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A B S T R A C T   

HER2 is a driver in solid tumors, mainly breast, oesophageal and gastric cancer, through activation of oncogenic 
signaling pathways such as PI3K or MAPK. HER2 overexpression associates with aggressive disease and poor 
prognosis. Despite targeted anti-HER2 therapy has improved outcomes and is the current standard of care, 
resistance emerge in some patients, requiring additional therapeutic strategies. Several mechanisms, including 
the upregulation of receptors tyrosine kinases such as AXL, are involved in resistance. AXL signaling leads to 
cancer cell proliferation, survival, migration, invasion and angiogenesis and correlates with poor prognosis. In 
addition, AXL overexpression accompanied by a mesenchymal phenotype result in resistance to chemotherapy 
and targeted therapies. Preclinical studies show that AXL drives anti-HER2 resistance and metastasis through 
dimerization with HER2 and activation of downstream pathways in breast cancer. Moreover, AXL inhibition 
restores response to HER2 blockade in vitro and in vivo. Limited data in gastric and oesophageal cancer also 
support these evidences. Furthermore, AXL shows a strong value as a prognostic and predictive biomarker in 
HER2+ breast cancer patients, adding a remarkable translational relevance. Therefore, current studies enforce 
the potential of co-targeting AXL and HER2 to overcome resistance and supports the use of AXL inhibitors in the 
clinic.   

Background 

HER2 (gene name, ERBB2) transmembrane glycoprotein receptor is a 
member of the human epidermal growth factor receptor (HER) family 
together with receptors HER1, HER3, and HER4. Homo- or hetero- 
dimerization of these receptors activate key downstream pathways, 
being HER2-HER3 the most prevalent and potent heterodimer in 
signaling [1]. 

HER2 has been widely recognized to be a relevant oncogenic driver 
across several solid tumors [2]. Its gene amplification, mutations or 
overexpression cause a potent oncogenic signal through several 

downstream pathways, including phosphatidil-inositol-3-kinase (PI3K) 
and mitogen-activated phosphokinases (MAPK), promoting cancer cell 
proliferation and preventing apoptosis, causing cell growth, survival and 
differentiation [3]. However, despite the broad presence of HER2 al-
terations in solid tumors, anti-HER2 treatment has been well established 
in breast, gastric and gastroesophageal junction carcinomas. HER2- 
positive (HER2+) breast cancer (BC) represents 15–20 % of breast ma-
lignancies. This subtype is characterized by an aggressive behaviour and 
high risk of recurrence [3–5]. Besides, in gastric cancer, overexpression 
of HER2 represents 12–23 % of the cases and it varies with the histologic 
subtype (more frequent in intestinal than in diffuse) and tumor grade 
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(greater in moderately differentiated than in poorly differentiated) [6]. 
In this context, several therapeutic agents such as monoclonal anti-

bodies, tyrosine kinase inhibitors or antibody drug conjugates (ADCs) 
have been developed and are currently used in the clinical practice for 
HER2+ BC [5]. Trastuzumab, a monoclonal antibody against HER2, is 
the leading-class compound that changed the scenario of HER2 ampli-
fied tumors since it was approved by FDA in 1998 [7–8]. More recently, 
other strategies such as the combination of pertuzumab plus trastuzu-
mab as a first line treatment, the ADCs trastuzumab-DM1 (T-DM1) or 
trastuzumab-deruxtecan have entered the scene as principal therapeu-
tics options [9–11]. 

Nowadays, anti-HER2 treatment represents the golden standard for 
both early and metastatic HER2+ BC [5]. Furthermore, the combination 
of trastuzumab to platinum-based chemotherapy is the optimal treat-
ment to first-line for HER2 amplified advanced gastric/gastroesophageal 
cancer [12], and recently trastuzumab-deruxtecan has been approved to 
second or later line for this setting of patients while no benefit in 
improving clinical outcome was observed with other anti-HER2 agents 
already approved for BC [13–14]. 

