positions were fine-tuned in every cycle.

The optimal RE value was ascertained using an iterative, adaptive method. Initially,
we established a threshold grounded on standard benchmarks, commencing with an RE
value of 1. We undertook an analysis with the aim of pinpointing the RE value that
curtails the Root Mean Square Error (RMSE) between control point coordinates and their
counterparts in the sparse cloud. It is essential to note that the RE computation considers
the disparity between a point’s projection based on revised orientation parameters and the
coordinates of the actual point’s projection, all scaled by the image’s magnitude. Reduced
RE figures signify heightened precision; hence, fine-tuning this threshold can markedly
enhance the sparse cloud’s outcomes.

For orthomosaic creation from the optimized sparse cloud, we employed Metashape
Tools. Points within this cloud were interpolated via the Triangulation Irregular Net-
work (TIN), resulting in a mesh of 2.5D height field surface type, tailored for simulating
flat terrains or foundational reliefs. The subsequent orthomosaic was constructed on a
2 cm × 2 cm grid, aligned with the UTM31N ETRS89 coordinate system (epsg 25,831).

2.2.2. Dense Point Clouds in MVS
Dense Surface Point Clouds (DSPCs)

The generation of the dense cloud is derived from the optimized sparse cloud com-
bined with the depth map of each image in the MVS process. The DSPC formation in
Metashape is governed by the image quality resolution setting, which provides levels like
low, medium, high, and ultrahigh. It also incorporates the advanced depth filter setting
with selectable levels such as disabled, mild, moderate, and aggressive; these levels sig-
nificantly affect the geometric quality of the ensuing 3D representation. It is crucial to
differentiate the image quality setting from the one employed to exclude subpar images.
The term “image quality” here refers to the resolution of the primary images used in
creating the dense cloud.

At the ultrahigh quality level (UHQ), the dense point cloud is processed using the
original image resolution, producing intricate geometries, but at the cost of a lengthier
processing time. The high- (HQ), medium-, low-, and lowest-quality levels entail initial
downscaling by factors of 4, 16, 64, and 256, respectively [38]. The selection of this setting
plays a pivotal role in determining the dense cloud´s quality.

The advanced depth filter provides varying filtering intensities to weed out ques-
tionable points. Tunning off this filtering is not advised since it results in notably noisy
outcomes. For 3D depictions that are rich in geometric intricacies, a mild filtering level is
recommended to prevent the removal of nuanced details as outliers. For scenes with less
pronounced geometric features, both moderate and aggressive filtering options are at your
disposal.

To conduct a thorough assessment of the DSPC quality, we produced six distinct DSPC
versions. These were derived by pairing two image quality settings, high quality (HQ)
and ultrahigh quality (UHQ), with three depth filtering intensities: mild, moderate, and
aggressive.

For all resultant DSPCs, we implemented a uniform mask to determine a consistent
area of interest. Owing to the optimal quality and overlap of our images, our initial output
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was a reliable point cloud. Utilizing Metashape, we attributed a confidence score to each
point within the DSPC, basing it on its frequency in the depth maps. These scores spanned
from 1 (indicating the least confidence) to 20 (representing the highest confidence). To
refine our data, we adopted an iterative filtering technique across multiple confidence
benchmarks (1, 2, 4, 8, and 12) by using a bespoke script within the LidR R-package (R
version 4.3.1). Our approach started at the lower end of the confidence scale, assessing
results from varied perspectives. An increase in threshold was prompted if we noticed
residual noise or inconsistencies, suggesting the necessity for stricter filtering. On the
other hand, a drop in threshold was considered if substantial data, indicative of the box or
vegetation structure, appeared missing. This iterative strategy led us to eliminate points
with confidence values between 0 and 1, certifying the retention of the highest possible
detail in the concluding model.

Dense Terrain Point Clouds (DTPCs)

For DSMs, all points within the dense cloud are utilized. However, creating DTMs
requires an extra measure to differentiate between terrain and non-terrain points. In this
context, Metashape uses a set of three conditions to categorize each point for terrain to
develop DTMs:

(i) To start, the dense cloud is converted into a consistent grid with a set cell dimension.
Within each cell, the lowest-lying point is pinpointed and marked as a reference point
for terrain. Using these identified points, a provisional terrain model is shaped through
linear interpolation. For the categorization of the yet-to-be-classified points as terrain,
the following two prerequisites need to be fulfilled: (ii) such points should lie within
a predefined proximity (measured in millimeters) to the provisional terrain model; and
(iii) the angular measurement (denoted in degrees) between the point in question and
another pre-labeled terrain point, relative to the terrain surface, must not exceed a certain
established limit [55].

For each DSPC, we endeavored to generate several DTPC versions by experimenting
with distinct (“maxdist”) values, which pertained to the maximum distance to the terrain.
These values varied from 1 mm up to 10 mm. Considering the landscape—characterized by
interspersed patches of diminutive herbaceous plants and shrubs amid rough terrains—and
considering the flat characteristics and minimal slopes of the focal area, we applied specific
filters. Throughout the vegetation filtering phase, we adhered to a consistent maximum
angle of 1◦ and adopted a grid cell size of 2 m. This ensured that shorter vegetation
structures, such as herbs and shrubs, were not inaccurately identified as ground-level
points. Consequently, this methodology produced 30 unique DTPCs.

2.3. Digital Surface and Terrain Models

We transformed the potential DSPCs and DTPCs into raster DSM and DTM formats
by employing the Inverse Weighting Interpolation (IDW) technique within Metashape. All
of these models boasted a pixel resolution set at 2 cm × 2 cm, and they were stored in the
form of 32-bit floating number TIFF files. For these DEMs, the coordinate reference was set
to UTM31N ETRS89 (epsg 25,831).

