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Key Points

• A distinct minor
subpopulation of LN
CLL cells is activated,
interfaces with the
immune milieu, and
promotes disease
progression.

• Clonal evolution
primarily occurs in LN
and associates with a
suppressed T-cell
inflammatory response.
In chronic lymphocytic leukemia (CLL), B-cell receptor signaling, tumor–microenvironment

interactions, and somatic mutations drive disease progression. To better understand the

intersection between the microenvironment and molecular events in CLL pathogenesis, we

integrated bulk transcriptome profiling of paired peripheral blood (PB) and lymph node

(LN) samples from 34 patients. Oncogenic processes were upregulated in LN compared with

PB and in immunoglobulin heavy-chain variable (IGHV) region unmutated compared with

mutated cases. Single-cell RNA sequencing (scRNA-seq) distinguished 3 major cell states:

quiescent, activated, and proliferating. The activated subpopulation comprised only 2.2% to

4.3% of the total tumor bulk in LN samples. RNA velocity analysis found that CLL cell fate in

LN is unidirectional, starts in the proliferating state, transitions to the activated state, and

ends in the quiescent state. A 10-gene signature derived from activated tumor cells was

associated with inferior treatment-free survival (TFS) and positively correlated with the

proportion of activated CD4+ memory T cells and M2 macrophages in LN. Whole exome

sequencing (WES) of paired PB and LN samples showed subclonal expansion in LN in

approximately half of the patients. Since mouse models have implicated activation-induced

cytidine deaminase in mutagenesis, we compared AICDA expression between cases with

and without clonal evolution but did not find a difference. In contrast, the presence of a T-

cell inflamed microenvironment in LN was associated with clonal stability. In summary, a

distinct minor tumor subpopulation underlies CLL pathogenesis and drives the clinical

outcome. Clonal trajectories are shaped by the LN milieu, where T-cell immunity may

contribute to suppressing clonal outgrowth. The clinical study is registered at clinicaltrials.

gov as NCT00923507.
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Introduction

The compartmentalization of chronic lymphocytic leukemia (CLL) in
peripheral blood (PB), bone marrow, and secondary lymphoid tis-
sue has permitted the study of intrinsic and extrinsic drivers of
tumorigenesis and progression. We previously showed that the
lymph node (LN) tumor microenvironment (TME) activates B-cell
receptor (BCR) and nuclear factor κ B signaling and induces the
proliferation of CLL cells.1 T–cell-derived CD40L and interleukin-
4(IL), and possibly macrophage-derived B-cell activating factor
(BAFF) and a proliferation-inducing ligand (APRIL), also promote
tumor survival and signaling.2-4 While receiving support from the
TME, CLL cells modulate their surroundings by secreting chemo-
kines, such as CCL3, CCL4, and CCL22, to attract T cells.5 These
findings indicate complex, bidirectional crosstalk between CLL
cells and their TME.

Beyond these microenvironmental dependencies, a diverse set of
putative pathogenic mutations have been identified through large-
scale sequencing efforts.6,7 Heterogeneity in the genetic archi-
tecture of CLL has been closely linked to disease aggressiveness
and its capacity to evolve under the selective pressures of treat-
ment.6,8 Clonal composition furthermore influences the CLL tran-
scriptome in several ways. For example, biased expression of the
mutated allele relative to the reference allele has been observed
with mutations affecting DNA damage response genes such as
ATM and TP53.9 Individual or cooccurrence of putative driver
mutations can also result in more global changes in the tran-
scriptome, dysregulating key oncogenic pathways.10,11

Herein, we integrate transcriptome profiling at the bulk and single-
cell level with bulk whole-exome sequencing (WES) of paired PB
and LN samples to understand the intersection between the TME
and molecular events in CLL pathogenesis.

Materials and methods

Details and resources are available in supplemental Methods.

Patient samples

Patient samples were obtained between 12 April 2005 and 26
August 2014 after written informed consent in accordance with the
Declaration of Helsinki, applicable federal regulations, and
requirements from the National Heart, Lung, and Blood Institute
Institutional Review Board. The clinical study is registered at
clinicaltrials.gov as NCT00923507.

Sample processing and storage

PB mononuclear cells were isolated by density gradient centrifu-
gation and cryopreserved. LN biopsies were either snap-frozen and
stored at −80◦C or mechanically disaggregated into single-cell
suspensions (SCSs) and cryopreserved. CD19+ CLL cells were
purified from PB mononuclear cells or LN SCSs by immuno-
magnetic positive selection with LS columns and stored as cell
pellets at −80◦C.

