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A B S T R A C T   

Traditional bulk sequencing methods are limited to measuring the average signal in a group of cells, potentially 
masking heterogeneity, and rare populations. The single-cell resolution, however, enhances our understanding of 
complex biological systems and diseases, such as cancer, the immune system, and chronic diseases. However, the 
single-cell technologies generate massive amounts of data that are often high-dimensional, sparse, and complex, 
thus making analysis with traditional computational approaches difficult and unfeasible. To tackle these chal
lenges, many are turning to deep learning (DL) methods as potential alternatives to the conventional machine 
learning (ML) algorithms for single-cell studies. DL is a branch of ML capable of extracting high-level features 
from raw inputs in multiple stages. Compared to traditional ML, DL models have provided significant im
provements across many domains and applications. In this work, we examine DL applications in genomics, 
transcriptomics, spatial transcriptomics, and multi-omics integration, and address whether DL techniques will 
prove to be advantageous or if the single-cell omics domain poses unique challenges. Through a systematic 
literature review, we have found that DL has not yet revolutionized the most pressing challenges of the single-cell 
omics field. However, using DL models for single-cell omics has shown promising results (in many cases out
performing the previous state-of-the-art models) in data preprocessing and downstream analysis. Although de
velopments of DL algorithms for single-cell omics have generally been gradual, recent advances reveal that DL 
can offer valuable resources in fast-tracking and advancing research in single-cell.   
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1. Introduction 

Since single-cell sequencing (sc-seq) was highlighted as the “Method 
of the Year” in 2013 [2], sequencing individual cells at the single-cell 
resolution has become the norm for studying cell-to-cell heterogene
ity. RNA and DNA single-cell measurements, and recently, epigenetic 
and protein levels, stratify cells at the highest possible resolution. That 
is, single-cell RNA sequencing (scRNA-seq) makes it possible to measure 
transcriptome-wide gene expression at the single-cell level. Such reso
lution enables researchers to distinguish different cell types based on 
their characteristics [see [3–6]], organize cell populations, and identify 
cells transitioning between states. Such analyses provide a much better 
picture of tissues and the underlying dynamics in the development of an 
organism, which in turn allow for delineating intra-population hetero
geneities that had previously been perceived as homogeneous by bulk 
RNA sequencing. Similarly, single-cell DNA sequencing (scDNA-seq) 
studies can reveal somatic clonal structures [e.g., in cancer, see [7,8]], 
thereby helping to monitor cell lineage development and providing 
insight into evolutionary mechanisms that function on somatic 
mutations. 

The prospects resulting from sc-seq are tremendous: it is now 
possible to re-evaluate hypotheses on differences between predefined 
sample groups at a single-cell level regardless of samples being disease 
subtypes, treatment groups, or morphologically distinct cell types. As a 
result, in recent years, enthusiasm about the possibility of screening the 
basic units of life’s genetic material has continued to expand. Human 
Cell Atlas [9] is a prominent example: an effort to sequence the various 
cell types and cellular states that make up a human being. Encouraged 
by the great potential of single-cell investigation of DNA and RNA, there 
has been substantial growth in the development of related experimental 
technologies. In particular, the advent of microfluidics techniques and 
combinatorial indexing strategies [10,11] has resulted in routinely 
sequencing hundreds of thousands of cells in a single experiment. This 
growth has also allowed a recent publication to analyze millions of cells 
at once [12]. More large-scale sc-seq datasets are becoming accessible 
worldwide (with tens of thousands of cells), constituting a data explo
sion in single-cell analysis platforms. The continuous growth of the scale 
and quantity of available sc-seq data has raised significant questions: 1) 
How do we correctly interpret and analyze the increasing complexity of 
sc-seq datasets? 2) How can different types of data sets (mentioned 
above) provide a deeper understanding of the underlying biological 
dynamics for a specific condition? and 3) how can the acquired infor
mation be changed into practical applications in medicine, ranging from 
rapid and precise diagnoses to accurate medicine and targeted pre
ventions. As we face the challenges of a rise in chronic diseases, aging 
populations, and limited resources, a transformation towards intelligent 
analysis, interpretation, and understanding of complex data is essential. 
In this paradigm shift, the rapidly emerging field of ML is central [13]. 

ML is the study of models which can learn from data without the 
need for an explicit set of instructions. Simultaneously with biomedical 
advancements of the past decade, there has been a surge in the devel
opment and application of ML algorithms, prominently led by advances 
in DL. Some of the earliest DL algorithms developed were intended to 
computationally model our brains’ learning process, therefore being 
called “Artificial Neural Networks” (ANN). DL models often consist of 
many processing layers (with many nodes in each layer), which enable 
them to learn a representation of data with several levels of abstraction. 
The recent improvements in computational hardware have made 
training DL models feasible, resulting in successful and revolutionary 
applications of such models across many domains. 

This review aims to discuss DL applications in sc-seq analysis and 
elaborate on their instrumental role in improving sc-seq data processing 
and analysis. We first introduce some key concepts in DL, which enable 
us to discuss their applications in the sc-seq field. Because of the high 
technical noise and complexity of sc-seq data, we review appropriate 
techniques for analyzing such data, which ensure robustness and 

reproducibility of results. Finally, we conclude this work by discussing 
possible developments, highlighting both emerging obstacles and op
portunities to advance the rapidly evolving field of single-cell omics. 

2. Essential concepts in deep learning 

The field of DL has a rich history, beginning with the development of 
the MCP artificial neural model by McCulloch and Pitts in 1943 [14]. 
The concept of the perceptron was later introduced by Rosenblatt, 
building on the foundation of artificial neurons [15]. In 1974, the 
backpropagation algorithm was proposed by Werbos, enabling the use 
of multilayer neural networks [16]. However, it was not until 2006, with 
the introduction of Hinton’s algorithm [17], that deep learning tech
nology truly reached its full potential by effectively addressing the issue 
of gradient disappearance in backpropagation. 

DL is a subset of ML that uses deep neural networks (DNNs) to 
analyze large and complex datasets. DNNs are made up of layers of 
artificial neurons, which are inspired by the way human neurons work. 
Each neuron takes the weighted summation of all inputs and passes it 
through a non-linear activation function, such as sigmoid, rectifier (i.e., 
rectified linear unit [ReLU]), or hyperbolic tangent. A deep feed-forward 
neural network (DFNN) is the most basic deep architecture (Fig. 1a), 
which is created by stacking layers of neurons. The input information 
flows from the input layer through the hidden layers and the model 
generates an output at the last layer, the output layer. The large set of 
trainable weights of the neurons and the non-linear transformations 
enable DNNs to capture underlying complex patterns of the data. 
Training a DNN is the process of determining these trainable weights to 
optimize model performance. 

DL models are trained through a process called backpropagation, 
which uses mathematical calculations to adjust the model’s parameters 
or weights based on the prediction errors. DL can be divided into three 
main categories: supervised learning, unsupervised learning, and semi- 
supervised learning. Supervised learning is commonly used in deep 
feed-forward neural networks (DFNNs), where the goal is to map input 
data to a representation that can be used for tasks such as classification 
or regression. Semi-supervised learning is used when only a small 
number of data points have labels, using the limited labels to inform the 
representation and labeling of the unlabeled data. Unsupervised 
learning is used to identify underlying patterns in data without any 
supervision, and is commonly used in sc-seq data analysis for dimen
sionality reduction and cell clustering. 

In the following paragraphs, we provide an overview of several 
frequently-used DL models for single-cell applications. 

2.1. Recurrent Neural Network (RNNs) 

RNNs [18] are used for processing sequential data, including natural 
language and time series. RNNs process sequential inputs one at a time 
and implicitly maintain a history of previous elements in the input 
sequence. A typical architecture for RNNs is presented in Fig. 1c. Similar 
to FFNNs, RNNs learn by propagating the gradients of each hidden 
state’s inputs at discrete times. This process becomes more intuitive if 
we consider the outputs of the hidden units at various time iterations as 
if they were the outputs of different neurons in a deep multilayer 
network. However, deep RNNs are notoriously hard to train due to 
vanishing or exploding gradients. Moreover, RNNs are not parallelizable 
(since each layer depends sequentially on the output of the previous 
modules) and therefore expensive to train. These issues have paved the 
way for newer sequence-to-sequence models which have tried to alle
viate RNN’s training challenges. Among these models, Long Short-Term 
memory (LSTMs) [19] have been able to somewhat address the gradient 
issues, while Transformers [20] have enabled deeper and more stable 
parallelizable sequence-to-sequence models. Though these models 
remain underexplored in SC omics, some studies have already shown 
promising application for SC omics analysis, including [21,22] [using 
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LSTMs to predict cell types and cell motility] and [23] [using Trans
formers to generate meaningful embeddings from sparse scRNAseq 
data]. 

2.2. Convolutional Neural Network (CNNs) 

CNNs [24] are specialized types of networks that use convolution 
(the mathematical operation) instead of tensor multiplication (which is 
done in FFNNs) in at least one of their layers (Fig. 1b). This convolution 

operation makes CNNs ideal for processing data with a grid-like topol
ogy (images are the quintessential example of such datasets). Compared 
to other ANNs, CNNs have three key benefits: (i) sparse interactions, (ii) 
shared weights, and (iii) equivariant representations [24]. CNNs have 
been effectively used in many applications in computer vision and 
time-series analysis but are not utilized as frequently for sc-seq appli
cations (since sc-seq datasets do not have a grid-like structure). How
ever, some studies, such as Xu et al. [25] have used CNNs after 
converting sc-seq data to images, which have shown promising results. 

Fig. 1. (a) An example of an FFNN architecture. In this network, the raw input is shown as X, the weight tensors are denoted Wi, activation layers are αi and the bias 
nodes are shown in blue nodes marked by b. The positive and negative weights are shown as blue and red edges, respectively, where a smaller numerical value 
corresponds to more transparent edges and vice versa. (b) An example of CNN architecture for classification. In this hypothetical architecture, the model feeds the 
inputs through the three stages of a CNN (with non-linear activation not depicted) to extract features. As is often the case, the output of the CNN is inputted to a fully 
connected neural network for classification. (c) An RNN depicted with its training flow, and an unrolled version showing the timestep-dependent inputs, hidden state, 
and outputs are marked. (d) An illustration of a denoising autoencoder. Autoencoders (AE) have an encoder network, which tries to extract the most critical features 
and map them to a latent space (often of a much smaller dimension than the input data). The decoder network takes in the latent vector produced by the encoder 
(denoted as z) and maps this representation back to the original input dimension. (e) The architecture of a Variational AE (VAE) that aims at generating synthetic 
scRNA-seq data using the gene expression values. (f) A depiction of generative adversarial network for generating in-silico scRNA-seq data. In this illustration, the 
scRNA-seq count matrix is converted to images that are used as real samples. 
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2.3. Autoencoders (AEs) 

AEs are neural networks that aim to reconstruct (or copy) the orig
inal input via a non-trivial mapping. Conventional AEs have an “hour- 
glass” architecture with two mirroring networks: an encoder and a 
decoder. The encoder’s task is to map the input data to a latent space, 
often of a much smaller dimension than the original input space. The 
encoder is responsible for data compression and feature extraction, 
forming the narrowing part of the hourglass architecture (Fig. 1d). The 
output of the encoder network (latent vector) will contain the most 
important features present in the data in a compressed form. Conversely, 
the decoder is tasked with mapping the latent vector back to the original 
input dimension and reconstructing the original data. In the ideal case, 
the decoder’s output will be an exact copy of the training sample. 

Fig. 1(d) depicts an example of a denoising AE. AE’s have been used 
extensively for scRNAseq analysis, such as batch effect removal [26], 
data imputation [27] and multi-omics integration [28]. We describe the 
applications of AEs in SC analysis in the following sections. 

2.4. Variational Autoencoders (VAEs) 

VAEs [29,30] are generative models that learn latent-variable and 
inference models simultaneously, i.e., they are made up of generative 
and inference models. VAEs are AEs that employ variational inference to 
recreate the original data, allowing them to produce new (or random) 
data that is "similar" to that which already exists in a dataset (Fig. 1e). 
VAEs have better mathematical properties and training stability than 
Generative Adversarial Networks (GANs), but they suffer from two 
major weaknesses: classic VAEs create "blurry" samples (those that 
adhere to an average of the data points), rather than the sharp samples 
that GANs generate due to adversarial training. Introspective VAEs 
(IntroVAEs) Huang et al. have generally solved this issue by specifying 
an adversarial training between the encoder and the decoder. IntroVAEs 
are single-stream generative algorithms that assess the quality of the 
images they generate. They have largely been employed in computer 
vision, where they have outperformed their GAN counterparts in ap
plications like synthetic image generation [31] and single-image 
super-resolution [32]. 

The other major issue with VAEs is posterior collapse: when the 
variational posterior and actual posterior are nearly identical to the 
prior (or collapse to the prior), which results in poor data generation 
quality [33]. Posterior collapse has been attributed to VAE’s distribution 
regularization term in the objective function [34], i.e. when the prior 
and posterior divergence is close to zero. Studies aimed at reducing 
posterior collapse can be divided into two categories: (i) solutions aimed 
at weakening the generative model [35,36], (ii) alterations to the 
training purpose [35,37,38], and (iii) alterations to the training pro
cedure [33,39]. If both issues mentioned above can be addressed, VAEs 
have shown to perform comparable (or similar) to GANs while training 
faster due to the simpler training procedure. VAEs have been an utilized 
extensively for SC omics analysis: Since VAEs’ latent space is well 
regularized (as opposed to AEs), the latent representation can be used 
for clustering and dimensionality reduction [40]. Given that VAEs are 
generative models, they can also be used to impute missing data [41] or 
generate realistic sc-seq for data augmentation, further improving 
downstream SC omic analyses [42]. 

