
This is the **accepted version** of the journal article:

Afonso-Argilés, F. Javier; Comas-Serrano, Mercè; Castells-Oliveres, Xavier; [et al.]. «Emergency department admissions and economic costs burden related to ambulatory care sensitive conditions in older adults living in care homes». *Revista Clinica Espanola*, Vol. 223 Núm. 10 (diciembre 2023), p. 585-595. DOI 10.1016/j.rce.2023.09.004

This version is available at <https://ddd.uab.cat/record/289201>

under the terms of the IN COPYRIGHT license

Title page

Emergency department admissions and economic costs burden related to *Ambulatory Care Sensitive Conditions* in older adults living in care homes

Admisiones en servicios de urgencias y costes económicos relacionados con *Ambulatory Care Sensitive Conditions* en adultos mayores que viven en centros residenciales

Author names: F. Javier Afonso-Argilés^{1, 2}, Mercè Comas Serrano^{3, 4}, Xavier Castells Oliveres, PhD^{3, 4}, Isabel Cirera Lorenzo, PhD⁵, Dolors García Pérez⁶, Teresa Pujadas Lafarga⁷, Xavier Ichart Tomás⁸, Mireia Puig-Campmany⁹, Ana B. Vena Martínez, PhD¹⁰, Anna Renom-Guiteras, PhD^{4, 11}, on behalf of the *Caregency* Group.

Affiliations:

¹Servicio de Geriatría. Fundació Sanitària Mollet. Barcelona, España.

²Estudiante de doctorado de la Universitat Autònoma de Barcelona. Barcelona, España.

³Servicio de Epidemiología y Evaluación. Institut Hospital del Mar d'Investigacions Mèdiques (IMIM), Hospital del Mar. Barcelona, España.

⁴Miembro de la Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Madrid, España.

⁵Servicio de Urgencias. Hospital del Mar. Barcelona, España

⁶Servicio de Urgencias. Fundació Althaia. Xarxa Assistencial Universitaria de Manresa. Barcelona, España.

⁷Servicio de Geriatría y Cuidados Paliativos. Badalona Serveis Assistencials. Barcelona, España.

⁸Servicio de Urgencias. Hospital Universitari Arnau de Vilanova. Lleida, España.

⁹Servicio de Urgencias. Hospital de la Santa Creu i Sant Pau. Barcelona, España.

¹⁰Servicio de Geriatría. Hospital Universitari Arnau de Vilanova. Lleida, España.

¹¹Servicio de Geriatría. Hospital del Mar. Barcelona, España.

Corresponding author:

F. Javier Afonso-Argilés.

Servicio de Geriatría. Fundació Sanitària Mollet. CP: 08100. Mollet del Vallès.
Barcelona. España.

E-mail: javiargiles@hotmail.com; f.afonso@fsm.cat

Número de teléfono: +34. 680.151.803

Group authorship

The Caregency group partners are as follows:

Universitat Autònoma de Barcelona, Spain: Mercè Comas Serrano, Xavier Castells Oliveres, Anna Renom-Guiteras, F. Javier Afonso-Argilés.

Fundació Sanitària Mollet, Barcelona, Spain: F. Javier Afonso-Argilés.

Hospital del Mar, Barcelona, Spain: Xavier Castells Oliveres, Isabel Cirera Lorenzo, Mercè Comas Serrano, Anna Renom-Guiteras, Isabel Tejero Cano, Héctor Villanueva Sánchez.

Red de Investigación en Cronicidad, Atención Primaria y Promoción de la Salud (RICAPPS), Madrid, Spain: Xavier Castells Oliveres, Mercè Comas Serrano, Anna Renom-Guiteras.

Hospital de la Santa Creu i Sant Pau, Barcelona, Spain: Marta Blázquez-Andión, Mireia Puig-Campmany, Miguel A. Rizzi.

Fundació Althaia. Xarxa Assistencial Universitaria de Manresa., Barcelona, Spain:
Dolors García Pérez, Alba Sinfreu Pujol.

Badalona Serveis Assistencials, Barcelona, Spain: Teresa Pujadas Lafarga, J. María Gómez Roldán.

Hospital Universitari Arnau de Vilanova, Lleida, Spain: Xavier Ichart Tomás, Ana B. Vena Martínez.

Authorship contribution statement:

Study concept and design: F. Javier Afonso-Argilés & Anna Renom-Guiteras.

Acquisition of data: F. Javier Afonso-Argilés, Mercè Comas Serrano, Marta Blázquez-Andión, Isabel Cirera Lorenzo, Dolors García Pérez, J. María Gómez Roldán, Teresa Pujadas Lafarga, Xavier Ichart Tomás, Mireia Puig-Campmany, Miguel A. Rizzi, Alba Sinfreu Pujol, Isabel Tejero Cano, Ana B. Vena Martínez, Héctor Villanueva Sánchez, Anna Renom-Guiteras.

Analysis and interpretation of data: Mercè Comas Serrano, F. Javier Afonso-Argilés & Anna Renom-Guiteras.

Drafting of the manuscript: F. Javier Afonso-Argilés & Anna Renom-Guiteras.

Critical revision of the manuscript for important intellectual content: F. Javier Afonso-Argilés, Mercè Comas Serrano, Marta Blázquez-Andión, Xavier Castells Oliveres, Isabel Cirera Lorenzo, Dolors García Pérez, J. María Gómez Roldán, Teresa Pujadas Lafarga, Xavier Ichart Tomás, Mireia Puig-Campmany, Miguel A. Rizzi, Alba Sinfreu Pujol, Isabel Tejero Cano, Ana B. Vena Martínez, Héctor Villanueva Sánchez, Anna Renom-Guiteras.

Ethics approval and consent to participate

As this was an observational study in which clinical and administrative data were collected retrospectively, informed consent was not requested. All information obtained was anonymised and confidentiality of the data was guaranteed. All Research Ethics Committees of the collaborating centres approved the project according to their regulations.

Conflicts of interest

The authors declare that they have no competing interests

Funding

This research did not receive any funding from public, commercial or non-profit sector entities.

Acknowledgments.

This work was carried out as part of the PhD programme in Biomedical Research Methodology and Public Health at the Universitat Autònoma de Barcelona.

Ética de la publicación

1. ¿Su trabajo ha comportado experimentación en animales?:
2. **No**

7. ¿En su trabajo intervienen pacientes o sujetos humanos?:
8. **Sí**

10. • Si la respuesta es afirmativa, por favor, mencione el comité ético que aprobó la
11. investigación y el número de registro.:
12. **CEI del Hospital Universitario Germans Trias i Pujol. REF.CEI: PI-18-092**

13. • Si la respuesta es afirmativa, por favor, confirme que los autores han cumplido
14. las normas éticas relevantes para la publicación.:
15. **Sí**

16. • Si la respuesta es afirmativa, por favor, confirme que los autores cuentan con el
17. consentimiento informado de los pacientes.:
18. **No. Dado que se trata de un estudio observacional, en el que se recogen
19. datos clínicos y administrativos de manera retrospectiva no se solicitó
20. consentimiento informado a los participantes en el mismo. Los variables
21. recogidas mediante la revisión de las historias clínicas se trataron de
22. manera anonimizada y garantizada la confidencialidad de los datos. No se
23. recopilaron datos que pudiesen identificar a los pacientes implicados en
24. el estudio. Fue solicitada y aprobada la exención de consentimiento
25. informado al CEI del Hospital Universitario Germans Trias i Pujol.**

30. 3. ¿Su trabajo incluye un ensayo clínico?:
31. **No**

33. 4. ¿Todos los datos mostrados en las figuras y tablas incluidas en el manuscrito se
34. recogen en el apartado de resultados y las conclusiones?:
35. **Sí**

1 1 **Emergency department admissions and economic costs burden related to**
2 2 ***Ambulatory Care Sensitive Conditions in older adults living in care homes***

3 3
4 4 **Abstract**

5 5 **Objectives.** To assess the frequency of emergency department admissions (EDA) for
6 6 *ambulatory care sensitive conditions* (ACSC) and non-ACSC among older adults living
7 7 in care homes (CH), to describe and compare their demographic and clinical
8 8 characteristics, the outcomes of the hospitalisation process and the associated costs.

