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Abstract—This paper presents a novel highly linear reflective-mode displacement sensor based on planar
microwave technology. The sensor consists of two parts: (i) the stator, or reader, a one-port transmission line
terminated with a matched load, and (ii) the movable part, or tag, a dielectric slab with an electric LC (ELC) resonator
etched on it. In the proposed system, the resonator is allowed to displace longitudinally along the line axis of the
reader at a fixed vertical distance (air gap). Due to magnetic coupling between the line and the ELC resonator, the
feeding signal (a harmonic signal tuned to the resonance frequency of the ELC resonator) is totally reflected at the
resonator’s position, and the phase of the reflection coefficient, the output variable of the sensor, correlates with that
position, i.e., it varies roughly linearly with the distance between the resonator and the input port. A prototype example,
with a dynamic range of 4.40 cm, is reported, and validated at laboratory level by means of a linear displacement
system. Then, the potential of the proposed sensor to monitoring the breath rate in humans is discussed, and a belt-
based prototype device system that can be applied for that purpose is presented and validated. The key idea is the
chest and abdomen expansion due to breathing, which leads to a periodic relative displacement between the tag and
the reader at the respiration rate.

Index Terms— Breath rate monitoring, displacement sensor, microstrip technology, microwave sensor, phase-
variation sensor, reflective-mode sensor.

I.  INTRODUCTION i.e., coupling modulation sensors and phase variation sensors.
Coupling modulation sensors have been mostly applied to the
measurement of linear and angular displacements and velocities
[5]-[12], whereas phase-variation sensors have been mainly
focused on the measurement of material properties [13]-[30]
(nevertheless, examples of phase-variation sensors devoted to
the measurement of short-range linear and angular
displacements have been reported [31]-[34]).

In coupling modulation sensors, a resonant element (or
various resonant elements) in relative motion with regard to the
static part (typically a transmission line) modify the
transmission (in transmission-mode sensors) or reflection (in
reflective-mode sensors) coefficient, and particularly its
magnitude at the operating frequency (the output variable). In
most of these coupling-modulation displacement sensors, the
dynamic range is of the order of the dimensions of the
considered sensing resonators. Nevertheless, there is a type of
coupling modulation sensors that exhibits long range (i.e., high
input dynamic range) measurements, i.e., the so-called
electromagnetic (or microwave) encoders [35]-[38]. Such
devices are based on chains of inclusions (not necessarily
resonators) etched or printed on a dielectric substrate, and such

HERE ARE various microwave techniques for the

measurement of short-range linear and angular
displacements [1]. One of such techniques is based on the
variation of the resonance frequency caused by a relative
displacement (linear or angular) between the movable part of
the sensor (where a resonant element is etched), and the static
part, implemented by means of a transmission line-based
structure [2]-[4]. The main limitative aspect of such sensors
concerns the fact that a wideband interrogation signal, at least
covering the output dynamic range, is required for sensing, and
this represents a penalty in terms of cost of the associated
electronics.

The previous limitation of frequency-variation sensors is
alleviated by considering the so-called single-frequency
sensors, where the sensing device (in operational environment)
should be fed by a single-tone (harmonic) interrogation signal.
Such signal can be generated by means of a simple harmonic
oscillator, or by means of a narrow-band (and low cost) voltage-
controlled oscillator (VCO) tuned to a certain frequency.
Single-frequency sensors can be divided in two main groups,
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chains are either linear (in linear encoders) or circular (in rotary
encoders). As the encoder (or tag) moves on top of the reader
(a transmission line) at short distance, the inclusions of the
chain perturb the transmission coefficient each time an
inclusion lies on top of the reader line, thereby modulating the
amplitude of the harmonic signal injected to the input port of
the reader line. Thus, pulses in the envelope function, which can
be retrieved by means of an envelope detector, are generated.
The time lapse between adjacent pulses provides the
instantaneous velocity, whereas the cumulative number of
pulses gives the linear or angular displacement from a reference
position. Actually, this is the working principle of the so-called
incremental encoders. However, quasi-absolute encoders,
where at least one chain is equipped with a certain identification
(ID) code, have been reported [39]-[47]. The main advantage of
such quasi-absolute encoders over incremental-type encoders is
the possibility of determining the encoder position after a
system reset (without the need to return to the reference
position).