Bulk RNA sequencing and analysis

Total RNA libraries were prepared according to the Illumina TruSeq
protocol and sequenced on a HiSeq 2000 (Illumina). Gene set
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enrichment analysis12 was used to test for enrichment of a curated
set of lymphocyte gene expression signatures (supplemental Table 2).
CIBERSORT was used for deconvolution of bulk RNA-seq data from
LN samples of patients with CLL and normal donors.1

Single-cell RNA sequencing (scRNA-seq) and

analysis

Single-cell libraries were created from LN SCSs with the Chro-
mium Single Cell 3′ Reagent Kit V2. Libraries were sequenced on
NovaSeq (Illumina) and processed by Cell Ranger Single Cell
Software Suite 3.0.1.13 Downstream analyses were performed on
Seurat v3.14 For RNA velocity, cell transitions were estimated
based on quantification of unspliced and spliced mRNA.15,16

WES and analysis

DNA was extracted from CD19+ CLL cells using DNeasy kits
(Qiagen, Germantown, MD). Libraries were prepared using Agi-
lent SureSelect Human All Exon kit and Nextera DNA Library
Prep for Enrichment. Pooled libraries were sequenced on Illu-
mina next-generation sequencers. Binary alignment map (BAM)
files were generated from the Picard pipeline and then analyzed
on the Firehose platform, including quality control, local realign-
ment, mutation calling, small insertion and deletion identification,
rearrangement detection, and coverage calculations. ABSO-
LUTE17 was used to estimate sample purity, ploidy, absolute
somatic copy number, and the cancer cell fraction (CCF) of
mutations. To distinguish subclonal populations, a Bayesian
clustering procedure18,19 was applied to cancer cell fractions
(CCFs) across PB and LN samples from each patient.

Immunohistochemical staining

Formalin-fixed, paraffin-embedded LN samples were stained with
CD163. Images were captured at a magnification of 10× on an
Olympus Bx41 microscope. The number of CD163+ cells was
counted in 5 consecutive fields at 40× by a hematopathologist and
then averaged to obtain the number of cells per high-power field.

T-cell immunophenotyping

Cryopreserved LN SCSs were thawed and subjected to CD19+

immunomagnetic depletion with LD columns. Cells were pre-
incubated with LIVE/DEAD fixable Aqua Dead Cell Stain then
stained with a cocktail of antibodies against CD3, CD4, CD8,
CD45RO, CCR7, HLA-DR, CD19, and CD14. Fluorescence minus
one controls were used to set gates for positive events. Cells were
analyzed on LSRFortessa machine and FlowJo.

Quantification and statistical analysis

Continuous variables were compared between patient subgroups
with the 2-sided Student t test. Correlations were computed using
Pearson correlation. The Kaplan-Meier method was used to esti-
mate progression-free survival, and differences between patient
subgroups were compared using the log-rank test. Statistical
analyses were performed in Prism 7 or R.

The bulk and scRNA-seq data have been deposited in the Gene
Expression Omnibus database under accession numbers
GSE161711 and GSE161610. The WES data have been
deposited in the dbGaP database under dbGaP accession
phs002297.v1.p1.
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Results

Microenvironmental modulation of tumor cells

Prior studies of microarray-based gene expression profiling and
in vivo deuterium labeling have revealed the distinct biology of CLL
across anatomic compartments.1,20 To deeply investigate the
behavior of CLL in the TME, we performed total RNA sequencing
(RNA-seq) of purified CD19+ tumor cells from paired PB and LN
samples in 29 patients with treatment-naïve CLL or small lympho-
cytic lymphoma (Figure 1A,B; Table 1). Principal component
analysis of bulk transcriptomes separated samples by tissue type
(Figure 2A). We identified upregulation of 253 genes and down-
regulation of 32 genes in purified tumor cells from the LN
compared with the PB (fold-change ≥2, false discovery rate [FDR]
<0.05) (Figure 2B; supplemental Table 1).