2.4. Canopy Height Model: Volume and Height

Utilizing the terra R-package (R version 4.3.1), we calculated the CHM to be at a
resolution of 2 cm × 2 cm. This CHM, which embodies the variation in canopy height, was
ascertained by deducting the DTM from the DSM. In addition, the volume of the reference
boxes was derived from the CHMs, using the same terra R-package (R version 4.3.1). This
entailed summing up the area of each pixel and multiplying it by its associated pixel value,
encapsulating the height values of the reference boxes. Subsequently, by gauging the
average height of these reference boxes, we deducted the canopy´s height.
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2.5. Quality Assessment
2.5.1. Optimized Sparse Cloud in SfM

To assess the quality of the optimized sparse cloud, we computed both the Root Mean
Square Error of Reprojection (RMS RE) and the RMSE of the check points (RMSE check
points). The RMS RE evaluates the discrepancy, denoted in pixels, between the projected
image point position of the reconstructed 3D point and its initial projection detected in
the image. Conversely, the RMSE check points gauges the precision of measurements by
computing the Euclidean distance between the coordinates of the surveyed check points
and their estimates during the sparse cloud´s georeferencing phase.

Furthermore, to discern the effects of sparse cloud optimization on elevation value
predictions, we calculated the RMSE between the GCPs observed elevation values and the
predicted elevation values at the proximate point in both raw and optimized sparse cloud.

Utilizing Voronoi tessellations for the optimized tie points, we delved into the spatial
interplay between various cover types and the ramification they might have on reprojection
errors. By overlaying these tessellations onto the orthoimage, we pinpointed zones that are
potentially prone to projection discrepancies.

2.5.2. Dense Surface Point Cloud in MVS

To gauge the impact of varying image quality resolutions, specifically HQ and UHQ,
combined with three depth filtering levels (mild, moderate, and aggressive) on the resultant
six DSPCs, we appraised the precision of elevation measurement. This assessment involved
juxtaposing elevation values from specified points on reference objects (refer to Section 2.1.2)
with the GNSS validation points and against the predicted elevation values in every DSPC.
We determined the Mean Absolute Error (MAE) and probed the linearity between observed
and predicted elevations for every processing alternative. Furthermore, an ANOVA was
employed to discern notable disparities amongst these processing choices.

We also scrutinized the uniformity of each DSPC on reference boxes by measuring the
standard deviation of the elevation point.

2.5.3. Dense Terrain Point Clouds

To gauge the elevation measurement precision across the 30 DTPC versions, we delved
into factors such as the varying image quality resolutions, depth filters, and maxdist
parameters spanning 1 mm to 10 mm. We executed a linear regression analysis between
the observed GNSS validation points elevations and the projected elevation values across
each DTPC. For these regressions, we derived standard metrics alongside the MAE.

However, our analysis was not confined to the elevation precision derived from
GNSS validation points alone. For instance, a DTPC showcasing high MAE precision,
yet characterized by a low density or presence of extensive patches containing minimal
cloud points, would be susceptible to significant interpolation inaccuracies. Moreover, if
there´s an irregular spatial distribution of points within DTPC, a reduced mean density
suggests a heightened propensity for patches with scant point density. Thus, in our pursuit
to critically evaluate DTPC quality, we incorporated density-related metrics. These metrics
encompassed grid density (signifying the average number of DTPC points per unit area)
and the percentage representation of areas with sparse point density (grids having fewer
than 5 points/m2). These calculations were facilitated using the lidR and terra R-package
(R version 4.3.1).

2.5.4. Digital Elevation Models: DSM and DTM

To evaluate measurement accuracy in both DSM and DTM, we conducted a linear
regression analysis comparing the observed elevation values from GNSS validation points
to the predicted elevation values within each respective model. The quality was ascertained
using both the Coefficient of Determination (R2) and the MAE.
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2.5.5. Canopy Height Models: Volume and Height

The scrutiny of segmented reference box surfaces, such as orthomosaic and CHM,
necessitates meticulous attention. While these surfaces conform to predefined box dimen-
sions, as detailed in Section 2.1.2, one must recognize the inherent subjectivity introduced
through photointerpretation. Such subjectivity can lead to discrepancies in these surface
dimensions. Image pixels might be affected by external factors like shadows or stark
contrast, altering their perceived shapes, irrespective of the actual surface type.

To understand how these surface inconsistencies influence CHM precision, we jux-
taposed the segmented surfaces against the actual reference box surfaces. In our study,
three segmented CHM variants were assessed, true surface at the top of the box (TSB),
surface of the box photointerpreted on the orthomosaic (SBPO), and surface of the box
photointerpreted on CHM (SBPCH).

The discrepancies in height and volume stemming from the 3 segmented CHM vari-
ants were ascertained using the terra R-package (R version 4.3.1). This was achieved
by contrasting the documented heights and volumes of the reference boxes against the
predicted values found within each corresponding CHM variant. In a bit to furnish a
numerical evaluation of the fidelity of these CHMs, we computed the MAE.

3. Results
3.1. Optimized Spare Cloud in SfM

The initial application of the SfM algorithm leveraged 36 RGB images, with image
quality scores ranging from 0.81 to 0.85. As a result, none of the images was discarded based
on the quality metric. Nevertheless, 12 duplicate images were identified and subsequently
excluded. The process of image alignment produced an initial sparse cloud consisting of
31,379 tie points, which registered an RMS RE of 1.239 pixels after integrating all the images
(refer to Table 2). The RMSE, gauged using the check points for this unprocessed sparse
cloud, was 4.38 m in the xyz space, 0.53 m in the horizontal (xy) dimension, and 4.35 m in
the vertical (z) direction.

Table 2. Summary of SfM results: raw vs. optimized sparse cloud. (Note: The raw sparse cloud
represents the georeferenced sparse cloud, unfiltered, and excluding duplicated images. The iterative
filtering process is integrated into the optimized sparse cloud. This table includes errors of control
points and check points for both non-optimized and optimized sparse clouds. It also features the Root
Mean Square Error (RMSE) of the linear model between Ground Control Points’ (GCPs) elevation
values and predicted elevation values in both raw and optimized sparse clouds.).

