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Abstract: Redox stress is involved in the aortic aneurysm pathogenesis in Marfan syndrome (MFS).
We recently reported that allopurinol, a xanthine oxidoreductase inhibitor, blocked aortopathy
in a MFS mouse model acting as an antioxidant without altering uric acid (UA) plasma levels.
Hyperuricaemia is ambiguously associated with cardiovascular injuries as UA, having antioxidant or
pro-oxidant properties depending on the concentration and accumulation site. We aimed to evaluate
whether hyperuricaemia causes harm or relief in MFS aortopathy pathogenesis. Two-month-old
male wild-type (WT) and MFS mice (Fbn1C1041G/+) were injected intraperitoneally for several weeks
with potassium oxonate (PO), an inhibitor of uricase (an enzyme that catabolises UA to allantoin).
Plasma UA and allantoin levels were measured via several techniques, aortic root diameter and
cardiac parameters by ultrasonography, aortic wall structure by histopathology, and pNRF2 and
3-NT levels by immunofluorescence. PO induced a significant increase in UA in blood plasma both
in WT and MFS mice, reaching a peak at three and four months of age but decaying at six months.
Hyperuricaemic MFS mice showed no change in the characteristic aortic aneurysm progression or
aortic wall disarray evidenced by large elastic laminae ruptures. There were no changes in cardiac
parameters or the redox stress-induced nuclear translocation of pNRF2 in the aortic tunica media.
Altogether, the results suggest that hyperuricaemia interferes neither with aortopathy nor cardiopathy
in MFS mice.

Keywords: uric acid; aortic aneurysm; Marfan syndrome; allopurinol; oxidative stress; oxonic
acid; hyperuricaemia

1. Introduction

Redox stress (RS) results from the chronic dysfunctional balance between the produc-
tion and elimination of both reactive oxygen and nitrogen species (ROS and RNS; RONS).
RS is largely involved in numerous pathological processes leading to the loss- or gain-of-
function of lipids and proteins and changes in gene expression depending on the main
subcellular location where it occurs [1,2]. With the accompanying cell signalling (growth
factors, kinases), haemodynamics, and extracellular matrix alterations, RS is becoming
increasingly clearly an aggravating driver of both thoracic and abdominal aortic aneurysms,
including MFS syndrome (MFS) [3–8].

MFS is a genetic connective tissue disorder caused by mutations in the fibrillin-1 gene
(FBN1) affecting cardiovascular, ocular, and musculoskeletal systems [9–14]. The aortic root
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aneurysm, with its usual subsequent dissection and rupture, is the principal cause of death
in MFS patients and prophylactic surgical replacement is the main treatment option to
increase life expectancy [15–17]. Nonetheless, current pharmacological treatments with beta-
blockers (atenolol) and angiotensin II receptor type I (ART1) antagonists (losartan; LOS)
have recently provided a minor, yet significant, improvement in aortopathy progression [18].
In any case, new complementary treatment strategies are necessary to achieve a substantial
improvement in slowing or stopping aortopathy progression considering the variety of
molecular mechanisms involved. It is at this point where anti-redox stress agents, such as
resveratrol [19–21], allopurinol [22,23], and cobinamide [24] have recently appeared on the
scene as potential new therapies.

We reported that upregulated NADPH (nicotinamide adenine dinucleotide phosphate)
oxidase 4 (NOX4) aggravates aortic aneurysm progression in both human and mouse MFS
aortic samples, and other investigators have subsequently established specific signalling
pathways mediating this injury [25–27]. In addition to NOX4, nitric oxide synthase [28],
mitochondria [29], endoplasmic reticulum [30,31], and xanthine oxidoreductase (XOR) are
other important sources of ROS in the cardiovascular system [32]. XOR is a complex enzyme
that, concomitantly with uric acid (UA) formation from purine metabolism, also forms ROS
(superoxide and hydrogen peroxide) [33]. XOR also participates in MFS aortopathy [22,34].