9 9 **Method.** This multicenter, retrospective and observational study evaluated 2,444 EDAs
10 10 of older adults ≥ 65 years old living in care homes in 5 emergency departments in
11 11 Catalonia (Spain) by ACSC and non-ACSC, in 2017. Sociodemographic variables, prior
12 12 functional and cognitive status, and information on diagnosis and hospitalisation were
13 13 collected. Additionally, the costs related with the EDAs were calculated, as well as a
14 14 sensitivity analysis using different assumptions of decreased admissions due to ACSC.

15 15 **Results.** A total of 2,444 ED admissions were analysed. The patients' mean (SD) age
16 16 was 85.9 (7.2) years. The frequency of ACSC-EDA and non-ACSC-EDA was 56.6%
17 17 and 43.4%, respectively. Severe dependency and cognitive impairment were present in
18 18 56.6% and 78%, respectively, with no differences between the two groups. The three
19 19 most frequent ACSC were falls/trauma (13.8%), chronic obstructive pulmonary
20 20 disease/asthma (11.4%) and urinary tract infection (7.4%). The average cost per ACSC-
21 21 EDA was €1,408.24. Assuming a 60% reduction of ACSC-EDA, the estimated cost
22 22 savings would be €1.2 million.

23 23 **Conclusions.** Emergency admissions for ACSC from care homes have a significant
24 24 impact on both frequency and costs. Reducing these conditions through targeted

1
2 25 interventions could redirect the avoided costs towards improving care support in
3
4 26 residential settings.
5
6

7 27 **Keywords:** ambulatory care sensitive conditions, hospitalisation, care home, aged
8
9 28

10 29
11
12 30

13 31
14
15 32

16 33
17
18 34

19 35
20
21 36

22 37
23
24 38

25 39
26
27 40

28 41
29
30 42

31 **Abbreviations.** ACSC: Ambulatory care sensitive conditions; CH: Care homes; ED:
32
33 Emergency department; EDA: Emergency department admissions; ACSC-EDA:
34 Emergency department admissions by ACSC; EMR: Electronic medical record; CCI:
35
36 Charlson Comorbidity Index score; MAT-SET: Andorran model of triage-Sistema
37
38 Español de Triaje
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

48 Admisiones en servicios de urgencias y costes económicos relacionados con

49 *Ambulatory Care Sensitive Conditions* en adultos mayores que viven en centros

50 residenciales

51

52 Resumen

53 **Objetivos.** Evaluar la frecuencia de admisiones en servicios de urgencias (ASU) por
54 *ambulatory care sensitive conditions* (ACSC) y no-ACSC de personas que viven en
55 residencias; describir y comparar sus características, y analizar los costes asociados.

56 **Método.** Este estudio multicéntrico, retrospectivo y observacional evaluó 2.444 ASU de
57 personas ≥ 65 años que viven en residencias en 5 servicios de urgencias de Cataluña por
58 ACSC y no-ACSC, en 2017. Se recogieron variables sociodemográficas, estado
59 funcional y cognitivo, e información sobre diagnóstico y hospitalización. Se evaluaron
60 los costes relacionados con ACSC-ASU y se efectuó un análisis de sensibilidad
61 utilizando diferentes supuestos de disminución de ingresos por ACSC.

62 **Resultados.** La media de edad de la muestra del estudio fue de 85,9 (desviación
63 estándar 7,2 años). La frecuencia de ACSC-ASU y no-ACSC-ASU fue del 56,6% y el
64 43,4%, respectivamente. El 56,6% y el 78% presentaban dependencia severa y deterioro
65 cognitivo, respectivamente, sin observarse diferencias entre los dos grupos. Las tres
66 ACSC más frecuentes fueron caídas/traumatismos (13,8%), enfermedad pulmonar
67 obstructiva crónica/asma (11,4%) e infección urinaria (7,4%). El coste medio por
68 ACSC-ASU fue de 1.408,24 €. Suponiendo una reducción del 60% de las ACSC-ASU,
69 el ahorro de costes estimado sería de 1,2 millones de euros.

70 **Conclusiones.** Las admisiones en urgencias por ACSC procedentes de entornos
71 residenciales suponen un impacto significativo tanto en la frecuencia como en los

1
2 72 costes. La disminución de estas patologías mediante la aplicación de intervenciones
3
4 73 específicas podría redirigir los costes evitados hacia la mejora del apoyo asistencial en
5
6 74 los entornos residenciales.
7
8

9 75 **Palabras clave:** ambulatory care sensitive conditions, hospitalización, residencia,
10
11 76 ancianos
12
13 77
14
15 78
16
17 79
18
19 80
20
21 81
22
23 82
24
25 83
26
27 84
28
29 85
30
31 86
32
33 87
34
35 88
36
37 89
38
39 90
40
41 91
42
43 92
44
45 93
46
47 94
48
49 95
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2 96 **Background**
3
4

5 97 Up to 60% of care home (CH) residents may experience an emergency department
6
7 98 admission (EDA) each year ¹, and a remarkable number of EDAs have been classified
8
9 99 as potentially preventable or inappropriate. Furthermore, nearly 55% of EDAs among
10
11 CH residents may be for *ambulatory care-sensitive conditions* (ACSC) ², which have
12
13 100 been defined as health conditions-diagnoses for which timely and effective ambulatory
14
15 101 care could help to reduce the risk of hospitalisation, either by preventing the onset of an
16
17 102 illness or condition, controlling an acute episodic illness or condition, or managing a
18
19 103 chronic disease ³.
20
21

22
23 104 Reducing avoidable admissions for ACSC has been a goal of policy makers,
24
25 commissioners and service providers for many years, based not only on the provision of
26
27 services in a resource-constrained healthcare system and the high avoidable costs, but
28
29 105 also because of the harmful outcomes of hospitalisation in frail older people ⁴. In fact,
30
31 106 this population may suffer from advanced stage of disease, functional dependence or
32
33 107 severe dementia ⁵ and, for them, hospitalisation may be more deleterious than beneficial
34
35
36 108 ⁴ because of an increased risk of functional impairment ⁶, delirium ⁷, nosocomial
37
38 109 infections ⁸ or mortality ².
39
40

41
42 110 In Spain, a rate of up to 16.5% of ACSC-related hospitalisations has been documented
43
44 in people over 65 years of age living in the community ⁹. However, there is a lack of
45
46 data on the frequency of ACSC among CH residents, their characteristics and the costs
47
48 associated with hospitalisation for ACSC in this population. Evaluation of these aspects
49
50 could be useful in the development of cost-effective interventions that lead to a
51
52 reduction of potentially avoidable hospitalisations and an improvement in the quality of
53
54 care in the residential setting.
55
56
57
58
59
60
61
62
63
64
65

