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ABSTRACT
Tuning the properties of magnetic materials by voltage-driven ion migration (magneto-ionics) gives potential for energy-efficient, non-
volatile magnetic memory and neuromorphic computing. Here, we report large changes in the magnetic moment at saturation (mS) and
coercivity (HC), of 34% and 78%, respectively, in an array of CoFe2O4 (CFO) epitaxial nanopillar electrodes (∼50 nm diameter, ∼70 nm pitch,
and 90 nm in height) with an applied voltage of −10 V in a liquid electrolyte cell. Furthermore, a magneto-ionic response faster than 3 s and
endurance >2000 cycles are demonstrated. The response time is faster than for other magneto-ionic films of similar thickness, and cyclabil-
ity is around two orders of magnitude higher than for other oxygen magneto-ionic systems. Using a range of characterization techniques,
magnetic switching is shown to arise from the modulation of oxygen content in the CFO. Also, the highly cyclable, self-assembled nanopillar
structures were demonstrated to emulate various synaptic behaviors, exhibiting non-volatile, multilevel magnetic states for analog computing
and high-density storage. Overall, CFO nanopillar arrays offer the potential to be used as interconnected synapses for advanced neuromorphic
computing applications.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0147665

INTRODUCTION

Research in digital memory is growing with the increase in
popularity of artificial intelligence, machine learning, the Inter-
net of Things, and Big Data. This, in turn, has caused an energy
demand that has triggered innovation toward non-volatile mem-
ory technologies that do not require a continuous power supply.
Magnetic memory is a promising non-volatile technology for stor-
ing data, but conventional magnetic memory concepts use electrical

current to control magnetic properties (i.e., through electromag-
nets or spin–torque effects), and this can lead to significant energy
loss by heat dissipation.1,2 On the other hand, magnetoelectric
(ME) devices, where electric fields are used to tune the magnetism,
could offer energy-efficient non-volatile memory.3 However, no
truly practical magnetoelectric devices for memory yet exist.

Magneto-ionic devices are a type of magnetoelectric system
where magnetism is controlled by electric-field-driven ion motion.
Ions that have been commonly explored include O2−, H+, Li+, or
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N3−,4–7 and they are introduced into the magnetic materials either
from a solid or from a liquid electrolyte.8–13 A high electric field at
a magnetic material electrode–electrolyte interface (resulting from
the formation of the electrical double-layer, EDL) acts as the driving
force for ion migration.14

As magneto-ionic systems are voltage-controlled rather than
current-controlled, they are energy efficient with potential writing
energies as low as ∼10−3 fJ = 1 aJ.5,15,16 This is 102 times lower
than standard complementary metal oxide semiconductor devices
(CMOS) and 105 times lower than magnetic-based devices like
magneto-resistive random-access memories or hard disk drives.17

Magneto-ionic systems also enable non-volatile, and reversible mod-
ulation of magnetic anisotropy, coercive field,18 exchange bias
field,19 and magnetic easy axis.20 The high tuning capability of the
different parameters makes magneto-ionic systems suitable not only
for ultralow power magnetic memory18,21 but also for a range of
other energy-efficient devices,22 including devices for neuromorphic
computing.23 Here, biological synaptic functions can be emulated
in the current–voltage response behavior.24 Thus, they show simi-
lar behavior to the biological brain where ion motion is triggered
by electrical stimuli in liquid media.25–27 Compared to memristive
synapses (which use voltage-induced changes of electric resistivity to
potentiate or depress post-synaptic signals), magneto-ionic synapses
operate through the induced changes of magnetization (a vector) to
modulate synaptic weight. Since magnetization is a vector (whereas
resistivity is a scalar), this adds a new degree of freedom for the
control of the neuromorphic system.1,22,28

A range of configurations have been studied to optimize
magneto-ionic effects, with planar films and bilayers being the most
common.29 However, porous polycrystalline films (e.g., CFO) have
also been studied to maximize the surface area to volume ratio
so that ion transfer between liquid or solid electrolytes8–11,30–34 is
enhanced. Remarkably, studies on magneto-ionic effects in arrays of
patterned or self-assembled dots or islands are rather scarce.32,34–36

If magneto-ionics could be demonstrated to be applicable to dense,
high surface area nanopillar arrays, the phenomenon could be used
in patterned magnetic recording media or as an array of intercon-
nected synapses.37–39 The non-volatility and energy efficiency of
the magneto-ionic effect in the nanopillar arrays could be a key
enabler for next-generation data storage,1,22,28 provided durability,
cyclability, and magnitude of the magnetic response were satisfied
also.