In humans and great apes, UA can abnormally accumulate in plasma and some tissues.
However, in rodents, UA is quickly catabolised by uricase to allantoin, which is much
more water-soluble than UA [35]. In humans, allantoin has been suggested as an oxidative
stress biomarker because it is not produced metabolically [36]. Several epidemiological
studies suggest a relationship between elevated serum UA and cardiovascular risk factors.
However, this association remains controversial [37–41]. Thus, UA has a dual role in redox
biopathology [36,38,42,43]. On the one hand, it accounts for as much as 50% of the total
antioxidant capacity of biological fluids in humans [43–45], and it was postulated that
higher UA levels protect against some peroxynitrite and inflammatory-induced Central
Nervous System diseases [46]. On the other, when UA accumulates in the cytoplasm or the
acidic/hydrophobic milieu, it becomes a pro-oxidant, promoting RS [47–49].

UA was found in the aortic walls of human aneurysms and atherosclerotic plaque
arteries [50], and a positive correlation between serum UA levels and aortic dilatation
and dissection has been reported [23,51–54]. Nonetheless, epidemiologic and biochemical
studies on UA formation have demonstrated that it is not only UA itself that leads to a worse
prognosis and increased cardiovascular events but also ROS formed during XOR activity.
Therefore, the resulting combined action of excessive UA and ROS formation along with
enhanced XOR activity could significantly contribute to oxidative stress-linked endothelial
dysfunction and heart failure, perhaps in aortopathies as well [55,56]. Interestingly, the
LIFE (Losartan Intervention for Endpoint reduction) clinical trial demonstrated that LOS
was superior to atenolol in reducing cardiovascular events and mortality in patients with
hypertension [56]. This result was partially attributable to the intrinsic uricosuric effect of
LOS via inhibition of the UA transporter URAT1 [57]. On the other hand, LOS normalised
the aortic dilatation in MFS mice better than beta-blockers based on the rationale that LOS
inhibited ATR1-mediated TGFβ hypersignaling [58]. Considering that Ang II activates
endothelial XOR [59], it is possible that the reparatory effect of LOS on the aortic aneurysm
in MFS mice might also be partially attributable to its uricosuric effect. Moreover, in the
heart and circulatory system, UA also stimulates the production of ROS via the activation
of TGFβ1 and NOX4 [60,61].

Therefore, considering all the above, it might be possible that UA participates, to some
extent, in MFS aortopathy, aggravating it by acting as a pro-oxidant and/or promoting ROS
production or, just the opposite, mitigating aneurysm progression by acting as an antioxi-
dant. Nevertheless, knowing the broad pathological implication of increased plasma UA
levels, we are inclined to think that UA’s effect might be more aggravating than mitigating.
Therefore, this study aimed to evaluate the impact of experimentally induced hyperuri-
caemia in aortic aneurysm progression in a murine model of MFS. Whereas in the observed
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allopurinol-induced blockade of aortopathy, plasma UA levels remained unaltered and its
involvement was initially discarded, this cannot be definitive as, physiologically, UA in ro-
dents is catabolised to allantoin by uricase. Therefore, to study our aim in MFS mice, it was
necessary to generate and maintain increased plasma UA levels long enough to coincide
with aneurysm formation to evaluate its progression. This transient hyperuricaemic model
is feasible utilising uricase inhibitors like potassium oxonate (PO). Our results indicate
that, despite the presence of high plasma UA levels, aortic aneurysm progression in MFS
mice did not change in any way (aggravating or ameliorating), indicating that UA does not
mediate in murine Marfan aortopathy.