1
2 120
3
4

5
6
7 121 **Aim**
8
9
10
11
12
13
14
15
16
17

122 The purposes of the study were threefold: 1) to assess the frequency of EDA due to
123 ACSC and non-ACSC among older people living in CH; 2) to describe and compare
124 their demographic and clinical characteristics, as well as the outcomes of the
125 hospitalisation process in both groups, and 3) to analyse the costs related to the ACSC
126 EDA as well as the potential cost-savings in the ACSC group.
127

128 **Material and methods**
129 **Design**
130 The present study represents a secondary analysis of the *Caregency* study ¹⁰. The
131 Caregency study was a multicentre retrospective observational study covering the
132 period between January the 1st and December the 31st, 2017.
133

134 **Setting and participants**
135 The population were CH residents aged 65 years or older who were admitted to the EDs
136 of five public university hospitals in Catalonia, Spain, for any type of acute medical or
137 non-medical disease. These hospitals provide health coverage for 10,517 CH beds ^{11,12},
138 in both urban and rural areas. CHs could be owned and operated by public
139 (governmental), non-profit or for-profit entities.
140

141 **Procedures**

142 The electronic registers were used to identify all visits by residents over 65 years of age
143 who were referred to the EDs from the CHs in 2017. The study sample was randomly

1
2 144 selected within each hospital for further review and data collection. This ensured that
3
4 145 data from all seasonal periods per hospital were examined. Using a data collection
5
6 146 sheet, a trained team of medical or nursing professionals from each participating
7
8 147 hospital collected the study variables by reviewing the participants' electronic medical
9
10 record (EMR) and collecting data from the Minimum Basic Emergency Department
11
12 148 Data Set (CMBD-UR)¹³.
13
14
15 150
16
17
18
19 151 **Measures**
20
21 152 **Baseline characteristics of the residents involved in the EDA**
22
23
24 153 Sociodemographic characteristics of the EDA were collected. Functional status was
25
26 154 assessed using the standardised Barthel Index score (range 0-100) in the previous three
27
28 155 months, if available in the EMR ¹⁴. A lower score indicates greater dependence. Further,
29
30 156 the following Barthel Index categories were also used: non-dependence (Barthel index
31
32 157 ≥ 95), mild (61-95), moderate (41-60) or severe dependence (≤ 40) ¹⁵. If the Barthel
33
34 158 Index score was not available, the researchers' extracted information on the "level of
35
36 159 dependence" (independent, mild, moderate or severe dependence) as indicated in the
37
38 160 resident's EMR, if available. Subsequently, a new variable was created to define the
39
40 161 "compiled level of dependence" of the resident, combining the categories of the Barthel
41
42 162 Index with those of the variable "level of dependence", being the four resulting
43
44 163 categories: non-dependence, mild, moderate or severe dependence. Cognitive status in
45
46 164 the previous 3 months was assessed according to the information obtained from the
47
48 165 EMR for this period. Thus, we gathered information on whether the resident had
49
50 166 cognitive impairment and whether the resident had a diagnosis of dementia, **in which**
51
52 167 **case researchers were asked to specify the severity of dementia. In order to obtain**
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2 168 **a wide picture of the study sample, severity of dementia was determined according**
3
4 169 **to the information available in the EMR (i.e. mild, moderate or severe dementia),**
5
6 170 **and no validated grading systems or psychometric tests were necessary, as this**
7
8 171 **would have probably led to a big amount of missing values for this variable.**
9
10
11

12 172 Multimorbidity was evaluated using the Charlson Comorbidity Index (CCI) score, with
13
14 173 higher scores indicating greater 10-year mortality risk ¹⁶.
15
16

17 174 The MAT-SET (Andorran model of triage-Sistema Español de Triaje) scale was used to
18
19 175 assess the emergency level (triage) of the resident on arrival at the ED with the triage
20
21 176 categories provided by the scale (I-V) ¹⁷.
22
23

24 177 Concerning the destination after ED discharge, the return to the CH, admission to
25
26 178 another hospital or intermediate care wards and “mortality during EDA” were
27
28 179 identified. Information on the type of acute hospital admission ward (internal medicine,
29
30 180 acute geriatrics, traumatology, emergency short-stay, general surgery, pneumology and
31
32 181 other wards) and the type of intermediate care wards (subacute care, post-acute care,
33
34 182 palliative care, long-stay medical, psychogeriatric) was gathered. Regarding mortality,
35
36 183 we collected data on “mortality during EDA” and “mortality 30 days after ED
37
38 184 discharge”. “Short-term mortality” was considered for those cases that presented with
39
40 185 either “mortality during EDA” or “mortality 30 days after ED discharge”.
41
42
43
44

45 186
46
47

48 187 **Ambulatory care sensitive conditions**
49
50

51 188 Among the main diagnoses, ACSCs were identified using the list of 16 ACSCs for CHs
52
53 189 proposed by Walsh *et al.* This list was selected by a panel of experts with clinical and
54
55 190 health services research experience in the field of long-term care, by assessing
56
57 191 appropriate diagnoses for this population group ¹⁸. For the present study, respiratory
58
59
60
61
62
63
64
65

1 192 infections were included in the chronic obstructive disease/asthma group. In this way,
2 193 EDAs with a main diagnostic corresponding to an ACSC (ACSC-EDA) and EDAs with
3 194 a main diagnostic unrelated to an ACSC (non-ACSC-EDA) were identified.
4
5 195

6
7 196 **Costs estimation related to the ACSC-EDAs**

8
9 197 The costs related to each ACSC-EDA, which included both the costs generated by the
10 198 ED admission *per se* and, where applicable, the subsequent costs of admission to other
11 199 acute hospital or intermediate care wards, and hospitalisation at home, were calculated
12 200 in euros (€). The unit rate and payment method established by the *Departament de Salut*
13 201 *de la Generalitat de Cataluña*, adjusted to the year 2017, were used to measure costs¹⁹.
14
15 202 The costs generated by EDA, other acute hospital wards or sub-acute care wards were
16 203 generated by "discharge", while the costs generated by admission to the remaining
17 204 intermediate care wards were determined according to the "days of stay" in these wards.
18
19 205 As the number of "days of stay" in intermediate care wards was not available, a unit
20 206 price was established according to the maximum stay recommended for each of these
21 207 wards by the *Departament de Salut de la Generalitat de Catalunya*²⁰. Supplementary
22
23 208 Table 1 (Appendix A) shows the unit costs associated with each unit of admission
24 209 (adjusted to 2,017).
25
26 210

27
28 211 **Statistical Analyses**

29
30 212 EDA characteristics were described using mean and standard deviation (SD) for
31 213 continuous variables and absolute numbers and percentages for discrete variables. T-
32
33 214 test for normal variables and non-parametric Mann-Whitney U test were used for group
34
35 215 comparisons (ACSC-EDA vs. non-ACSC-EDA) of continuous variables, while Fisher's
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2 216 exact test was used for categorical variables. All tests were two-sided at the 5% level of
3
4 217 significance (p = 0.05).
5
6

7 218 The costs associated with ACSC-EDA were analysed. To calculate the average cost of
8
9 219 an admission to an ED, hospital or intermediate care unit, the total number of
10
11 220 admissions to these units and the total cost generated by these admissions were taken
12
13 221 into account.
14
15

16 222 Following Walsh *et al.*¹⁸, a sensitivity analysis was performed to estimate the
17
18 223 admissions and cost savings that could be achieved assuming a 20%, 40% and 60%
20
21 224 reduction in ACSC-EDAs.
22
23

24 225 All analyses were performed using IBM SPSS Statistics version 25 (IBM Corporation,
25
26 Chicago, IL).
27
28

29 227
30
31 228 **Results**
32
33

34 229 A total of 12,580 EDAs of older adults living in CH were identified. Of these, a final
35
36 230 sample of 2,444 EDAs was obtained after random sampling, corresponding to 1,982
37
38 231 older residents.
39
40