Metrics Raw Sparse Cloud Optimized Sparse Cloud

Photograms (no.) 24 24
Tie points (no.) 31,379 29,545
RMS RE (px.) 1.239 0.583

RMSE control points xy (m) 0.586 0.016
RMSE control points z (m) 4.242 0.004

RMSE control points xyz (m) 4.282 0.017

RMSE check points xy (m) 0.530 0.113
RMSE check points z (m) 4.351 0.076

RMSE check points xyz (m) 4.383 0.137

Elevation RMSE (m) 4.27 0.12

Upon optimizing the sparse cloud, a favorable RE threshold of 0.15 m was established.
This threshold led to the elimination of 5.84% of the tie points but also improved the RMS’s
RE, making it 0.58 pixels. The RMSE of the check points, as assessed on this optimized
sparse cloud, was notably reduced to 0.13 m in the xyz space, 0.11 m in the xy dimension,
and 0.07 m in the z direction (as presented in Table 2).
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The refinement in elevation modeling achieved through the optimization of the sparse
cloud is evident. The elevation values of the 12 Ground Control Points (GCPs) demonstrate
this, with the RMSE of the linear model being reduced from 4.27 m to 0.12 m.

The spatial distribution of reprojection errors (REs) based on optimized tie points is
illustrated using Voronoi tessellations, as shown in Figure 5a. A closer look at the error
distribution reveals variability across the study area, confirming that there is no evident
autocorrelation between the errors of adjacent tessellations.
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(c) Close-up examples of various areas with pronounced reprojection errors, including bare terrains,
shaded regions, and blurry images.

Areas exhibiting significant reprojection errors (>0.5) correspond to regions with
low texture, particularly those of bare terrains, shaded patches, and blurry imagery, as
depicted in Figure 5b. This correlation suggests that external factors, such as environmental
conditions and image quality, might play a role in influencing the precision of reprojected
data. For a more detailed perspective, Figure 5c provides examples of areas where these
errors are pronounced.

3.2. Dense Surface Point Clouds in MVS

We produced a set of six DSPCs and their associated depth maps by pairing two
image resolution options (HQ and UHQ) with three filtering choices (mild, moderate, and
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aggressive). Notably, the time taken to produce depth maps and DSPCs saw a considerable
surge, spanning roughly 3 h for the HQ setting and extending about 10 h for the UHQ con-
figurations. All tasks’ computations were carried out on a standard desktop manufactured
by Lenovo, headquartered in Beijing, China. The desktop is powered by an Intel (R) Core
(TM) i7-8700 CPU @ 3.20GHz processor, supplemented by 32 GB RAM.

In terms of the point count, the DSPCs witnessed a remarkable rise, moving from
3.7 million points under the HQ setting to a hefty 15 million points in the UHQ configura-
tions. Yet, after excluding points with a confidence score beneath 1, these tallies shrank to
an estimated 700,000 and 110,000 points, respectively. For a detailed breakdown, refer to
Table 3.

Table 3. Overview of Dense Surface Point Cloud (DSPC) characteristics based on image quality
resolution (ultrahigh quality (UHQ) and high quality (HQ)) and depth filtering levels (mild, moderate,
and aggressive).

Image Quality Resolution UHQ HQ

Depth Filter Mild Moderate Aggressive Mild Moderate Aggressive

Process time depth filter 9 h 50 m 9 h 44 m 9 h 49 m 2 h 48 m 2 h 48 m 2 h 49 m
Process time DSPC 15 m 15 s 14 m 36 s 14 m 49 s 3 m 48 s 3 m 38 s 3 m 41 s

No. points in DSPC raw 15,122,249 15,033,502 14,966,021 3,725,108 3,707,369 3,694,205
Var. in raw DSPC 100% −0.59% −1.03% −75.37% −75.48% −75.57%

No. of filtered points (confidence < 1) 738,503 683,233 656,298 112,430 103,486 103,077
No. points in filtered DSPC 14,383,746 14,350,269 14,309,723 3,612,678 3,603,883 3,591,128

Upon examining the side and top views showcased in Figure 6, a marked disparity in
the distribution of confidence values becomes evident, directly impacting the density of the
depicted points. This effect subsequently bears implications for the accuracy and granular
detail in the reconstructions of both the shrub zone and a specific reference box, along with
its vicinity.

With a lower confidence threshold set at 1, it is clear that while there is a dense point
representation, it also incorporates points that could be deemed outliers. These outliers
can potentially diminish the model’s accuracy, especially noticeable at the reference boxes’
perimeters (refer to Figure 6a) and at the shrub’s peak elevations (see Figure 6b). Factors
like obstructions or less-than-ideal capture angles, which limit the number of contributing
depth maps, could be the origin of these outlier points.

When the confidence level is increased to 2, there is a noticeable equilibrium between
the removal of outliers and the retention of intricate details of the structures, and this is
especially evident in the shrub area. Yet, as the confidence threshold is further elevated
to levels such as 4, 8, and notably 12, there is a pronounced decrease in the point density.
Even though the top surface of the box benefits from high confidence values due to the
comprehensive coverage from multiple overlapping images, such rigorous filtering results
in a sparser and less detailed portrayal of the structure. This compromise in regard to detail
might not be ideal for endeavors that prioritize high accuracy and meticulousness.

The relationship between the observed and predicted elevation showed a consistent
linearity across all six DSPC versions, as indicated by R2 values ranging from 0.9904 to
0.9914 (refer to Table 4). Elevation discrepancies were minimal, with MAE oscillating
between 55 mm and 59 mm. Furthermore, the ANOVA outcomes revealed no significant
variations between the different DSPC versions or between the HQ and UHQ settings (see
Table 5). The rendered surfaces displayed a striking uniformity, which was reflected by
a standard deviation of the predicted elevations at the reference boxes, fluctuating from
5 mm to 7 mm. It is worth noting the distinct difference in point density between the HQ
and UHQ settings: approximately 500 pts/m2 for HQ, compared to around 2000 pts/m2

for UHQ.
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Table 4. Overview of elevation accuracy and point density in 6 Dense Surface Point Cloud (DSPC)
versions. These versions were generated based on varying image quality resolution (ultrahigh quality
(UHQ) and high quality (HQ)) and depth filter levels (mild, moderate, and aggressive). The table
includes R2 values, Mean Absolute Error (MAE) from regression models comparing GNSS validation
point elevation values to predicted elevations on 14 reference boxes, Standard Deviation, and point
density metrics.