2.5. Generative Adversarial Networks (GANs) 

GANs [43] can generate realistic synthetic data and have been 
effectively utilized in a variety of computer vision tasks [44–46], natural 
language processing [47,48], time series synthesis [49,50], and bioin
formatics [51]. GANs are made up of a generator network (G) and a 
discriminator network (D) that compete in a zero-sum game; we present 
the architecture of GANs in Fig. 1f. The goal of the G network is to 
generate fake samples that resemble the distribution of the real data, 

“fooling” the D network into believing that these fake samples are real. 
Conversely, D trains to learn the difference between real and synthetic 
samples and “discriminate” between them. In each GAN training itera
tion, the entire system is re-adjusted to update both G and D parameters. 
In this process and through many iterations, the generator learns to 
make more realistic samples which deceive the discriminator as real 
data. At the same time, the discriminator is learning the distinction 
between real and generated data (from the G network). GANs’ ability to 
produce realistic samples is attributed to the adversarial training be
tween G and D networks. Compared to other generative models, GANs 
have several advantages, such as the flexibility to learn any distribution, 
requiring no assumptions on the prior distribution, and no limitations on 
the size of the latent space. 

Despite these advantages, GANs are notoriously difficult to train 
since achieving Nash equilibrium for G and D is extremely difficult [52]. 
Another drawback of GANs is vanishing gradients, which occurs if D 
learns the distinction between real and generated data well too quickly, 
prohibiting G from training properly [53]. Another problem with GANs 
is “mode collapse,” which occurs when G produces only a small number 
of outputs that potentially trick D. This happens when G has trained to 
map many noise vectors to the same output that D recognizes as real 
data. Quantifying how much GANs have learned the distribution of real 
data is often difficult, hence one of the most common methods of 
assessing GANs is to evaluate the output directly [54], which could be 
laborious. Even though certain GAN variations have been proposed to 
reduce vanishing gradients and mode collapse, (e.g., Wasserstein-GANs 
(WGANs) [53] and Unrolled-GANs [55], the convergence of GANs is still 
a big issue. Due to their ability to generate realistic samples, we antic
ipate GANs to be increasingly utilized for SC omic analysis. Indeed, 
GANs have shown promising results in generating realistic ta [51], 
imputing and augmenting existing datasets [25] and predicting the 
molecular progress of Alzheimer’s disease [56]. 

3. Essential concepts in single-cell omics 

A cell’s state is defined and characterized mainly by the interaction 
between its genome, epigenome, transcriptome, proteome, and metab
olome. The data obtained from these layers is usually referred to as 
“omics”. Until recently, attaining various omics data at a single-cell 
resolution was not possible, due to many obstacles concerning single- 
cell isolation and the analysis of minute quantities of molecules pre
sent in each cell. However, recent technological and engineering ad
vances have enabled many of such “omic” layers to be read and 
sequenced at single-cell resolution. The advent of SC omics has enabled 
the exploration of heterogeneity between cells and within populations, 
which previously could have been masked and thought to be 
homogeneous. 

3.1. Transcriptomics 

Transcriptomics refers to the study of the transcriptome (the entire 
collection of RNA transcripts generated by the genome under specific 
conditions or in a particular cell) utilizing high-throughput technologies 
such as sc-seq. Comparison of transcriptomes allows for the identifica
tion of genes that are differentially expressed in various cell types or in 
response to different stimuli. SC transcriptomics can provide unique 
insights into the differentiation dynamics, cellular responses to stimu
lation, and transcription’s stochastic nature. The recent technological 
advancements allow SC transcriptomics to be used for constructing 
single-cell resolution reference maps of healthy human tissues, organs, 
and systems, which will be crucial in many biological disciplines. [57]. 

3.2. Genomics 

As a discipline, genomics is the study of genome structure, function, 
evolution, mapping, and editing. SC genomics is the use of omics 
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methods and technologies to examine the uniqueness of cells. Such an
alyses provide a new understanding of complex biological events and 
systems. Multiple kinds of mutations were studied at the single-cell 
level, revealing unexpected insights into the genetic heterogeneity 
that may occur throughout the human life cycle [58]. 

3.3. Epigenomics 

Epigenomics is the study of the physical modifications, including 
DNA methylation, histone modification, chromatin accessibility, and 
chromosome conformation, which empower cells with identical 

genotypes to have distinct gene expression profiles. The advancement of 
experimental techniques for characterizing epigenomes at the single-cell 
level has given rise to new possibilities, providing a better understand
ing of epigenetic processes and their complex interactions with gene 
regulation. Recent technological advances have made it possible to also 
evaluate and identify the dynamics of epigenetic maintenance and 
reprogramming at the single-cell level [59]. 

Fig. 2. Workflow of RNA-seq data analysis.  
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4. Deep Learning applications in single-cell omics 

4.1. Deep learning in single-cell transcriptomics 

Single-cell RNA sequencing (scRNA-seq) has improved our 

understanding of biological processes substantially in recent years. Re
searchers have shown the potentials of single-cell (SC) transcriptomics 
through studying the cellular heterogeneity of many organisms, such as 
humans, mice, zebrafish, frogs, and planaria [5,6], and uncovering 
previously unknown cell populations [60,61]. Moreover, these studies 

Table 1 
Computational approaches for the various stages of scRNA-seq analysis.  

Stage Algorithm Advantage Disadvantage REF 

Normalization DCA extremely scalable to datasets with millions of cells or more For downstream analyses, the hyperparameters were 
not fine-tuned. 

[62] 

SAUCIE execute a number of critical tasks on single-cell datasets in a highly 
scalable manner (by using deep learning’s parallelizability with 
GPUs) without requiring the use of other algorithms or processing 
methods 

Covariance may not adequately represent nonlinear 
variation. 

[63] 

Auto Impute scales adequately to massive datasets including thousands of 
transcriptomes 

Variance stabilization may not be a meaningful 
criterion for evaluating scRNA-seq data. 

[64] 

Deep Impute Fast speed and high scalability Not reported [65] 
DeepMc High accuracy does not make any assumptions about gene 

expression distribution 
[66] 

Sc Scope Fast speed and high scalability not fare well with a low number of components [67] 
scVI High accuracy GPU Needed [68] 

Data correction ResNets Fast speed and low memory peak not bringing any cell clusters of the same type closer 
together 

[69] 

MNNs Fast speed Memory usage [69] 
Scanorama Low memory usage Time usage [69] 
BBKNN Lowest memory usage Low cell number [69] 
DESC Handling full of features Low scalability [70] 
Batch-Free 
Encoding 

Not reported Not reported - 

BERMUDA Compatible with R and Python High memory usage [71] 
SCIBER Better accuracy in removing batch effects on real datasets Not reported [136] 

Dropout DCA High scalability Low accuracy [72] 
Sc Scope Fast speed and high scalability not fare well with a low number of components [67] 
TRANSLATE Combines autoencoder with transfer learning Not reported [73] 
autoCell Analyze high-dimensional, sparse scRNA-seq data and Cannot handle batch effects in scRNA-seq data [74] 

Dimensionality 
reduction 

scvis strong preservation of large-scale distances Low accuracy [75] 
VASC broad dataset compatibility Not reported [67] 
scVI Low memory usage Poor in integrating strong batch effects [70] 
BasisVAE flexible and scalable with huge datasets Doesn’t provide sufficient insights [76] 
GOAE and GONN High accuracy Not reported [77] 
SAUCIE Low memory usage Low accuracy [70] 

Clustering and cell 
annotation 

DESC Handling full of features Low scalability [70] 
scAnCluster High Accuracy Low speed [78] 
scVAE Not reported Not reported  
scDeepCluster High accuracy in huge datasets Low accuracy in small datasets [79] 
GOAE and GONN High accuracy Not reported [77] 
scDCCA significantly improves clustering Not reported [157] 
G3DC Separate different cell types most effectively with only a few outliers Not reported [80] 
scDFC More efficient to fuse attributes, structure, and attention 

information 
Not reported [159] 

Cell-Cell 
communication 

CellChat Fast speed Low accuracy [81] 
CellPhoneDB Fast speed, High accuracy Low enrichment score [81] 
COMUNET Not reported Not reported  
CellCall Not reported Memory Usage [81] 
CytoTalk Not reported Time Usage [81] 
SingleCellSignalR Not reported Memory Usage [81] 
ICELLNET Fast Speed Not reported [81] 
GCNG Not reported Not reported  
iTALK Low memory usage Low accuracy [81] 

RNA velocity DeepVelo High Accuracy Low speed [82] 
Multi-Modal 

Integration 
scMVAE flexible to encompass diverse joint-learning strategy No guiding principles are provided with respect to 

how to pick a specific learning strategy for the 
specific dataset 

[83] 

DCCA Able to generate biologically meaningful missing omics data based 
on the learned latent representation of another omics data 

Performance is not robust against high levels of noise [84] 

totalVI Computationally scalable and flexible Not reported [85] 
BABEL efficient interoperable design, resulting in efficient cross-modality 

prediction 
is limited by the amount of mutual information 
shared between the input data modalities 

[86] 

DeepMAPS Learns interpretable cell type-specific biological networks based on 
data modality 

Computational cost does not scale efficiently to 
super-larger datasets. Reproducibility could be 
dependent on the specific GPU model. 

[87] 

scArches Facilitates the integration of query datasets onto a reference dataset 
through data integration 

Not reported [88] 

ExpiMap Enables the interpretable mapping of SC transcriptome data sets 
across cohorts, disease states and other perturbations. 

Not reported [89]  

N. Erfanian et al.                                                                                                                                                                                                                               



Biomedicine & Pharmacotherapy 165 (2023) 115077

7

have also highlighted the need for better computational methods which 
can facilitate the analysis of large and complex scRNA-seq datasets. 
Many scRNA-seq data are publicly available for download, with most 
hosted on popular databases such as the Gene Expression Omnibus 
(GEO) (https://www.ncbi.nlm.nih.gov/geo/) and Human Cell Atlas 
(https://www.humancellatlas.org/) and 10x Genomics 
(https://www.10xgenomics.com/resources/datasets). In the following 
sections, we provide an overview of existing computational approaches 
for the various stages of scRNA-seq analysis (summarized in Fig. 2) 
(Table 1). 

4.1.1. Pre-processing and quality control 
Cell barcodes are designed to delineate various cell populations 

present within a sequenced sample. However, barcodes can mistakenly 
tag several cells (doublet) or not tag any cells at all (empty droplet/ 
well), which prompts the quality control (QC) step in scRNA-seq anal
ysis. Many raw data pre-processing pipelines, including Cell Ranger 
[94], indrops [95], SEQC [96], and z-unique molecular identifiers 
(zUMIs) [97], can perform QC. The dimension of the count matrix 
generated by sequencing technologies depends on the number of barc
odes and transcripts. Though the noise rate in measurements varies 
across reads and count data, standard research pipelines very often 
employ the same processing techniques [98]. 

Despite scRNA-seq data’s richness which can offer significant and 
deeper insights, the data’s complexity and noise are far higher than 
traditional bulk RNA-seq, making it challenging to process the raw data 
for downstream analysis. Unwanted variations such as biases, artifacts, 
etc., require extensive QC and normalization efforts [99]. The number of 
counts per barcode (count depth), the number of genes per barcode, and 
the fraction of counts from mitochondrial genes per barcode are three 
QC covariates widely used in the QC step [100]. On the other hand, 
other experimental factors (such as damaging the sample during disso
ciation) could result in low-quality scRNA-seq libraries, which can yield 
erroneous findings in downstream analyses. Currently, there is an unmet 
need for developing more efficient and accurate methods for filtering 
low-quality cells during the library preparation. Given DL algorithms’ 
multi-tasking and scaling capabilites, DL models for end-to-end analyses 
will be of utmost importance and utility to SC omics. DL models are 
uniquely positioned in this space since they can be trained to perform 
QC, data correction and downstream analyses all together, with each 
task informing and improving the performance of the others. We 
anticipate such models to outperform the traditional SC analysis pipe
lines, which use separate frameworks to perform various tasks inde
pendently. Though such end-to-end DL models remain nascient, 
preliminary works in this area (such as the scVI framework [40]) have 
shown promising results, demonstrating that DL models hold a great 
potential in the development of end-to-end SC pipelines. 

Due to the limited number of studies regarding pre-processing and 
quality control, we will focus on the DL applications that are most 
related to normalization, data correction, and downstream analysis. 

4.1.2. Normalization 
Normalization is a crucial first step in pre-processing scRNA-seq 

expression data to address the constraints caused by low input content, 
or the different types of systematic measuring biases [101]. Normali
zation aims to detect and remove changes in measurements between 
samples and features (e.g., genes) caused by technical artifacts or un
intended biological effects (e.g., batch effects) [102]. Methods designed 
for normalizing bulk RNA-seq and microarray data are often used to 
normalize scRNA-seq data. However, these techniques often ignore 
essential aspects of scRNA-seq results [102]. For scRNA-seq data, a few 
families of normalization techniques have been developed, such as 
scaling techniques [103], regression-based techniques for identified 
nuisance factors [101,104], and techniques based on spike-in sequences 
from the External RNA Controls Consortium (ERCC) [105,106]. How
ever, these methods are specific to certain experiments and can not be 

applied to all research designs and experimental protocols. Although 
some DL-based methods have been proposed to generalize the normal
ization stage, accounting for technical noise of scRNA-seq data still re
mains a challenge and an active area of research within the field [13]. 

4.1.3. Data correction 
Although normalization aims to address the noise and bias in the 

data, normalized data can still contain unexpected variability. These 
additional technical and biological variables, such as batch, dropout, 
and cell cycle effects are accounted for during the “data correction” 
stage, which depends on the downstream analysis [107]. In addition, it 
is a recommended practice to address biological and technical covariates 
separately [107], since they serve different purposes. Given the 
mentioned subtleties, designing DL models that can address most of 
these challenges is difficult. Therefore, there are currently no DL models 
that are widely used for data correction within the field. 