41 232 The characteristics of CH residents involved in EDAs and comparison between ACSC
42
43 233 and non-ACSC EDAs are shown in Table 1. In brief, the global EDA were
44
45 234 predominantly of women (67.7%), with a mean age of 85.9 years (SD 7.2), and a
46
47 235 median (1st quartile-3rd quartile) of CCI of 3 (2-4). A wide proportion were
48
49 236 functionally impaired (44.3% showed a severe compiled degree of functional
50
51 237 dependence) and with cognitive impairment (78% of EDA). Among them, 56.6%
52
53 238 suffered from advanced dementia.
54
55
56
57
58
59
60
61
62
63
64
65

1
2 239 There were no statistically significant differences between the two groups studied
3
4 240 (ACSC and non-ACSC EDA) in terms of sociodemographic characteristics,
5
6 241 multimorbidity, and functional and cognitive status.
7
8 242
9
10
11 243 *[Please include Table 1 around here]*
12
13
14 244
15
16
17 245 The characteristics and outcomes of the EDA, as well as the outcomes according to the
18
19 246 presence of ACSC as main diagnosis are shown in Table 2.
20
21
22 247 The majority of residents were discharged to CH (52.6%), with 44% experiencing
23
24 248 hospitalisation (either in acute, intermediate care wards or hospital at home).
25
26
27 249 Differences in admission units were found between non-ACSC-EDA and ACSC-EDA.
28
29
30 250 Finally, higher short-term mortality was observed in non-ACSC-EDA vs. ACSC-EDA
31
32 251 (17.9% vs. 14%; p=0.009).
33
34
35
36 252
37
38 253 *[Please include Table 2 around here]*
39
40
41
42 254
43
44 255 The frequency of each ACSC and the top 10 non-ACSC diagnoses, as well as the
45
46 256 frequency of admission to other acute or intermediate care wards for each diagnose are
47
48 257 described in Table 3.
49
50
51 258
52
53 259 *[Please include Table 3 around here]*
54
55
56 260
57
58 261 Table 4 displays the detailed costs related to ACSC by unit of admission and the
59
60 262 average cost per EDA admitted to an ED, acute or intermediate care units.
61
62
63
64
65

1
2 263 The overall costs of ACSC-EDAs was €1,948,997.30 with an average cost per EDA of
3
4 264 €1,408.24.
5
6

7 265 Table 5 provides the results of the sensitivity analysis. Based on these analyses, between
8
9 266 400 and 1200 admissions per year and between €390,000 and €1,170,000 in costs could
10
11 267 be avoided by achieving these percentage reductions in ACSC-EDA.
12
13 268
14
15

16 269 *[Please include Table 4 around here]*
17
18 270
19
20

21 271 *[Please include Table 5 around here]*
22
23 272
24
25

273 **Discussion** 28

29 274 The present study found that, in a sample of 2444 EDA in 5 university hospitals in
30
31 275 Catalonia (Spain) of CH residents, more than half of the EDA (56.6%) had ACSC as a
32
33 276 main diagnosis. Globally, EDA were predominantly women, with a mean age of 85.9
34
35 277 years, high multimorbidity and high levels of functional and cognitive impairment.
36
37 278 EDA presenting with ACSC did not differ from those without ACSC in these
38
39 279 characteristics. Furthermore, about 44% of all EDA required hospital admission, with
40
41 280 similar proportions among ACSC and non-ACSC EDA. Short-term mortality was
42
43 281 slightly higher in the group without ACSC, which could be explained by a tendency
44
45 282 towards a higher severity level at triage in this group. The most frequent ACSC
46
47 283 identified in our study were falls/trauma, chronic obstructive pulmonary disease/asthma,
48
49 284 urinary tract infection and congestive heart failure.
50
51

52 285 Previous international studies have reported varying proportions of ACSC-EDA (often
53
54 286 named as ACSC hospitalisations) among CH residents, with ACSC-EDAs ranging from
55
56
57
58
59
60
61
62
63
64
65

1 287 19% to 43% ²¹⁻²³. The different populations studied and the ACSC lists used could
2 288 explain these variations. For example, Walsh *et al.* ¹⁸, using an ACSC list similar to the
3 289 one used in the present study, reported ACSC-related hospitalisation frequency of 39%
4 290 but their study population included not only CH residents but also people receiving
5 291 community-based services. Conversely, Ouslander *et al.* ²⁴, documented higher ACSC
6 292 hospitalisation rates (67%) than those observed in our study.
7 293
8 294 With regard to the ACSC identified, international research has also identified chronic
9 295 obstructive pulmonary disease/asthma, urinary tract infection, falls/trauma and
10 296 congestive heart failure, among the top ACSCs ^{18,25,26}.
11 297
12 298 In terms of costs, the present study found that the average cost per ACSC-EDA was
13 299 1,408.24 € (including the costs of ED and admission to hospital or intermediate care
14 300 wards after ED discharge), resulting in an overall cost for all ACSC EDA of around 2
15 301 million €. Our sensitivity analysis suggested that the cost savings could have ranged
16 302 from 390,000 to 1,170,000 €. Thus, the research team considered that at least this
17 303 amount of money could have been invested in interventions to prevent ACSC-related
18 304 EDA.
19 305
20 306 Reducing ACSC-related admissions in CH has been an important goal in different
21 307 healthcare systems for years ²⁷⁻²⁹, and several interventions have been reported that
22 308 could help achieving this aim.
23 309
24 310 Young *et al.* ³⁰, identified four factors that were significantly associated with reduced
25 311 ACSC admissions among CH residents: effective communication between nursing staff
26 312 and physicians regarding the resident's condition, physicians being able to treat
27 313 residents within the CH and transferring them to hospital as a last resort, providing
28 314
29 315
30 316
31 317
32 318
33 319
34 320
35 321
36 322
37 323
38 324
39 325
40 326
41 327
42 328
43 329
44 330
45 331
46 332
47 333
48 334
49 335
50 336
51 337
52 338
53 339
54 340
55 341
56 342
57 343
58 344
59 345
60 346
61 347
62 348
63 349
64 350
65 351