2. Results
2.1. Sex Differences in Uric Acid and Allantoin Blood Plasma Levels in MFS Mice

We first measured plasma levels of UA and allantoin in two-month-old male and
female WT and MFS mice (Figure 1), age of the basal start point of subsequent PO treatment
(see Supplementary Figure S1 for a scheme of experimental protocol followed in the study),
and age at which the aneurysm can already be clearly seen in both sexes (Supplementary
Figure S2). There were no differences in basal plasma UA levels between WT male and
female mice. In contrast, there were significant differences between WT and MFS female
mice as well as between MFS male and female mice being significantly higher in the former
(Figure 1A). Plasma allantoin levels behaved almost in parallel with UA, showing significant
sex differences between MFS mice but not between WT and MFS females, most likely due
to the great variability of the measurements (Figure 1B). Considering sex differences in UA
and allantoin plasma levels, we decided to continue working only with males because they
are the most referentially studied sex for aortopathy progression as MFS male patients have
a significantly larger aortic root diameter than female patients. This phenotypic difference
in aortic diameter between males and females is also recapitulated in MFS mice models.
Moreover, male mice show minimal or no oestrogen modulation, which could additionally
impact results in females, and there were no basal differences either in UA or allantoin
plasma levels between WT and MFS animals at the starting point of the study.

2.2. Potassium Oxonate Transiently Increased Blood Plasma Levels of Uric Acid Both in WT and
MFS Mice

Unlike humans and higher primates, rodents quickly catabolise UA to allantoin, which
makes it difficult to study the impact of UA on the onset and/or progression of cardiovas-
cular diseases using murine models. This problem can be transiently overcome with the
administration of uricase inhibitors. Oxonic acid is the most efficient chemical inhibitor
of uricase, administered as potassium oxonate (PO). Therefore, to study the impact of UA
on MFS aortopathy and cardiopathy, we next generated a MFS murine model of hyperuri-
caemia with regular injections of PO. PO was administered to two-month-old WT and MFS
mice for a period of 4, 8, and 16 weeks until three, four, and six months of age, respectively
(Supplementary Figure S1). After four weeks of PO treatment, plasma UA levels increased
significantly in both male WT and MFS mice (PO treatment; p = 0.0016), their respective
increases being highly similar and, therefore, not significant between them (interaction
genotype/treatment p = 0.9737) (Figure 2A). Strikingly, plasma allantoin levels exhibited
highly similar behaviour to UA, being statistically significant for PO treatment (p ≤ 0.0001)
but not for the interaction genotype/treatment (p = 0.2966) (Figure 2B). Some treated and
untreated WT and MFS animals were euthanised for histopathological analysis of aortae
(see below) and the rest continued PO treatment for 4 and 12 weeks more, receiving a
total of 8 and 16 weeks of PO treatment, the mice reaching the age of four and six months,
respectively (Supplementary Figure S1). Note that eight-week PO treatment maintained
high plasma levels of both UA and allantoin compared with untreated male mice, which
only reached statistical significance in WT mice, most likely due to the large variability
of values obtained in the other experimental groups (Supplementary Figure S3A,B). Fol-
lowing a further eight weeks of PO administration in these mice (16 weeks of treatment),
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UA and allantoin plasma levels showed no differences between treated and untreated
animals, regardless of the genotype (Supplementary Figure S4). Therefore, the PO-induced
hyperuricaemia in WT and MFS mice is transient but with an effective temporal window of
eight weeks after PO injection (from two to four months of age mice), which, nonetheless,
is long enough to evaluate the potential cardiovascular impact on both WT and MFS mice.
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Figure 1. Basal uric acid and allantoin blood plasma levels in male and female WT and Marfan syn-
drome mice. (A) Uric acid and (B) allantoin plasma levels in two-month-old WT and MFS mice 
(males and females). Results are the mean ± SEM. Statistical tests: Kruskal–Wallis, Dunn’s post hoc. 
* p ≤ 0.05, ** p ≤ 0.01; **** p ≤ 0.0001. 
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(males and females). Results are the mean ± SEM. Statistical tests: Kruskal–Wallis, Dunn’s post hoc.
* p ≤ 0.05, ** p ≤ 0.01; **** p ≤ 0.0001.
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Figure 2. Uric acid and allantoin plasma levels following four weeks of potassium oxonate treatment.
Two month-old male WT and MFS mice were treated for four weeks with potassium oxonate
(PO); subsequently, uric acid (A) and allantoin (B) plasma levels were determined. Results are the
mean ± SEM. Statistical test: Two-way ANOVA. ** p ≤ 0.01; **** p ≤ 0.0001.