Image Quality
Resolution Depth Filter R2 Elevation

MAE (m) SD (m) Density
(pts/m2)

Mild 0.9914 0.056 0.007 2022.81
UHQ Moderate 0.9907 0.059 0.005 2010.56

Aggressive 0.9911 0.059 0.006 2011.95

Mild 0.9904 0.055 0.006 530.65
HQ Moderate 0.9909 0.056 0.007 544.17

Aggressive 0.9906 0.056 0.006 548.11

Table 5. Analysis of variance (one-way ANOVA) for elevation and point density of reference objects
across different image quality resolution levels (UHQ and HQ) and depth filters (mild, moderate,
and aggressive) for the 6 DSPC versions. Note: * denotes p < 0.05; ** denotes p < 0.01; *** denotes
p < 0.001.

Filters Parameters
Elevation Error (m) Density (pts/m2)

F p-Value F p-Value

Image quality resolution 0.042 0.838 5902 <2 × 10−1 6 ***
Image quality resolution and depth filter 0.009 1 1120 <2 × 10−1 6 ***

In our study, we compared the vertical distribution of the UHQ and HQ clouds, with
both sets processed using the “mild” filtering option, within one of the designated boxes
(namely high box 4). This comparison took place within the blue rectangular segment
illustrated in Figure 7a. As shown in Figure 7b, a distinct contrast was observed. While the
HQ version lacked points at the box´s base, the UHQ version demonstrated the presence
of such points. This marked difference emphasizes the advantage of utilizing coarser reso-
lution settings combined with a minimal depth filter to achieve a more accurate depiction
of the boxes and, subsequently, more exact geometric measurements. Upon examining
the orthomosaic (refer Figure 7a), it becomes clear that shaded textured areas (positioned
antisolar to the boxes) produce elevation point projections with limited reliability. As a
result, the actual box surface within these zones tends to be overrepresented (Figure 7b).
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3.3. Dense Terrain Point Clouds

We produced five distinct DTPC versions for each DSPC by adjusting the maxdist
setting during the vegetation filtering process. These adjustments were set at 1 mm,
2.5 mm, 5 mm, 7.5 mm, and 10 mm, in accordance with Section 2.2.2. Upon analyzing the
linear models for the 30 different configurations, we observed a significant and consistent
correlation. The R2 values, indicative of this relationship, spanned from 0.9985 to 0.9994.
This relationship was established between the elevation measurements sourced from GNSS
validation points and their nearest counterpart in each DTPC (refer to Supplementary
Table S7). It is worth noting that the elevation precision remained impressively high
throughout all versions, as the MAE values fluctuated between a mere 28 mm and 64 mm.

Additionally, a closer look at DTPCs processed under the UHQ settings revealed that
those subjected to the mild filtering option showcase more accurate elevation measurements
than those filtered under aggressive or moderate settings. A discernible trend within the
UHQ variants emerged: as the maxdist filter parameter was augmented from 5 mm to
10 mm, the MAE saw a corresponding rise. This trend suggests an inverse correlation
between precision and point density. An outstanding observation was the elevated point
densities in the UHQ versions when juxtaposed with their HQ counterparts. Yet, when
UHQ versions were subjected to a maxdist filter under 2.5 mm, their point densities were
comparable to the densities seen in the HQ versions. Refer to Figure 8 for graphical
depictions illustrating the MAE elevation precision in tandem with density metrics across
the spectrum of the 30 DTPCs.
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Figure 8. Graphic presentation of elevation accuracy (MAE) for each Dense Terrain Point Cloud
(DTPC) version, accompanied by the metrics (a) grid density and (b) low-point density area, Grouped
according to image quality resolution levels (ultrahigh quality (UHQ) and high quality (HQ)), depth
filter levels (aggressive, mild, and moderate), and maxdist terrain point classification parameters
(1 mm, 2.5 mm, 5 mm, 7.5 mm, and 10 mm).

The DTPC versions processed under HQ settings, combined with a moderate depth
filter and a 1 mm maxdist parameter, displays the most accurate MAE (28 mm). However,
this precision comes at the expense of a notably reduced grid point density, measuring
only 34.6 points/m2 (as detailed in Table S7; Figures 8 and 9a,b). In comparison, the UHQ
version processed with a mild depth filter and a 5 mm maxdist setting outperforms the
former. It achieves a slightly lower MAE (30 mm) while boasting a significantly higher grid
point density (655.49 points/m2). Furthermore, the UHQ version covers only 2.67% of the
area with a low point density (5 points/m2), whereas the HQ version covers 8.05%.
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Figure 9. Visual representation of point resolution metrics for each Dense Terrain Point Cloud (DTPC)
version based on image quality resolution levels (ultrahigh quality (UHQ) and high quality (HQ)),
depth filter levels (aggressive, mild, and moderate), and maxdist terrain point classification parameter
(1, 2.5, 5, 7.5, and 10 mm). (a) Grid density metric. (b) Low-point density area metric. For illustrative
purposes, (c) highlights the discrepancy in terms of spatial distribution of the low-point density area
(<5 pts/m2, indicated in blue (0 value) in the legend) between the DTPC HQ mild 1 mm (red vector)
and UHQ mild 1 mm (yellow vector) versions.

The variation between UHQ and HQ in grid density and the corresponding influence
of the maxdist filter remains consistent, there isn´t a direct correlation when comparing
the percentage of areas with low point density. It´s intriguing to observe that, for each
maxdist setting, the UHQ version consistently encompasses a larger percentage of areas
with low point density than its HQ counterpart. This observation is further corroborated in
Figure 9c, which contrasts the spatial distribution of areas with low point density between
DTPC UHQ (processed with mild filter) and HQ (also processed with mild filter) versions,
both set to a maxdist of 1 mm.

3.4. Digital Surface and Terrain Models

We opted for DSPC and DTPC versions that exhibited high elevation precision com-
bined with notable point density metrics. For this selection, we used the coarsest image
resolution and applied the mild depth filter for the overall processing. Furthermore, for,
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the DTPC, we utilized a maxdist parameter set at 5 mm, laying the groundwork for the
creation of the DSM and DTM.