1 310 better training and support for nursing staff and aides regarding end-of-life care, and
2 311 facilitating access to complementary test results.
3
4 312 Some interventions based on the management of certain commonly referred conditions
5
6 313 (often classified as ACSC) have been suggested. Loeb *et al.*³¹ compared the use of a
7 314 clinical care pathway with usual care for CH residents who developed symptoms of
8 315 pneumonia and other lower respiratory tract infections in 22 nursing homes in Ontario,
9
10 316 Canada. Their results showed a reduction in the rate of hospital admissions, resulting in
11 317 substantial cost savings.
12
13 318 Other research studies have more widely focussed on reducing potentially 'avoidable' or
14 319 'preventable' hospital admissions among CH residents. In fact, several definitions of this
15 320 concept have been used³², including ACSCs but also aspects other than ACSCs such as
16 321 the priorities and wishes of the CH residents' and the availability of resources in CHs,
17 322 among others³³.
18
19 323 Selected multifactorial interventions including, among other activities, regular visits by
20 324 general practitioners or geriatricians, additional training for care centre staff or the
21 325 improvement of relationships between care providers have shown positive results in
22 326 reducing potentially preventable hospitalisations³⁴⁻³⁸. Recently, Carter *et al.*³⁹ found
23 327 promising evidence for the effectiveness and cost-effectiveness of a nurse led, early
24 328 intervention program in preventing unnecessary hospital admissions in CH.
25
26 329 Finally, some studies have analysed the effects of interventions aimed at reducing
27 330 hospital admissions among CH residents in general. Graverholt *et al.* performed a
28 331 systematic review on this topic and concluded that, although the quality of the evidence
29 332 is low, several interventions may have an effect on reducing hospital admissions in this
30 333 population⁴⁰. Conversely, Kane *et al.*⁴¹, in a randomised controlled trial using the
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 334 INTERACT training and implementation support, which included tools that help CH
2 335 staff identify and evaluate acute changes in CH resident condition and document
3 336 communication between physicians, care paths to avoid hospitalization when safe and
4 337 feasible, advanced care planning and quality improvement tools, found no benefits in
5 338 rates of hospitalisation or ED visits among CH residents.
6
7 339 To the best of our knowledge, the present study is the first one providing national data
8 340 for Spain on the frequency of EDAs related to ACSCs in a large sample of CH
9 341 residents, as well as the characteristics of the CH residents involved in these EDAs,
10 342 their requirements for admission to acute or intermediate care wards, the specific ACSC
11 343 involved, and the associated costs. The results of this study could be used for the
12 344 development and implementation of interventions aimed at preventing potentially
13 345 avoidable hospitalisations among frail older adults living at CH.
14
15 346 Other strengths of the present study are its multicentre design, and the long time-period
16 347 covered, which favoured the understanding of the economic impact of EDA throughout
17 348 a one-year period.
18
19 349 This study has limitations. The retrospective study design is prone to measurement
20 350 errors and missing data. However, data were carefully obtained from each participant's
21 351 medical record by a group of trained researchers who were medical or nursing
22 352 professionals from each participating hospital. **Due to a relevant number of missing**
23 353 **values for the Barthel Index, the level of dependence of the participants was**
24 354 **measured using a non-validated instrument in many cases, which could have led to**
25 355 **an over or infra-estimation of this variable. Furthermore, due to a lack of data, an**
26 356 **estimation was done for the days of admission to intermediate care, which may**
27 357 **have led to an over or infra-estimation of the costs. Finally, potentially avoidable**
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1
2 358 hospital admissions were measured by identifying only ACSCs, and no data could be
3
4 359 collected on other aspects of appropriateness, such as care preferences or priorities of
5
6 360 participants and their caregivers, or on secondary diagnoses.
7
8
9 361
10
11
12 362 **Conclusions**
13
14
15 363 The present study found that EDA due to ACSC are frequent among CH residents,
16
17 364 being falls/trauma, chronic obstructive pulmonary disease/asthma, urinary tract
18
19 365 infection and congestive heart failure the most frequently identified ACSCs. The cost
20
21 366 savings associated with reducing EDA due to ACSC could be invested in the
22
23 367 implementation of interventions aimed at preventing potentially avoidable
24
25
26 368 hospitalisations in this population. The results of this study may provide a basis for the
27
28 369 development of cost-effective interventions with this aim.
29
30
31
32 370
33
34
35 371 **Appendix A.**
36
37 372 Supplementary Table 1. Unit costs related to each unit of admission (adjusted to 2017)
38
39
40 373
41
42 374 **Appendix B.**
43
44
45 375 Group authorship
46
47
48 376
49
50 377
51
52 378
53
54
55 379
56
57
58 380
59
60
61
62
63
64
65

1
2 381 **References**
3
4

5 382 1. Brucksch A, Hoffmann F, Allers K. Age and sex differences in emergency
6 department visits of nursing home residents: a systematic review. *BMC Geriatr.*
7 383 2018;18(1):1-10. doi:10.1186/s12877-018-0848-6
8
9 384 385 2. Lemoyne SE, Herbots HH, De Blick D, Remmen R, Monsieurs KG, Van Bogaert
10 386 P. Appropriateness of transferring nursing home residents to emergency
11 387 departments: a systematic review. *BMC Geriatr.* 2019;19(1):1-9.
12 388 doi:10.1186/s12877-019-1028-z
13
14 389 3. Billings J, Zeitel L, Lukomnik J, Carey TS, Blank AE, Newman L. Impact Of
15 390 Socioeconomic Status On Hospital Use In New York City. *Health Aff.*
16 391 1993;12(1):162-173. doi:10.1377/hlthaff.12.1.162
17
18 392 4. Creditor MC. Hazards of hospitalization of the elderly. *Ann Intern Med.*
19 393 1993;118(3):219-223. doi:10.1097/00007611-196705000-00006
20
21 394 5. Afonso-Argilés FJ, Meyer G, Stephan A, et al. Emergency department and
22 395 hospital admissions among people with dementia living at home or in nursing
23 396 homes: results of the European RightTimePlaceCare project on their frequency,
24 397 associated factors and costs. *BMC Geriatr.* 2020;20(1):1-13. doi:10.1186/s12877-
25 398 020-01835-x
26
27 399 6. Guion V, De Souto Barreto P, Rolland Y. Nursing Home Residents' Functional
28 400 Trajectories and Mortality After a Transfer to the Emergency Department. *J Am*
29 401 *Med Dir Assoc.* 2021;25(3):318-324. doi:10.1016/j.jamda.2020.05.033
30
31 402 7. Bo M, Bonetto M, Bottignole G, et al. Length of Stay in the Emergency
32 403 Department and Occurrence of Delirium in Older Medical Patients. *J Am Geriatr*
33 404 *Soc.* 2016;64(5):1114-1119. doi:10.1111/jgs.14103
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 405 8. Goto T, Yoshida K, Tsugawa Y, Camargo CA, Hasegawa K. Infectious Disease-
2 406 Related Emergency Department Visits of Elderly Adults in the United States,
3 407 2011-2012. *J Am Geriatr Soc.* 2016;64(1):31-36. doi:10.1111/jgs.13836
4 408 9. Magán P, Alberquilla Á, Otero Á, Ribera JM. Hospitalizations for ambulatory
5 409 care sensitive conditions and quality of primary care: their relation with
6 410 socioeconomic and health care variables in the Madrid regional health service
7 411 (Spain). *Med Care.* 2011;49(1):17-23. doi:10.1097/MLR.0B013E3181EF9D13
8 412 10. Afonso-Argilés FJ, Comas Serrano M, Blázquez-Andión M, et al. Factors
9 413 associated with short-term mortality after emergency department care of residents
10 414 living in aged care homes: findings from the multicenter Caregency study.
11 415 *Emergencias.* 2022;34(6):437-443.
12 416 11. Consorci de Serveis Socials a Barcelona - Dependència i Gent Gran. Accessed
13 417 May 5, 2023. <https://www.cssbcn.cat/serveidependencia/128-dependència-i-gent->
14 418 gran.html?layout=blog
15 419 12. Institut Català d'Assistència i Serveis Socials (ICASS). Establiments d'atenció
16 420 per a la gent gran. Published 2021. Accessed May 5, 2023.
17 421 <http://www.gencat.cat/bsf/icass/info/estatgg.htm>
18 422 13. Conjunt mínim bàsic de dades (CMBD). CatSalut. Servei Català de la Salut.
19 423 Accessed June 9, 2023. [https://catsalut.gencat.cat/ca/proveidors-](https://catsalut.gencat.cat/ca/proveidors-professionals/registres-catalegs/registres/cmbd/index.html)
20 424 professionals/registres-catalegs/registres/cmbd/index.html
21 425 14. Mahoney FI, Barthel DW. Functional evaluation: The Barthel index. *Md State*
22 426 *Med J.* 1965;14:61-65.
23 427 15. Wu Q, Tang A, Niu S, et al. Comparison of Three Instruments for Activity
24 428 Disability in Acute Ischemic Stroke Survivors. *Can J Neurol Sci.* 2021;48:94-

1 429 104. doi:10.1017/cjn.2020.149

2 430 16. Charlson ME, Pompei P, Ales KL, MacKenzie CR. A new method of classifying

3 431 prognostic comorbidity in longitudinal studies: development and validation. *J*

4 432 *Chronic Dis.* 1987;40(5):373-383. doi:doi: 10.1016/0021-9681(87)90171-8

5 433 17. Gómez Jiménez J, Boneu Olaya F, Becerra Cremidis O, Albert Cortés E,

6 434 Ferrando Garrigós J, Medina Prats M. Validación clínica de la nueva versión del

7 435 Programa de Ayuda al Triaje (web_e-PAT v3) del Modelo Andorrano de Triaje

8 436 (MAT) y Sistema Español de Triaje (SET). Fiabilidad, utilidad y validez en la

9 437 población pediátrica y adulta. *Emergencias.* 2006;18(4):207-214.