2.3. Aortopathy in MFS Mice Progressed Regardless of the Potassium
Oxonate-Induced Hyperuricaemia

Just before blood extraction to measure UA and allantoin levels in each PO-treated
and untreated WT and MFS mouse, we analysed the aortic root diameter and cardiac
parameters by 2D echocardiography. In three-month-old mice with four weeks of PO
treatment, the aortic root diameter in MFS mice exhibited the characteristic aneurysm
(WT/PO– vs. MFS/PO–) but showed no differences with PO treatment (WT/PO+ vs.
MFS/PO+) (Figure 3). Similar results were observed when some WT and MFS animals
continued receiving PO for an additional 4 or 12 weeks, reaching statistical differences
between them. As expected, untreated MFS mice tended towards aortic dilatation compared
with untreated WT mice, but not reaching significance due to the low number of analysed
mice (Supplementary Figures S5 and S6).
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Figure 3. Aortic root diameter in WT and MFS mice following four weeks of potassium oxonate
treatment. The aortic root diameter was measured via 2D echocardiography in two-month-old
male WT and MFS mice treated for four weeks with potassium oxonate (PO). An identified outlier is
indicated with a red circle but was not included in the statistical analysis. Results are the mean ± SEM.
Statistical test: Two-way ANOVA; genotype, **** p ≤ 0.0001.

The echocardiographic analysis of different cardiac parameters (IVSD, LVPWD, LVDD,
and LVDS) did not show any significant difference between WT and MFS mice, regardless
of the length of PO treatment (Table 1).

Table 1. Cardiac parameters measured by 2D ultrasound in WT and MFS treated (+) or not (-) with
potassium oxonate (PO; in weeks). (------ means starting point where PO was not administered yet).

WT WT WT WT MFS MFS MFS MFS

Potassium
Oxanate

(PO)

Mice Age
(Months)/PO

(Weeks)
IVSD LVPWD LVDD LVDS IVSD LVPWD LVDD LVDS

------ 2 m/0 w 0.82 ± 0.01 0.79 ± 0.01 1.98 ± 0.02 1.27 ± 0.03 0.81 ± 0.01 0.77 ± 0.01 1.98 ± 0.03 1.25 ± 0.03
- 3 m/4 w 0.80 ± 0.02 0.76 ± 0.03 2.07 ± 0.11 1.27 ± 0.04 0.80 ± 0.02 0.78 ± 0.02 2.06 ± 0.04 1.36 ± 0.04
- 4 m/8 w 0.87 ± 0.04 0.95 ± 0.09 1.88 ± 0.05 1.29 ± 0.08 0.95 ± 0.09 0.95 ± 0.09 2.31 ± 0.19 1.39 ± 0.05
- 6 m/16 w 0.87 ± 0.03 0.85 ± 0.03 2.05 ± 0.07 1.40 ± 0.04 0.87 ± 0.01 0.83 ± 0.02 2.01 ± 0.03 1.32 ± 0.01
+ 3 m/4 w 0.83 ± 0.01 0.80 ± 0.002 2.03 ± 0.05 1.38 ± 0.02 0.82 ± 0.01 0.81 ± 0.01 2.07 ± 0.06 1.41 ± 0.04
+ 4 m/8 w 0.84 ± 0.04 0.93 ± 0.02 2.21 ± 0.19 1.43 ± 0.07 1.01 ± 0.05 1.06 ± 0.02 2.52 ± 0.07 1.71 ± 0.08
+ 6 m/16 w 0.79 ± 0.01 0.80 ± 0.02 2.11 ± 0.06 1.35 ± 0.04 0.79 ± 0.02 0.75 ± 0.03 2.00 ± 0.06 1.34 ± 0.02

IVSD: interventricular septum diameter; LVPWD: left ventricle posterior wall diameter; LVDD: left ventricle
diameter in diastole; LVDS: left ventricle diameter in systole.