While there are obvious benefits of magneto-ionics as a con-
cept, they currently have some practical limitations. Since ion migra-
tion is a thermally activated process, the slow rates of field-assisted
oxygen ion migration at room temperature mean that switching
times are proportionately slow. The times to switch magnetic states
range from 10−5–105 s.5,6,40 Operation above room temperature
increases magneto-ionic rates but this is not practical for most
electronics.5,16 The cyclability of magneto-ionic devices is another
challenge with an upper limit of >10 000 cycles, which has been
demonstrated only with H+ insertion at Co/GdOx interface;6,40 how-
ever, this has the limitation of requiring a reliable and constant
source of H+ from humid air. Cyclability at room temperature with
more stable O2− driven magneto-ionics rarely exceeds 100.13 Here, a
key limitation is the degradation of the chemical structure, which
is modified upon cycling and often causes phase transitions and
chemical reduction that are not always fully reversible.5,41

Herein, we propose that higher cyclability and large magneto-
ionic effects are possible by implementing three key materials fea-
tures: (a) a single-crystal-like epitaxial material, (b) a nanostructured
material, and (c) a magnetic oxide material with intrinsic oxygen
ions. The epitaxial material is less defective than polycrystalline
material and should uniformly enhance oxygen diffusion in and
out during voltage application. A nanostructured material offers a
higher surface to volume ratio than non-nanostructured material
and thus should allow a larger fraction of the material to have its
oxygen content changed upon voltage application, leading to large
magneto-ionic effects. A magnetic oxide (as opposed to a metal)
could be chosen, which does not undergo a phase change or large
volume change upon voltage application, offering the chance of bet-
ter cyclability. As oxygen ions are readily stored in an oxide material,
there is also no need for an additional source/drain layer.

We show magneto-ionic switching of CoFe2O4 nanopillar elec-
trodes, with dimension ∼50 nm, pitch ∼70 nm, and height ∼90 nm,
from a propylene carbonate liquid electrolyte. We observe large
changes in the magnetic moment at saturation, mS, and coercivity,
HC. As far as known, the cyclability of the switching is supe-
rior to previously reported oxygen magneto-ionic studies.40,42 The
magnetic switching is shown to arise from oxygen content modula-
tion in the CFO, as confirmed by x-ray photoelectron spectroscopy
(XPS), x-ray diffraction (XRD), and conducting atomic-force micro-
scopy (C-AFM). We also demonstrate nanopillar-based synaptic
devices and mimicked synaptic functionalities for neuromorphic
computing applications. The synaptic device exhibits non-volatile
and multilevel magnetic states, which are promising for analog and
high-density data storage, offering promise for future computing in
the form of interconnected arrays of synapses.

EXPERIMENTAL METHODS

Self-assembled vertically aligned nanocomposite (VAN) films
of CFO +MgO, in a 50:50 molar ratio (precursor materials to create
the nanopillar films), were grown by pulsed laser deposition (PLD)
on 0.5 wt. % Nb-doped SrTiO3 (Nb:STO) (001) substrates at 770 ○C.
A KrF laser (λ = 248 nm) at a fluence of 2 J cm−2 and a repetition rate
of 5 Hz was used. The PLD targets for the depositions were formed
using solid-state sintering from powders of cobalt oxide (Co3O4)
and iron oxide (Fe3O4), and for the VAN target, magnesium oxide
(MgO) was also added. Targets were sintered at 1250 ○C for 6 h in
air.

Reference epitaxial planar CFO films were also grown. Here,
the substrate temperature was 625 ○C, which is lower than the VAN
film where the temperature was moderately higher to enable suffi-
ciently distinct nanopillars to form. To achieve the CFO nanopillar
structure, the MgO was then wet chemically etched from the VAN
structure by submerging the sample in 10 wt. % ammonium sul-
fate at 60 ○C for 2 h. The sample was continuously sonicated during
the etching to ensure the full removal of MgO from the VAN
structure.