Statistical analyses between DEMs and the elevation values confirmed by GNSS valida-
tion points demonstrate a compelling linear association. Specifically, the DSM registered an
R2 value of 0.9912, while the DTM had an R2 value of 0.9992; detailed in Table 6). The DSM
yielded an MAE of 52 mm, whereas the DTM was slightly better, with an MAE of 48 mm.
Based on this finding, it is evident that when the dense cloud is processed under UHQ
setting combined with the mild depth filter, it becomes feasible to concurrently produce
the DSM and DTM. Moreover, it allows for the accurate computation of the CHM using
these derived datasets.

Table 6. Analysis of the elevation accuracy of selected DSMs and DTMs, including the estimated
R2 of the linear regression between observed GNSS validation points elevation values and predicted
DSM and DTM elevation values and standard linear regression metrics such as MAE.

DEMs
Image

Quality
Resolution

Depth
Filter

Maxdist
(mm)

Number of
Samples R2 Elevation

MAE (m)

DSM UHQ Mild - 12 0.9912 0.057
DTM UHQ Mild 5 45 0.9992 0.048

3.5. Canopy Height Models: Volume and Height

The benefits of employing high-quality DEMs, sourced from SfM-MVS point interpo-
lation, are manifestly clear when crafting CHMs that faithfully mirror the real 3D configura-
tions of benchmark objects. Figure 10 offers a visual exemplar underscoring the geometric
precision of a CHM fashioned for a specific reference box (High Box 2, as detailed in
Section 2.1.2).
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Figure 10. Three-dimensional visualization of CHM for one of the reference objects (High Box 2
(HB2)). This includes interactive segmentation edited to represent the true surface at the top of the
box (TSB, yellow), the surface of the box photointerpreted on the orthomosaic (SBPO, red), and the
surface of the box photointerpreted on the CHM (SBPCH, gray).

The top facet of the box displays a uniform, smoothed appearance. However, sections
modified via photointerpretation lead to a broadened depiction of the boxes’ authentic
upper surface. This enlargement can be traced back to the interplay of high-contrast
textured pixels on the box´s exterior. Such an interaction can inadvertently skew adjacent,
dimmer pixels, thereby augmenting the raster surface captured in the image.

We also evaluated the quality of the 3D-rendered CHM for the plant species Pteridium
aquilinum (L.) Kuhn and Erica scoparia L. E. arborea L. The examination considered the
canopy surfaces segmented through photointerpretation on both the orthomosaic and
CHM, as depicted in Figure 11.
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ness in these surfaces arises from the lack of projecting points within the canopy, which 
would typically showcase branches and individual leaves with intricate detail. 

Figure 11. Three-dimensional renderings of individual plants from the Dense Surface Point Cloud
(DSPC), photointerpreted vegetation surface on the orthomosaic (VSPO, red segment), and Canopy
Height Model (VSPCH, blue Segment), along with their respective edited segments. (a) Pteridium
aquilinum (L.) Kuhn (13.6 cm Height). (b,c) Erica scoparia L. E. arborea L. (20 and 17 cm Height,
respectively). Sections (a–c) feature segmentations of individual plants VSPO and VSPCH on the
orthomosaic (2 cm spatial resolution) corresponding to field photographs taken from different
viewpoints and scales than the 3D representations.

The 3D reconstruction from the CHM adeptly captured the minute details of the
plants down to the centimeter scale. Nonetheless, the portrayal revealed that the higher-
contrast textures, combined with shadows from the vegetation cover, might exaggerate the
perceived surfaces in comparison to the actual vegetation extent. The evident smoothness
in these surfaces arises from the lack of projecting points within the canopy, which would
typically showcase branches and individual leaves with intricate detail.
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This homogenization introduced “dome” errors that manifest as systematic patterns
across the CHM. To counteract this, we produced varied CHM versions to explore the
potential impact of modifications in the reference boxes’ surfaces on the precision of height
and volume measurements derived from the CHM.

Box plots in Figure 12 showcase the height and volume errors across various CHM
versions. The CHM segmented to match the true box surface (TSB) displayed the smallest
errors. However, as the surface area derived from Photointerpreted segments grew, so did
the magnitudes of errors. The CHM SBPCH showed the most significant errors, followed
closely by the CHM SBPO (Figure 12a,b).
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Figure 12. Distribution of (a) volume errors and (b) height errors for the CHM versions based on three
segments: true surface box (TSB), surface box photointerpreted orthomosaic (SBPO), and surface box
photointerpreted canopy height (SBPCH). All CHMs employed DSM ultrahigh-quality (UHQ) and
mild parameters, with the DTMs used for CHM specified on the X-axis.

Regarding MAE, the CHM TSB version not only displays the smallest height and
volume errors but also boasts impressive accuracy, with a height MAE of 1.2 cm and volume
MAE of 990.3 cm3 (refers to Table 7). However, the extended surface area represented
in the CHM SBPO and CHM SBPCH versions, compared to the CHM TSB, introduces
a heightened level of uncertainty into the height and volume estimations. This, in turn,
compromises the quality of the CHMs segmented through photointerpretation.

Table 7. Summary of height and volume measurement MAE accuracy estimated over the reference
boxes and derived from the Canopy Height Model versions (true surface box (TSB), surface box
photointerpreted orthomosaic (SBPO), and surface box photointerpreted canopy height (SBPCH).

CHM Versions Height MAE (cm) Volume MAE (cm3)

True surface box (TSB) 1.20 909.30
Surface box photointerpreted orthomosaic (SBPO) 1.88 8899.41

Surface box photointerpreted canopy height (SBPCH) 6.43 17,552.44

4. Discussion

This study focused on the application and assessment of an optimized SfM-MVS
workflow to generate DEMs and CHMs within the context of a prescribed burning exper-
iment. The main objectives were (i) to produce high-resolution (2 cm per pixel) DEMs
from RGB imagery sourced from UAVs, while minimizing georeferencing errors in SfM,
3D reconstruction discrepancies in MVS, elevation errors in surface models, and height



Fire 2023, 6, 419 22 of 30

and volume inaccuracies derived from the CHM; and (ii) to evaluate the influence of vari-
ous SfM-MVS processing choices on the final product quality, specifically the DEM and
CHM. Our established workflow (refer to Figure 4) was designed to enhance accuracy in a
manner that the end products would fulfill ecological standards, encompassing factors like
microtopography and vegetation structure. The results suggest that our approach yielded
the highest achievable accuracy and quality. Additionally, this workflow delineates specific
parameters and recommended thresholds that are vital for the successful generation of
surface models. Thus, it is designed to be adaptable and applicable to other research
domains, not just those focused on prescribed burning, but also studies pertaining to crops,
grasslands, and shrublands.