2.4. The Characteristic Structural Disarray of MFS Aorta Persisted following Potassium
Oxonate-Induced Hyperuricaemia

We next analysed the structural organisation of the aortic wall in three- and six-month-
old mice who received PO treatment for 4 and 16 weeks, respectively
(Supplementary Figures S1 and S4A,B). The tunica media of MFS aorta showed numerous
characteristic ruptures of elastic laminae, whose extension and number were rather variable
but always greater than in WT aorta. The large number of elastic breaks observed in
PO-treated MFS mice aortae was indistinguishable from untreated MFS animals, regardless
of the weeks of treatment (Figure 4A, 4 weeks PO and 3 months of age mice; Figure 4B,
16 weeks PO and 6 months of age mice).
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Figure 4. Aortic wall organisation in WT and MFS mice treated with potassium oxonate. Representa-
tive light microscope images of elastin histological staining (elastin Verhoeff-Van Gieson) of aortic
paraffin sections of the tunica media of the ascending aorta from WT and MFS mice treated or not
with potassium oxonate (PO) after 4 weeks (A) and 16 weeks (B). The quantitative analyses of aortic
elastic breaks are also shown beside their respective images. Results are the mean ± SEM. Statistical
analysis: Kruskal-Wallis, Dunn’s post hoc, * p ≤ 0.05.

2.5. Potassium Oxonate-Induced Hyperuricaemia Does Not Modify Redox Stress Markers Changes
Occurring in the MFS Aortic Media

The nuclear factor erythroid 2-related factor 2 (NRF2) is a key transcription factor
that regulates the expression of several antioxidant defence mechanisms. Oxidative stress
triggers its phosphorylation (pNRF2), being subsequently translocated to the nucleus to
activate the expression response of physiological antioxidant enzymes. Thus, we next
evaluated the nuclear presence of pNRF2 in aortic paraffin sections from WT and MFS
mice treated with PO for 4 and 16 weeks (Figure 5A,B, respectively). Aortic media showed
a higher presence of nuclear pNRF2 in MFS than in WT smooth muscle cells, as previ-
ously observed [22], which is demonstrative of the MFS aorta suffering redox stress and
cells consequently triggering the endogenous antioxidant response. However, after the
administration of PO, this response did not change (Figure 5).
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Figure 5. pNRF2 levels in WT and MFS mice treated with potassium oxonate. Representative images
and quantitative analysis of the nuclear translocation of the phosphorylated form of NRF2 in VSMCs
of the tunica media of WT and MFS mice treated with potassium oxonate (PO) for 4 weeks (A) and
16 weeks (B) (mice aged 3 and 6 months, respectively). Insets show magnified images of the indicated
boxes in the tunica media. L, lumen. Bar, 100 µm. Statistical tests: Kruskal-Wallis and Dunn’s
multiple comparison tests. * p ≤ 0.05.

Peroxynitrite and 3′-nitrotyrosine (3-NT) products are reliable redox stress biomarkers
occurring in the aortic wall of MFS aorta [22,25]. Therefore, we next proceed to the im-
munohistochemical evaluation of 3-NT levels in the tunica media of WT and MFS aortae
treated with PO. PO did not alter the characteristic increased aortic media staining for 3-NT
(Supplementary Figure S7).

2.6. Blood Pressure Is Not Perturbed by Potassium Oxonate Administration

We also evaluated whether PO treatment might affect systolic blood pressure. This
was measured after eight weeks of treatment (four-month-old mice) and presented no
alteration (Supplementary Figure S8).

3. Discussion

In humans, the role of UA associated with oxidative stress and cardiovascular dis-
eases is under debate. Most evidence comes from epidemiologic studies suggesting that
increased serum levels of UA are a risk factor for cardiovascular diseases, knowing that
oxidative stress is a relevant pathological mechanism in their pathogenesis and/or progres-
sion [62,63]. Allopurinol, a specific inhibitor of XOR that reduces serum levels of UA in
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humans [55], becomes protective in some cardiovascular diseases where oxidative stress is
persistent (e.g., ischemia-reperfusion heart injury) [64]. Recently, we reported that allopuri-
nol halts aortic aneurysm in a murine model of MFS, acting as an antioxidant both directly
(ROS scavenger and XOR inhibitor) and indirectly by reducing the expression of metallo-
proteinase 2 and NADPH oxidase Nox4. We also realised that this antioxidant action was
independent of UA as plasma levels did not change throughout several treatments [22].