The magneto-ionic experiments were conducted at room tem-
perature on both the planar and nanopillar films using a simple
electrochemical cell as shown schematically in Fig. 1. The cell was
designed to be able to do operando magnetic measurements in
the VSM. An area of the film was scratched to make the electric
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FIG. 1. Schematic of electrochemical cell
used for the magneto-ionic measure-
ments by VSM in situ. The cell was
filled with a liquid electrolyte (propylene
carbonate with traces of dissolved Na+

and OH− species). The CFO film was
submerged in the liquid. The substrate,
Nb:STO with CFO nanopillars, was used
as the working electrode, while a Pt wire
acted as the counter electrode (shown
in the inset). The cell vibrated vertically
on a sample holder in the VSM while
measurements were taken.

connection to the sample substrate. Contacts were made by indium
welding a Cu wire to the exposed substrate. A Pt wire was used as
the counter electrode, which was then held at a constant distance
from the sample using a hot-melt polymer adhesive. The sample
was then placed in a small Eppendorf tube and filled with propy-
lene carbonate (PC) treated with metallic sodium to remove any
traces of water, which left a small amount of Na+ and OH− ions
(≈5 ppm Na+ as determined by Inductively Coupled Plasma (ICP)
spectroscopy). A MicroSense (LOT-QuantumDesign) Vibrating
Sample Magnetometer (VSM) was used to measure the magnetic
properties. The voltage was applied using an Agilent B2902A power
supply in situ. All in situ magnetic measurements (hysteresis loops,
cyclic measurements, and neuromorphic measurements) were taken
in an in-plane (IP) configuration (i.e., applying the magnetic field
parallel to the Nb:STO substrate plane) at room temperature. Ex situ
measurements (XPS, XRD, and C-AFM) were done by first treat-
ing the sample in a larger electrochemical cell setup. Using crocodile
clips, the film and Pt wire were attached to the power supply before
being submerged in a Na+ treated PC contained in a quartz beaker.
This system allowed for easy transfer between the cell and the mea-
surement devices. The planar and nanopillar CFO films were treated
with a negative gate voltage for 30 min to achieve the “treated” state
(oxygen removal from the nanopillars) and afterward with a posi-
tive gate voltage for 30 min to achieve the “recovered” state (oxygen
addition to the nanopillars), ex situ. A range of characterization
measurements were carried out to determine the structural changes
between the as-prepared, treated, and recovered states of the two
sets of samples. The XRD patterns were recorded using a Materi-
als Research Diffractometer (MRD) from Malvern PANalytical and
a Panalytical Empyrean vertical diffractometer. XPS was done using
a Phoibos 150 analyzer in ultra-high vacuum conditions (base pres-
sure 5 × 10−5 mbar) with a monochromatic Al Kα x-ray source.
XPS spectra were calibrated using the carbon peak that arises from
“adventitious” carbon on the film after exposure to air. C-AFM was
performed using a Bruker Veeco Dimension Pro to investigate the

electrical properties. Contact angle measurements were done using
a Marca KRÜSS, model DSA 100.

RESULTS AND DISCUSSION

Figure 2 shows microstructural information about the nanopil-
lar films before and after etching MgO out of VAN film. Figure 2(a)
shows a schematic of the film structure before and after etching and
Fig. 2(b) shows the corresponding XRD spectra. The film is epitaxi-
ally aligned with (00l) peaks of CFO and MgO on the Nb-STO (001)
substrate. The CFO (004) peak remains unchanged in both intensity
and peak position relative to the substrate, indicating no change in
strain or microstructure of the CFO after etching out the MgO. The
MgO (002) peak vanishes after etching, indicating complete MgO
removal.

Figure 2(c) shows an AFM image of the CFO nanopillar sam-
ple after etching out the MgO. Clear oblong features of uniform
height are visible and correspond to the nanopillars. Figure 2(d)
shows a top-view scanning electron microscope (SEM) image of the
film after etching, clearly showing that the nanopillars, size, and the
shape are in agreement with the AFM image. Figure 2(e) shows a
cross-sectional secondary electron SEM image of the etched film.
The height of the nanopillars is ∼90 ± 10 nm. Pores are visible as the
darker features between the lighter-featured nanopillars. The pores
penetrate the film through to the substrate, confirming the x-ray
result of Fig. 2(b), i.e., the MgO was fully etched out.