4.1.3.1. Dropout. Compared to bulk RNA-seq, scRNA-seq datasets are 
noisy and sparse and pose unique nuances such as “dropout” which is 
one of the most significant issues in this field [108,109]. Dropout occurs 
when a gene is observed at a moderate or high expression level in one 
cell but is not detected in another cell [110]. Dropout events can occur 
during library preparation (e.g. extremely low levels of mRNA in single 
cells) or due to biological properties (the stochastic aspect of gene 
expression in multiple cells) [111]. Additionally, shorter genes have 
lower counts and a greater dropout rate [112]. Overall, a low RNA 
capture rate results in the inability of detecting an expressed gene, 
leading to a “false” zero, known as a dropout event. Furthermore, it has 
been suggested that sometimes near-zero expression measurements can 
also be dropouts [113]. Dropout events will introduce technical vari
ability and noise, adding an extra layer of difficulty in analyzing 
scRNA-seq [114], and downstream analyses such as clustering and 
pseudo-time reconstruction [65]. 

It is essential to understand the difference between "false" and "true" 
zero counts. True zero counts mean that a gene is not expressed in a 
particular cell type, indicating true cell-type-specific expression [26]. 
Hence, it is important to note that zeros in scRNA-seq data do not 
necessarily translate to missing values and must remain in the data. 
However, the false zeros (missing values) must be imputed to further 
improve the analysis. The missing values are replaced with either 
random values or by an imputation method [26]. Imputation ap
proaches designed for bulk RNA-seq data may not be suitable for 
scRNA-seq data for multiple reasons, mainly due to scRNA-seq’s het
erogeneity and dropouts. ScRNA-seq has much higher cell-level het
erogeneity than bulk RNA-seq data; scRNA-seq has cell-level gene 
expression data while bulk RNA-seq data represents the averaged gene 
expression of the cell population. Additionally, the number of missing 
values in bulk RNA-seq data is much lower compared to scRNA-seq 
[108]. Given these factors and the non-trivial difference between true 
and false zero counts, classic imputation approaches with specified 
missing values are often not appropriate for scRNA-seq data, and 
scRNA-seq-specific dropout imputation methods are required. 

Current scRNA-seq imputation methods can be divided into two 
groups: (i) those that change all gene expression levels, such as Markov 
Affinity-based Graph Imputation of Cells (MAGIC) [115] and single-cell 
analysis via expression recovery (SAVER) [116], and (ii) methods that 
impute drop-out events (zero or near-zero counts) alone, such as scIm
pute [117], DrImpute [108], and LSImpute [118]. These techniques can 
fail to account for the non-linearity of the data’s count structure. 
Moreover, as larger scRNA-seq datasets become available and common, 
imputation methods should scale to millions of cells. However, many of 
the earlier models are either incapable of or very slow at processing 
datasets of larger size (tens of thousands or more) [26]. As a result, many 
have resorted to designing DL-based approaches to combat these chal
lenges, both on the technical and efficiency fronts. 
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Most of DL algorithms for imputing drop-out events are based on 
AEs. For example, in 2018, Talwar et al. proposed AutoImpute, a tech
nique for retrieving the whole gene expression matrix using over
complete AEs to impute the dropouts. AutoImpute learns the underlying 
distribution of the input scRNA-seq data and imputes missing values 
based on the learned distribution, with minor modifications to the bio
logically silent gene expression values. Through expanding the expres
sion profiles into a high-dimensional latent space, AutoImpute learns the 
underlying distribution and patterns of gene expression in single cells 
and reconstructs an imputed model of the expression matrix. At the time, 
Talwar et al. claimed that their system was the only model that could 
perform imputation on the largest of the nine datasets they studied (68 K 
PBMC, which contains ~68,000 cells), without running out of memory 
[119]. 

In another study, Eraslan et al. proposed the Deep Count AE network 
(DCA). DCA uses a negative binomial noise model both with and without 
zero-inflation to account for the count distribution and over dispersion 
while capturing nonlinear gene-gene dependencies. Since their 
approach scales linearly with the number of cells, DCA can be used on 
datasets with millions of cells. DCA also depends on gene similarities; 
using simulated and true datasets, DCA denoising enhances several 
traditional scRNA-seq data analyses. One of the key benefits of DCA is 
that it only requires the user to define the noise model. Current scRNA- 
seq approaches depend on a variety of hypotheses and often use stan
dard count distributions, such as zero-inflated negative binomial. DCA 
increases biological exploration by outperforming current data impu
tation approaches in terms of quality and time. Overall, DCA calculates 
the "dropout probability" of a zero-expression value due to scRNA-seq 
dropout and imputes the zeros only when the probability is high. 
Consequently, while DCA effectively detects true zeros, it can be biased 
when dealing with nonzero values [26]. 

Badsha et al. propose TRANSfer learning with LATE (TRANSLATE) 
[27], a DL model for computing zeros in scRNA-seq datasets which are 
extremely sparse. Their nonparametric approach is based on AEs and 
builds on their previous method, Learning with AuToEncoder (LATE). 
The key presumption in LATE and TRANSLATE is that all zeros in the 
scRNA-seq data are missing values. In most cases, their approach ach
ieves lower mean squared error, restores nonlinear gene-gene in
teractions, and allows for improved cell type separation. Both LATE and 
TRANSLATE are also very scalable, and when using a GPU, they can 
train on over a million cells in a few hours. TRANSLATE has shown 
better performance on inferring technical zeros than other techniques, 
while DCA is better at inferring biological zeros than TRANSLATE. 

Sparse Autoencoder for Unsupervised Clustering, Imputation, and 
Embedding (SAUCIE) [120] is a regularized AE that denoises and im
putes data using the reconstructed signal from the AE. Despite the noise 
in the input data, SAUCIE can restore the significant relationships across 
genes, leading to better expression profiles which can improve down
stream analyses such as differential gene expression [120]. 

ScScope [121] is a recurrent AE network that iteratively handles 
imputation by employing a recurrent network layer; taking the time 
recurrence of ScScope to one (i.e. T = 1) will reduce the model to a 
traditional AE. Given that ScScope is a modification of traditional AEs, 
its runtime is similar to other AE-based models [121]. 

A few non-AE-based models have also been developed for imputation 
and denoising of scRNA-seq data. DeepImpute [65] uses several 
sub-neural networks to impute groups of target genes using signals 
(genes) that are strongly associated with the target genes. Arisdakessian 
et al. demonstrate that DeepImpute has a better performance than DCA, 
contributing the advantages to their divide-and-conquer approach [65]. 

Mongia et al. [66] introduced Deep Matrix Completion (deepMC), an 
imputation method based on deep matrix factorization for missing 
values in scRNA-seq data that utilizes a feed backward neural network. 
In most of their experiments, deepMC outperformed other existing 
imputation methods while not requiring any assumption on the prior 
distribution for the gene expression. We predict that deepMC will be the 

preferred initial approach for imputing scRNA-seq data, given the su
perior performance and simplicity of the model. 

Single-cell variational inference (scVI) is another DNN algorithm 
introduced by Lopez et al. [40]. ScVI is based on a hierarchical Bayesian 
model and uses a DNN to define the conditional probabilities, assuming 
either a negative binomial or a zero-inflated negative binomial distri
bution [40]. Lopez et al. show that scVI can accurately recover gene 
expression signals and impute the zero-valued entries, potentially 
enhancing the downstream analyses without adding any artifacts or 
false signals. 

Recently, Patruno et al. [122] compared 19 denoising and imputa
tion methods, based on numerous experimental scenarios such as re
covery of true expression profiles, characterization of cell similarity, 
identification of differentially expressed genes, and computation time. 
Their results showed that ENHANCE (Expression deNoising Heuristic 
using Aggregation of Neighbors and principal Component Extraction), 
MAGIC, SAVER, and SAVER-X offer the best overall results when 
considering efficiency, accuracy and robustness for the investigated 
tasks [122]. Recently in 2023 Xu et al. presented autoCell, a DL-based 
method for scRNA-seq dropout imputation and feature extraction. It 
uses a VAE network with graph embedding and a probabilistic depth 
Gaussian mixture model to analyze high-dimensional, sparse scRNA-seq 
data. autoCell offers a comprehensive toolbox for visualizing, clustering, 
imputing, and identifying disease-specific gene networks in scRNA-seq 
data [74]. 

It is important to note that traditional methods, despite their current 
success, are not well-suited for large-scale scRNA-seq studies. As larger 
scRNA-seq datasets become the norm, we anticipate that DL-based 
models will prove to be advantageous. Therefore, more work is 
required to build upon the existing DL methods for imputing dropout 
effects and better managing technical zeros while retaining biological 
zeros. 

4.1.3.2. Batch effects correction. When samples are conducted in sepa
rate batches, the term ‘batch effect” is used to describe the variation 
caused by technical effects. Different types of sequencing machines or 
experimental platforms, laboratory environments, different sample 
sources, and even technicians who perform the experiments can cause 
batch effects [123]. Removing and accounting for batch effects is often 
helpful and recommended, however, the success varies significantly 
across different studies. For example, batch effect removal on bulk 
RNA-seq data from Encyclopedia of DNA Elements (ENCODE) human 
and mouse tissues [124] is a recommended standard data preparation 
step. Batch effect correction has been an active area of research since the 
microarray time. Johnson et al. suggested parametric and 
non-parametric empirical Bayes frameworks for adjusting the data for 
batch effects removal [125]. In recent years and with an increased level 
of complexity in sequencing datasets, more involved batch effect 
correction methods have been proposed and used [123]. However, a 
majority of the existing approaches require biological group expertise 
for each observation and were originally designed for bulk or microarray 
RNA-seq data. Given the heterogeneity present within scRNA-seq date, 
these earlier techniques are not well suited for single-cell analysis in 
certain cases [126]. Batch effects in scRNA-seq data may have a sub
stantial impact on downstream data analysis, impacting the accuracy of 
biological measurements and ultimately contributing to erroneous 
conclusions [127]. Therefore, alternative batch effect correction tech
niques for scRNA-seq data have been developed to address the specific 
needs of single-cell datasets. 

Several statistical methods, including linear regression models like 
ComBat [125], and nonlinear models like Seurat’s canonical correlation 
analysis (CCA) [128] or scBatch [123], have been designed to eliminate 
or minimize scRNA-seq batch effects while aiming to maintain biological 
heterogeneity of scRNA-seq data. Additionally, some differential testing 
frameworks such as Linear Models for Microarray (limma) [129], 
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Model-based Analysis of Single-cell Transcriptomics (MAST) [130], and 
DESeq2 [131] already integrate the batch effect as a covariate in model 
design. 

Haghverdi et al. [1] developed a novel and efficient batch correction 

method for single-cell data which detects cell mappings between data
sets, and subsequently reconstructs the data in a shared space (Fig. 3). To 
create relations between two datasets, the algorithm first identifies 
mutual nearest neighbors (MNNs). The translation vector is then 

Fig. 3. Batch-effect correction via MNN. (a) Batch 1 and batch 2 in high dimensions, with a batch effect variation that is almost orthogonal. (b) By identifying MNN 
pairs of cells, the algorithm recognizes matching cell types (gray box). (c) Between the MNN pairs, batch-correction vectors are measured. (d) Batch 1 is considered 
the reference, and batch 2 is combined into it by subtracting correction vectors. (e) The integrated data is used as a reference, and the process is repeated with each 
new batch of data. 
This figure has been reused with permission from authors [1]. 
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computed from the resulting list of paired cells (or MNNs) to align the 
data sets into a shared space. The benefit of this method is that it pro
duces a normalized gene expression matrix, which can be used in 
downstream analysis and offer an effective correction in the face of 
compositional variations between batches [1]. Scanorama [132] and 
batch balanced k-nearest neighbors (BBKNN) [133] are two other ap
proaches that look for MNNs in reduced-dimension spaces, and use them 
in a similarity-weighted way to direct batch integration. 

Hie et al. [132] proposed Scanorama which can combine and remove 
batch effects from heterogeneous scRNA-seq studies by identifying and 
merging common cell types across all pairs in a dataset. Using a variety 
of existing tools, Scanorama batch-corrected output can be used for 
downstream tasks, such as classify cluster-specific marker genes in dif
ferential expression analysis. Scanorama outperforms current methods 
for integrating heterogeneous datasets and it scales to millions of cells, 
allowing the identification of rare or new cell states through a variety of 
diseases and biological processes [132]. 

Polański et al. [133] developed BBKNN, a fast graph-based algorithm 
that removes batch effects through linking analogous cells in different 
batches. BBKNN is a simple, rapid, and lightweight batch alignment tool, 
and its output can be directly use for dimensionality reduction. BBKNN’s 
default approximate neighbor mode scales linearly with the size of 
datasets and remains consistently faster (by one or two orders of 
magnitude) when compared to other existing techniques [133]. 

Recently, there has been considerable progress in using DL for batch 
effect corrections. Residual Neural Networks (ResNets)[134] and AEs 
are two of the most commonly used DL-based batch correction approach 
in scRNA-seq analysis. ResNets are a form of deep neural network that 
make a direct connection between the input of a layer (or network) and 
the outputs, often through an addition operation. Shaham et al. [135] 
suggested a non-linear batch effect correction approach based on a 
distribution-matching ResNet. Their approach focuses on reducing the 
Maximum Mean Discrepancy (MMD) between two multivariate repli
cation distributions that were measured in separate batches. Shaham 
et al. applied their methodology to batch correction of scRNA-seq and 
mass cytometry datasets, finding that their model can overcome batch 
effects without altering the biological properties of each sample [135]. 