In humans, UA is considered the main antioxidant of the organism and, thus, it has
been proposed as a potential treatment for some pathologies that affect the central nervous
system [46,65]. However, this approach in humans cannot be easily conducted and, there-
fore, it is necessary to first test this hypothesis in animal models. Nevertheless, in rodents,
purine catabolism does not end with UA formation and, consequently, in its potential
pathological accumulation (hyperuricaemia) either in serum or tissues. Hence, to study the
relationship between UA and aortic aneurysm pathogenesis in a murine MFS model, we
had to experimentally produce hyperuricaemia with oxonic acid, an inhibitor of uricase
activity. Despite this intrinsic limitation, some hyperuricaemic mouse models have been
generated that inhibit uricase, complemented or not with purine metabolism precursors
where XOR is determinant for UA formation [66–69]. This pharmacological approach has
been successfully used to study the impact of UA on cardio- and cerebrovascular diseases
but not aortopathies [70,71].

We have here generated a hyperuricaemic male MFS mouse model following PO ad-
ministration, and the main results obtained were the following: (i) Despite aortic aneurysm
occurring in MFS mice, their plasma UA levels are not significantly different from WT
animals; (ii) oxonic acid, supplied as PO, produces a transient but significant elevation in
plasma UA levels lasting long enough to evaluate its impact on aortopathy and cardiopathy
progression in the MFS mouse model; (iii) PO-induced UA accumulation in blood plasma
did not have any impact on either aortic aneurysm progression or the cardiac parameters
examined in the MFS mouse model; and (iv) PO-induced hyperuricaemia does not modify
the characteristic cellular anti-redox stress response occurring in MFS aortic media revealed
by the nuclear translocation of pNRF2 in aortic vascular smooth muscle cells (VSMCs).

One striking observation was that plasma allantoin levels did not decrease in parallel
with the increase in UA given that PO inhibits uricase activity. We think that this can be
explained by the known non-enzymatic transformation of UA into allantoin. Thus, UA can
react with anion superoxide, become oxidised and convert into allantoin. Likewise, UA can
also be transformed into allantoin under alkaline conditions [72]. The overaccumulation of
UA might explain the high allantoin levels.

Despite evidence supporting a role for RS in human aortic aneurysms, a clear relation-
ship between systemic RS, serum UA levels, total antioxidant capacity, and ascending aortic
aneurysms has not been definitively established. Nonetheless, serum UA concentrations
and total antioxidant capacity have been reported to be associated with aortic dilatation in
humans, suggesting serum UA levels as an indicator of oxidative stress [23,50,51,73–75].
However, this conclusion has not been confirmed in our PO-induced hyperuricaemic MFS
mouse model. Of interest, in a very recent study [23] published while we were preparing
our manuscript, a highly similar protective effect of allopurinol in the same MFS mouse
model used here and in our previous study was reported [22]. Strikingly, they showed
higher plasma UA levels in MFS mice. Our result, which contradicts their reported observa-
tions, is not easy to explain given that in our studies [22] and this study, we obtained highly
similar plasma UA levels measured using two different techniques (chromatographic tech-
niques in [22] and Spinreact Uric Acid kit in this study). Of note, we noticed that plasma UA
values differed significantly depending on the blood extraction method used (infraorbital
or cardiac punctures) being abnormally much higher when extracted from the heart (our
unpublished observations), which is the source of measured plasma UA in [23].
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Limitations

We are aware that our study has some limitations. Firstly, the use of rodents to study
the impact of UA, whose results are not easily translatable to humans because rodents very
rarely accumulate UA. Secondly, we cannot exclude that despite the absence of any effect
on aortopathy progression in hyperuricaemic MFS mice, there could be other alterations
associated with hyperuricaemia such as kidney damage [76,77] or phenotypic switching
of VSMCs [78,79]. Third, the smaller sample size of the control groups relative to the
PO-treated ones limits the statistical power of the comparison. Fourthly, we only studied
male mice as they have a greater aortopathy penetrance than females. Therefore, we cannot
discard that females could show a different behaviour. Fifth, the use of PO generates a
transient hyperuricaemic mouse model which limits the study of any potential long-term
effects of hyperuricaemia. In this case, the generation of uricase (Uox)-deficient MFS mice
would be a more suitable model.