Coupling-modulation  displacement sensors essentially
exploit the magnitude of the reflection or transmission
coefficient at a certain frequency. Such magnitude can be easily
converted to a voltage, a measurable magnitude. There are also
displacement sensors that exploit both the magnitude and
frequency of the sensor response. One example is constituted
by a set of recently reported rotation sensors based on single
interference techniques [48]-[S1]. Such sensors exhibit a
reasonable performance (sensitivity), but like frequency-
variation sensors, they need wideband signals for sensing.

We should mention that magnitude measurements are more
prone to the effects of electromagnetic interference (EMI) and
noise, as compared to frequency or phase measurements.
Therefore, it follows that phase-variation sensors benefit from
the advantages of single-frequency measurements (low cost of
the associated electronics in real environment) and the
robustness against EMI and noise, inherent to phase
measurements. Nevertheless, despite the advantages of phase-
variation sensors over frequency-variation and coupling-
modulation sensors, few works have been dedicated to exploit
such advantageous aspects for the implementation of
displacement sensors. Among them, in [32], [33] angular
displacement sensors based on rotatable resonators that vary the
phase of the reflection or transmission coefficient when they
rotate, are reported. In [31], a linear displacement sensor, based
on a step-impedance configuration and a movable dielectric
slab was reported. The sensitivity in such sensor is very good,
but at the expense of a limited linearity and input dynamic
range. In a very recent work [34], the authors report a rotation
sensor based on a coplanar waveguide (CPW) terminated with
a circular step-impedance resonator, where the movable part is
a circularly shaped dielectric slab. This sensor exhibits
reasonably good sensitivity and linearity, the later achieved by
tapering the step-impedance resonator.

In this paper, we propose a reflective-mode phase-variation
linear displacement sensor, where the main target is the
linearity. The sensor operates under a principle radically
different to the one used in [31], where the target was to achieve

very good sensitivity at the expense of linearity. That is in [31],
like in [34], a movable dielectric slab modifies the phase of the
reflection coefficient when it displaces over the sensitive part
of the sensor at short vertical distance. In this paper, the
sensitive part of the reader is a transmission line terminated
with a matched load, whereas the movable part is a resonator
(an electric LC —ELC-resonator) etched on a dielectric slab. As
the resonator displaces along the line axis at short vertical
distance, the phase of the reflection coefficient varies quasi-
linearly, as desired.

The paper is organized as follows. The proposed displacement
sensor and its working principle, including a sensitivity
analysis, are presented in Section II. In Section III, the sensor is
validated both at simulation level and experimentally by
considering a linear displacement system available in our
laboratory. In Section IV, the potentiality of the reported sensor
as a device able to retrieve the breath rate is discussed, and a
second prototype, based on a stretchable belt is designed and
fabricated to experimentally validate the approach. A
comparison with other displacement sensor and breath rate
sensors is the subject of Section V. Finally, the main concluding
remarks are highlighted in Section VI.

Il. SENSOR CONCEPT AND ANALYSIS

The perspective view of the sensor (a sketch including the
static and movable parts) is depicted in Fig. 1(a). The static part,
or reader, merely consists of a transmission line terminated with
a matched load feed by a harmonic (single tone) signal. The
movable part, or tag, is an ELC resonator [52] etched in a
dielectric slab. For sensor functionality, the ELC resonator must
be displaced along the line axis of the reader with the magnetic
wall at the fundamental resonance aligned with the line axis
[Fig. 1(b) depicts the topology of the ELC resonator with
indication of the currents, as well as the magnetic wall at the
fundamental resonance]. With this relative orientation between
the resonator and the line, the counter magnetic fields generated
by the line in the two loops of the ELC resonator excite the
particle, resulting in a strong magnetic coupling between the
line and the resonant element. Nevertheless, for particle
excitation, it is necessary that the frequency of the feeding
signal coincides with the fundamental resonance frequency of
the ELC resonator.

The line loaded with the ELC resonator can be modelled as
depicted in Fig. 2, where |, is the distance between the resonator
and the input port, and I, is the distance between the resonator
and the matched end of the line (so that the total length of the
line is | = 11 + I,). Note that the magnetic coupling between the
line and the resonant element is equivalent to series connecting
a parallel resonator to the line [53], [54] (losses are neglected in
the model). If the injected harmonic signal is tuned to the
resonance frequency of the ELC resonator, an open circuit in
the resonator’s plane arises, and the reflection coefficient is [55]

p=eth (D

provided the characteristic impedance of the line is identical to
that of the port (Z. = Zo), as indicated. Consequently, the phase
of the reflection coefficient is
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where ¢, = fl, is the electrical length of the transmission line
section present between the input port and the resonator
position, and g is the phase constant of the line.