Li et al. [136] presented deep embedding algorithm for single-cell 
clustering (DESC), an unsupervised DL algorithm for “soft” single-cell 
clustering which can also remove batch effects. DESC learns a 
non-linear mapping function from the initial scRNA-seq data space to a 
low-dimensional feature space using a DNN, iteratively optimizing a 
clustering objective function. This sequential process transfers each cell 
to the closest cluster and attempts to account for biological and technical 
variability across different clusters. Li et al. demonstrated that DESC can 
eliminate the technical batch effect more accurately than MNN-based 
methods while better preserving true biological differences within 
closely related immune cells [136]. 

In a prior study, Shaham [137] proposed batch effect correction 
through batch-free encoding using an adversarial VAE. Shaham utilizesd 
the adversarial training to achieve data encoding that corresponded 
exclusively to a subject’s intrinsic biological state, as well as to enforce 
accurate reconstruction of the input data. This approach results in 
maintaining the true biological patterns expressed in the data and 
minimizing the significant biological information loss [137]. 

Wang et al. introduced Batch Effect ReMoval Using Deep Autoen
coders (BERMUDA) [138], an unsupervised framework for correcting 
batch effect in scRNA-seq data across different batches. BERMUDA 
combines separate batches of scRNA-seq data with completely different 
cell population compositions and amplifies biological signals by passing 
information between batches. Most nearest neighbor-based models can 
manage variations in cell populations between batches when such dif
ferences are significant. However, BERMUDA was developed with an 
emphasis on scRNA-seq data with distinct cell populations in mind, 
focusing on the similarities between cell clusters rather than significat 
variations. In a more recent work in 2023, Gan et al. presented 

Single-Cell Integrator and Batch Effect Remover (SCIBER), a new 
method for removing batch effects in single-cell data. SCIBER matches 
cell clusters across batches using differentially expressed genes and 
achieves comparable or better accuracy than complex state-of-the-art 
methods. It follows a reference-based approach, making it suitable for 
integrating user-generated datasets with standard reference data like the 
Human Cell Atlas [139]. Altogether, a rapidly expanding number of 
general DL methods for batch effects correction in biological datasets 
represent new ways for eliminating batch effects in biological datasets. 

4.1.3.3. Dimensionality reduction. Dimensionality reduction is a crucial 
step in visualizing scRNA-seq data, since typical datasets contain thou
sands of genes as features (dimensions) [140]. The most common 
dimensionality reduction techniques used for scRNA-seq are principal 
component analysis (PCA) [141], t-Distributed Stochastic Neighbor 
embedding ( t-SNE) [142], diffusion map [143], Gaussian Process Latent 
Variable Models (GPLVM) [144,145], Single-cell Interpretation via 
Multi-kernel LeaRning (SIMLR), and Uniform Manifold Approximation 
and Projection (UMAP) [75]. 

In low-dimensional spaces, linear projection methods like PCA 
traditionally cannot depict the complex structures of single-cell data. On 
the other hand, nonlinear dimension reduction techniques like t-SNE 
and UMAP, have been shown to be effective in a variety of applications 
and are commonly used in single-cell data processing [146]. These 
methods also have some drawbacks, such as lacking robustness to 
random sampling, inability to capture global structures while concen
trating on local data structures, parameter sensitivity, and high 
computational cost [13]. Several DL techniques for reducing the 
dimensionality of scRNA-seq data have recently been developed. Here 
we focus on the ones that are based on VAEs or AEs, which are more 
commonly used in the field. 

Ding et al. [146] proposed a VAE-based model (called scvis) to learn 
a parametric transformation from a high-dimensional space to a 
low-dimensional embedding, ultimately learning the estimated poste
rior distributions of low-dimensional latent variables. Compared to 
common techniques (e.g. t-SNE), scvis can (i) better obtain the global 
structure of the data, (ii) provide greater interpretability, and (iii) be 
more robust to noise or unclear measurements. Ding et al. demonstrated 
that scvis is a promising tool for studying large-scale and high-resolution 
single cell populations [146]. However, according to Becht et al. [75], 
the runtime of scvis is long, particularly for dimensionality reduction, 
and it appears to be less effective at separating cell populations. 

In another work, Wang et al. [140] proposed a method for unsu
pervised dimensionality reduction and visualization of scRNA-seq using 
deep VAEs, called VAE for scRNA-seq data (VASC). VASC’s architecture 
consists of the traditional encoder and decoder network of a VAE, with 
an addition of a zero-inflated layer that simulates dropout events. In 
comparison to current methods such as PCA, t-SNE, and Zero Inflated 
Factor Analysis (ZIFA) [147], VASC can identify nonlinear patterns 
present within the data, and has broader compatibility as well as better 
accuracy, particularly when sample sizes are larger [140]. 

In 2020, Märtens et al. [76] proposed BasisVAE as a general-purpose 
approach for joint dimensionality reduction and clustering of features 
using a VAE. BasisVAE modified the traditional VAE decoder to incor
porate a hierarchical Bayesian clustering prior, demonstrating how 
collapsed variational inference can identify sparse solutions when 
over-specifying K [76]. 

Peng et al. [120] proposed an AE-based model that combines gene 
ontology (GO) and DNNs to achieve a low-dimensional representation of 
scRNA-seq data. Based on this idea, they proposed two innovative ap
proaches for dimensionality reduction and clustering: an unsupervised 
technique called “Gene Ontology AutoEncoder” (GOAE) and a super
vised technique called “Gene Ontology Neural Network” (GONN) for 
training their AE model and extracting the latent layer as low dimen
sional representation. Their findings show that by integrating prior 
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information from GO, neural network clustering and interpretability can 
be enhanced and that they outperform the state-of-the-art dimension
ality reduction approaches for scRNA-seq [77]. 

In a study by Armaki [148], the dimensionality reduction capabil
ities of VAE- and AE-based models were evaluated and benchmarked 
against principal component analysis. They found that the best approach 
for reducing the dimensionality of single-cell data was using AE-based 
models, while the more efficient VAEs performed worse in some re
spects than the linear PCA. One possible hypothesis could be that the 
prior used for modeling the latent space, which was Gaussian distribu
tion, is not a good fit for single-cell data. A prior more befitting 
single-cell data (such as negative binomial distribution) could improve 
the performance of the VAE based model [148]. 

Finally, there is always the endeavor of optimizing algorithms. As 
mentioned earlier, developing an efficient DL method for dimensional 
reduction of data is a necessary next step, since it can potentially 
improve the quality of lower-dimensional representations. 

4.1.3.4. In-silico generation and augmentation. Given limitations on 
scRNA-seq data availability and the importance of adequate sample 
sizes, in-silico data generation and augmentation offer a fast, reliable, 
and cheap solution. Synthetic data augmentation is a standard practice 
in various ML areas, such as text and image classification [149]. With 
the advent of DL, traditional data augmentation techniques (such as 
geometric transformations or noise injection) are now being replaced 
with deep-learned generative models, primarily VAEs [29] and GANs 
[43]. In computational genomics, both GAN- and VAE-based models 
have shown promising results in generating omics data. Here, we focus 
on the recent methods introduced for generating realistic in-silico 
scRNA-seq. 

Marouf et al. [51] introduced two GAN-based models for scRNA-seq 
generation and augmentation called single-cell GAN (scGAN) and con
ditional scGAN (cscGAN); we collectively refer to these models as 
scGAN. At the time, scGAN outperformed all other state-of-the-art 
methods for generating and augmenting scRNA-seq data [51]. The 
success of scGAN was attributed to the Wasserstein-GAN [53] that learns 
the underlying manifold of scRNA-seq data, subsequently producing 
realistic never-seen-before samples. Marouf et al. showcase the power of 
scGAN by generating specific cell types that are almost indistinguishable 
from the real data and augmenting the dataset with the synthetic sam
ples improved the classification of rare cell populations [51]. 

In a related work, Heydari et al. proposed a VAE-based in-silico 
scRNA-seq model that aimed at improving Marouf et al.’s training time, 
stability, and generation quality using only one framework (as opposed 
to two separate models). Heydari et al. proposed ACTIVA (Automated 
Cell-Type-informed Introspective Variational Autoencoder), which em
ploys a single-stream adversarial VAE conditioned with cell-type infor
mation. The cell-type conditioning encourages ACTIVA to learn the 
distribution of all cell types in the dataset (including rare populations), 
which allows the model to generate specific cell types on demand. 
Heydari et al. showed that ACTIVA performs better or comparable to 
scGAN while training up to 17 times faster due to the design choices. 
Data generation and augmentation with both ACTIVA and scGAN can 
enhance scRNA-seq pipelines and analysis, such as benchmarking new 
algorithms, studying the accuracy of classifiers, and detecting marker 
genes. Both generative models will facilitate the analysis of smaller 
datasets, potentially reducing the number of patients and animals 
necessary in initial studies [42]. 

4.1.4. Downstream analysis 
Following pre-processing, downstream analysis methods are used to 

derive biological understandings and identify the underlying biological 
mechanism. For example, cell-type clusters are made up of cells with 
similar gene expression profiles; minor differences in gene expression 
between similar cells indicate continuous (differentiation) trajectories; 

or genes which expression profiles are correlated, signaling co- 
regulation [150]. 

4.1.4.1. Clustering and cell annotation. A significant phase in the scRNA- 
seq study is to classify cell subpopulations and cluster them into bio
logically relevant entities [151]. The creation of several atlas projects 
such as Mouse Cell Atlas [152], Aging Drosophila Brain Atlas [153], and 
Human Cell Atlas [154] has been initiated by advances in single-cell 
clustering. Different clustering approaches have emerged in recent 
years to help characterize different cell populations within scRNA-seq 
data [155]. Given that DL-based algorithms outperform traditional ML 
models in clustering tasks when applied to image and text datasets 
[156], many have turned to design supervised and unsupervised 
DL-based clustering techniques for scRNA-seq. 

Li et al. presented DESC, an AE-based method for clustering scRNA- 
seq data with a self-training target distribution that can also denoise and 
potentially remove batch effects. In experiments conducted by Li et al. 
[136], DESC attained a high clustering accuracy across the tested 
datasets compared to several existing methods. DESC also showed 
consistent performance in a variety of scenarios, and did not directly 
need the batch definition for batch effect correction. Given that Li et al. 
use a deep AE to reconstruct the input data, the latent space is not 
regularized with additional properties that could additionally help with 
clustering [157]. As with most DL models, DESC can be trained on CPUs 
or GPUs. 

Chen et al. proposed scAnCluster (Single-Cell Annotation and Clus
tering), an end-to-end supervised clustering and cell annotation frame
work that is built upon their previous unsupervised clustering work, 
namely scDMFK and scziDesk. ScDMFK algorithm (Single-Cell Data 
Clustering through Multinomial Modeling and Fuzzy K-Means Algo
rithm) combined deep AEs with statistical modeling. It proposed an 
adaptive fuzzy k-means algorithm to handle soft clustering while using 
multinomial distribution to describe the data structure and relying on a 
neural network to facilitate model parameter estimation [157]. More 
specifically, the AE in scAnCluster learns a low-dimensional represen
tation of the data, and an adaptive fuzzy k-means algorithm with en
tropy regularization for soft clustering. On the other hand, ScziDesk 
aimed to learn a “cluster-friendly” lower-dimensional representation of 
the data. Many existing DL-based clustering algorithms for scRNA-seq do 
not consider distance and affinity constraints between similar cells. This 
prohibits such models to learn cluster friendly lower-dimensional rep
resentations of the data [157]. For scAnCluster, Chen et al. use the 
available cell marker information to construct a new DL model that in
tegrates single-cell clustering and annotation. ScAnCluster can do both 
intra-dataset and inter-dataset cell clustering and annotation, and it also 
reveals a clear discriminatory effect in the detection of new cell types not 
found in the reference [157]. 

Tian et al. created the Single-Cell model-based Deep embedded 
Clustering (scDeepCluster) technique, which uses a nonlinear approach 
to combine DCA modeling and the DESC clustering algorithm. Their 
approach sought to improve clustering while reducing dimensions 
directly. ScDeepCluster outperformed state-of-the-art approaches on a 
variety of clustering efficiency metrics, showing runtime increasing 
linearly with sample size. In contrast to similar methods, scDeepCluster 
requires less memory and is scalable to larger datasets [158]. On the 
other hand, ScDeepCluster lacks the pairwise distance of associated cells 
and ignores the affinity constrains of similar cells. ScDeepCluster does 
not pre-select informative genes as input data, making the model more 
computationally efficient, but decreasing the clustering accuracy [157]. 

Peng et al. [77] developed a strategy for optimizing cell clustering 
based on global transcriptome profiles of genes. They used a combina
tion of DNN and GO to reduce the dimensions of scRNA-seq data and 
improve clustering. Their supervised approach was based on a conven
tional neural network, while the unsupervised model utilized an AE. 
Their model consisted primarily of two main components: the choosing 
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of important GO factors and the combination of GO terms with the 
DNN-based model [77]. Single-Cell Variational Auto-Encoders (scVAE) 
[159] is another VAE-based model for downstream analysis scRNA-seq 
data. However, compared to other models, scVAE has the advantage 
of not requiring many of the traditional pre-processing steps since it uses 
the raw count data as input. ScVAE can accurately predict expected gene 
expression levels and a latent representation for each cell and is flexible 
to use the known scRNA-seq count distributions (such as Poisson or 
Negative Binomial) as its model assumption [159]. Wang et al. intro
duced a novel deep clustering algorithm called scDCCA, combining a 
denoising AE and a dual contrastive learning module within a deep 
clustering framework. scDCCA incorporates a denoising Zero-Inflated 
Negative Binomial model-based AE to extract low-dimensional fea
tures, enhancing data representation and learning robustness. Notably, 
scDCCA integrates feature learning and clustering into a seamless 
end-to-end process, enabling comprehensive representation learning 
and cell clustering simultaneously [160]. Moreover, He et al. developed 
G3DC, a deep embedded clustering method that combines a graph loss 
based on gene networks and a reconstruction loss. This approach ach
ieves both discriminative and informative embedding, improving clus
tering performance and identifying functionally coherent genes. G3DC 
selects biologically relevant genes to provide insights into the biological 
functionality that differentiates cell groups [80]. 