4. Materials and Methods
4.1. Chemicals and Reagents

Sodium carboxy methyl cellulose (0.5%; CMC-Na) (C5678 Sigma-Aldrich, 28006 Madrid,
Spain) was prepared with sterile physiological saline as the solvent for potassium oxonate
(PO; 156124 Sigma-Aldrich). Potassium oxonate was suspended in CMC-Na. The injected
dose was 250 mg/kg and adjusted to the weight of each animal.

4.2. Mice, Experimental Design, and Study Approval

Male MFS mice with a fibrillin-1 mutation (Fbn1C1041G/+) (hereafter, MFS mice) were
purchased from The Jackson Laboratory (B6.129-Fbn1tm1Hcd/J; Strain #012885/Common
name: C1039G; Bar Harbor, ME 04609, USA). MFS and sex- and age-matched wild-type
littermates (WT mice) were maintained in a C57BL/6J genetic background. All mice were
housed according to the University of Barcelona’s institutional guidelines (constant room
temperature at 22 ◦C, controlled environment 12/12-h light/dark cycle, 60% humidity and
ad libitum access to food and water). WT and MFS mice were randomly divided into four
experimental groups: WT and MFS mice treated with CMC-Na (vehicle), and WT and MFS
mice treated with PO. All four groups received the treatment by intraperitoneal injection of
the corresponding reagent (CMC-Na: 0.5%; PO: 250 mg/kg) every 48 h (Supplementary
Figure S1). Animal care and colony maintenance were carried out according to European
Union (Directive 2010/63/EU) and Spanish guidelines (RD 53/2013) for the use of exper-
imental animals. Ethical approval was obtained from the local animal ethics committee
(CEEA protocol approval number: 357/22).

4.3. Uric Acid and Allantoin Analysis in Blood Plasma

Plasma uric acid levels were measured using Spinreact (model Spinlab 100) with the
Spinreact Uric Acid kit (SP41001). We followed the manufacturer’s instructions.

For the determination of allantoin in blood plasma, an adapted protocol was used,
as previously described [80]. Briefly, plasma (60 µL) was deproteinised with acetonitrile
(25 µL). Samples were centrifuged (5 min, 12,000× g). Ten µL of supernatant was injected
into the HPLC system. Separation of allantoin was performed on a Synergy Hydro-RP
C-18 reversed-phase column (250 × 4.6 mm I.D., 5 m particle size) from Phenomenex (Tor-
rance, CA, USA). Allantoin elution (at 4 min) was performed with potassium dihydrogen
phosphate (10 mM, pH 2.7) and acetonitrile (85:15) with ultraviolet detection (at 235 nm).

4.4. Echocardiography

Two-dimensional transthoracic echocardiography was performed in all animals under
1.5% inhaled isoflurane. Each animal was scanned 12–24 h before sacrifice. Images were
obtained with a 10–13 MHz phased array linear transducer (IL12i GE Healthcare, Madrid,
Spain) in a Vivid Q system (GE Healthcare, Madrid, Spain). Images were recorded and later
analysed offline using commercially available software (EchoPac v.08.1.6, GE Healthcare,
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Madrid, Spain). Proximal aortic segments were assessed in a parasternal long-axis view.
The aortic root diameter was measured from inner edge to inner edge in end-diastole at
the level of the sinus of Valsalva. Left ventricle (LV) dimensions were assessed in 2D mode
in a parasternal long-axis view at both end-diastole (LVDD) and end-systole (LVSD). The
interventricular septum and posterior wall thickness at end-cardiac diastole were also
measured. All echocardiographic measurements were carried out in a blinded manner by
two independent investigators with no knowledge of genotype or treatment.