According to (2), the phase of the reflection coefficient varies
linearly with the distance 1. Consequently, the relative
displacement between the resonator position and the input port
can be measured. With Z. = Zo, and the opeating frequency set
to fo (the fundamental resonance frequency of the ELC
resonator), the sensor is expected to exhibit good linearity.
Indeed, the sensitiviy, or derivative of the output signal with
regard to the input signal is simply

d¢p
—~£= -2 3
i.e., a constant value.

Let us assume that to unambiguously determine the
displacement, a unique cycle in the output variable is
considered, i.e.,, 0 < ¢, < 2r. This means that the maximum
displacement ; 1, Should correspond to an electrical length of
P max= T according to (2). Thus, the input dynamic range is
comprised in the range 0 < I1 < a/f = l} yax, the maximum
displacement given by

I T C
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From (4), it follows that input dynamic range is inversely
proportional to the operating frequency. Moreover, it is
convenient to deal with low dielectric constant substrates,
provided the interest is to enhance the input dynamic range. In
(4), ax is the angular operating frequency, c is the speed of light
in vacuum, and & is the effective dielectric constant (which
decreases as the substrate dielectric constant decreases). To
gain insight on the typical values of the input dynamic range,
let us assume that the operating frequency is set, for example,
to fo = 1 GHz, and that the effective dielectric constant is & =
4. Introduction of these values in (4) gives [} hax = 7.5 cm (a
reasonable value for the intended application, i.e., monitoring
the breath rate, as will be later discussed).

C)

Ill. PROTOTYPE LINEAR DISPLACEMENT SENSOR

Let us next report the first designed and fabricated prototype
sensor aimed to the measurement of short range (i.e., few cm)
displacements. The reader is implemented in the Rogers 4003C
substrate with dielectric constant & = 3.55, thickness h = 0.81
mm and loss tangent tand = 0.0022. The considered air gap
between the reader and the movable resonator, etched in an
identical substrate, is g = 1 mm. With this cross section, the
width of the reader line necessary to achieve a characteristic
impedance of Zc = Zo = 50 Q is W = 1.8 mm. The effective
dielectric constant of such line, with the resonator substrate on
top of it at 1 mm distance has been estimated to be & = 2.77.
We have set the operating frequency at fo = 2.00 GHz. Thus,
according to (4), the maximum displacement is [; . = 4.40
cm.
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Fig. 1. Perspective view of the proposed reflective-mode phase-variation
displacement sensor (a), and topology of the ELC resonator (b).
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Fig. 2. Equivalent circuit model of the ELC loaded transmission line
terminated with a matched load.
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Fig. 3. Photograph of the fabricated reader and resonator with their
dimensions in mm.

We have designed the ELC resonator in order to exhibit its
fundamental resonance at fo. The specific dimensions of the
ELC resonator that provides such resonance frequency are
given in Fig. 3. Note that the resonator exhibits a rectangular
geometry. The side parallel to the line axis should not be too
long, in order to have a small electrical length for the resonator
in the direction of the line axis. This is important to faithfully
assign a position to the resonator. Figure 3 depicts the
photograph of the fabricated reader and resonator (for
fabrication, the LPKF H100 drilling machine has been used).
The length of the reader line has been set to 13 cm, a value
higher than the input dynamic range (nevertheless, we restrict
the motion to a maximum displacement of I; ., = 4.40 cm).
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Fig. 5. Photograph of the experimental setup.