Figure 3(a) shows the in-plane hysteresis loops of the CFO
nanopillar films in the as-prepared state (0 V), after treatment with
applied negative gate voltages of −2, −4, −6, and −10 V (oxygen
removal from the film), and then after recovering (oxygen reintro-
duction to the film) with an applied positive gate voltage of +10 V.
The loops were measured in situ, i.e., during voltage application. The
loop shapes indicate that the magnetic domains in the nanopillars
are neither IP nor out-of-plane (OOP) but likely have a range of ori-
entations. This is confirmed by OOP magnetization measurements,
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FIG. 2. Formation and structure of nanopillar films. (a) Schematic of the self-assembled nanocomposite growth and the etching of the matrix. (b) X-ray diffraction pattern
of the CFO:MgO nanocomposite before and after etching the MgO matrix from the VAN film. The ∗ denotes an artifact peak from the XRD detector. (c) AFM image of the
free-standing nanopillars after the matrix had been etched. (d) Top view and (e) cross-sectional secondary electron SEM of the free-standing nanopillars. Nanopillars are
outlined with the visible portion highlighted in orange.

FIG. 3. Magneto-ionic data for CFO
nanopillar films. (a) Hysteresis loops
(20 min duration) of CoFe2O4 nanopillars
at 0 V (as-prepared state), after apply-
ing −2, −4, −6, and −10 V (treated
state), and +10 V (recovered state).
(b) Change in saturation magnetization,
mS, and coercivity, HC, as a function of
applied negative gate voltage. (c) Repre-
sentation of cycling of magnetic moment,
m, at ±10 V with a period of 60 s for
the first 10 cycles (cycles no. 0–10),
cycles no. 100–110, and cycles no.
2000–2100. Note, the magnetic moment
in (c) has been centered around zero and
normalized between 0.5 and –0.5.
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which were also undertaken (not shown) and appeared similar to
Fig. 3(a). Figure 3(a) shows that the negative gate voltage induces an
increase in mS while the positive gate voltage induces a reduction in
mS. Figure 3(a) inset shows that mS does not saturate after 20 min of
each voltage application, indicating that oxygen loss or recovery is
not complete.

Relative to the as-prepared (0 V) sample when −10 V is applied
to the nanopillar sample, there is a 34% increase in mS from 3.05
± 0.02 memu to 4.10 ± 0.01 memu and a 78% increase in HC from
713 ± 7 Oe to 1270 ± 30 Oe. When +10 V is then applied to the
sample, the magnetic properties are almost entirely recovered with
minimal change from the initial as-prepared (0 V) state. The large
changes in magnetic properties when voltage is applied suggest that
the liquid electrolyte is able to wet, spread, and penetrate the sur-
face of the nanopillar film. This is confirmed in Fig. S1 from the
supplementary material, which shows that the contact angle between
the sample and a drop of propylene carbonate is 50.1 ± 0.2○. As
the sample is hydrophilic,43 a high surface interface between the
nanopillars and electrolytes can be assumed.

The dramatic change in magnetic properties can be attributed
to the O2− diffusion out of the CFO into the liquid electrolyte.30,44

The application of negative gate voltage results in a sufficiently large
electric field14 at the oxide-electrolyte electrical double-layer (EDL),
causing the oxygen ions to migrate toward the surface of the CFO.45

This, combined with the high O2− ion mobility in the electrolyte,
leads to the de-oxygenation of the CFO at the nanopillar surfaces
and thus a change in mS and HC.30 It has previously been shown in
porous CFO polycrystalline material that the increase in mS is due
to the decrease in the oxygen content after magneto-ionic voltage
application, leading to a reduction in average cation valence,30 i.e.,
Fe3+ is reduced to Fe2+ in the tetrahedral positions.46,47 The increase
of HC in the treated sample is probably related to the variation of the
Fe3+/Fe2+ ratio with voltage (which is known to modify the effective
magnetic anisotropy).48–50