Apart from BC and gastric cancer, HER2 has been recently identified 
as a driver in other types of cancer. For example, trastuzumab has 
emerged as an effective therapy approach for patients with advanced 
stage and recurrent HER2+ endometrial carcinoma, increasing 
progression-free (PFS) and overall survival (OS) when combined with 
the standard chemotherapy regimen [15]. Moreover, the available evi-
dence supports the use of anti-HER2 therapy in biliary tract cancer with 
HER2 amplification that lacks other therapeutic options [16–17]. The 
identification of HER2 amplification is also recommended in RAS wild- 
type colorectal cancer to detect those patients who may benefit from 
HER2 blockade after first-line progression [18]. Finally, while HER2 
exon 20 insertion mutations are rare in lung cancer, HER2 targeted 
ADCs have demonstrated activity. In fact, trastuzumab-deruxtecan 
could be recommended for patients following prior first-line therapy 
[19–20]. 

Interestingly, novel drugs are currently in development such as bis-
pecific antibodies (BsAbs). These antibodies have two distinct antigen- 
binding sites that can bind to different antigens or different epitopes 
on the same antigen. For example, an antibody against two distinct 
HER2 epitopes has shown promising results and distinct mechanisms of 
action [21]. Among several BsAbs, T cell engaging bsAb is a new class of 
therapeutic agents designed to simultaneously bind to the T cells re-
ceptor and to a tumor-associated or specific antigens [22]. Subse-
quently, with the progress in antibody engineering and biology, the 
diverse concept and constructs of BsAbs are evolving. 

Despite most of the patients experience a clear benefit consisting on 
increased disease-free survival (DFS), PFS and OS, a subset of them 
develop resistance and ultimately experience disease progression, 
requiring additional therapeutic strategies [23–24]. Hence, the identi-
fication of those potential mechanisms responsible for primary or ac-
quired anti-HER2 resistance is a fundamental unmet need to improve 
and personalize the therapeutic strategy for HER2 dependent disease. 

The inhibition of a specific target often activates horizontal or lon-
gitudinal pathways in an attempt to escape cancer cell death. In the case 
of HER2+ BC, activation of several receptors tyrosine kinase (RTK) has 
been described as a mechanism of resistance to anti-HER2 agents. 
Among them, the upregulation of other members of HER family is a 
frequently event. In particular, HER1 upregulation and the subsequent 
dimerization with HER2 attenuate the anti-cancer effect of trastuzumab 
in vitro [25–28], as well as the upregulation of HER3 associates to 
shorter DFS and OS in HER2+ BC patients [29–31]. 

Several preclinical and clinical studies demonstrate that molecular 
alterations in other RTKs beyond HER family members can cause 
resistance to anti-HER2 drugs in BC, such as MET amplification [32–35], 
Insulin-like growth factor 1 receptor (IGF1R) [36–40], Fibroblast 
Growth Factor Receptor (FGFR) [41–43],Erythropoietin receptor 
(EPOR) [44–45], Ephrin type-A receptor 2 (EPHA2) [46–47], Vascular 

Endothelial Growth Factor Receptor (VEGFR) [48–50], and AXL 
[51–52]. 

Similarly, the molecular alterations previously described in BC have 
been also identified to be responsible for worse prognosis in HER2+
gastric cancer. However, in this type of tumor heterogeneity limit the 
use of a tailored agent [53–57]. 

Given this complexity of cancer molecular biology, the perspective of 
combining an anti-HER2 drug with specific novel RTKs inhibitors 
represent a promising strategy to overcome primary or acquired resis-
tance. In this scenario, AXL, an important RTK associated with cancer 
progression and chemoresistance, has been recently described as one of 
the main players also in resistance to HER2 blockade and its potential 
mechanism took the attention of the scientific community. 

AXL receptor tyrosine kinase signaling pathway 

The AXL gene, which is localized at chromosome 19q13.2, was first 
identified in chronic myeloid leukaemia and encodes for 98 kDa AXL 
protein, that after post-translational regulation presents a final weight of 
100–140 kDa. AXL RTK, also named as UFO due to its initially unknown 
function, contains an extracellular domain with two immunoglobulin- 
like motifs at N-terminal, two fibronectin type III-like motifs involved 
in ligand binding, a transmembrane domain and an intracellular domain 
essential for tyrosine kinase activity [58–59]. 

AXL activation has been described through both ligand-dependent 
with GAS6 and ligand-independent through crosstalk with other trans-
membrane RTKs such as FGFR, HER1 and MET in solid tumors [58–63]. 
Upon dimerization and phosphorylation, AXL activates downstream 
signaling pathways such as PI3K/AKT/mTOR, JAK/STAT, NF-κB, and 
RAS/RAF/MEK/ERK that play major roles in tumor cell survival, 
migration, invasion, anoikis and angiogenesis [64]. 