10 438 18. Walsh EG, Wiener JM, Haber S, Bragg A, Freiman M, Ouslander JG. Potentially

11 439 Avoidable Hospitalizations of Dually Eligible Medicare and Medicaid

12 440 Beneficiaries from Nursing Facility and Home- and Community-Based Services

13 441 Waiver Programs. *J Am Geriatr Soc.* 2012;60(5):821-829. doi:10.1111/j.1532-

14 442 5415.2012.03920.x

15 443 19. Convenis i contractes. CatSalut. Servei Català de la Salut. Accessed May 5, 2023.

16 444 <https://catsalut.gencat.cat/ca/coneix-catsalut/convenis-contractes/>

17 445 20. Servei Català de la Salut. *Objectius 2021: Atenció Sociosanitària. Part Variable.* ;

18 446 2021.

19 447 https://catsalut.gencat.cat/web/.content/minisite/catsalut/coneix_catsalut/convenis-contractes/Relacio-de-convenis-i-contractes/Els-objectius-de-la-part-variable-de-la-compra/Els-objectius-de-la-part-variable-de-la-compra-objectius-2021/Objectius-Socio-Sa

20 451 21. Brownell J, Wang J, Smith A, Stephens C, Hsia RY. Trends in Emergency

21 452 Department Visits for Ambulatory Care Sensitive Conditions by Elderly Nursing

1 453 Home Residents, 2001 to 2010. *JAMA Intern Med.* 2014;174(1):156-158.
2
3 454 doi:10.1001/jamainternmed.2013.11821
4
5 455 22. Gruneir A, Bell CM, Bronskill SE, Schull M, Anderson GM, Rochon PA.
6
7 456 Frequency and pattern of emergency department visits by long-term care
8 residents - A population-based study. *J Am Geriatr Soc.* 2010;58(3):510-517.
9
10 457 doi:10.1111/j.1532-5415.2010.02736.x
11
12 458
13
14 459 23. Perrin A, Tavassoli N, Mathieu C, et al. Factors predisposing nursing home
15 resident to inappropriate transfer to emergency department. The FINE study
16 protocol. *Contemp Clin trials Commun.* 2017;7:217-223.
17
18 460 doi:10.1016/j.conc.2017.07.005
19
20 461
21
22 462
23
24 463 24. Ouslander JG, Lamb G, Perloe M, et al. Potentially avoidable hospitalizations of
25 nursing home residents: Frequency, causes, and costs. *J Am Geriatr Soc.*
26
27 464 2010;58(4):627-635. doi:10.1111/j.1532-5415.2010.02768.x
28
29
30 465
31
32 466 25. Xing J, Mukamel DB, Temkin-Greener H. Hospitalizations of nursing home
33 residents in the last year of life: nursing home characteristics and variation in
34 potentially avoidable hospitalizations. *J Am Geriatr Soc.* 2013;61(11):1900-1908.
35
36 467
37
38 468
39
40 469
41
42 470 26. Muench U, Simon M, Ile-Ashley Guerbaai R, et al. Preventable hospitalizations
43 from ambulatory care sensitive conditions in nursing homes: evidence from
44 Switzerland. *Int J Public Heal.* 2019;Dec;64(9):1273-1281. doi:10.1007/s00038-
45
46 471
47
48 472
49
50 473 019-01294-1
51
52
53 474 27. NHS England. Emergency admissions for Ambulatory Care Sensitive Conditions
54 – characteristics and trends at national level. 2014;(March):1-14.
55
56
57 475
58 476 28. Department of Health and Human Services. Agency for Healthcare Research and
59
60
61
62
63
64
65

1 477 Quality. *AHRQ Quality Indicators Guide to Prevention Quality Indicators:*
2 478 *Hospital Admission for Ambulatory Care Sensitive Conditions.*; 2001. Accessed
3 479 May 5, 2023. <http://www.qualityindicators.ahrq.gov>

4 480 29. Page A, Ambrose S, Glover J, Hetzel D. Atlas of avoidable hospitalisations in
5 481 Australia: ambulatory care-sensitive conditions. Adelaide: PHIDU, University of
6 482 Adelaide. Published online 2007:1-77.

7 483 30. Young Y, Inamdar S, Dichter BS, Kilburn H, Hannan EL. Clinical and
8 484 Nonclinical Factors Associated With Potentially Preventable Hospitalizations
9 485 Among Nursing Home Residents in New York State. *J Am Med Dir Assoc.*
10 486 2011;12(5):364-371. doi:10.1016/j.jamda.2010.03.006

11 487 31. Loeb M, Carusone SC, Goeree R, et al. Effect of a clinical pathway to reduce
12 488 hospitalizations in nursing home residents with pneumonia: a randomized
13 489 controlled trial. *JAMA.* 2006;295(21):2503-2510.
14 490 doi:10.1001/JAMA.295.21.2503

15 491 32. Frick J, Möckel M, Muller R, Searle J, Somasundaram R, Slagman A. Suitability
16 492 of current definitions of ambulatory care sensitive conditions for research in
17 493 emergency department patients: A secondary health data analysis. *BMJ Open.*
18 494 2017;7(10):1-8. doi:10.1136/bmjopen-2017-016109

19 495 33. Renom-Guiteras A, Uhrenfeldt L, Meyer G, Mann E. Assessment tools for
20 496 determining appropriateness of admission to acute care of persons transferred
21 497 from long-term care facilities: a systematic review. *BMC Geriatr.* 2014;14(80):1-
22 498 8. doi:10.1186/1471-2318-14-80

23 499 34. Lloyd T, Conti S, Santos F, Steventon A. Effect on secondary care of providing
24 500 enhanced support to residential and nursing home residents: a subgroup analysis