To investigate the cyclability of the magneto-ionic effect in the
CFO epitaxial nanopillars, the samples were cycled between −10

and +10 V at 60 s/cycle. Figure 3(c) shows that the CFO pillars
can be consistently cycled between the different magnetic states for
>2000 cycles. The cyclability is two orders of magnitude higher than
in previously studied polycrystalline CFO films and other oxygen
magneto-ionic systems.13,30

Figure 3(c) shows that the changes in the magnetic moment
with voltage occur very quickly, in less than 3 s (the time taken to
acquire each data point). Fast cycling produces an average differ-
ence in the magnetic moment of ∼0.018 memu between −10 and
+10 V for the first 10 cycles, which decays to ∼0.008 memu after
2000 cycles. Previously, similar switching speeds in oxygen-driven
magneto-ionic systems were achieved in very thin (<10 nm) films,
whereas here, we have much thicker ∼90 nm pillar films,51 which
could be advantageous for improved stability. Indeed, the surfaces of
the nanopillar film in the as-prepared, treated, and recovered states
show no significant microstructural changes when observed by AFM
(see Fig. S2 from the supplementary material).

Our reference CFO planar epitaxial films of 90 nm thickness
show a different behavior to the nanopillar films. In the as-prepared
state [Fig. S3(a)], the magnetic domains are aligned IP. Upon volt-
age application, the m-H data again indicates an increase in the
ferromagnetism due to the formation of CoFe2+/3+

2O4-x after oxy-
gen removal, but the increase is larger, ΔmS-planar = 370%, than for
the nanopillar films, ΔmS-pillar = 34%. Thus, the initial change in mS
upon −10 V application is higher compared to the nanopillar films.
However, there is no full recovery of the planar film M–H loop upon
positive voltage application. The reason for this is unclear at present
but is common to planar films.52,53 This could be related to a reaction
layer that forms at the CFO (001) planar film surface after oxygen
removal but does not form on the nanorods owing to the (100) sur-
face being the predominant surface that is exposed to the electrolyte.
Further work is required to understand more about what influences
recoverability.

Considering the almost complete recoverability and hence
excellent cyclability of the nanopillar films, we now focus on the
structural and chemical changes that occur for the different states of

FIG. 4. Structural and chemical analy-
ses of CFO nanopillar films. (a) (i) X-ray
diffraction patterns for CFO nanopillar
sample as-prepared (black), treated with
−10 V for 30 min (blue), and recovered
with+10 V for 30 min (orange). The peak
denoted ∗ represents a contamination
peak from Ag paste from sample pro-
cessing. The CFO (004) peak is shown
magnified in (ii) to better show the peak
shift when treated and recovered. The
dashed lines represent the central peak
position. (b) XPS of the Fe 2p3/2 peak
for the sample (i) as-prepared, (ii) treated
with −10 V for 30 min, and (iii) recovered
with +10 V for 30 min.
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voltage application. The XRD image of Fig. 4(a-i) shows the (004)
CFO XRD peak position for the as-prepared, −10 V treated, and
+10 V recovered films. We see a small shift in the peak for each
state. The shift can also be clearly seen in the CFO (008) peak (not
shown), further confirming the change in structure. A summary of
lattice parameter changes calculated from the XRD patterns is pre-
sented in Table I. The respective values for both the nanopillars and
planar films are presented in Table I.

Compared to the as-prepared lattice parameter of the as-
prepared CFO nanopillars, 8.384 ± 0.006 Å, the treated nanopillars
show an 0.43% increase, which is consistent with a decrease in oxy-
gen content.44,54–57 The finding is supported by XPS [Fig. 4(b)],
which shows the Fe 2p3/2 spectra of the CFO nanopillars. There is
only Fe3+ present in the as-prepared nanopillars [Fig. 4(b-i)], but
there is also a significant fraction of Fe2+ after treating (−10 V)
[Fig. 4(b-ii)]. Since Fe2+ has a larger ion radius than Fe3+, an
increase in lattice parameter is expected.58,59 After recovery, the lat-
tice parameter almost fully recovers, with only a small (0.06%) lattice
expansion remaining. The XPS data [Fig. 4(b-iii)] no longer show
any measurable Fe2+ remaining, indicating excellent reversibility of
oxygen.

The XRD patterns of the planar films are shown in Fig. S4 of
the supplementary material. As presented in brackets in Table I,

TABLE I. The summary of lattice parameters calculated from the XRD patterns and
% changes for the planar and nanopillar films.