More recently in 2023, Hu et al. proposed a single-cell deep fusion 
clustering (scDFC) algorithm based on AE. It includes an attributed 
feature clustering module and a structure-attention feature clustering 
module, capable of handling different feature types. Experimental re
sults confirm the algorithm’s efficiency in fusing attributes, structure, 
and attention information for scRNA-seq data [161]. 

Clustering challenges in scRNA-seq research are primarily reflected 
in an unknown number of SC clusters, unfixed cell types, and poor 
scalability. The quantity of cells used in scRNA-seq investigations has 
increased by orders of magnitude in recent years. Despite the fact that 
academics have created a number of tools, they are not user-friendly, 
employ various programming languages and need distinct input data 
formats [162]. 

Given the high noise level in scRNA seq studies, one must question if 
each cluster correlates to a meaningful biological effect or emerged as a 
result of technological artifacts, such as droplets includes two cells 
(doublets). Because they have a phenotype that is intermediate between 
the two originating cell types, doublets developing from cells of two 
separate cell types are often confused with uncommon transitional cells 
[163]. 

Also, Estimating technical noise in scRNA seq data is difficult since 
each cell is a biological, rather than a technological, duplicate. Many 
noise models, however, have been established using endogenous spike 
in RNA. By adding generated noise to data sets and repeating the clus
tering method, these may be used to determine the resilience of clusters 
[163]. 

The use of DL for cell clustering based on scRNA-seq data have shown 
improvement compared to traditional non-DL approaches. However, it 
is not yet clear if one approach is superior to the other in terms of 
downstream analysis. This is an area that could be explored in future 
research. Additionally, the optimal number of clusters and similarity 
between cell types has not been fully studied. 

4.1.4.2. Cell-Cell communication analysis. In recent years, scRNA-seq 
has become a powerful tool for analyzing cell-cell communication in 
tissues. Intercellular communication controlled by ligand-receptor 
complexes is essential for coordinating a wide range of biological pro
cesses, including development, differentiation, and inflammation. 
Several algorithms have been proposed to carry out these analyses. 
These algorithms begin with a database of interacting molecular part
ners (such as ligand and receptor pairs) and predict a list of possible 
signaling pathways between types of cells based on their expression 

patterns. 
In the case of Cell-Cell communication, there are different methods 

which are typically used. DeepCCI [164] is the first method for inves
tigating intercellular communications using scRNA-seq data using a DL 
approach. DeepCCI’s significant advances is including globally propa
gated topological properties between L-R pairings via Graph Convolu
tional Networks (GCNs), as well as incorporating gene expression of cell 
pairs in the prediction process for intercellular communications. GCNG 
[165] encodes spatial data as a graph and uses supervised training to 
integrate it with expression levels. GCNG improves on previous ap
proaches for analyzing spatial transcriptomics data and can identify new 
pairs of extracellularly interacting genes. 

Cellular crosstalk based on Cell-Cell Interactions (CCIs) is the foun
dation of many biological processes. The improved throughput of 
scRNA-seq technologies allows computational inferring CCIs based on 
ligand-receptor information. Although several CCI techniques have been 
established, their findings are very dynamic, and no ground truth is 
supplied to measure accuracy. Evaluation of these interactions by loss- 
of-function assays or high-throughput screening methods is labor- 
intensive and time-consuming. There is a critical need for dependable 
and cost-effective standards for assessing CCIs [81]. 

4.1.4.3. RNA velocity. RNA velocity has created new ways to research 
cellular differentiation in scRNA-seq studies. RNA velocity represents 
the rate of change in gene expression for a single gene at a given time 
point depending on the spliced ratio to unspliced mRNA. In other words, 
RNA velocity is a vector that forecasts the possible future of individual 
cells on a timescale of hours, which proves new insights into cellular 
differentiation that have challenged conventional and long-standing 
views. Existing experimental models for tracking cell fate and recon
structing cell lineages, such as genetic methods or time-lapse imaging 
have limited power as they do not show the trajectory of differentiation 
or reveal the molecular identity of intermediate states. But recently, 
with the advent of scRNA-seq, a variety of algorithms such as VeloViz 
[166] or scVelo [167] can visualize the velocity estimates in low di
mensions. Although such models show promising results (particularly in 
well-characterized systems), we are far from a complete understanding 
of cellular differentiation and cell fate decisions. By this means, recently 
Cui et al. presented DeepVelo, a DNN-based approach that is empowered 
by deep GCN and reduced the restrictions of existing methods. DeepVelo 
can predict RNA cellular velocities without pre-defined kinetic patterns, 
as well as RNA velocities for high-complexity dynamics, especially for 
cell populations with many lineages and heterogeneous cell types [168]. 

Current RNA velocity techniques include size factors proportional to 
number depth per cell, as well as variants on this theme. Nevertheless, 
cell size also reflects the natural expansion of the RNA transcription 
reservoir. It is unclear how to appropriately account for cell count depth, 
whether to normalize intronic and exonic matrices to matrix-specific 
variables, shared factors, or not at all. More broadly, we should look 
at how changes in global cellular factors, such as splicing efficiency or 
RNA polymerase abundance, impact the kinetic models. Normalization 
by cell size is a straightforward method for removing the impacts of 
count sampling, but it can distort these effects in a significant way. 
Accurate velocity estimations need adequate preprocessing and, ideally, 
the incorporation of these effects into the model [169]. We foresee the 
development of more DL-based models, to resolve long-standing con
cerns regarding cell fate choices and lineage specification using RNA 
velocity. 

4.2. Deep learning in single-cell genomics 

Traditional sequencing methods are limited to measuring the 
average signal in a group of cells, potentially masking heterogeneity and 
rare populations [170]. On the other hand, scRNA-seq technologies 
provide a tremendous advantage for investigating cellular heterogeneity 

N. Erfanian et al.                                                                                                                                                                                                                               



Biomedicine & Pharmacotherapy 165 (2023) 115077

13

and recognizing new molecular features correlated with clinical out
comes, resulting in the transformation of many biological research do
mains. Similar to scRNA-seq, single-cell (SC) genomics is being used in 
many areas, such as predicting the sequence specificity of DNA- and 
RNA-binding proteins, enhancer and cis-regulatory regions, methylation 
status, gene expression, control splicing, and searching for associations 
between genotype and phenotype. However, SC genomics data are often 
too large and complex to be analyzed only through visual investigation 
of pairwise correlations. As a result, a growing number of studies have 
leveraged DL techniques to process and analyze these large datasets. In 
addition to the scalability of DL algorithms, another advantage of DL 
techniques is the learned representations from raw input data, which are 
beneficial in specific SC genomics and epigenomics applications. These 
application include cell-type identification, DNA methylation, chro
matin accessibility, TF-gene relationship prediction, and histone modi
fications. In the following sections, we review some applications of DL 
models for analyzing scDNA-seq data (summarized in Fig. 4). Many 
genomics data can be accessed from public repositories, including NCBI 
(https://www.ncbi.nlm.nih.gov/genome), Ensembl (https://www. 
ensembl.org/), and DDBJ (http://www.ddbj.nig.ac.jp). 

4.2.1. Cell type identification in CyTOF 
An essential and challenging task in genomics research is to accu

rately identify and cluster individual cells into distinct groups of cell 
types. Li et al. [171] describe AE methods (stacked AE and multi-AE) as a 

gating strategy for mass cytometry (CyTOF). CyTOF is a recent tech
nology for high-dimensional multiparameter SC analysis. They intro
duced DeepCyTOF as a standardization procedure focused on a multi-AE 
neural network. DeepCyTOF focuses on domain adaptation principles 
and is a generalization of previous work that helps users in calibrating 
between a source domain distribution (reference sample) and several 
target domain distributions (target samples) in a supervised manner. 
Moreover, DeepCyTOF requires labelled cells from only a single sample. 
DeepCyTOF was applied to two CyTOF datasets produced from primary 
immune blood cells: (a) cases with a history of West Nile virus (WNV) 
infection and (b) normal cases of various ages. They manually gated a 
single baseline reference sample in each of these datasets to automati
cally gate the remaining uncalibrated samples. 

Li et al. revealed that DeepCyTOF’s cell classification was very 
consistent with classifications done by individual manual gatings, with 
over 99% concordance. Additionally, they used a stacked AE (which is 
one of DeepCyTOF’s key components) to tackle the semi-automated 
gating challenge of the FlowCAP-I competition. Li et al. found that 
their model outperformed other existing gating approaches bench
marked on the fourth challenge of the competition. Overall, stacked AEs 
combined with a domain adaptation technique suggest promising results 
for CyTOF semi-automated gating and flow cytometry data, requiring 
manual gating of one reference sample to precisely gate the remaining 
samples. 

Fig. 4. Overview of algorithms that are used in different parts of single-cell genomics analysis.  

N. Erfanian et al.                                                                                                                                                                                                                               



Biomedicine & Pharmacotherapy 165 (2023) 115077

14

4.2.2. DNA methylation 
Recent technological advances have made it possible to assay DNA 

methylation at the single-cell resolution. Angermueller et al. propose 
DeepCpG [171], a CNN-based computational method for predicting 
methylation regions. DeepCpG is made up of three modules: a DNA 
module that extracts features from the DNA sequence, a CpG module 
that extracts features from the CpG neighborhood of all cells, and a 
multi-task joint module that integrates evidence from both modules for 
predicting the methylation regions of target CpG sites for different cells. 
The trained DeepCpG model can be used in various downstream studies, 
such as inferring low-coverage methylation profiles for groups of cells 
and recognizing DNA sequence motifs linked to methylation states and 
cell-to-cell heterogeneity. Angermueller et al. apply their model to both 
mouse and human cells, which achieves significantly better predictions 
than previous techniques [171]. An overview of the DeepCpG model is 
shown in (Fig. 5). 

Interestingly, DeepCpG can be used for differentiating human 
induced pluripotent stem cells in parallel with transcriptome sequencing 
to specify splicing variation (exon skipping) and its determinants. Linker 
et al. [172] presented that variation in SC splicing can be precisely 
predicted based on local sequence composition and genomic features. 
DeepCpG, which is used for DNA methylation profiles, imputes unob
served methylation regions of individual CpG sites. The 

cell-type-specific models were made using CpG and genomic informa
tion according to DeepCpG’s setup of a joint model. Finally, during cell 
differentiation, Linker et al. identified and characterized associations 
between DNA methylation and splicing changes, which led to indicating 
novel insights into alternative splicing at the SC level. 

Another method for studying chromatin accessibility at single-cell 
resolution, called Assay of Transposase Accessible Chromatin 
sequencing (scATAC-seq), has recently gained considerable popularity. 
In scATAC-seq, mutation-induced hyperactive Tn5 transposase tags and 
fragments regions in open chromatin sites in the DNA sequence, which is 
later sequenced using paired-end Next Generation Sequencing (NGS) 
technologies [173]. The pre-processing steps of scATAC-seq data anal
ysis are often analogous to scRNA-seq pipelines. That is, the same tools 
are often used in both data modalities, although scRNA-seq tools are 
often not optimized for the particular properties of scATAC-seq data. 
ScATAC-seq has low coverage, and the data analysis is highly sensitive 
to non-biological confounding factors. The data is pre-processed and 
assembled into a feature-per-cell matrix, where common choices for 
“feature” are fixed-size genomic bins and signal peaks at biological 
events. This matrix displays particular numerical properties which entail 
computational challenges: it is extremely high-dimensional, sparse, and 
near-binary in nature (presence/absence of signal). Several packages 
have been recently developed specifically for scATAC-seq data, with all 

Fig. 5. An overview of DeepCpG (taken from Angermueller et al.) (a) scBS-seq (Smallwood et al.) scRRBS-seq (Farlik et al.) provide sparse single-cell CpG profiles, 
which are then pre-processed as binary values (methylated CpG sites are marked by ones, unmethylated CpG sites are denoted by zeros, and CpG sites with unknown 
methylation state [missing data] are represented by question marks) (b) Two convolutional and pooling layers are used to detect predictive motifs from the local 
sequence context, and one fully connected layer is used to model motif interactions in the DNA model. Applying a bidirectional gated recurrent network (GRU), the 
CpG model scans the CpG neighborhood of numerous cells (rows in b), providing compressed information in a vector of constant size. To forecast methylation states 
in all cells, the Joint model learns connections between higher-level properties generated from the DNA- and CpG models (c, d) The DeepCpG model can be utilized 
for a variety of downstream tasks after training, such as genome-wide imputation of missing CpG sites (c) and the finding of DNA sequence motifs linked to DNA 
methylation levels or cell-to-cell variability (d). 
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of them having some major limitations [174]. The tools for processing 
scATAC-seq are diverse and nescient, and thus, there is no consensus on 
the best practices scATAC-seq data analysis. Further development of 
scATAC-centric computational tools and benchmark studies are much 
needed. ScATAC-seq analyses can help to elucidate cell types and 
differentially accessible regions across cells. Moreover, it can decipher 
regulatory networks of cis-acting elements like promoters and en
hancers, and trans-acting elements like transcription factors (TFs), and 
infer gene activity [175]. ScATAC-seq data could also be integrated with 
RNA-seq and other omics data. However, most current software only 
integrates the derived gene activity matrix with expression data, and 
important information from whole-genome chromatin accessibility is 
lost. 

Currently, there are a variety of DL models for bulk ATAC-seq data, 
such as LanceOtron’s CNN for peak calling [176] and CoRE-ATAC for 
functional classification of cis-regulatory elements [177]. Thibodeau 
et al. demonstrated CoRE-ATAC’s transferable capability on cell clusters 
inferred from single nuclei ATAC-seq data with a small decrease in 
model prediction accuracy (mean micro-average precision of 0.80 from 
bulk vs. 0.69 in single-cell clusters). 