AXL upregulation is not mediated by genomic amplifications or 
activating mutations, suggesting that its upregulation may be caused by 
other mechanisms. Among them, AXL transcriptional activation by Fos/ 
cJun/AP1 [65–66], Sp1/Sp3 [67], YAP1 [68–69], Fra-1 [70] and MZF1 
[71] has been widely described to increased AXL expression. Further-
more, some microRNAs, such as miR-34a [72], miR-199a [72], miR- 
202-5p [73] and miR-432 [74] also regulate AXL expression. 

Role of AXL in cancer 

Several studies focused on the role of TAM family members in 
different cancers and context. TAM RTKs and, particularly AXL, have 
been directly linked to epithelial to mesenchymal transition (EMT), and 
strongly associated to cancer progression, metastasis and drug resistance 
[64,75–77]. AXL upregulation together with a mesenchymal phenotype 
has been recognized to be responsible of acquired resistance to several 
cytotoxic agents, immunotherapies and targeted therapies across several 
tumor types [78]. In addition, association between AXL and targeted 
therapy resistance has been reported in different types of cancer such as 
oesophageal, head and neck [79], myeloid leukemia [80], neuroblas-
toma [81], melanoma [82–84] and lung cancer [85–88]. In the case of 
triple negative BC, preclinical studies showed that AXL could be 
responsible for chemo- and radio-resistance and HER1-targeted therapy 
resistance [60–61,89–91]. 

Hyperactivation or aberrant expression of AXL and its ligand GAS6 
have been observed and correlated with worse prognosis and metastasis 
in different types of cancer such as leukaemia, breast, lung, melanoma, 
pancreatic, renal, prostate, ovarian and oesophageal cancer. However, 
despite interesting preclinical and translational evidences, the role of 
AXL as an oncogenic driver has not been yet completely elucidated 
[60,92–93]. 

Apart from the important role of AXL in cancer progression, it has 
been recently acknowledged another role as a mediator of resistance to 
HER2 blockade in te context of HER2+ tumors. 
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AXL as a driver of resistance to anti-HER2 therapies in preclinical 
models 

Breast cancer 

AXL was first identified as a potential mechanism of resistance to 
anti-HER2 agents in 2009 [52]. In this study, in vitro acquired lapatinib- 
resistant BT474 HER2+/ER + BC cells showed upregulation of AXL in 
comparison to sensitive cells, and genetic knockdown or treatment with 
foretinib (AXL, MET and VEGFR inhibitor) restore lapatinib response. In 
this case, AXL activate the PI3K pathway through p85 that induces cell 
proliferation despite HER2 blockade [52]. In another study, foretinib 
also showed potent inhibition of the growth in the in vitro lapatinib- 
resistant cells with PI3K/AKT activation. In this work, resistant cells 
acquired mesenchymal traits, which, that support the association of AXL 
and an aggressive metastatic phenotype [94]. However, forenitinb is a 
multikinase inhibitor that targets Met, RON, AXL, and VEGFR2, thus it 
cannot be completely demonstrated that its effect on lapatinib-resistant 
cells is exclusively through AXL inhibition [95]. 

In line with these studies showing AXL as a mechanism of resistance 
to lapatinib in HER2+ BC, AXL overexpression has been described an 
important mechanism of resistance to trastuzumab. In particular, AXL 
was increased in acquired trastuzumab-resistant HER2+ BC cell lines 
both at mRNA and protein level, compared with their sensitive coun-
terparts [96]. Moreover, both genetic AXL knockdown and pharmaco-
logical inhibition with TP-0903 (a highly selective inhibitor) were able 
to increase trastuzumab response in vitro, and AXL gain of function was 
sufficient to decrease trastuzumab response [51]. 