The phase of the reflection coefficient at fo as the ELC
resonator is displaced along the line, on top of it with the
indicated air gap distance, was inferred from full-wave
electromagnetic simulation. For that purpose, the ANSYS HFSS
commercial software was used. The input dynamic range was
restricted to a length corresponding to I; max = 4.40 cm. The
results are depicted in Fig. 4 and referenced to the phase of the
reflection coefficient corresponding to the initial position of the
ELC resonator. According to the figure, the phase of the
reflection coefficient varies linearly, as expected, and the output
dynamic range is 2x (corresponding to a complete cycle). The
setup for the measurement of the phase of the reflection
coefficient at fp, as the resonator moves on top of the line, is
depicted in Fig. 5. The reflection coefficient was retrieved by
means of the vector network analyzer, model Agilent N5221A.
For tag motion, the linear displacement system model Thorlabs
LTS300/M, available in our laboratory, was used (the air gap

was adjusted to the nominal value of g = 1 mm). The measured
phase of the reflection coefficient at fo is also depicted in Fig. 4,
and the agreement with the simulations is reasonably good. The
average sensitivity, as inferred from the measured phase
response, is found to be 8.2°/mm, in good agreement with (3)
[with the estimated value of the phase constant, S, expression
(3) provides a sensitivity of 8.09mm]. With these results, the
sensor functionality is validated.

IV. SENSOR SYSTEM FOR MONITORING THE BREATH RATE

The phase-variation  displacement sensor  concept
(experimentally validated in the previous section), conveniently
modified, can be applied to the measurement of the breath rate.
The breath rate sensor consists of a belt that must be adjusted to
the abdomen or thorax of the individual under test (or subject
under test -SUT- from now on), see Fig. 6. The belt has a
stretchable part that elongates during the inspiration and
constrains during the expiration. This means that the total
length of the belt varies according to the abdominal or thoracic
perimeter of the SUT, modulated by the respiration process.
The reader is placed in the non-stretchable part of the belt and
should contain a pair of rails in order to guide the movable part
(where the board with ELC resonator etched on it is placed)
over it at short distance (air gap). One end of the movable part
is attached to part of the belt on the other side of the stretchable
fabric, so that a relative quasi-periodic movement between the
reader and the tag, dictated by the respiration rate, is expected.
Figure 7 depicts a sketch of the belt and indicates how the
relative motion between the reader and the tag proceeds by
respiration.

For the implementation of the prototype breath rate sensor,
the same reader used in the validation of the previous section
was used. However, rails made with a 3D-printer (model
Ultimaker 3 extended) were attached in order to guide the
resonator over the reader at short distance. The resonator was
implemented on the dielectric substrate (Rogers 4003C), with
dielectric constant & = 3.55, thickness h = 0.81 mm, and loss
tangent tand = 0.0022. The photograph of the fabricated belt,
including the reader and the tag, is depicted in Fig. 8.

For experimental validation, the belt was adapted to a
volunteer, who was asked to breath three times normally and
three times deeply. The phase of the reflection coefficient was
recorded using VNA by data logging every 0.1 s. The recorded
data is depicted in Fig. 9 and. As it can be seen, the breath rate
of the volunteer can be easily extracted.

In the experimental results of Figs. 4 and 9, the phase of the
reflection coefficient was retrieved by means of a VNA. Let us
next consider a system closer to operational environment, by
replacing the VNA with a microwave circuitry (a coupler pair),
a gain/phase detector, and a microcontroller. The sketch of the
proposed system can be seen in Fig. 10, where the
interconnection of such components can be appreciated. The
details of this system to retrieve the phase of the reflection
coefficient are detailed in a recent paper [29], and hence are not
repeated here. The feeding signal in real operation should be
generated by means of a VCO. Nevertheless, we have fed the
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Fig. 6. Breath rate sensor concept.
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Fig. 7. Sketch of the belt with indication of the working principle.

Fig. 8. Photograph of the fabricated breath rate belt sensor.

system with a VNA (with this sole purpose) in this paper. Using
the setup of Fig. 10, we first measured the phase of the
reflection coefficient at fo as a function of the displacement of
the tag. The results are shown in Figure 11. Then we measured
the breath rate by adapting the mentioned belt-based sensor to
a volunteer, who, again, was asked to breath three times
normally, and three times intensively (the results are depicted
in Fig. 12).