One common way to reduce the dimensionality of scRNA-data is to 
identify the most variable genes (e.g. with PCA), since they carry the 
most biologically relevant information. However, scATAC-seq data is 
binary, and therefore prohibiting the identification of variable peaks for 
dimensionality reduction. Instead, dimensionality reduction of scATAC 
data is done through Latent Semantic Indexing (LSI), a technique used 
for natural language processing. Although this approach is scalable to 
large number of cells and features, it may fail to capture the complex 
reliance of peaks, since LSI is a linear method. 

Single-Cell ATAC-seq analysis via Latent feature Extraction (SCALE) 
[170] combines a deep generative framework with a probabilistic 
Gaussian Mixture Model (GMM) as a prior over the latent variables, in 
order to learn a nonlinear latent space of scATAC-seq features. Given the 
nature of scATAC-seq, GMM is a suitable distribution for modeling the 
high-dimensional, sparse multimodal scATAC-seq data. SCALE can also 
be used for denoising and imputing missing data, recovering signals 
from missing peaks. In the benchmarking study by Xiong et al., they 
demonstrated that SCALE outperformed conventional non-DL scA
TAC-seq tools for dimensionality reduction, such as PCA and LSI. 
Furthermore, they show that SCALE is scalable to large datasets (on the 
order of 80,000 single cells). While SCALE succeeds at learning 
nonlinear cell representations with higher accuracy, it assumes that the 
read depth is constant across cells and ignores potential batch effects. 
These pitfalls motivated the development of scalable and accurate 
invariant representation learning scheme (SAILER) [178]. 

SAILER is a deep generative model inspired by VAEs which also 
learns a low-dimensional latent representation of each cell. For SAILER, 
the authors aimed to design an invariant representation learning 
scheme, where they discard the learned component associated with 
confounding factors from various technical sources. SAILER captures 
nonlinear dependencies among peaks, faithfully separating biologically 
relevant information from technical noise, in a manner that is easily 
scalable to millions of cells (when using GPUs). Similar to SAILER, 
SCALE also offers a unified strategy for scATAC-seq denoising, clus
tering, and imputation. However, in multi-sample scATAC-seq integra
tion, SAILER can eliminate batch effects and properly recreate a 
chromatin accessibility landscape free of confusing variables, regardless 
of sequencing depths or batch effects.4.2.3 Transcription Factor (TF)- 
gene relationship prediction. 

To unravel gene regulatory mechanisms and differentiate heteroge
neous cells, understanding the genome-wide binding TF profile is 
crucial. Researchers have developed several methods that use expression 
data for infer gene-gene interactions such inferring coexpression, un
derstanding functional assignments and reconstructing pathways [179]. 
However, each task in infering gene-gene relationships is typically done 
using different techniques. DL-based methods, on the other hand, are 

capable of learning multiple tasks jointly, which is very advantageous in 
inferring relationships between genes. Yuan et al. [179] introduced 
Convolutional Neural Network for Co-Expression (CNNC), a new 
encoding method for gene expression data based on CNNs. CNNC is a 
general computational technique for supervised gene relationship 
inference that builds on previous approaches in various tasks, including 
predicting TF targets and recognizing genes related to disease in order to 
infer cause and effect. The key idea behind CNNC is to turn data into 
co-occurrence histograms (as images), and then analyzing the histo
grams using CNNs. More specifically, Yuan et al. generated a histogram 
for each pair of genes and utilized CNNs to infer relationships among the 
various levels of expression encoded in the image. CNNC is adaptable 
and can easily be expanded to integrate other types of genomics data as 
well, resulting in additional performance gains. CNNC goes beyond 
previous approaches for predicting TF-gene and protein-protein in
teractions and predicting the pathway of a regulator-target gene pair. 
CNNC may also be used to draw causality inferences, functional as
signments (such as biological processes and diseases), and as part of 
algorithms that recreate known pathways [179]. 

In another work, Fu et al. [180] presented Single Cell Factor Analysis 
Network (scFAN), a DL model for determining genome-wide TF binding 
profiles in individual cells. The scFAN pipeline consists of a “pre-trained 
model” trained on bulk data and then used to predict TF binding at the 
cellular level using DNA sequence, aggregated associated scATAC-seq 
data, and mappability data. ScFAN can help overcome the basic spar
sity and noise constraints of scATAC-seq data. This model provides a 
valuable method for predicting TF profiles through individual cells and 
could be applied to analyze SC epigenomics and determine cell types. Fu 
et al. presented scFAN’s ability to identify cell types by analyzing 
sequence motifs enriched within predicted binding peaks and studying 
the effectiveness of predicted TF peaks. They suggested a novel metric 
called “TF activity score” to classify each cell and demonstrated that the 
activity scores could accurately capture cell identity. Generally, scFAN is 
capable of connecting open chromatin states with transcript factor 
binding activity in individual cells, which is beneficial for a deeper 
understanding of regulatory and cellular dynamics [180]. 

4.2.3. Histone modification 
Given the effects of protein-DNA interactions between histone marks 

and TF on the regulation of crucial cellular processes (including the 
organization of chromatin structures and gene expression), the identi
fication of such interactions is highly significant in biomedical science. 
Chromatin immunoprecipitation followed by sequencing (ChIP-seq) is a 
widely used technique for mapping TFs, histone changes, and other 
protein-DNA interactions for genome-wide mapping [181]. ChIP-seq 
data is very sparse, therefore generally requiring imputation for more 
accurate analysis. Albretch et al. introduced Single-cell ChIP-seq 
iMPutAtion (SIMPA) [182], an imputation algorithm that was tested on 
a single-cell ChIP-seq (scChIP-seq) dataset of the H3K4me3 and 
H3K27me3 histone marks in B-cells and T-cells. Unlike most SC impu
tation approaches, SIMPA integrates the sparse input of one single cell 
with a series of 2251 ENCODE ChIP-seq experiments to extract predic
tive information from bulk ChIP-seq data. SIMPA’s goal is to identify 
statistical patterns that bind protein-DNA interacting sites through 
specific SC regions of target-specific ENCODE data for different cell 
types, as well as the presence or absence of potential sites for a single 
cell. Once the patterns are identified, SIMPA’s DL models uses these 
patterns to make precise predictions. As a new approach in sc-seq, 
SIMPA’s imputation strategy augmented sparse scChIP-seq data, lead
ing to improved cell-type clustering and the detection of pathways that 
are specific to each cell type. 

4.2.4. CNV and SNP prediction 
A genome-wide association study (GWAS) is the standard method for 

identifying genetic biomarkers, such as single nucleotide poly
morphisms (SNPs) and copy number variations (CNVs), that are linked 
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to numerous characteristics and illnesses. CNVs are DNA segments that 
are duplicated or deleted in relation to the reference genome and are 
greater than 1000 base pairs (bp) [183]. GWAS, on the other hand, has 
limitations due to its individual-CNV and SNP analysis technique, which 
is compounded by the high dimensionality of genomic datasets. When 
doing several individual association tests, strict thresholds must be used 
to allow for mistake rates that contribute to weak detection [184]. 
Several investigations have already shown that DL can be used in 
genomic datasets; nevertheless, to the best of our knowledge, there is 
just a limited literature review detailing its use to CNV-set construction. 
Several approaches for detecting CNV from single-cell DNA data have 
been developed, including dudeML [185], DeepCNV [186], RDAClone 
[187], and rcCAE [188]. 

dudeML is a DL-based method that detects CNVs pretty successfully, 
particularly in samples with low coverage or in pools, utilizing data 
easily provided from the sample [185]. Standard procedures for finding 
CNVs, on the other hand, rely on CNV tool predictions followed by 
tedious and heuristic filtering. When the sample size is big, however, 
manually distinguishing false positives from true positives becomes 
more expensive. Furthermore, manual filtering may be subjective and 
may induce bias, whereas in clinical settings workflow rigour and goals 
are desirable. DeepCNV is intended to address this void by automating 
the filtering process in a transparent and impartial manner. To improve 
distinguishability, DeepCNV’s hierarchical structure compresses the 
original data from intractable big dimensions into a viable and infor
mative representation [186]. RDAClone is a nonlinear DL-based AE that 
has been shown to be a successful tool for analyzing genomics data. It 
may also be tweaked to assess cellular and gene networks for potential 
uses in biology and medicine [187]. 

The rcCAE technique is an AE-based approach for calculating SC 
copy numbers from scDNA-seq data. The approach employs a convolu
tional AE to learn latent representations of SCs while also improving 
read count quality, resulting in an integrated framework that enables 
efficient characterization of underlying cell subpopulations in a low- 
dimensional latent space, as well as accurate detection of SC copy 
numbers from improved read counts by effectively eliminating non- 
biological confounding factors [188]. 

SC genomics analysis through DL is a promising and emerging field 
with an incredible potential to advance our knowledge of fundamental 
biological matters. In this respect, DL can provide us with a better un
derstanding of nature, and the intricacies of DNA structure and epi
genomics effects on human diseases for both therapeutic and diagnostic 
purposes. Due to intrinsic challenges in SC genomics, such as sparsity, 
systematic noise, and higher-dimensionality of biological systems, 
developing new DL models are paramount to further advancing the SC 
genomics field. 

4.3. Deep learning in spatial transcriptomics 

Since being named the method of the year [189], spatial tran
scriptomics (ST) is becoming the natural extension of scRNA-seq, 
unbiasedly profiling transcriptome-wide gene expression. By not 
requiring tissue dissociation, spatial transcriptomic retain spatial in
formation (adding a spatial component to conventional RNA-seq tech
nologies). ST have the potential of revolutionizing the field by bridging 
the gap between the deep characterization of cellular states and the 
cellular diversity that constitutes tissue organization. Spatially resolved 
transcriptomics can provide the genetic profiles of cells while containing 
information about the positional distribution of the sequenced cells, 
enhancing our understanding of cell interactions, organ function and 
pathology. However, the high-throughput spatial characterization of 
complex tissues remains a challenge. Broadly, spatially-resolved tran
scriptomics techniques can be divided into two categories: (i) the cyclic 
RNA imaging techniques that achieve single-cell resolution and (ii) 
array-based spatially resolved RNA-seq techniques, such as Visium 
Spatial Transcriptomics [190], Slide-sequencing [191], or 

high-definition spatial transcriptomics (HDST) [192]. Though both 
subgroups can provide spatial information on a single-cell level, the 
cyclic RNA methods are limited on the number of genes that they can 
multiplex. On the other hand, the array-based spatially resolved 
RNA-seq techniques achieve high-throughput data by capturing mRNA 
across thin tissue sections using a grid of microarrays or bead-arrays, 
relying on simple molecular biology and histology protocols. Howev
er, since array-based mRNA capture does not match cellular boundaries, 
spatial RNA-seq measurements are a combination of multiple cell-type 
gene expressions that can correspond either to multiple cells (Visium) 
or fractions of multiple cells (depending on the spatial resolution of each 
method). 

To obtain a comprehensive characterization of underlying tissue, 
there is the need for computational methods that can produce coupled 
single-cell and spatially resolved transcriptomics strategy, mapping 
cellular profiles into a spatial context. Nonetheless, there are some 
techniques for retrieving relevant biological information from ST data. 
As remarked by Lähnemann et al. [193], detecting spatial gene 
expression patterns is one of the most pressing challenges in single-cell 
omics data science. Identifying such patterns can provide valuable 
insight on the spatial distribution of cell populations, pointing out gene 
marker candidates and potentially leading to identification of new rare 
cell subpopulations. Moreover, ST not only puts gene expression into a 
spatial context but also facilitates the integration of tissue-image infor
mation with gene expression information. Such data integration will 
enable researchers to utilize image processing techniques to investigate 
the morphological information, gaining more intuition in order to obtain 
more refined inferences, predictions, or cellular profiles. After address
ing the mapping issues from gene expression to the spatial coordinates, 
further computational tools will be required to study cell-cell in
teractions within tissues and to model transcriptional relations between 
cell types [194]. 

The ST field is growing fast, with new datasets and analysis pipelines 
presented weekly. Although the space of DL models for ST analysis is 
now small, we anticipate the field to experience a paradigm shift toward 
DL models. In this way, Xu et al. presented DeepST, a DL framework for 
recognizing spatial domains that outperform existing approaches for 
benchmarking human dorsolateral prefrontal cortex datasets [195]. 
Further testing on the breast cancer, ST dataset demonstrated that 
DeepST can analyze the spatial domains of cancer tissues at a better 
scale. In addition, DeepST can not only efficiently batch integrate ST 
data generated from multiple batches or different technologies but is 
also scalable to handle other spatial omics data. Their results determined 
that DeepST has a special ability to identify spatial domains, making it a 
necessary tool for obtaining new visions from ST studies. Maseda et al. 
developed an algorithm for imputing spatial information onto a 
scRNA-seq dataset from a given spatial reference atlas and named it 
DEEPsc which requires a reference atlas [196]. They used DEEPsc for 
spatial imputation of four different biological systems (Zebrafish, 
Drosophila, Cortex, and Follicle), reaching precision to some existing 
models while maintaining higher accuracy and robustness. A weakness 
of DEEPsc is its training time, which depends non-linearly on the 
number of available locations. However, this issue could be diminished 
by considering a small subset of possible locations when training the 
model, or by using a more optimized design. 

In 2021 Biancalani et al. introduced Tangram, a DL framework that 
addresses two challenges: Learn transcriptome-wide spatial gene 
expression maps at sc resolution and link them to histological and 
anatomical information from the same sample [197]. In another word, 
Tangram can align scRNA-seq or single-nucleus RNAseq profiles to 
spatial data. Biancalani et al. revealed that Tangram learns a precise 
mapping among the spatial data and scRNAseq gene expression after 
using fine- or coarse-grained spatial atlases. Tangrams can offer a variety 
of advantages based on spatial techniques, but they can generate reliable 
spatial mappings and overcome resolution or throughput limitations. 
This is helpful in many ST studies. 
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Tan et al. introduced SpaCell, a user-friendly DL tool that can 
combine thousands of gene expression measures from spatially barcoded 
areas in tissue with millions of pixel intensity values. To develop DL 
models that can forecast labels of tissue images with high resolution and 
accuracy or recognize cell types, their integration technique performs 
better than the use of gene-count data alone or imaging data alone 
[198]. 