The quality of the generated surface models is influenced by specific environmental
conditions prevalent after the burn and the subsequent gridding of the pilot area. For
instance, variations in ground roughness can make it difficult to differentiate between low
vegetation and the ground itself, as noted by [56]. The structure and density of vegetation
also play a role. Additionally, the modes of image capture, such as flight altitude, overlap,
orientation (nadir), cruising speed, and camera focus, impact model quality. The inherent
limitations of RGB cameras, which do not provide dependable data beneath the canopy,
are further factors to consider. Image issues, such as contrast or saturation and shaded
regions resulting from vegetation cover and reference boxes, can lead to the estimation of
inaccurate elevation data and even result in data gaps due to overexposed or underexposed
areas. These complexities, coupled with the nuances of the different processing options
provided by SfM-MVS, make the applied method’s implementation a challenge and can
potentially affect the quality of the photogrammetric DEM, as noted by [47,49,50].

The SfM-MVS approach introduced in this study has the potential to be used as a
localized fire management tool, allowing for the quality prediction of spatially consistent
fuel resources in response to dynamic factors such as fire, pyric herbivory, and regrowth.

4.1. Optimized Sparse Cloud in SfM

Within the SfM framework, guided by the approach detailed in [50], we generated
an optimized sparse cloud. This formed the basis for the subsequent dense cloud recon-
struction in MVS and the development of orthomosaics. A key component of this process
was the georeferencing phase, which, when combined with iterative filtering, effectively
removed unreliable tie points from the sparse cloud. This synergy reduced bias in RMSE
check points and improved the RMS RE of the optimized sparse cloud. However, achieving
optimal reductions in RMSE check points hinges on maintaining both a uniform spatial
distribution and precision of GCPs, as highlighted in [49].

The optimization of sparse clouds in SfM is crucial for guaranteeing the three-dimen
sional precision and integrity of the model. This step not only removes points exceeding
certain error thresholds but also refines camera positions. The challenge is finding the
right equilibrium; overly stringent criteria could hinder the 3D transformation process by
eliminating excessive individual points. Nonetheless, this optimization is imperative, as it
proactively addresses potential anomalies and discrepancies within the 3D model.

After the optimization process, there is still a residual error, as is evident from an
RMSE of 0.076 m in the vertical (z) direction. This may arise from slight inaccuracies
during the iterative alignment of GCPs in the georeferencing phase [57]. The layout of
the Voronoi diagram, as shown in Figure 5a, suggests that reprojection errors are not
necessarily correlated. In other words, a pronounced error in one area does not imply
similar discrepancies in neighboring tiles. This insight underscores the need to scrutinize
each tile according to its own merit, rather than making assumptions based on adjacent data.
Several elements, like environmental conditions; the quality of images; and the existence
of low-textured regions, such as bare or shaded patches seen in Figure 5c, can impact
the reprojection’s precision. These particular zones can be problematic for texture-based
matching algorithms, thus complicating the 3D reconstruction process [31].
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Adopting this methodology, with a keen focus on sparse cloud optimization, is pivotal
for producing high-caliber 3D reconstructions. Even with its inherent challenges, this
technique offers the promise of stellar outcomes, proactively identifying and mitigating
potential pitfalls and setting the stage for intricate and precise 3D reconstructions.

4.2. Dense Surface Clouds and DSM Generation

The creation of six DSPC versions, each representing unique combinations of image
resolution and depth filter settings within the MVS technique, showcased their effective-
ness in achieving extensive data coverage and accurate elevation measurements (with
MAE values between 55 and 59 mm). Transitioning from the HQ to the UHQ resolutions
significantly amplified both the point density and computational requirements. In our
analysis of 3D reconstruction within reference boxes, stark differences in density became
evident. A prior study [38] highlighted that using coarser image resolution, combined
with more aggressive depth filters, resulted in missing points in the lower canopy and
ground-level vegetation. Therefore, the pairing of UHQ resolution with a mild depth filter
yielded superior geometric measurements. This observation is in line with the findings
from another study [41], where the UHQ setting preserved intricate structural details of
grasses and shrubs. However, challenges arose during image alignment, especially in
shaded areas (positioned away from the sun) and high-contrast zones (areas with direct
solar exposure), leading to unreliable elevation points. Such misalignments caused an
overestimation in the 3D reconstructions of the boxes, introducing systematic errors that
propagate through to the surface models.

By using the “Confidence Filter”, the credibility of a cloud point is gauged by the
number of supporting depth maps: the higher the count, the greater the confidence. By
meticulously balancing filtering against the geometric integrity of our 3D models (as
depicted in Figure 6a,b), we achieved remarkable precision. This is manifested by standard
deviations on box surfaces fluctuating between 6 and 7 mm. A confidence range between 1
and 2 emerges as optimal, blending precision with density and efficiently filtering noise
without compromising crucial 3D details.

While our methodology is rigorously optimized, the undeniable truth is that the
fidelity of depth maps is intrinsically linked to image quality and overlap. For peak
accuracy, it is vital to operate the UAV at lower altitudes, procure images with a GSD under
1 cm/pixel [41,57], maintain drone speeds below 6 km/h, secure a sharp camera focus, and
achieve an image overlap of 85–90%. Ideal conditions would be under cloud-covered skies
with minimal wind. Incorporating oblique and convergent images further refines model
specifics, like canopy branches and leaves [41]. Yet, such enhancements necessitate that we
revisit and thoroughly tweak the flight planning. Thus, the optimal confidence threshold
is a culmination of superior image capture techniques and accurate photogrammetric
software tuning. For upcoming endeavors, assessing the confidence levels utilized in
filtering is imperative, especially when tailored to the unique attributes of the survey area.