Sample
% Change in c-lattice

parameter cf as-prepared

Nanopillars [planar] as-prepared ⋅ ⋅ ⋅

Nanopillars [planar] treated (−10 V) 0.43 [0.11]
Nanopillars [planar] recovered (+10 V) 0.06 [0.08]

the corresponding lattice changes upon treatment and recovery
for the planar films are much smaller (0.11% and 0.08%, respec-
tively) than for the nanopillar films, indicating less oxygen content
change, which is consistent with the lower surface area to vol-
ume ratio and larger diffusion lengths. The observed expansion of
the c-lattice parameter with oxygen removal and concomitant
increase in Fe2+ content is confirmed by density functional the-
ory calculations (supplementary material Note 1 and Figs. S5
and S6).

Next, C-AFM was used to further investigate the migration of
oxygen ions in the CFO nanopillars under 0, −10, and +10 V (Fig. 5).
All C-AFM scans were done with a −5 V bias on the measurement
tip. The results reveal that the sample in the as-prepared state is
highly insulating. The current is in the pA range, with little vari-
ation in the current across the film. The sample was then treated
for 30 min at −10 V to achieve the treated state. The treated film
has a current flow on the order of nA, three orders of magnitude
higher than in the initial state. This increase in current flow can be
attributed to the oxygen migration out of the films and is consis-
tent with previous work on voltage-actuated CFO.30 The sample was
then recovered with +10 V for 30 min. The current flow decreases
from the treated state, revealing a good correlation between mag-
netization changes and electric conductivity changes, which is an
important aspect of the potential use of nanopillars in neuromorphic
applications.

Finally, the CFO nanopillars were investigated as artificial
synapses for neuromorphic applications. In the human brain,
synapses play the role of signal transmission across neurons, with
synchronized learning and memory capability. Here, we use sam-
ple magnetic moment as the synaptic weight to mimic synaptic
functionalities. As shown in Fig. 6(a), after applying to the CFO
nanopillar films, a series of negative voltage pulses of different ampli-
tudes (in a sequence of ΔV = −6, −8, −10, and −12 V), of duration
(tp = 150 s), and with 600 s spacing, we observe multilevel magnetic
states.60

FIG. 5. Conductive Atomic Force Micro-
scopy (C-AFM) images of nanopillar
films after different voltage application
treatments, i.e., in the as-prepared (state
I), after applying −10 V to reach state
II, and again in the recovered state after
+10 V (state III). The lighter colors repre-
sent a higher electric current flow across
the sample.
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FIG. 6. (a) Non-volatile and distinct multilevel conductance states realized by applying a series of negative gate voltage pulses of different amplitudes (in the sequence of VG
= −6, −8, −10, and −12 V) and of the same duration (tp = 150 s), spaced apart by 600 s. (b) Changes in the magnetic moment, Δm, [analogous to excitatory postsynaptic
conductance (EPSC)] triggered by spikes of the same duration (tp = 150 s shown in gray) and different amplitudes (VG = −6, −8, −10, and −12 V), and (c) the maximum
change in Δm and the slope of the increase in Δm with applied voltage vs voltage. (d) Experimental transfer curve at a sweeping rate of 0.017 V/s in the direction of the
arrows. (e) Δm triggered by presynaptic spikes of the same amplitude (VG = −10 V) and different durations (50, 150, 250, and 350 s), and (f) the maximum change in Δm
and the slope of the increase in Δm with applied voltage vs voltage.

The synapse can tune its synaptic weight depending on
activity, which is termed synaptic plasticity, and this forms the
basis for all learning and memory.61 The phenomenon of tuning
synaptic plasticity by varying spike amplitude is known as spike
amplitude-dependent plasticity (SADP). As shown in Fig. 6(b),
SADP was also mimicked. Here, a series of voltage pulses with the
same duration time (150 s) and different amplitudes (ΔV = −6,
−8, −10, and −12 V) were applied to the sample, and the corre-
sponding increase of magnetic moment was measured. The peak
value (ΔmMax) increased with pulses of increasing voltage, evidenc-
ing spike-amplitude-dependent plasticity (SADP).62 After the region
where a voltage pulse was applied for 150 s, the magnetic moment
decayed slightly before settling at a stable level. The sample was then
recovered to the original state by applying the same gate voltage
of the opposite sign until the initial magnetic moment was reached
between each measurement (not shown).