The SEDR is an unsupervised spatially embedded deep representa
tion of the spatial and transcriptional data that Fu et al. have expressed. 
With the help of deep AE and a variation graph AE, the SEDR pipeline 
creates a low-dimensional latent representation of gene expression that 
is co-embedded with the corresponding spatial data. They enhanced 
clustering precision using SEDR on data from the human dorsolateral 
prefrontal cortex, and they successfully followed the prenatal brain’s 
growth in trajectory analysis [199]. Recently O’Connor et al. introduced 
DeLTA 2.0, a Python-based workflow that enables fast and precise 
analysis of images of individual cells on flat surfaces to measure gene 
expression and cell growth. The algorithm employed in DeLTA 2.0 uti
lizes DCNN to extract relevant information about single cells from 
time-lapse images, eliminating the need for human intervention once 
the system is trained [200]. 

Given the recency of ST, ML- and DL-based models for studying this 
type of data are rare and not fully developed. Given the complexity of 
the ST space, however, we predict that DL models will be the predom
inant method of choice for ST data integration and analysis, with 
perhaps many new models borrowing ideas and designs from the 
existing body of work in computer vision. 

4.4. Integrating scRNA-seq and spatial transcriptomics (spot 
deconvolution) 

Given that ST approaches normally detect mRNA expression from a 
mixture of cells, and that they do not distribute the sequenced samples to 
match cellular boundaries, it is imperative to integrate ST data with 
scRNA-seq data to obtain a comprehensive map. Using scRNA-seq as a 
reference, this integration aims to infer which cells belong to which gene 
expression counts detected at the various location across the tissue. Thus 
far, traditional ML and statistical models have shown promising results 
in this space. For example, SPOTlight [201] is a model for deconvoluting 
spatial transcriptomics spots with single-cell transcriptomes using 
seeded NMF regression. SPOTlight starts by obtaining cell-type-specific 
profiles that are representatives of the gene expressions associated with 
the different cells. This process is further refined by a proper initiali
zation of the method that uses unique marker genes of specific cell types. 
Next, the method uses Non-Negative Least Squares to deconvolute the 
captured expression of each spot (location). Despite SPOTlight’s accu
racy and computational efficiency, SPOTlight lacks the flexibility of 
integrating datasets from different batches or sequencing technologies. 
In SPOTlight, several aspects of the underlying biological and techno
logical variance in the data are not addressed nor accounted for, which 
limits its application. Furthermore, technical procedures to obtain 
RNA-seq data are notoriously delicate and subjected to notable sources 
of variation. 

Methods like Seurat 3 [202] attempt to account for the intrinsic 
technical variability of RNA-seq procedures thorough developing an 
“anchor”-based method for integrating datasets. However, it is impor
tant to remember that there are biological variabilities in the number of 
cells across positions or the amount of mRNA expressed by each cell or 
cell type. Therefore, there is an unmet need for techniques that can 
integrate datasets while properly accounting for the various sources of 
variability. Several studies have proposed statistical frameworks as 
viable candidates to account for the variability when integrating 
different datasets. For example, Stereoscope [203] build their model on 
a statistical framework. They model gene expressions counts as occur
rences under a negative binomial distribution. Stereoscope follows 
previous approaches of obtaining a gene expression profile for each cell 

type. That is, Andersson et al. follow a two-step approach: First, they 
estimate the parameter of the negative binomial distribution for all 
genes within each cell type. Similar parameters for a distribution of the 
RNA-seq and spatial expression mixture are then formed by a linear 
combination of the single-cell parameters. The next step is to search a set 
of weights that can best fit the spatial data [203]. These computed 
weights reflect the contribution of each cell type to the gene expression 
counts found in each location, thus explaining the abundance of each 
cell type across the spots. 

Following the previous methodology, cell2location [204] builds on a 
Bayesian framework and models gene expression counts as a negative 
binomial distribution. This approach enables controlling the sources of 
variability, which is crucial when working with data from different 
technologies. Cell2location integrates scRNA-seq information into the 
spatial model using a similar statistical framework as Stereoscope: In 
addition to modeling the gene-specific unobserved rate (mean) as a 
weighted sum of the cell signature gene expression, cell2location also 
adds various parameters to provide the model with prior information 
regarding technology sensitivity. 

That is, to further improve integration between different technolo
gies, Kleshchevnikov et al. allow for four hyperparameters that will scale 
the weighted sum of cell contributions. Kleshchevnikov et al. show that 
cell2location integration results while being more computationally 
efficient than competing models (such as Stereoscope). 

In another study by Lopez et al. a Deconvolution of Spatial Tran
scriptomics profiles using Variational Inference (DestVI), was intro
duced [205]. Their algorithm was applied for multi-resolution analysis 
used for spatial transcriptomics that certainly represents continuous 
variation inside cell types. They showed that DestVI provides greater 
resolution compared to current approaches and could estimate gene 
expression in each cell type at all spots. Additionally, when applying 
DestVI to a mouse tumor model, it can precisely deconvolve spatial or
ganization, as well as provide a high-resolution and precise spatial 
characterization of tissue cellular organization. 

4.5. Deep learning in the integration of single-cell multimodal omics data 

Single-cell sequencing (sc-seq) was chosen as Method of the Year in 
2013 due to its ability to sequence DNA and RNA in individual cells 
[206]. Sc-seq allows for gene expression measurements at an unprece
dented single-cell resolution, which can provide a comprehensive view 
of the genome, transcriptome, or epigenome. In addition, recent tech
nological advances now allow for multimodal omics measurements from 
the same experiment. In order to gain an accurate and comprehensive 
view of the cellular composition of the control (normal) and disease 
groups, it is essential to integrate all omics data for one sample simul
taneously [207]. The various omics technologies can assess various 
modalities in one experiment (i.e. conduct multimodal studies) or 
integrate diverse omics datasets from multiple experiments. 

Given the tremendous potentials of these approaches, single-cell 
multimodal omics was named the 2019 Method of the Year [206]. 
Omics integration holds the promise of linking even small datasets 
across orthogonal biochemical domains, amplifying biologically signif
icant signals in the process [208]. By analyzing multi-omics data, re
searchers can produce novel hypotheses or design mathematical 
algorithms for prediction tasks, such as drug sensitivity and efficacy, 
gene dependence prediction, and patient stratification. Hao et al. [209] 
proposed a non-DL based method, called the weighted-nearest neighbor 
method which has shown promising results. WNN is an unsupervised 
framework for defining cellular identity by leveraging multiple data 
types for creating a multimodal reference atlas. Hao et al. apply their 
technique to a dataset of human PBMCs that includes paired tran
scriptomes and measurements of 228 surface proteins, forming a 
multimodal immune system atlas. They evaluate multimodal datasets 
from single cells, including paired measurements of RNA and chromatin 
state, and extend beyond the transcriptome to define cellular identity in 
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a coherent and multimodal manner [209]. 
Another non-DL-based method was presented by Clark et al., a sc 

approach for parallel chromatin accessibility, DNA methylation, and 
transcriptome profiling, and introduced it single-cell nucleosome, 
methylation, and transcription sequencing (scNMT-seq). GpC methyl
transferase is used to tag open chromatin in scNMT-seq, which is then 
followed by bisulfite and RNA sequencing[210]. 

Although traditional ML models such as WNN have shown promising 
results, multi-omics data pose unique challenges for holistic integration, 
in addition to the other traditional difficulties such as batch effects from 
multiple sources. Multi-omics data reflect molecular phenotypes at 
different molecular systems, and thus each omics dataset could follow a 
different and specific distribution. To overcome these hurdles, sophis
ticated statistical and computational strategies are required. Among the 
various proposed algorithms thus far, only DL-based algorithms provide 
the computational versatility necessary to effectively model and incor
porate virtually any form of omics data in an unsupervised or supervised 
manner [208]. 

Most DL-based algorithms in this area aim to simultaneously calcu
late several modalities in a single experiment. For example, Zuo et al. 
[211] introduced a single-cell multimodal VAE model (scMVAE) for 
profiling both transcriptomic and chromatin accessibility information in 
the same individual cells. Given the scRNA-seq and scATAC-seq of the 
same individual cells, scMVAE’s uses three joint-learning strategies to 
learn a non-linear joint embedding that can be used for various down
stream tasks (e.g. clustering). This joint learning distinguishes scMVAE 
from other VAE-based models (such as scVI) which process individual 
omics data separately. Zuo et al. note that scMVAE’s feature embeddings 
are more distinct than the scVI’s for each omics data, indicating that the 
joint learning representation of multi-omics data will produce a more 
robust and more valuable representation [211]. 

Currently, there are only a few studies that have used DL for data 
integration, but their success thus far calls for additional investigation of 
DL models in this domain [212]. Despite the significant advances made 
with single-cell multimodal omics technologies, several obstacles 
remain: First, these techniques are prohibitively expensive when used on 
a large scale to analyze complex heterogeneous samples and distinguish 
rare cell types within a tissue. On the other hand, data sparsity is a 
significant limitation of high-throughput single-cell multimodal omics 
assays. Furthermore, existing methods cover only a small portion of the 
epigenome and transcriptome of individual cells, making it challenging 
to separate technical noise from cell-to-cell variability. While future 
modification of these approaches will eventually close the gap, funda
mentally new algorithms or strategies may be needed to resolve this 
constraint completely [213]. Amodio et al. [214] propose 
Manifold-Aligning GAN (MAGAN), which is a GAN-based model which 
aligns two manifolds coming from different domains with the assump
tion that different measurements for the same underlying system contain 
complementary information. They show MAGAN’s potential in the 
problem of single-cell data integration (CyTOF and scRNA-seq data) and 
demonstrate the generalization potential of this method in the integra
tion of other data types. However, the performance of MAGAN decreases 
in the absence of correspondence complementary information among 
samples [215]. Cao et al. introduced UnionCom for unsupervised to
pological alignment of single-cell omics integration without a need for 
correspondence information among cells or among features, which can 
be very useful in data integration. However, UnionCom is not scalable to 
large datasets that are on the order of millions of cells [216]. Other 
models such as SMILE (Single-cell Mutual Information Learning) also 
allow for unmatched feature types. SMILE is a deep clustering algorithm 
for different tissues and modalities, even when the feature types are 
unmatched. SMILE can remove batch effects and learn a discriminative 
representation for data integration using a cell-pairing maximization 
algorithm [217]. 

Single-Cell Data Integration via Matching (SCIM) [218] is another 
deep generative approach that constructs a technology-invariant latent 

space to recover cell correspondences among datasets, even with un
paired feature sets. The architecture is a modified auto-encoder with an 
integrated discriminator network, similar to the one in GANs, allowing 
the network to be trained in an adversarial manner. Multi-modal data
sets are integrated by pairing cells across technologies using a bipartite 
matching scheme that operates on the low-dimensional latent repre
sentations [218]. Another data integration model is inteGrative anaLysis 
of mUlti-omics at single-cEll Resolution (GLUER) [219], which employs 
three computational approaches: a nonnegative matrix factorization 
(NMF), mutual nearest neighbor, and a DNN to integrate multi-omics 
data. The NMF stage helps to identify shared signals across data sets 
of different modalities, resulting in “factor loading matrices” (FLM) for 
each modality. The FLM from one data modality is defined as the 
reference matrix while the other FLM is used as query matrices, which 
are used to calculate putative cell pairs. These cell pairs are then used in 
a DNN which tries to learn a mapping between the query FLMs and the 
reference FLMs, resulting in co-embedded datasets [219]. 

Donno et al. proposed single-cell population-level integration 
(scPoli) in 2022 as a semi-supervised conditional deep generative al
gorithm for data integration, label transfer, and query-to-reference 
mapping. Unlike other algorithms, scPoli can integrate and annotate 
newly created query datasets while developing an uncertainty mecha
nism for recognizing unknown populations. It also learns both sample 
and cell representations [220]. For combining sparse and 
high-dimensional scATAC-seq data, Kopp et al. created BAVARIA. Their 
method tackles the lack of a particular scATAC-seq tool that permits 
simultaneous data integration from several complex datasets and 
dimensionality reduction [221]. They announced that their algorithm is 
the first one to enable data integration and precise batch correction 
across various scATAC protocols. 

SciPENN, is a multi-use DL approach presented by Lakkis et al. Their 
method supports CITE-seq (matched RNA and protein profilings) and 
scRNA-seq data integration, protein expression prediction for scRNA-seq 
and protein expression imputation for CITE-seq, as well as the transfer of 
cell type label from CITE-seq to scRNA-seq [222]. 

BABEL was presented by Wu et al. an algorithm that integrates the 
chromatin profiles and transcriptome of a single cell using a DNN model. 
After being trained on relevant data, BABEL can accurately predict sc 
expression from a cell’s scATAC-seq and vice versa. Protein epitope 
profiling is one of the extra sc data modalities that BABEL is also capable 
of incorporating. This enables translation across chromatin, RNA, and 
protein [86]. Ma et al. introduced DeepMAPS, a DL-based Multi-omics 
Analysis Platform. scRNA-seq, CITE-seq, matched sc RNA, and ATAC-seq 
data sets can all be analyzed collectively using this method. The key 
component of the method is a transformer with a graph attention 
mechanism and a heterogeneous graph representation of cell-gene 
connections. 