1 501 of a retrospective matched cohort study. *BMJ Qual Saf.* 2019;28(7):534-546.
2 502 doi:10.1136/BMJQS-2018-009130
3
4 503 35. Ouslander JG, Lamb G, Tappen R, et al. Interventions to reduce hospitalizations
5 from nursing homes: Evaluation of the INTERACT II collaborative quality
6 improvement project. *J Am Geriatr Soc.* 2011;59(4):745-753.
7 505 doi:10.1111/j.1532-5415.2011.03333.x
8
9 506 36. Reuben DB, Schnelle JF, Buchanan JL, et al. Primary care of long-stay nursing
10 home residents: approaches of three health maintenance organizations. *J Am
11 Geriatr Soc.* 1999;47(2):131-138. doi:10.1111/j.1532-5415.1999.tb04569.x
12
13 509 37. Pain T, Stainkey L, Chapman S. AgedCare+GP: description and evaluation of an
14 in-house model of general practice in a residential aged-care facility. *Aust J Prim
15 Health.* 2014;20(3):224-227. doi:10.1071/PY12151
16
17 512 38. Dai J, Liu F, Irwanto D, et al. Impact of an acute geriatric outreach service to
18 residential aged care facilities on hospital admissions. *Aging Med.* 2021;4(3):169-
19 515 174. doi:10.1002/AGM2.12176
20
21 516 39. Carter HE, Lee XJ, Dwyer T, et al. The effectiveness and cost effectiveness of a
22 hospital avoidance program in a residential aged care facility: a prospective
23 cohort study and modelled decision analysis. *BMC Geriatr.* 2020;20(1):1-9.
24 518 doi:10.1186/S12877-020-01904-1/FIGURES/1
25
26 520 40. Graverholt B, Forsetlund L, Jamtvedt G. Reducing hospital admissions from
27 nursing homes: a systematic review. *BMC Health Serv Res.* 2014;14(1):1-36.
28 521 doi:10.1186/1472-6963-14-36
29
30 523 41. Kane RL, Huckfeldt P, Tappen R, et al. Effects of an Intervention to Reduce
31 Hospitalizations From Nursing Homes A Randomized Implementation Trial of
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 525 the INTERACT Program Supplemental content. *JAMA Intern Med.*
2
3 526 2017;177(9):1257-1264. doi:10.1001/jamainternmed.2017.2657
4
5 527
6
7 528
8
9 529
10
11 530
12
13 531
14
15 532
16
17 533
18
19 534
20
21 535
22
23 536
24
25 537
26
27 538
28
29 539
30
31 540
32
33 541
34
35 542
36
37 543
38
39 544
40
41 545
42
43 546
44
45 547
46
47 548
48
49
50
51 549
52
53 550
54
55 551
56
57 552
58 553
59
60
61
62
63
64
65

1
2 549 **Table 1. Characteristics of the CH residents involved in EDA (n=2,444) and**
3 550 **comparison between ACSC-EDA and non-ACSC-EDA**
4
5 551

Variables	ACSC-EDA (n,%) (1384, 56.6)	Non-ACSC-EDA (n,%) (1060, 43.4)	p	Overall EDAs (n=2,444)
Age (years), mean (SD)	85.7 (7.3)	86.2 (7.1)	0.066	85.9 (7.2)
Women, n (%)	946 (68.4)	711 (67.1)	0.513	1,657 (67.8)
Charlson Comorbidity index (range <u>0-37</u>)*, median (Q1-Q3)	3 (2-4)	3 (1-4)	0.002	3 (2-4)
Cognitive Impairment, (n, %) **	1,031 (79.1)	744 (76.4)	0.125	1,775 (78)
<i>Missing values, n</i>	81	86		167
Dementia, n (%) **	741 (59.7)	563 (60.3)	0.791	1,304 (59.9)
<i>Missing values, n</i>	142	126		268
Severity of dementia, n (%)			0.816	
Mild Dementia	69 (10.5)	47 (9.4)		116 (10)
Moderate Dementia	220 (33.4)	165 (15.5)		385 (33.6)
Severe Dementia	369 (56.1)	286 (57.4)		655 (56.6)
<i>Missing values, n</i>	75	73		148
Barthel Index for activities of daily living (range 0- <u>100</u>)*, median (Q1-Q3)	40 (10-70)	45 (15-70)	0.132	40 (15-70)
<i>Missing values, n</i>	777	601		1.378
Level of dependence, n (%) ***			0.278	
Non-dependence	45 (7.7)	49 (11.3)		94 (9.2)
Mild	114 (19.5)	80 (18.4)		194 (19.0)
Moderate	202 (34.5)	148 (34.0)		350 (34.3)
Severe	224 (38.3)	158 (36.3)		382 (37.5)
<i>Missing values, n</i>	192	166		358
Compiled level of dependence, n (%) ****			0.124	
Compiled-non-dependence	53 (4.4)	59 (6.6)		112 (5.4)
Compiled-mild	282 (23.7)	221 (24.7)		503 (24.1)

1	Compiled-moderate	313 (26.3)	234 (26.2)	547 (26.2)
2	Compiled-severe	544 (45.6)	380 (42.5)	924 (44.3)
3	<i>Missing values, n</i>	192	166	358

9 Abbreviations: ACSC, Ambulatory Care-Sensitive Conditions; EDA, Emergency Department Admissions; EMR,
10 Electronic Medical Record; SD, Standard Deviation; Q1, first quartile; Q3, third quartile

12 * Underlined scores are most favourable.

14 ** Cognitive status was assessed according to information obtained from the EMR (dichotomous variable)

16 *** Residents without registered Barthel index.

18 **** Combination of the categories of the Barthel Index and “level of dependence” variables: compiled-non-dependence
19 (Barthel index ≥ 95 or “non-dependence”), compiled-mild (Barthel index 61-95 or “mild”), compiled-moderate (Barthel
20 index 41-60 or “moderate”), or compiled-severe (Barthel index ≤ 40 or “severe”) dependence.

22 552

24 553

26 554

28 555

30 556

32 557

34 558

36 559

38 560

40 561

42 562

44 563

46 564

48 565

50 566

52 567

54 568

56
58
60
62
64
66

1
2 569 **Table 2. Characteristics and outcome of CH residents during their stay in the ED**
3 570 **and comparison between ACSC-EDA and non-ACSC-EDA, including**
4 571 **hospitalisations**
5
6 572

Variables	ACSC-EDA (n, %) (1384, 56.6)	Non-ACSC-EDA (n, %) (1060, 43.4)	p	Overall EDA (n, %) (n=2,444)
Triage Score, n (%)			0.066	
I-II	210 (15.1)	182 (17.1)		392 (16.0)
III	607 (43.8)	455 (42.9)		1062 (43.4)
IV-V	397 (28.6)	256 (24.1)		653 (26.7)
<i>Missing values, n</i>	146	191		337
Discharge Destination, n (%)*			<0.001	
Care Home	738 (53.3)	547 (51.6)		1285 (52.6)
Hospital ward	389 (28.1)	372 (35.1)		761 (31.1)
Intermediate Care Ward	211 (15.2)	79 (7.5)		290 (11.8)
Hospital at home	16 (1.2)	12 (1.1)		28 (1.1)
Palliative Care at Home	3 (0.2)	3 (0.3)		6 (0.2)
Other	5 (0.4)	1 (0.1)		6 (0.2)
Admissions to hospital or Intermediate care wards, n (%) **	616 (44.5)	463 (43.6)	0.652	1,079 (44.1)
Acute Hospital Ward after EDA, n (%)	389 (28.1)	372 (35.1)	<0.001	761 (31.1)
Internal Medicine	195 (50.1)	85 (30.4)		280 (36.7)
Acute Geriatric Unit	103 (26.4)	53 (14.2)		156 (20.4)
Traumatology	6 (1.5)	106 (26.0)		112 (14.7)
Short-stay Unit (Emergency room)	46 (11.8)	22 (5.9)		68 (8.9)
General Surgery	1 (0.2)	30 (8.6)		31 (4.0)
Pneumology	18 (4.6)	6 (1.6)		24 (3.1)
Other***	17 (4.1)	62 (16.6)		79 (10.3)
<i>Missing values, n</i>	3	8		11
Intermediate Care Ward after EDA, n (%)	211 (15.2)	79 (7.5)	<0.001	290 (11.8)