Figure 6(c) shows the change in the magnetic moment with
increasing applied voltage. An approximately linear relationship is
observed. dm/dt, the activation slope, also increases linearly with
applied voltage. Higher voltages cause the oxygen ions to migrate
faster from the CFO to the electrolyte, due to the creation of a
larger electric field at the CFO–propylene carbonate interface. The
faster-moving ions cause a sharper slope for higher voltages.

Figure 6(d) shows the sample magnetization vs applied volt-
age curve measured by the sweeping voltage at a rate of 0.017 V/s
in the direction of the arrows. The curve shows the reversibility of

the sample magnetization with hysteresis behavior, making it suit-
able to mimic synaptic behaviors. The portion of the curve that
remains open at the end point corresponds to the small portion
of the magnetic moment that is not recoverable from the initial
cycle [Fig. 3(a) initial and recovered loops]. Note that this small
irreversibility occurs when voltage is applied for several minutes to
the sample. However, if the voltage actuation time is fast enough
(e.g., <1 min), then the sample is fully recoverable and cyclable
[Fig. 3(c)]. The magnetic moment increased as the gate voltage
was swept from 0 to −10 V and continued to increase as the volt-
age reversed from −10 to 0 V. This is indicative of the cumulative
effect of magneto-ionics, i.e., the O2− ions continue to migrate
with negative gate voltage even if the amplitude of the voltage
decreases. The magnetic moment then decreases when the voltage
is positive.

It is well known that the duration of the voltage pulses can also
be used to tune the synaptic weight (sample m) defined as spike-
duration dependent plasticity (SDDP). Figure 6(e) shows the depen-
dence of magnetic moment on pulse duration for −10 V applied for
50, 150, 250, and 350 s. The magnitude of the moment increases with
an increase in pulse duration. This is plotted in Fig. 6(f). The Δm
value increases with an increase in duration due to higher oxygen
migration for a longer pulse. Overall, the successful demonstration
of artificial synapses in the CFO nanopillar offers good prospects for
future neuromorphic devices, where the array of nanopillars could
be used as an array of interconnected synapses.
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CONCLUSIONS

Here, we have shown highly cyclable voltage control of mag-
netic properties in CoFe2O4 by electrochemical removal and reintro-
duction of oxygen mediated by a PC electrolyte. The CoFe2O4 was in
the form of epitaxial nanopillar arrays of ∼50 nm dimension, ∼70 nm
pitch, and ∼90 nm height, by etching out MgO from a vertically
aligned nanocomposite CoFe2O4/MgO film that was grown by self-
assembly by pulsed laser deposition. Large changes in mS, 34%, and
HC, 78%, with an applied voltage of −10 V were achieved as a result
of changes in oxygen content in the CFO. The magnetic switching
is almost fully reversible when an opposite voltage of +10 V was
applied. Cyclability to >2000 cycles was demonstrated, one of the
highest cycling performances reported for magneto-ionic systems,
with fast, <3 s, and distinct magnetic switching. The mechanism of
switching was shown to be oxygen migration out of and into CFO
with concomitant switching of the Fe valence state between Fe3+

and Fe2+, which modulates ms and HC. The magnetic nanopillars
were also demonstrated to show synaptic behavior for neuromor-
phic computing applications. Non-volatile, distinct multilevel ana-
log magnetic states, spike amplitude, and spike duration-dependent
synaptic plasticity were controlled by voltage pulsing. The changes
in magnetic properties were also accompanied by changes in elec-
tric conductivity, as evidenced by C-AFM, which may enable both
magnetic and electrical readings of the synaptic weight. This study
highlights the high potential of CFO nanopillars to be used as inter-
connected synapses in future high density ultra-fast energy efficient
memory devices.

SUPPLEMENTARY MATERIAL

See the supplementary material for contact angle measurement,
AFM of the as-prepared, treated, and recovered sample, planar film
magnetic measurements and XRD, and density functional calcula-
tions of the response of ionic and electronic structures of CoFe2O4
upon removal of lattice oxygen.
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