In the experimental results of Figs. 4 and 9, the phase of the
reflection coefficient was retrieved by means of a VNA. Let us
next consider a system closer to operational environment, by
replacing the VNA with a microwave circuitry (a coupler pair),
a gain/phase detector, and a microcontroller. The sketch of the
proposed system can be seen in Fig. 10, where the
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Fig. 9. Phase of the reflection coefficient recorded using a VNA while a
volunteer wearing the belt-based sensor breaths as indicated in the text.

interconnection of such components can be appreciated. The
details of this system to retrieve the phase of the reflection
coefficient are detailed in a recent paper [29], and hence are not
repeated here. The feeding signal in real operation should be
generated by means of a VCO. Nevertheless, we have fed the
system with a VNA (with this sole purpose) in this paper. Using
the setup of Fig. 10, we first measured the phase of the
reflection coefficient at fo as a function of the displacement of
the tag. The results are shown in Figure 11. Then we measured
the breath rate by adapting the mentioned belt-based sensor to
a volunteer, who, again, was asked to breath three times
normally, and three times intensively (the results are depicted
in Fig. 12).

It should be mentioned that due to the nonlinear behaviour of
the gain/phase detector, and to the fact that the input
impedances of the gain/phase detector are not matched at fo, the
usable range in which the phase of the reflection coefficient
varies linearly with the displacement is roughly 3 cm, rather
than 4.4 cm. Note also that in the breath diagram of Fig. 12, the
normal breath cycles are manifested as single peaks, whereas
when the volunteer breaths intensively (with an elongated
thoracic perimeter), such single peaks are transformed to double
peaks. This is explained by the fact that tag displacement
extends beyond the quasi-linear operation range (reduced to 3
cm with the system of Fig. 10, as indicated). Nevertheless, the
respiration rate can be easily retrieved from the time lapse
between the minima in the breath diagram. Let us also mention
that, depending on how the subject beaths (how deep), and also
depending on his/her thorax diameter, the measured phases
(more specifically their variation) are expected to be different.
Nevertheless, this is not an issue, as far as the determination of
the breath rate requires only the measurement of the period in
the breath diagram.

V. COMPARATIVE ANALYSIS

As mentioned before, there are few displacement sensors
based on phase variation. In [31], one of the designed and
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Fig. 10. Sketch of the sensor system to retrieve the phase without the
use of a VNA.
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Fig. 12. Phase of the reflection coefficient recorded using the system of
Fig. 10 while a volunteer with the belt-based sensor mounted on its
thorax breaths.

fabricated phase-variation linear displacement sensors
(operating in reflection mode) exhibits a maximum sensitivity
of 313°mm, but the device is highly non-linear (i.e., it was
designed in order to detect very small changes of position of the
movable part, a dielectric slab). By contrast, the sensitivity in
the proposed displacement sensor is smaller (8.2 °%/mm), but the

linearity is good, since the reader line is matched to the
reference impedance of the port (Zo = 50 Q).

Concerning the input dynamic range, in the proposed sensor
the input span is restricted to a range that generates a phase
variation in the reader (reflection coefficient) within a cycle
(2m). By this means, we avoid any phase ambiguity, and the
position can be determined absolutely within that displacement
span. Nevertheless, if we set a reference (REF) position value,
the periodicity (repeatability) of the output variable does not
represent an issue in regard to the discrimination of the
resonator position. Thus, in this sense, the input dynamic range
is dictated by the length of the reader line. By contrast, in most
linear displacement sensors based on coupling modulation [5]-
[8], or frequency variation [2], [3], where a reader line is loaded
with a sensing resonator etched or printed in an independent
substrate in relative motion, the input dynamic ranges are of the
order of resonator dimensions, i.e., very limited. Table | reports
various linear displacement sensors, where relevant parameters
are included.

Table | contains also various linear electromagnetic encoders,
a type of displacement and velocity sensors where the input
dynamic range is given by the encoder length. In these systems,
the encoders contain at least a chain of metallic or dielectric
inclusions that must displace transversely over the reader line
at short distance. The main difference between electromagnetic
encoders and the displacement sensor system reported in this
work is that electromagnetic encoders are based on pulse
counting, similar to optical encoders. Thus, in such encoders,
rather than the sensitivity, the relevant parameter is the spatial
resolution, dictated by the period of the inclusions. In the
proposed, system, if we consider that 5° in the phase of the
reflection coefficient can be reliably resolved, the
corresponding resolution is found to be about 0.61 mm, a very
competitive value (in the case measured with VNA).
Nevertheless, this resolution can be improved by increasing the
operating frequency, since this boosts up the sensitivity.