In these acquired trastuzumab-resistant cell lines, AXL upregulation 
occurred in the context of an EMT associated transcriptional program. 
Indeed, trastuzumab-resistant cell lines show increased migration and 
invasion capability and an EMT-like phenotype, which are associated to 
metastatic behaviour. In addition, AXL gain and loss of function was 
sufficient to modulate the mesenchymal-like phenotype and migration 
and invasion capacity in three independent models [51]. These pre-
clinical results agree with those found by Goyette et al. where inhibition 
of AXL with small molecule inhibitor (R428) was sufficient to reduce cell 
invasion in vitro. The combination of R428 with HER2 blockade 
decreased the number of circulating tumor cells and lung metastatic 
burden in MMTV-NIC mouse model of HER2+ BC [97]. Therefore, these 
studies demonstrate the importance of AXL in the metastatic cascade in 
HER2+ BC and suggest that simultaneous inhibition of AXL and HER2 
could be a potential approach to abrogate metastatic spread [51,97]. 

A relevant biological question is how AXL is activated. Several 
studies reported that AXL could be activated both in a dependent or 
independent manner of its ligand GAS6. Exploration of the mechanism 
underlying trastuzumab resistance through AXL revealed that it happens 
in a ligand independent manner [51], which supports previous results 
where AXL role on metastatic potential was also independent of GAS6 
[97]. In this case, AXL activation arises through AXL-HER2 hetero-
dimerization [51,97]. This heterodimer leads to an increase of PI3K/ 
AKT and MAPK/ERK cascades which had been previously reported to 
give resistance to anti-HER2 therapies [98–100]. This is consistent with 
previous studies showing that AXL can drive oncogenic signaling of each 
of these pathways in other cancer types [101]. Furthermore, AXL inhi-
bition in combination with HER2 blockade achieved a significantly great 
inhibition of these pathways and restored response to anti-HER2 agents 
[51]. These results suggest that activation of HER2 downstream path-
ways by AXL can be one main mechanism leading to trastuzumab 
resistance in these models. Moreover, trastuzumab interferes with 
ligand-independent HER2 dimerization and has preferential activity 
against HER2 homodimers. Therefore, the increased number of AXL/ 
HER2 heterodimers in cells would lead to a decrease in treatment 
response [102]. 

These observations were also validated in acquired trastuzumab- 
resistant patient-derived tumor xenograft (PDX) HER2+ BC models in 

vitro and in vivo. Importantly, the combination of AXL inhibitor TP-0903 
and trastuzumab achieved complete regression in trastuzumab resistant 
tumors in vivo, whereas any single agent had no significant effect. 
Moreover, even after a long period of follow up, tumor did not relapse in 
the combination group. Altogether, these results suggests that the 
combination of HER2 and AXL inhibition might avoid treatment escape 
by tumor cells with acquired trastuzumab resistance, leading to a po-
tential long-term benefit for HER2+ BC patients [51]. 

Gastric and oesophageal cancer 

Despite molecular classification, only HER2 amplification and mi-
crosatellite instability-high (MSI-H) can be considered as drivers for 
advanced gastroesophageal adenocarcinoma. Nevertheless, several 
clinical trials testing various anti-HER2 agents have been performed in 
this type of cancer being trastuzumab and trastuzumab-deruxtecan the 
only ones that showed clinical evidence [12–13]. The high heteroge-
neity, loss of HER2 and the complex molecular scenario seems to be 
responsible for these failures. 

The role of AXL as responsible for resistance also emerged from 
preclinical investigations in gastric cancer. Afatinib (Tyrosine kinase 
inhibitor against EGFR and HER2)-resistant HER2+ gastric cancer cell 
lines showed AXL amplification. Interestingly, Combination treatment 
of afatinib plus cabozantinib, a multikinase inhibitor against MET and 
AXL, increased response of acquired afatinib-resistant cells in vitro and in 
vivo models [103]. 

In oesophageal squamous cell carcinoma (ESCC), the rate of HER2 
overexpression is less than 10 % and the efficacy of HER2 blockade has 
not been fully demonstrated [104–105]. As it was observed in other 
cancers, acquired lapatinib-resistant ESCC cells presented increased 
levels of AXL and combination treatment of lapatinib or afatinib plus 
foretinib showed synergetic effect in vitro [106]. Therefore, the role of 
AXL in this setting of patients should be further investigated and 
clarified. 