To evaluate the impact of the TME on the cellular transcriptome, we
applied gene set enrichment analysis using a curated list of gene
expression signatures of signaling pathways, transcription factor
regulation, and cellular processes such as proliferation and meta-
bolism (Figure 2C; supplemental Table 2). Consistent with previ-
ously reported gene expression profiling,1,21 we confirmed BCR,
downstream NFκB, and NOTCH activation as enriched pathways
in the LN. Crosstalk with the TME was supported by signatures of
CD40 and cytokine signaling. Proliferation and metabolism signa-
tures were also enriched in the LN. In contrast, PB tumor cells were
characterized by 2 signatures: cellular quiescence and the tran-
scription factor Krüppel-like factor 2, which maintains mature
B cells in a resting state.22

Somatic hypermutation of the immunoglobulin heavy-chain variable
region (IGHV) is associated with cellular energy manifesting as
reduced signaling capacity upon in vitro stimulation of the BCR
by anti-immunoglobulin–M and better prognosis.23,24 To assess
differences between mutated (M-CLL) and unmutated (U-CLL)
CLL cases in the TME, we compared the expression of a BCR
signature in LN samples. We found overexpression of this BCR
signature in U-CLL compared with M-CLL (P = .03; unpaired t test)
(Figure 2D). U-CLL cases also overexpressed NFκB, interferon,
and T-cell cytokine signatures (P < .05). No signatures were
overexpressed in M-CLL cases.

Intratumoral transcriptional heterogeneity within

the TME

To further dissect the transcriptional heterogeneity of CLL cells
within the TME, we performed a high-throughput, droplet-based
single-cell RNA-seq of 5 LN samples. We sequenced a median of
2946 (range, 2605-3377) cells per sample and detected a median
of 1171 (range, 916-1374) genes per cell. A total of 15 107 cells
were analyzed by Seurat v314 using anchor correspondences
across samples to distinguish shared and nonoverlapping cell
states (Figure 3A). Three cell lineages (CLL, T cells, and mono-
cytes) were identified (Figure 3B,E). CLL cells were comprised of
3 major subpopulations defined by quiescent, activated, and
proliferating cell states (Figure 3B,E). Compared with the major
subpopulation of quiescent CLL cells, activated CLL cells,
accounting for 2.2% to 4.3% of tumor cells, overexpressed BCR,
NOTCH, proliferation, and metabolism signatures (Figure 3F).
Proliferating CLL cells, identified by G2/M and S phase markers,
comprised 0.4% to 1.0% of tumor cells (supplemental Figure 1A).
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To infer directional dynamics of the 3 CLL cell states, we estimated
RNA velocity based on the relative abundance of unspliced pre-
mRNA and spliced mRNA in single cells.15,16 For a given gene,
unspliced mRNA corresponds to the future state of spliced mRNA.
When the balance of unspliced and spliced mRNAs of many genes
are analyzed in each single-cell transcriptome, the RNA velocity of
these cells can be estimated, which can, in aggregate, reveal the
movement from one cell state to the next. In our dataset, the
dominant structure comprised of proliferating cells as the root,
giving rise to activated cells before entering the final state as
quiescent cells (Figure 3C). This program, consistently observed
across 3 different types of RNA velocity modeling (supplemental
Figure 1B), implies that CLL cell fate in the LN is unidirectional and
that most quiescent cells are not reactivated by TME stimuli.

We reasoned the bulk transcriptional profiles of PB and LN sam-
ples might be related to the tissue-specific distribution of CLL cell
states. Therefore, scRNA-seq was also performed in 5 matched PB
samples. A median of 5754 (range, 5071-6248) cells per sample
and 29 008 cells in total were projected onto the LN scRNA-seq
data to quantify the proportion of tumor cells in each cell state
(Figure 3D; supplemental Figure 2A). Proliferating CLL cells were
nearly absent in PB, and activated cells were significantly less
abundant in PB than LN (Figure 3G). Furthermore, the activated
population in PB underexpressed cell cycle genes, CCND2 and
DUSP2, and chemokine CCL4 compared with their counterpart in
LN (P < .05 for all comparisons) (supplemental Figure 2B).

Using single-cell expression profiles, we derived an activated CLL
signature of the 10 most overexpressed genes by mean fold-
change (HSP90AB1, ENO1, TUBB, RAN, PRDX1, LDHA,
NME1, DNPH1, HSPD1, PKM) among activated cells. We
assessed the expression of this signature in bulk RNA-seq of
unselected LN samples from 34 patients. These 34 patients
included 29 patients who contributed paired LN and PB samples
to the tumor transcriptome analysis above and 5 additional patients
with small lymphocytic lymphoma (Figure 1A). The activated CLL
signature was overexpressed in U-CLL compared with M-CLL
(P = .0033), in younger patients <60 years of age compared with
older patients (P = .014), and in CLL compared with small lym-
phocytic lymphoma (P = .049, all unpaired t tests) (Figure 4A). No
differences were observed among cytogenetic subgroups
(Figure 4B).