TABLE |
COMPARISON OF VARIOUS LINEAR DISPLACEMENT SENSORS

Ref. Sensitivity Resolution (mm) Dynamic range (cm)
[2] 110MHzmm-? 0.03 0.4
[3] 80MHzmm-! <1 0.3
[5] 95 dB/mm <0.05 0.06
[6] 83 dB/mm <0.05 0.06
[7] 25 dB/mm <0.2 0.1
[8] 26 dB/mm <0.1 0.07
[31] 313 °/mm 0.016 0.5
[37] --- 0.6 >6
[38] - 34 > 17
[40] - 4.0 >7
[44] - 4.0 >19
[45] - 2.0 >4
[46] - 3.0 >1.2
T.W. 8.0 °/mm 0.61 4.4

The main conclusion in this comparison is that the proposed
displacement sensor exhibits good combination of linearity,
dynamic range, and resolution, Moreover, the design of the
sensor is very simple, since it merely consist of a transmission



line terminated with a matched load fed by a harmonic signal
(the reader), and an ELC resonator etched, or printed, on a
movable substrate (the tag). This simplicity has been
instrumental for the application of this sensor concept to the
implementation of a breath rate monitoring system based on the
relative displacement between the reader and the tag caused by
inspiration and expiration, and achieved by conveniently
designing an ad hoc sensor belt, as discussed in the previous
section. Let us next compare the proposed breath rate sensor
with other similar sensors reported in the literature.

Researchers have tried to record the breath rate using various
methods and strategies. One of the commercially available and
accepted methods is to use the air flow of the respiration to
rotate a turbine mounted on a mask [56]. Although this breath
rate monitoring method is very reliable, it is very annoying to
continuously wear a mask, and hence it is not very appropriate
for long term breath rate monitoring. There are also camera-
based and image processing methods to retrieve the breath rate,
but such techniques are very costly and cannot be used in all
situations [57]. Some other researchers have tried to record the
breath rate utilizing the movement of the chest. Some of these
works are based on the lateral movement or stretch of a
sensitive structure (capacitive, inductive, etc.) fixed on the chest
or abdomen caused by the changes in the thorax’s diameter
during respiration [58-60]. Some others are based on the
movement of the chest or abdomen along the axis normal to the
chest like [61-62]. The main disadvantage of the first category
is their nonlinear response and the need of making one sensor
specifically for one person. For example, in [58] the authors
have proposed a T-shirt with the sensor integrated on it. So, for
different persons, different sensor-mounted T-shirts according
to their size are needed. On the other hand, the main drawback
of the second category is that the movements of the chest due
to respiration can be easily confused with other movements of
the person. In the system proposed in this paper, the sensor has
been mounted on a belt making its usage very comfortable and
easy for long term, the system is very simple and low cost, and
the response has a very good linearity. Furthermore, the signal
recorded as breathing rate, is very stable during the movements
of persons’ body. Radar-based systems constitute another
category of breath rate monitoring systems [63]. Although such
systems can measure the breath rate with good accuracy, the
main disadvantage is the need to proper positioning the subject
under study with regard to the Radar antennas (a limitation not
present in the proposed system).

VI. CONCLUSIONS

In conclusion, a novel type of microwave displacement
sensor has been proposed. The sensor is based on a static part
(reader), a microstrip line terminated with a matched load, and
a movable part (tag), an ELC resonator etched in a microwave
substrate, in relative motion with regard to the axis of the reader
line. By feeding the reader line with a harmonic signal tuned to
the resonance frequency of the ELC resonator, the phase of the
reflection coefficient of the reader line (the output variable)
varies roughly linearly with the distance between the resonator

position and the input port, and hence that position can be
retrieved. The proposed sensor exhibits good linearity and
dynamic range, as compared to other frequency-variation or
coupling-modulation linear displacement sensors based on
planar microwave technologies. The resolution is also good,
and better than that of most reported linear electromagnetic
encoders (a type of motion sensors based on multiple tag
inclusions and pulse counting). The sensor has been found to be
appropriate for application in breath rate monitoring. For that
purpose, we have implemented an ad hoc belt-based sensor, in
a specific arrangement that is able to provide the respiration rate
from the relative periodic variation of the position between the
reader and the tag generated from expiration and inspiration.
This breath rate belt-based sensor has been experimentally
validated, and it has been found to be a competitive approach to
other breath rate monitoring sensors reported in the available
literature.
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