Translational relevance of AXL in HER2+ cancers 

In the clinical setting, AXL independently predicts worse survival 
and is associated with metastasis in BC [92,107–109]. AXL is currently 
recognized as a prognostic biomarker of triple negative BC and other 
solid tumors [92,110]. Currently, there are 29 clinical trials evaluating 
the toxicities and efficacy of AXL inhibitors as single agents or in com-
bination with different therapies in solid tumors (Table 1). However, 
there is still a lack of clinical information on the role of AXL as a 
biomarker in HER2+ cancers. 

In this scenario, a positive correlation was observed for the first time 
between AXL expression and increased risk of metastasis, EMT signature 
expression and a reduced survival in HER2+ BC patient samples [97]. 
These results are in line with those in which AXL expression correlated 
with the mesenchymal marker VIM in patient’s samples of triple nega-
tive BC and other cancers [90,93,109]. 

Furthermore, a strong positive correlation was also found between 
AXL and VIM expression in HER2+ BC patients. In particular, AXL is 
highly expressed in primary tumor samples at time of diagnosis in those 
patients who experienced a relapse versus those free of disease. More-
over, AXL expression significantly correlates with shorter DFS and OS in 
this subtype of BC and presents a strong potential as a biomarker to 
discriminate patients who do or do not respond to HER2 blockade [51]. 

Interestingly, none of the previous studies found correlation between 
AXL and GAS6 expression nor between GAS6 and prognosis in HER2+
BC patient’s samples, supporting the hypothesis of a ligand independent 
mechanism of HER2 blockade resistance through AXL [51,97]. 

Lastly, the association of AXL with acquisition of trastuzumab 
resistance in HER2+ BC has been also evaluated in a cohort of patients 
enrolled in the PAMELA trial, a phase II multicentric clinical trial, 
providing an additional translational value to the previous preclinical 
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results [51,111]. In this trial, patients with stage I-IIIA HER2+ BC, 
received lapatinib and trastuzumab for 18 weeks; and in hormone 
receptor-positive patients were additionally given hormonotherapy. A 
remarkable observation from this study is that AXL expression exhibits 
an increase in residual disease during dual anti-HER2 therapy. This 
biological acquisition is relatively rapid in the first two weeks of 

treatment, suggesting the importance of AXL upregulation in anti-HER2 
resistance acquisition and the consequent high risk of metastases. This 
underlines that the selective pressure of the therapy may shape cancer 
evolution, leading to selection of tumor subclones enriched with aber-
rations causing drug resistance. 

However, little clinical information is currently available from 

Table 1 
Current clinical trials evaluating AXL inhibitors in solid tumors.  

AXL inhibitor Targets Treatment Conditions Phase/ 
Reference 

TP0903 
(Dubermatinib) 

AXL Single agent Solid tumors Phase 1 
NCT02729298 

SLC-391 AXL Single agent Solid tumors Phase 1 
NCT03990454 

INCB081776 AXL, MER +INCMGA00012 Solid tumors Phase 1 
NCT0352142 

PF-07265807 AXL, MER + Sasanlimab 
+ Axitinib 

Solid tumors Phase 1 
NCT04458259 

RXDX-106 AXL, MER, TYRO3 Single agent Solid tumors Phase 1 
NCT03454243 

BPI-9016 M MET, AXL Single agent Solid tumors Phase 1 
NCT02478866 

MGCD516 
(Sitravatinib) 

MET, AXL, MER, VEGFR, PDGFR, DDR2, TRK, Eph Single agent Solid tumors Phase 1 
NCT02219711 

Q702 AXL 
Mer 
CSF1R 

Single agent Solid tumors Phase 1 
NCT04648254 

+Pembrolizumab Solid tumors Phase 1/2 
NCT05438420  

R428 
(Bemcentinib)  

AXL +Pembrolizumab Advanced Lung cancer Phase 2 
NCT03184571 

+Pembrolizumab  Mesothelioma Phase 2 
NCT03654833 

Triple negative BC Phase 2 
NCT03184558 

Glioblastoma Phase 1 
NCT03965494 

+ Nab-paclitaxel 
+ Gemcitabine 
+ Cisplatin 

Pancreatic cancer Phase 1/2 
NCT03649321 

+ Erlotinib Non-Small Cell Lung 
Cancer 

Phase 1/2 
NCT02424617 

BMS907351 
(Cabozantinib) 