Patients were followed for a median of 62.5 (range, 0.5-155.7)
months after their LN biopsy. Consistent with more aggressive dis-
ease, higher expression of the activated CLL signature was asso-
ciated with inferior treatment-free survival (TFS) (hazard ratio [HR],
3.9; 95% confidence interval [CI], 1.7-8.9; P < .0001) (Figure 4C).
Median TFS from the time of diagnosis to first treatment or death
was 29.0months among patients with high signature expression and
124.6 months among those with low signature expression. In com-
parison, we analyzed TFS based on IGHV mutational status, a well-
established prognostic marker in CLL.25,26 As expected, TFS of
U-CLL was inferior to M-CLL, with a median TFS of 29.2 months vs
137 months (HR, 4.0; 95% CI, 1.9-8.5; P = .0002) (Figure 4D).
Within each IGHV subgroup, the activated CLL signature retained
independent prognostic information. Median TFS in patients with
M-CLL was 76.5 months with high signature expression vs 186.5
months with low signature expression (HR, 3.8; 95% CI, 0.7-20.7;
P = .040) (Figure 4E), and in patients with U-CLL was 16.1 months
TME SHAPES CLL INTRATUMORAL HETEROGENEITY 147
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Table 1. Demographic and clinical characteristics and sequencing analysis of patients

Patient ID Age Sex Dx IGHV Cytogenetic abnormalities*

Paired LN–PB LN

RNA-seq (CD19+) scRNA-seq WES (CD19+) RNA-seq

CLL-C01 61 F CLL U Tri 12 Yes No Yes Yes

CLL-C02 60 F CLL M Del 11q Yes No No Yes

CLL-C03 60 M CLL M Del 13q Yes Yes No Yes

CLL-C04 51 M CLL U Del 11q Yes No No Yes

CLL-C05 57 M CLL M Del 11q Yes No Yes Yes

CLL-C06 58 M CLL U None Yes No No Yes

CLL-C07 61 F CLL U None Yes No No Yes

CLL-C08 59 F CLL U Del 11q Yes No Yes Yes

CLL-C11 67 F CLL M Del 17p Yes Yes No Yes

CLL-C13 68 F CLL U Tri 12 Yes No No Yes

CLL-C14 55 F CLL U Del 13q Yes No Yes Yes

CLL-C24 52 M CLL U Del 17p Yes Yes Yes Yes

CLL-C25 53 M CLL U Del 13q Yes No No Yes

CLL-C30 43 M CLL U Del 17p Yes No Yes Yes

CLL-C31 48 M CLL U Del 17p Yes No No Yes

CLL-C32 48 M CLL U Del 13q Yes No Yes Yes

CLL-C33 50 M CLL U Del 11q Yes Yes Yes Yes

CLL-C34 49 F CLL M Del 13q Yes No Yes Yes

CLL-C35 60 F CLL U Del 17p Yes No Yes Yes

CLL-C36 57 F CLL U Del 13q Yes No No Yes

CLL-C37 73 M CLL M Del 11q Yes No No Yes

CLL-C39 73 F SLL N/A Tri 12 No No No Yes

CLL-C41 75 M CLL U Del 11q Yes No Yes Yes

CLL-C42 55 F SLL M Tri 12 No No No Yes

CLL-C43 55 F CLL U Tri 12 Yes No Yes Yes

CLL-C44 47 M CLL M Del 17p Yes Yes No Yes

CLL-C45 56 F CLL M Del 13q Yes No Yes Yes

CLL-C46 67 M CLL U Del 13q Yes No Yes Yes

CLL-C47 59 F SLL U Tri 12 Yes No No Yes

CLL-C49 69 F CLL U Del 17p Yes No No Yes

CLL-C51 75 M SLL M Tri 12 No No No Yes

CLL-C53 71 F SLL M Tri 12 No No No Yes

CLL-C55 66 M SLL U None No No No Yes

Dx, diagnosis; IGHV, immunoglobulin heavy-chain gene; M, mutated; sc, single-cell; U, unmutated.
*By fluorescent in situ hybridization and according to hierarchal classification (Döhner et al 2000).
with high signature expression vs 37.4 months with low signature
expression (HR, 2.5; 95% CI, 1.0-6.2; P = .025) (Figure 4F).