1	Subacute Care ward	202 (95.7)	62 (78.4)	264 (91.0)
2	Post-acute Care ward	1 (0.5)	4 (4.3)	5 (1.7)
3	Palliative Care ward	6 (3.0)	13 (14.1)	19 (6.5)
4	Long-stay medical ward	1 (0.5)	0 (0,0)	1 (0.3)
5	Psychogeriatric ward	1 (0.5)	0 (0.0)	1 (0.3)
6	<i>Missing values , n</i>	0	0	0
7	Mortality during EDA, n (%)	22 (1.6)	46 (4.3)	<0.001
8	Mortality 30 days after ED discharge,, n (%)	169 (12.2)	142 (13.4)	0.631
9	<i>Missing values , n</i>	17	11	28
10	<u>Short-term mortality, n (%)****</u>	191 (14)	188 (17.9)	0.009
11				379 (15.7)

23 Abbreviations: ACSC, Ambulatory Care-Sensitive Conditions; EDA, Emergency Department Admissions; ED,
24 Emergency Department

25 * Deceased in ED are excluded

26 ** Admissions to hospital at home are included

27 *** Admissions to Cardiology, Vascular Surgery, Digestology, Endocrinology, Nephrology, Neurosurgery, Neurology,
28 Oncology, Psychiatry, Urology are included.

29 **** During EDA or 30 days after ED discharge

30 573

31 574

32 575

33 576

34 577

35 578

36 579

37 580

38 581

39 582

40 583

1
2 584 **Table 3. Frequency of ACSCs and top 10 non-ACSC, and frequency of admission**
3 585 **of EDA to hospital or intermediate care wards (n=2,444)**
4
5 586

Main diagnoses	Frequency of EDA n (%)**	Frequency of EDA with admission to other hospital or intermediate care wards * n (%)***
ACSC		
Fall or trauma	338 (13.8)	12 (3.6)
Chronic obstructive pulmonary disease, asthma	279 (11.4)	182 (65.2)
Urinary tract infection	181 (7.4)	88 (48.6)
Congestive heart failure	152 (6.2)	112 (73.7)
Pneumonia	129 (5.3)	114 (88.4)
Dehydration	52 (2.1)	34 (65.4)
Skin ulcers, cellulitis	40 (1.6)	8 (20.0)
Anemia	39 (1.6)	14 (35.9)
Altered mental status, acute confusion, delirium	31 (1.3)	11 (35.5)
Constipation or fecal impaction obstipation	31 (1.3)	5 (16.1)
Diarrhea, gastroenteritis	28 (1.1)	13 (46.4)
Poor glycemic control	28 (1.1)	8 (28.6)
Seizures	24 (1.0)	6 (25.0)
Psychosis, agitation, organic brain syndrome	21 (0.9)	8 (38.1)
Hyper- and hypotension: separate conditions	11 (0.5)	1 (9.1)
Weight loss, nutritional deficiencies	-	-
Non-ACSC	1,060 (43.3)	463 (43.6)
Fractures	203 (8.3)	112 (10.5)
Pain	113 (4.6)	16 (1.5)
Ischemic stroke	68 (2.8)	41 (3.8)
Bronchoaspiration	68 (2.8)	40 (3.7)

1	Sepsis	56 (2.3)	40 (3.7)
2	Respiratory failure	51 (2.1)	36 (3.4)
3	Gastrointestinal bleeding	39 (1.6)	24 (2.2)
4	Arrhythmias	38 (1.6)	17 (1.6)
5	Syncope/lipotimia	34 (1.4)	5 (0.4)
6	Ischaemia	27 (1.1)	18 (1.6)

16 Abbreviations: ACSC, Ambulatory Care-Sensitive Conditions

17 * Admissions to hospital at home are included

18 ** Percentages referring to whole study sample (n=2444)

19 *** Percentages referring to the number of EDA for each condition

20 587

21 588

22 589

23 590

24 591

25 592

26 593

27 594

28 595

29 596

30 597

31 598

32 599

33 600

34 601

602 **Table 4. Costs related to ACSC-EDA according to the units of admission**

Unit of Admission	ACSC n (€)
Emergency Department Ward (n (€))	1,384 (144,835.60)
Hospital Ward after EDA*''''(n (€))	405 (1,426,319.89)
Medical Wards **	378 (1,298,180.52)
Surgery Wards ***	11 (73,189.93)
Intermediate Care Ward after EDA (n (€))	211 (377,841.81)
Subacute Care Ward	202 (351,686.04)
Post-acute Care Ward ****	8 (18,455.54)
Long-stay Medical Care Ward ****	1 (6,685.28)
Overall Cost (including admission to the ED and other hospital or intermediate care wards)	1,384 (1,948,997.30)
Average cost per EDA (including admission to the ED and hospital or intermediate care wards)	1,384 (1,408.24)

32 Abbreviations: ACSC, Ambulatory Care-Sensitive Conditions; ED, Emergency Department; EDA, Emergency Department
33 Admission

34 * *Includes hospital at home*

35 ** *Medical wards include: cardiology, digestology, endocrinology, internal medicine, geriatrics, pneumology, neurology,
36 oncology, psychiatry, nephrology, emergency short stay unit and intensive care unit.*

37 *** *Surgery wards include: traumatology, urology, general surgery, vascular surgery and neurosurgery.*

38 **** The cost is calculated on the basis of the number of days of admission according to the maximum stay recommended
39 for each of these wards by the Departament de Salut de la Generalitat de Catalunya²⁰

40 603

41 604

42 605

43 606

44 607

45 608

46 609

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

1
2 610 **Table 5. Results of sensitivity analysis on the estimated reduction in the frequency**
3 **611 and cost of ACSC based on assumptions about the proportion of avoidable**
4 **612 admissions to ED, other hospital and intermediate care wards that could be**
5 **613 prevented.**
6
7
8
9

10 11 Category	12	13 Frequency of ACSCs, 14 costs and 15 admissions/savings assumptions
16 Overall admissions for ACSCs (n)		1,384
17		
18 Overall costs for ACSC (€)*		1,948,997.30
19		
20 Average cost per ACSC EDA (€)		1,408.24
21		
22 Assumption 1: 20% of admissions defined as ACSC from an outpatient point of view are		
23 avoided. *		
24 Ambulatory Care-Sensitive Conditions prevented (n)		277
25 Estimated cost savings for Ambulatory Care-Sensitive Conditions prevented (€)		390,081.11
26		
27 Assumption 2: 40% of admissions defined as ACSC from an outpatient point of view are		
28 avoided. *		
29 Ambulatory Care-Sensitive Conditions prevented(n)		553
30 Estimated cost savings for Ambulatory Care-Sensitive Conditions prevented (€)		778,753.98
31		
32 Assumption 3: 60% of admissions defined as ACSC from an outpatient point of view are		
33 avoided. *		
34 Ambulatory Care-Sensitive Conditions prevented (n)		830
35 Estimated cost savings for Ambulatory Care-Sensitive Conditions prevented (€)		1,168,835.09
36		

37 Abbreviations: ACSC, Ambulatory Care-Sensitive Conditions

38
39 * Includes admissions to ED, other hospital and intermediate care wards

40
41 614

42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

Supplementary Table 1. Unit costs related to each unit of admission (adjusted to 2,017)

Unit of Admission	Unit cost (euros)
Emergency Department Unit *	104.65
Hospital Ward after EDA	
Medical wards*	3,434.34 €
Surgery wards*	6,653.63 €
Intermediate Care Ward after EDA	
Subacute care *	1,741.02
Post-acute Care**	89.59
Long-stay medical**	59.69

Abbreviations: EDA, Emergency Department Admissions

* *Cost per discharge*

** *Cost per stay (days of admission)*