The DSM created using UHQ image resolution coupled with the mild depth filter
yielded remarkably accurate elevation measurements, with an MAE of 57 mm, bench-
marked against GNSS readings. This accuracy echoes findings from prior studies, even
when different SfM-MVS methods were used across diverse terrains, such as snow-covered
landscapes [32], deserts [42], and floodplains [46].

4.3. Vegetation Point Filtering and DTM Generation

Effectively filtering vegetation points remains a significant challenge in ensuring high-
quality representation, largely due to technical constraints. The RGB cameras used in this
research struggled to reliably detect ground points beneath the canopy. Factors like ground
roughness and inconsistencies in vegetation distribution and structure further amplify
this challenge [41,42,58,59]. Yet, our employed filtering technique provided adequate data
coverage, attesting to the quality of the DTPCs (with MAEs between 28 to 64 mm, as shown
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in Figure 8 and Supplementary Table S7) and the resulting DTM, which had an MAE of
48 mm.

The quality discrepancies among the various DTPC versions, both in accuracy and
density, were mainly influenced by the maxdist setting combined with the image resolutions.
As maxdist became more stringent and image resolution coarser, the microtopographic
accuracy improved. Yet, this benefit was offset by a reduction in density, resulting in
uncertainty (approximately 10%) in zones with sparse or absent point density. For example,
setting the cell size to 2 m initially eliminated points above shrub canopies. When the
vegetation canopy surpassed this value, as in the case of Quercus Ilex, some points were
mistakenly identified as terrain because their broad canopies (>2 m) mimicked ground
surfaces [56]. A potential solution is to mask tree canopies rather than manually deleting
these erroneous points.

The interplay between maxdist and max-angle thresholds determined which points
were classified as terrain by setting distance and angle constraints relative to the initial
model established by cell size. For areas with small grasses nestled in slight terrain
depressions, a maxdist limit of 5 mm seemed apt to prevent misidentifying grass points
associated with the terrain. Interestingly, even as the terrain point density increased in
the UHQ versions compared to HQ ones, there was not a notable decrease in areas with
low point density. This suggests that the extra terrain points in the UHQ versions were
essentially duplicates of those in the high-density areas of the HQ versions, making them
superfluous and intensifying the computational load.

In constructing our final DTM, we chose a DTPC that demonstrated a low MAE error
of 30 mm and had less than 3% density area. We found that the factors most impacting
microtopographic quality were higher image resolution, use of a mild depth filter, and a
maxdist setting of 5 mm. Our DTM’s accuracy aligns with a previous study by [41], which
adopted an iterative approach to determine optimal filtering thresholds in a semi-arid
shrubland. Their DTMs, benchmarked GNSS measurements, showed MAE values between
−77 mm to 84 mm, adjusting the maxdist from 30 mm to 60 mm. Notably, their highest
accuracy, an MAE of −11 mm, was achieved using UHQ DTPC combined with specific
filtering settings: a 3 m cell size, a 30 mm maxdist, and a 1◦ max. angle. Other research, like
the studies by [40,44], employed the aggressive depth filtering setting to create DTMs from
HQ DTPC but utilized varying settings for non-terrain point filtering. Specifically, [40]
applied a 5 m cell size, 0.1 m maxdist, and 15◦ max. angle, while [44] used a 0.1 m cell size,
a 1 mm maxdist, and the same 15◦ max. angle. The results from [40] indicated a vertical
DTM RMSE of 50 mm in barren regions and as much as 500 mm in areas with shrub cover.
In contrast, [44] did not specify the error margins of their DTMs across diverse grasslands.
Several researchers utilized HQ image resolution paired with mild depth filtering for
DSPC creation, later opting for various techniques for DTPC and DTM formation. As an
example, [33] used the CFS cloth simulation method [60] to obtain a vegetation-exempt
point cloud from a fire-affected Mediterranean region, noting an RMSE xyz DTM of up to
20 mm and densities surpassing 7676 pts/m2. Conversely, [56] derived point clouds from
the ground and produced DTMs via LAS Ground software ArcGIS 10.4.1 (ESRI, Redlands,
CA, USA). Their reported metrics included an RMSE of 21 mm, terrain point densities at
288 pts/m2, and up to 85.5% terrain representations in 1 m cells sizes. Differing from these
methodologies, [36,46] derived the DTM directly from the DSM in vegetation-free terrains,
negating the need for HQ dense cloud filtering. In these cases, the vertical discrepancies
between DTM figures and benchmark data oscillated between 50 mm and 60 mm.

4.4. Height and Volume Estimation from CHM

The methodology demonstrated in this study (refer to Figure 4) highlights the precision
and accuracy of photogrammetric CHM-derived height and volume estimations in a
Mediterranean mountain shrubland, particularly under prescribed burning conditions.
Our analysis found that segmenting areas over the reference boxes significantly impacted
the accuracy of MAE estimates. When using the boxes’ true surface for height and volume
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calculations, the MAE values were impressively precise: for height, MAE = 1.20 cm; and
for volume, MAE = 909.30 cm3.

However, when relying on surfaces segmented and then modified by photointerpre-
tation, a clear overestimation was observed, resulting in a substantial increase in bias (as
seen in Table 7 and Figure 12). This discrepancy is largely due to the evident differences
between the surface areas of the boxes segmented by photointerpretation and their actual
dimensions (illustrated in Figure 10).

We hypothesize that the observed volume overestimation stems from two primary
causes: (i) shadows appearing on the anti-solar side of the boxes, and (ii) image saturation
due to the flat, highly reflective nature of the boxes. Such factors cause the point clouds to
extend beyond the boxes’ true dimensions, thereby inflating their surface estimates. Height
discrepancies mainly originate from the isolated terrain points projected in areas covered
by shrubs (see Appendix B; Figure A1). Specifically, there is a noticeable lack of point
density at the boxes’ bases, leading to a skewed vertical distance between the ground’s
lowest point and the top of the boxes. Despite these challenges, the highest accuracy was
achieved with a CHM segmented by the boxes’ true surface, processed from DEMs using
UHQ image resolution, a mild depth filter, and the maxdist set to 5 mm. Our findings align
with those of [38,61], who reported improved vegetation height accuracy when using a
mild depth filter combined with UHQ image resolution for DSPC creation.