Interaction between immune cells of the TME

and activated CLL

Although cellular interactions within the TME are thought to be
critical in the pathogenesis of CLL, understanding the contribution of
nonmalignant immune cells has been largely based upon in vitro and
murine models. Whereas most studies have focused on specific cell
types of interest, we sought to comprehensively assess the immune
cell repertoire within the LN TME. The proportion of various cell types
can be inferred by deconvolving bulk gene expression profiles.27,28
10 JANUARY 2023 • VOLUME 7, NUMBER 1
CIBERSORT27,28 was used to construct a custom gene signature
matrix from gene expression profiles of purified CLL cells from LN
samples and 20 non-B immune cell types. This signature matrix was
then applied to deconvolve bulk RNA-seq data of the 34 unselected
CLL LN samples. In parallel, we performed bulk RNA-seq of 4 normal
LN samples and deconvolved these data using a validated gene
signature matrix of 22 immune cell types, including naïve and
memory B cells.28 The median estimated proportion of tumor cells
was 77.9% (range, 29.6% to 90.7%). Only 1 sample had <50%
tumor content. B cells comprised a median of 34.5% (range, 28.5%
to 42.4%) of normal LNs and were predominantly memory B cells.
After normalization to tumor or B-cell content, we compared the
proportions of the 20 non-B immune cell types between CLL and
TME SHAPES CLL INTRATUMORAL HETEROGENEITY 149
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normal LNs (Figure 5A; supplemental Figure 3). Follicular helper T
cells, which provide T-cell help to B cells within germinal centers,29

were expanded while naïve CD4+ T cells and uncommitted macro-
phages were decreased in CLL LNs compared with normal LNs.
150 SUN et al
We hypothesized that a subpopulation of tumor cells, specifically
that of the activated phenotype, could be interacting with immune
cells of the TME. Expression of the activated CLL signature among
34 CLL LNs was correlated against the proportion of 20 non-B
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Figure 4. The activated CLL signature is associated with disease aggressiveness. (A,B) Comparison of the activated CLL signature between clinical subgroups.

The activated CLL signature was defined as the 10 most differentially expressed genes between activated and quiescent CLL cells in the scRNA-seq dataset. Signature

expression was then calculated in bulk RNA-seq data of LN samples. Box and whiskers represent the median, IQR, and 1.5 times IQR. (C-F) Kaplan-Meier plots of TFS in patients
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M-CLL, and (F) low vs high signature expression in patients with U-CLL.
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immune cell types inferred by deconvolution. The activated CLL
signature was significantly correlated with M2 macrophages
(Pearson R = 0.44; P = .0087) (Figure 5B) and activated CD4+

memory T cells (Pearson R = 0.53; P = .0013) (Figure 5D). We
corroborated these in silico findings with immunohistochemical
staining of CD163 for M2 macrophages (Figure 5C) and flow cyto-
metric analysis of activated HLA-DR+ activated CD4+ effector and
central memory T cells in a subset of CLL LNs (Figure 5E; supple-
mental Figure 4). Given the association between the activated CLL
signature and IGHVmutation status, we compared the TME immune
cell composition between U-CLL and M-CLL. The proportion of the
20 non-B immune cell types was not significantly different based on
IGHVmutation status. These data indicate that the TME is abnormal in
CLL LNs compared with normal LNs and that an activated subset of
CLL cells shapes the immune cell milieu in which they reside.

Permissive TME promotes the expansion of genetic

subclones

Genetic lesions have been identified exclusively in either the PB or
LN in some patients with CLL.30 We sought to map genotype–
phenotype relationships that could explain the compartmentaliza-
tion of subclones. WES was performed on CD19+ cells of paired
PB and LN samples and matched germline DNA from 14 patients.
A median of 27 (range, 11-69) somatic single nucleotide variants
(sSNVs) and 3 (0-10) insertions and deletions (sIndels) were
detected per exome. There were 28 sSNVs and sIndels shared by
≥2 patients (Figure 6A). In addition, all but 1 patient had copy
number alterations, most commonly del(11q) and del(13q).