4.5. Histopathology

Paraffin-embedded tissue arrays of mice aortae from different experimental sets were
cut into 5 µm sections. Elastic fibre ruptures were quantified by counting the number of
large fibres breaks in tissue sections stained with Verhoeff–Van Gieson. Breaks larger than
20 µm were defined as evident large discontinuities in the normal circumferential continuity
(360◦) of each elastic lamina in the aortic media [81]. They were counted along the length of
each elastic lamina in four different representative images of three non-consecutive sections
of the same ascending aorta. Three sections per condition were usually studied, spaced
10 µm apart (two sections). All measurements were carried out in a blinded manner by two
different observers with no knowledge of genotype and treatment. Images were captured
using a Leica DMRB microscope (40× oil immersion objective) equipped with a Leica
DC500 camera and analysed with Fiji ImageJ Analysis software.

4.6. Immunofluorescence Staining

For 3-NT and pNRF2 immunofluorescence staining, paraffin-embedded aortic tissue
sections (5 µm thick) were deparaffinised and rehydrated prior to unmasking the epitope.
To this aim, tissue sections were treated with a retrieval solution (10 mM sodium citrate,
0.05% Tween, pH 6) for 30 min in a steamer at 95 ◦C. Next, sections were incubated
for 20 min with ammonium chloride (NH4Cl, 50 mM, pH 7.4) to block free aldehyde
groups, followed by a permeabilization step (0.3% Triton X-100; 10 min), rinsed three times
with PBS and then incubated with 1% BSA in PBS for 2 h at room temperature before
overnight incubation in a humidified chamber at 4 ◦C with the corresponding primary
antibody, anti-3-NT (1:200; Merck Millipore 06-284, 28006 Madrid, Spain) or anti-pNRF2
(1:200; Abcam ab76026, Cambridge, CB2 0AX, UK). On the next day, sections were rinsed
with PBS followed by 60 min incubation with the secondary antibody goat anti-rabbit
Alexa 647 (1:1000, A-21246, Invitrogen, TermoFisher Scientific, Waltham, MA USA 02451).
Sections were counterstained with DAPI (1:10,000) and images were acquired using an
AF6000 widefield fluorescent microscope. For quantitative analysis, four areas from each
corresponding tissue section were quantified with ImageJ software (version 1.53). All
measurements were carried out in a blinded manner by two independent investigators.

4.7. Blood Pressure Measurements

Systolic blood pressure measurements were acquired by the tail-cuff method and
using the Niprem 645 non-invasive blood pressure system (Cibertec, Madrid, Spain). Mice
were positioned on a heating pad and all measurements were carried out in the dark to
minimise stress. All animals were habituated to the tail cuff by daily training one week
prior to the final measurements. Then, the systolic blood pressure was recorded over the
course of three days. For quantitative analysis, the mean value of three measurements per
day was used per animal. All measurements were carried out in a blinded manner with no
knowledge of genotype or experimental group.

4.8. Statistical Analysis

Data were presented as bars showing the mean ± standard error of the mean (SEM).
Firstly, normal distribution and equality of error variance data were verified with Kolmogorov–
Smirnov/Shapiro–Wilk tests and Levene’s test, respectively, using the IBM SPSS Statistics
Base 22.0 before parametric tests were used. Differences between three or four groups
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were evaluated using one-way or two-way ANOVA with Tukey’s post hoc test if data were
normally distributed and variances were equal, or the Kruskal–Wallis test with Dunn’s post
hoc test if data were not normally distributed. A value of p ≤ 0.05 was considered statistically
significant. Data analysis was carried out using GraphPad Prism software (version 9.1.2;
GraphPad Software, La Jolla, CA, USA). Outliers (ROUT 2%, GraphPad Prism software 8.0
were removed before analysis.

5. Conclusions

Based on our findings, we can conclude that, unlike ROS, UA accumulation seems not
to be instrumental in the aortopathy and cardiopathy of a murine model of MFS, at least
once the aneurysm is already established and in male mice.
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