While there is limited research on the quality and applicability of CHMs in prescribed
burning activities, our findings align with prior studies that used SfM-MVS methods to
generate height and volume models for grasslands and shrublands. In one grassland
study [9], the authors reported an MAE of 37 mm when comparing height and volume
model estimates to GNSS measurements. In another study focusing on a grassland alluvial
plain [46], the authors observed an RMSE between 17 mm and 21 mm when comparing
actual and predicted heights across a series of height models. A study in a Patagonian
shrubland [62] introduced a method for estimating height and volume. The authors’
CHM validation showed an RMSE of 27 mm for height and 7000 cm3 for volume, figures
that align with our own results. In a different context, [41] employed CHMs to gauge
aboveground biomass (AGB) from both herbaceous and shrub canopies. They found that
leaf volume linearly correlated with AGB and showed no intercept for both vegetation
types. Moreover, in various grassland studies, CHMs have consistently demonstrated their
efficacy in height estimation [7,35,44,45,58] and have been employed as a precursor step in
AGB modeling [36].

The CHM, derived from the point density of the DSM and DTM in one of our reference
boxes (as shown in Figure 10) and the centimeter-scale plant species, which range from
13 cm to 20 cm in height—specifically, Pteridium aquilinum (L.) Kuhn, Erica scoparia L., and
E. arborea L. (depicted in Figure 11)—is distinctly visible. Although the CHM effectively
captures the overall geometry of the boxes and plants, it falls short in replicating ultra-fine
details like branches and leaves. While the CHM does retain the vegetation’s spatial pattern,
it exhibits domed surfaces, a trend noted in other studies [41,57,63]. The limited visual
detail in the branches and leaves, paired with the consistent dome-shaped surfaces, can
be attributed to shaded textures or contrasts in the images, the depth map quality when
generating the DSPC, or the configuration of the UAV flight mission. The software found it
challenging to accurately represent the canopy’s “real structure” when relying solely on
images taken parallel and directly above (nadir) the ground level (AGL), with a flight height
calibrated for a GSD of 2 cm/pixel. One potential solution could involve incorporating
oblique or converging shots with the nadir image network, aiming for a GSD of less than
1 cm/pixel [41,57]. However, adopting such an approach would require longer flight times,
greater computational resources, and more intricate logistical preparations, all of which
were beyond the ambit of our current study.
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5. Conclusions

Throughout this research, various processing options within the SfM-MVS workflow
were rigorously tested and assessed, leading to marked enhancements in the quality of
surface models. The detailed step-by-step breakdown of the photogrammetric process
showcased in this study aims to be an indispensable guide for future prescribed burning
endeavors, highlighting both the strengths and challenges encountered throughout.

1. The success of 3D reconstruction relies heavily on meticulous tie point filtering and
accurate georeferencing. Factors such as terrain cover and image quality also play a
pivotal role in the SfM process.

2. By increasing the image resolution, the point density and computational demands
were notably amplified. Although this had a minimal impact on the accuracy of the
DSPCs, it showed that, when combined with the use of the “Confidence Filter”, it is
possible to reach the optimum precision and geometric quality in 3D reconstructions.

3. Stricter maxdist settings with coarser resolutions enhanced microtopographic accu-
racy but increased uncertainty in low-density areas and computational load due to
redundant points in coarser resolutions’ image versions.

4. Resulting surface models consistently meet the quality benchmarks across reference
boxes, vegetation coverage, and microtopography, irrespective of spatial scales.

5. Careful review and editing of segmentation are essential, as post-burn conditions and
shaded/high-contrast areas in RGB images can lead to significant overestimations in
CHM height and volume.

Our findings bolster confidence in harnessing drone-captured aerial imagery to craft
authentic surface models. While our focus was on prescribed burning, the potential
applications extend to crop land, grassland, and shrubland modeling.

In essence, our research sheds light on the multifaceted role of drones in fire safety,
encompassing both the technical nuances and broader implications. We aspire for this
contribution to augment the burgeoning discourse on leveraging drone technology in fire
management, while addressing its technical and economic challenges.
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//www.mdpi.com/article/10.3390/fire6110419/s1, The Supplementary Material provides technical
insights into the RGB camera configurations and the UAV flight plan, alongside metrics and coef-
ficients related to sparse cloud and dense cloud quality and optimization. An in-depth analysis of
elevation measurement accuracy across varied scenarios is also featured. Additionally, appendices
addressing methodological aspects and a figure illustrating the impact of a labeling error on derived
models are included. This material complements and supports the findings of the main study.
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Appendix A

The depth map, an 8-bit grayscale RGB image, encodes the distance of objects’ surfaces
from a reference point [64]. In Metashape, depth map information arises solely from over-
lapping image pairs, considering numerous valid tie points established during alignment.
These individual depth maps are amalgamated into a unified map, which then transforms
into data points set within a 3D coordinate system, ultimately forming the dense point
cloud.

Appendix B

A solitary misclassification, inaccurately designated as terrain beneath the shrub
canopy (Figure A1a), induces errors in the DTM, manifesting as “stumps” following the
interpolation of terrain points (Figure A1b). These irregularities are prominent when
contour lines delineate hilly terrains proximal to the erroneous point situated in a flat
expanse devoid of terrain markers. As a result, the inaccuracies extend to the DTM and its
derivative metrics, notably the Terrain Roughness Index (TRI) (Figure A1c). The TRI serves
as a topographical metric, quantifying terrain diversity and pinpointing geomorphological
discontinuities. Ideally, in shrub regions that are void of terrain points and interpolated
using markers beyond the shrub boundary, the surface should predominantly display
minimal roughness, denoted by blue TRI values. Yet, within these confines, we discern
heightened roughness, depicted by cream-hued pixels, correlated to the lone error point and
adjacent terrain markers. It is pivotal to underscore that such discrepancies are sporadic and
seldom compromise the DTM’s overarching precision. On the flip side, these “stump-like”
DTM errors produce noticeable anomalies in the subsequent CHMs (Figure A1d).
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