Cancer cell fractions (CCFs) of sSNVs, sIndels, and copy number
alterations were inferred from variant allele frequencies using
ABSOLUTE,17 then clustered over the 2 anatomic compartments
for each patient. Genetic compartmentalization (ΔCCF >0.25;
FDR <0.1) was observed in 7 patients (50%), of whom 6 demon-
strated subclonal expansion in the LN (Figure 6B). In the remaining
7 patients, no genetic compartmentalization was observed (sup-
plemental Figure 5). To explore factors that contribute to the
enrichment of subclones in the TME, we grouped patients based on
the presence (shifted group) or absence (stable group) of an
expanded subclone in LN. Patient CLL-C46 showed subclonal
expansion in PB and was excluded.

Activation-induced cytidine deaminase (AID) is required for somatic
hypermutation and class switch recombination but can also give rise
to oncogenic mutations.31 In the TCL1 model, AID action has been
implicated in clonal evolution.32 Therefore, we assessed AICDA
expression in bulk RNA-seq data of purified CLL cells from LN and
PB. As expected, LN-resident CLL cells overexpressed AICDA
compared with their circulating counterpart (P < .0001) (supple-
mental Figure 6A). Among LN samples, AICDA expression was
significantly higher in U-CLL than in M-CLL (P = .0004) (supplemental
Figure 6B). AICDA expression was weakly correlated with the acti-
vated CLL signature in bulk RNA-seq (supplemental Figure 6C).
However, assessment of AICDA in proliferating, activated, and
quiescent single cells could not be performed because AICDA
transcripts were detected in only 0.84% of CLL cells in scRNA-seq.
Notably, there was no difference in AICDA expression between the
shifted and stable groups (supplemental Figure 6C).

Differential gene expression analysis between PB and LN was per-
formed separately in the shifted and stable group. Most differentially
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expressed genes between PB and LN were shared by both groups
of patients. However, each group preferentially overexpressed a
small subset of genes in LN relative to PB (log2FC>0.5; FDR<0.05)
(Figure 6C). We observed upregulation of cell cycle genes (eg,
E2F2, CDC25A, ESPL1) in the shifted group (supplemental
Table 3). In the stable group,CD69, a lymphocyte activation marker,
and CD83, involved in antigen presentation,33 were upregulated,
raising the question of whether immune-mediated control could
restrict clonal outgrowth.

To explore this possibility, we used a tumor immune signature
comprised of 18 T–cell-associated inflammatory genes, which was
developed to predict the clinical outcome with checkpoint blockade
in multiple cancer types.34 Unsupervised hierarchal clustering of
these signature genes in LN bulk RNA-seq data revealed increased
expression in the stable group compared with the shifted group
(Figure 6D). Irrespective of the source of mutagenesis, our findings
raise the possibility of T–cell-mediated immune surveillance as a
factor restricting clonal evolution in the LN.

Discussion

The development and progression of CLL are not isolated to
intrinsic properties of leukemia cells but rather involve complex
interactions with the TME. In vitro experiments and murine models
have identified candidate cellular and soluble components in the
local milieu that may be coopted by tumors to support leukemo-
genesis. In this study, we integrated bulk and single-cell tran-
scriptome and bulk exome sequencing of paired PB and LN
samples to define the in situ interactions between CLL and the
TME and map clonal trajectories between anatomic compartments.

Our bulk RNA-seq data provided a comprehensive view of signaling
pathways and cellular processes that are modulated in leukemic
cells by the TME. These findings indicate that multiple support sig-
nals from the TME collectively promote growth and survival. Our
sample size was sufficient in informing the differences between
M-CLL and U-CLL in the TME. Compared with M-CLL, U-CLL
demonstrated not only enhanced BCR signaling, consistent with
prior studies,23 but also increased engagement with immune cells of
the TME, as evidenced by the overexpression of interferon and T-cell
cytokine signatures. While both M-CLL and U-CLL exhibit autono-
mous BCR signaling,35 our data demonstrate that extrinsic factors in
the TME augment BCR activation above the basal level established
by autonomous signaling in U-CLL more so than in M-CLL.