VAEs and attention transfer were combined to create the deep cross- 
omics cycle attention (DCCA) model, which Zuo et al. suggested for the 
integration analysis of sc multi-omics data. The DCCA model learned a 
coordinated but independent representation for each omics data given 
the raw scRNA-seq or scEpigenomics data as input. 

Total Variational Inference (totalVI), described by Gayoso et al., is a 
pairwise measurement of RNA and surface protein abundance in SC 
analysis, using CITE-seq that links transcriptional variation with cell 
phenotypes and functions. 

Some studies have formulated the integration problem as a transfer- 
learning task. For example, Lin et al. pose the integration problem as a 
transfer learning question, where the model is co-trained on labeled 
RNA and unlabeled ATAC data. Their model, scJoint, integrates atlas- 
scale collections of scRNA-seq and scATAC-seq data, using a neural 
network framework. Their approach uses scATAC-seq to gain a com
plementary layer of information at the single-cell resolution which is 
then added to the gene expression data from scRNA-seq. However, 
scJoint requires that both input matrices share the same dimensions, and 
scATAC-seq is first converted to gene activity scores, where a single 
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encoder can share the weights for both RNA and ATAC data [223]. 
In 2022, Lotfollahi et al. introduced scArches, a DNN-based approach 

for integrating query datasets onto a reference dataset without sharing 
raw data. It employs transfer learning and parameter optimization for 
efficient and decentralized reference building. scArches preserves bio
logical state information and eliminates batch effects across various 
datasets, including mouse brain, pancreas, immune, whole-organism 
atlases, and COVID-19 disease variations [88]. 

In a more recent development in 2023, Lotfollahi et al. introduced 
ExpiMap, a DL-based algorithm that enhances single-cell atlas integra
tion using (conditional) VAE. ExpiMap maps single-cell references while 
capturing biologically significant components representing gene pro
grams. It outperforms existing methods and provides interpretability in 
integrative single-cell analysis. Validation experiments include 
analyzing single-cell perturbation responses across tissues and species 
and COVID-19 patient response analysis across different cell types. [89]. 

5. Conclusions and future perspective 

In conclusion, the field of SC sequencing data analysis using DL ap
proaches is rapidly advancing, but one of the most pressing needs is for 
benchmarking studies. Most papers published using DL algorithms have 
compared performance to standard methods, but have not gone into 
great depth when comparing across different types of DL models. SC 
experiments can be vastly different, with tissue samples containing 
known cell types, or much more complex tissues such as in diseases such 
as cancer or COVID-19. However, most methods have only claimed su
perior performance based on a set of example datasets from specific SC 
experiments. To overcome these issues, one potential way would be to 
better understand when these DL models fail or what their limitations 
are. Understanding the types of DL approaches and model structures that 
can be beneficial in some cases as compared to others would be very 
important for developing new approaches and guiding the field in terms 
of what methods perform better under specific conditions. Additionally, 
the development of a human cell atlas, i.e., the aggregation of many 
different human SC expression data across many institutions to cover all 
major organ systems within the body, would allow for large amounts of 
annotated SC sequencing data and more comprehensive benchmarking 
studies [90–93]. 

DL has played a significant role in the analysis of scRNA-seq data, 
with an increasing number of studies utilizing these techniques. How
ever, the use of DL for scRNA-seq data analysis is still in its infancy, as 
the datasets available for analysis are relatively small, which may make 
it challenging to identify rare cell populations and understand how they 
change under different disease states. The datasets used in computer 
vision tasks, where DL has achieved significant improvements, are or
ders of magnitude larger than those used in scRNA-seq analysis. How
ever, with the increasing availability of scRNA-seq data, the use of these 
smaller datasets for computational analyses may be changing. A recent 
work by Sikkema et al., using a combination of 46 different datasets with 
2.2 million cells of lung tissue across healthy and diseased patients, has 
shown that DL methods can outperform standard pipeline approaches in 
more complex settings. The use of transfer learning, similar to ap
proaches such as scArches, can also be used to save the information 
gained from large-scale training sets, which can be utilized by re
searchers who do not have access to such large and diverse datasets. The 
field of scRNA-seq is also embracing the concept of open-source data 
sharing, and new toolkits such as scverse aim to provide a unified 
framework for large-scale scRNA-seq analyses. This information, in 
combination with other large-scale data collection efforts such as TCGA, 
can be used to better understand how cellular changes correlate with 
disease. 

The advancements in SC isolation and barcoding techniques have 
enabled the production of diverse omics data at the SC level. Integrative 
analyses of multi-omics data at the bulk level have demonstrated the 
potential to provide a comprehensive understanding of molecular 

mechanisms in biology and medicine. DL has proven to be superior to 
traditional ML methods in the analysis of bulk multi-omics data, due to 
its ability to capture informative latent features from the high- 
dimensional heterogeneous multi-omics feature space and its flexible 
architecture that can model each modality separately and combine them 
later to aggregate information. Drawing on the success in bulk multi- 
omics data, integrating scRNA-seq data with other SC omics data as 
well as multi-omics data at the bulk level using DL may provide a better 
and deeper understanding of biological mechanisms. However, there are 
specific and distinct challenges in integrating multi-omics data, partic
ularly in joint-modality SC-seq and the integration of single modality SC- 
seq data. These challenges include increased noise and sparsity in the 
data, difficulties in balancing both modalities during the embedding 
process, and inherent biases between different institutions. Additionally, 
joint sequencing models are less frequent than single modality 
sequencing methods, making the development of methods to integrate 
two different modalities with unique cell populations a significant 
computational challenge. Despite these challenges, there is still a great 
potential for DL to advance our understanding of SC omics and 
contribute to the field of biology and medicine. 

ST is a new approach to SC analysis that preserves the spatial rela
tionship of RNA-sequencing within a tissue. While ST has the advantage 
of spatial resolution, current technology such as the 10x Visium platform 
generates 50-micron spots that are pooled for analysis, losing the ability 
to identify the transcriptome of a single cell. Other approaches, such as 
Slide-Seqv2, aim to improve resolution but have limitations such as 
limited ability to detect low expressing genes compared with scRNA-seq 
methods. It is important to realize that scRNA-seq and ST can act in a 
complimentary manner. ST will require unique computational and DL 
algorithms separate from scRNA-seq. For example, the method PASTE 
shows that scRNA-seq related methods are insufficient to properly 
analyze ST data. Additionally, cell-cell communication networks can be 
elucidated using newly developed algorithms. However, scRNA-seq can 
currently provide unique gene information that has been leveraged 
during ST analysis. For example, DestVI uses a reference scRNA-seq 
dataset to deconvolve or attempt to identify unique cell types within a 
given ST spot. Furthermore, work has been done to jointly embed seq
FISH data and an scRNA-seq atlas, to annotate specific cell types in the 
seqFISH dataset. Given current ST spatial resolution constraints and 
detection limitations, SRT and scRNA-seq can act synergistically. 
Additionally, the AE structures used in the context of scRNA-seq and in 
this review can also be components used within ST analysis. By 
leveraging the strengths of both technologies, we can gain a more 
comprehensive understanding of cellular biology and the underlying 
mechanisms of diseases. 

We anticipate an increase in the use of DL techniques for addressing 
the current challenges mentioned in the SC field. Furthermore, we 
believe that the biological generalizability and interpretability of deep- 
learned models in understanding complex pathological phenotypes such 
as cancer, drug resistance, and neurobiology would be of great interest 
and importance to the omics field. 
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V. Misharin, et al., Biologically informed deep learning to query gene programs in 
single-cell atlases, Nat. Cell Biol. 25 (2) (2023) 337–350. 

[90] S. Jin, C.F. Guerrero-Juarez, L. Zhang, I. Chang, R. Ramos, C.-H. Kuan, et al., 
Inference and analysis of cell-cell communication using CellChat, Nat. Commun. 
12 (1) (2021) 1088. 

[91] M. Efremova, M. Vento-Tormo, S.A. Teichmann, R. Vento-Tormo, CellPhoneDB: 
inferring cell–cell communication from combined expression of multi-subunit 
ligand–receptor complexes, Nat. Protoc. 15 (4) (2020) 1484–1506. 

[92] M. Solovey, A. Scialdone, COMUNET: a tool to explore and visualize intercellular 
communication, Bioinformatics 36 (15) (2020) 4296–4300. 

[93] Y. Wang, R. Wang, S. Zhang, S. Song, C. Jiang, G. Han, et al., iTALK: an R Package 
to Characterize and Illustrate Intercellular Communication, bioRxiv (2019), 
507871. 

[94] G.X. Zheng, J.M. Terry, P. Belgrader, P. Ryvkin, Z.W. Bent, R. Wilson, et al., 
Massively parallel digital transcriptional profiling of single cells, Nat. Commun. 8 
(1) (2017) 1–12. 

[95] A.M. Klein, L. Mazutis, I. Akartuna, N. Tallapragada, A. Veres, V. Li, et al., Droplet 
barcoding for single-cell transcriptomics applied to embryonic stem cells, Cell 
161 (5) (2015) 1187–1201. 

[96] E. Azizi, A.J. Carr, G. Plitas, A.E. Cornish, C. Konopacki, S. Prabhakaran, et al., 
Single-cell map of diverse immune phenotypes in the breast tumor 
microenvironment, Cell 174 (5) (2018) 1293–1308, e36. 

[97] S. Parekh, C. Ziegenhain, B. Vieth, W. Enard, I. Hellmann, zUMIs-a fast and 
flexible pipeline to process RNA sequencing data with UMIs, Gigascience (2018). 

[98] A. Lafzi, C. Moutinho, S. Picelli, H. Heyn, Tutorial: guidelines for the 
experimental design of single-cell RNA sequencing studies, Nat. Protoc. 13 (12) 
(2018) 2742–2757. 

[99] P. Jiang, J.A. Thomson, R. Stewart, Quality control of single-cell RNA-seq by 
SinQC, Bioinformatics 32 (16) (2016) 2514–2516. 

[100] J.A. Griffiths, A. Scialdone, J.C. Marioni, Using single-cell genomics to understand 
developmental processes and cell fate decisions, Mol. Syst. Biol. 14 (4) (2018), 
e8046. 

[101] R. Bacher, L.-F. Chu, N. Leng, A.P. Gasch, J.A. Thomson, R.M. Stewart, et al., 
SCnorm: robust normalization of single-cell RNA-seq data, Nat. Methods 14 (6) 
(2017) 584. 

[102] S.A. Hogan, A. Courtier, P.F. Cheng, N.F. Jaberg-Bentele, S.M. Goldinger, 
M. Manuel, et al., Peripheral blood TCR repertoire profiling may facilitate patient 
stratification for immunotherapy against melanoma, Cancer Immunol. Res. 7 (1) 
(2019) 77–85. 

[103] A.T. Lun, K. Bach, J.C. Marioni, Pooling across cells to normalize single-cell RNA 
sequencing data with many zero counts, Genome Biol. 17 (1) (2016) 1–14. 

[104] F. Buettner, K.N. Natarajan, F.P. Casale, V. Proserpio, A. Scialdone, F.J. Theis, et 
al., Computational analysis of cell-to-cell heterogeneity in single-cell RNA- 
sequencing data reveals hidden subpopulations of cells, Nat. Biotechnol. 33 (2) 
(2015) 155–160. 

[105] B. Ding, L. Zheng, Y. Zhu, N. Li, H. Jia, R. Ai, et al., Normalization and noise 
reduction for single cell RNA-seq experiments, Bioinformatics 31 (13) (2015) 
2225–2227. 

[106] C.A. Vallejos, J.C. Marioni, S. Richardson, BASiCS: Bayesian analysis of single-cell 
sequencing data, PLoS Comput. Biol. 11 (2015) 6. 

[107] M.D. Luecken, F.J. Theis, Current best practices in single-cell RNA-seq analysis: a 
tutorial, Mol. Syst. Biol. 15 (6) (2019), e8746. 

[108] W. Gong, I.-Y. Kwak, P. Pota, N. Koyano-Nakagawa, D.J. Garry, DrImpute: 
imputing dropout events in single cell RNA sequencing data, BMC Bioinforma. 19 
(1) (2018) 220. 

[109] P.V. Kharchenko, L. Silberstein, D.T. Scadden, Bayesian approach to single-cell 
differential expression analysis, Nat. Methods 11 (7) (2014) 740–742. 

[110] P. Qiu, Embracing the dropouts in single-cell RNA-seq analysis, Nat. Commun. 11 
(1) (2020) 1–9. 

[111] D. Ran, S. Zhang, N. Lytal, L. An, scDoc: correcting drop-out events in single-cell 
RNA-seq data, Bioinformatics 36 (15) (2020) 4233–4239. 

[112] L. Zappia, B. Phipson, A. Oshlack, Splatter: simulation of single-cell RNA 
sequencing data, Genome Biol. 18 (1) (2017) 174. 

[113] P. Lin, M. Troup, J.W. Ho, CIDR: Ultrafast and accurate clustering through 
imputation for single-cell RNA-seq data, Genome Biol. 18 (1) (2017) 59. 

[114] D. Sengupta, N.A. Rayan, M. Lim, B. Lim, Prabhakar S. Fast, scalable and accurate 
differential expression analysis for single cells, BioRxiv (2016), 049734. 

[115] D. van Dijk, J. Nainys, R. Sharma, P. Kaithail, A.J. Carr, K.R. Moon, et al., MAGIC: 
A diffusion-based imputation method reveals gene-gene interactions in single-cell 
RNA-sequencing data, BioRxiv (2017), 111591. 

[116] M. Huang, J. Wang, E. Torre, H. Dueck, S. Shaffer, R. Bonasio, et al., SAVER: gene 
expression recovery for single-cell RNA sequencing, Nat. Methods 15 (7) (2018) 
539–542. 

[117] W.V. Li, J.J. Li, An accurate and robust imputation method scImpute for single- 
cell RNA-seq data, Nat. Commun. 9 (1) (2018) 1–9. 
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