The gene expression profile provided by bulk RNA-seq is averaged
across many cells, each of which has an individual transcriptome.
By performing scRNA-seq in a subset of paired PB and LN sam-
ples, we found that bulk transcriptome data are, in fact, the
aggregate of distinct CLL subpopulations. The transcriptional
program associated with LN-resident CLL, that is, increased
signaling and proliferation compared with its counterpart in PB, is
derived from minor subpopulations comprising <10% of all tumor
cells in the TME. By analyzing the RNA velocity of single cells, we
found that CLL cells start in the proliferating state, move to the
activated state, and end in the quiescent state. The sequential
progression of these cell states suggests that most quiescent CLL
cells residing in the LN are never reactivated by TME stimuli.

In contrast to the insights gained about tumor heterogeneity, we
were only able to identify 3 nontumor immune cell clusters by
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scRNA-seq of LN samples. Several factors may have contributed
to this result. First, adherent populations such as dendritic cells and
macrophages are lost during the mechanical dissociation of LN
tissue into single cells. Second, the relatively low number of tran-
scripts per cell, which is inherent to scRNA-seq, limits the resolu-
tion of closely related immune cell subsets. To overcome these
limitations and to analyze more samples in a cost-effective manner,
we used in silico transcriptome deconvolution to profile accessory
cell types in the LN TME of patients with CLL compared with
normal LN. Our data indicate the activated subpopulation shapes
the local immune cell composition, specifically of M2 macrophages
and activated CD4+ memory T cells, independently confirming
conclusions derived from model systems.36-38 The proportion of
activated CLL cells and their capacity to recruit a tumor-supportive
TME may underlie the shorter TFS observed in patients with higher
expression of the activated CLL signature. Taken together, an
identifiable minor tumor subpopulation underlies CLL pathogenesis
and drives clinical outcomes.

A prior study detected PB- and LN-specific genetic lesions in 6 of
9 patients,30 but this interpretation overlooked possible differences
in the size of subclones common to both PB and LN. In contrast,
we included shared and specific mutations to infer and compare
the clonal architecture between anatomic compartments. In one-
half of patients, the CCF of identical subclones differed by
>25% between PB and LN. Although certain mutations could, in
theory, confer relative clonal fitness in a given environment,
perhaps limited by sample size, we did not identify specific muta-
tions that were preferentially distributed in either PB or LN.
Together with the RNA velocity of CLL single cells, the spatial
imbalance in genetic composition challenges the lifecycle model of
CLL, in which tumor cells transit from a proliferative state in
lymphoid tissue to a resting state in the blood and back.39

Our data support differential fitness of subclones within the TME
driving genetic compartmentalization. The immune TME is capable
of constraining clonal expansion and maintaining tumors in a state
of equilibrium.40 In previously treated CLL, nodal relapse without
leukemic progression implicates the role of protective niches in
clonal evolution.41 Consistent with a permissive TME, subclonal
expansion was apparent in the LN in all but 1 case with genetic
compartmentalization. Bulk RNA-seq data from the same samples
suggested that clonal outgrowth is impeded by an activated
immune TME. When immune surveillance is inactivated, subclones
with a competitive advantage may expand in response to support
signals provided by the TME.

Experimental models have implicated AID in promoting clonal
evolution.32 We observed increased AICDA expression in LN
compared with PB and in U-CLL compared with M-CLL. However,
there was no difference in AICDA expression between cases with
Figure 6 (continued) patients with genetic compartmentalization of subclones defined as

plots of CCF in PB and LN in patients demonstrating subclonal expansion in each compa

CLL-C35), and PB only (CLL-C46). The subclone(s) with genetic compartmentalization are

bulk RNA-seq in LN relative to PB between patients with (shifted) and without (stable) subc

PB averaged across 6 patients in the shifted group (y-axis) and 7 patients in the stable gr

these 2 groups (Δlog2FC >0.5; FDR <0.05). (D) Heatmap of a T-cell inflammatory signatur

and shifted (n = 6) patients. The top row shows stable patients in white and shifted patients

in LN only and those with expanded subclone(s) in LN and PB, respectively. CNAs, copy
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or without clonal evolution in situ. Irrespective of the source of
mutagenesis, our findings indicate T–cell-mediated immune sur-
veillance as a factor that may restrict clonal evolution in the
LN. Cumulative evidence has pointed to the existence of
CLL-specific T cells and treatment, such as ibrutinib or lenali-
domide, that could restore their cytotoxic activity.42-44 Therefore,
strategies to strengthen host immune surveillance in CLL could
represent one avenue to impede the evolution to more aggres-
sive clones. Collectively, our findings underscore the value of an
integrated multiomic approach to the evaluation of the LN TME in
CLL.
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