AXL 
MET 
RET 
VEGFR2 

+ Lanreotide Neuroendocrine tumors Phase 2 
NCT04427787 

+ Niraparib Urothelial Cancer Phase 1–2 
NCT03425201 

Single agent Hepatocellular 
Carcinoma 

Phase 2 
NCT04316182 

+ Nivolumab Colorectal Cancer Phase 2 
NCT04963283 

+ Ipilimumab 
+ Nivolumab 

Melanoma Phase 2 
NCT05200143 

+ Lanreotide Neuroendocrine tumors Phase 2 
NCT04427787 

ADCT-601 
(Mipasetamab 
uzoptirine) 

AXL + Gemcitabine Solid tumors Phase 1 
NCT05389462 

HuMax-AXL-ADC 
(Enapotamb vedotin) 

AXL Single agent Ovarian Cancer 
Cervical Cancer 
Endometrial Cancer 
NSCLC 
Tyroid Cancer 
Melanoma 
Sarcoma 

Phase 1/2 
NCT02988817 

CAB-AXL-ADC 
(BA3011) 

AXL +PD1-1 inhibitor Solid tumors Phase 1/2 
NCT03425279 

Non-Small Cell Lung 
Cancer 

Phase 2 
NCT04681131 

TILs/ CAR-TILS HER2, Mesothelin, PSCA, MUC1, Lewis-Y, GPC3, AXL, EGFR, Claudin18.2/6, 
ROR1, GD1 or B7-H3 

Cell therapy Solid tumors Phase 1 
NCT04842812 

CAR-T cells PSCA, MUC1, TGFβ, HER2, Mesothelin, Lewis-Y, GPC3, AXL, EGFR, Claudin18.2 
or B7H3 

Cell therapy Solid tumors Phase 1 
NCT03198052 

CCT301-38 
(CAR-T) 

AXL  
Single agent  

Sarcomas Phase 1 
NCT05128786 

Renal Cell Carcinoma Phase 1/2 
NCT03393936  
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HER2+ disease beyond BC. Only a correlation between AXL expression 
and poor prognosis in ESCC patients was observed and, interestingly, co- 
expression of AXL and HER2 increased the hazard of recurrence and 
death [106], which is in line with previously suggested crosstalk be-
tween AXL and HER2 [51–52,97]. 

Collectively, clinical data point out AXL as a predictive biomarker of 
anti-HER2 therapy response. Thus, targeting it with specific agents 
could help in overcoming resistance. 

Future prospective of AXL inhibition 

Several novel drugs targeting AXL including small molecule in-
hibitors, antibodies, aptamers and others are currently under develop-
ment and under evaluation in different trials in solid tumors [112–113]. 
Among them, foretinib have been tested in a phase II trial for triple 
negative BC patients and showed a clinical benefit suggesting that may 
have clinical activity as a single, non-cytotoxic agent in this group of 
patients [114]. Bosutinib, an inhibitor of the BCR-ABL1 tyrosine kinase 
with activity against AXL, has been evaluated as single agent in a phase 
II trial and showed promising efficacy in prolonging time to progression. 
Bemcentinib and TP0903, which are in phase I/II trials for solid tumors, 
are possibly the most specific AXL inhibitors [114–116]. Recently, 
antibody-drug conjugates or chimeric antigen receptor (CAR) T cells 
against AXL are being under development in phase I clinical trials for 
solid tumors. 

Nevertheless, because of the recent identification of AXL upregula-
tion as a mechanism of anti-HER2 resistance, the simultaneous inhibi-
tion of HER2 and AXL should be further investigated in clinical trials. 
Currently, the only available result come from a phase I trial with 
metastatic HER2+ BC patient treated with foretinib and lapatinib. 
Although the objective of the trial was toxicity, a limited efficacy was 
observed probably due to the small cohort and the lack of molecular 
selection [117]. Future prospective studies will help to determine the 
potential value of AXL as a biomarker of treatment response and as a 
therapeutic target in HER2+ BC, but also as a promising anti-cancer 
approach in different types of cancer. 

Despite these results, translational findings provide a strong ratio-
nale for developing and testing AXL inhibitors for clinical use in AXL- 
upregulated HER2+ BC patients to either prevent or overcome resis-
tance to trastuzumab. In particular, these studies have shed the light on 
how HER2+ cells could ***acquire resistance to trastuzumab through 
AXL activation and demonstrated that simultaneous inhibition of AXL 
and HER2 is a potential therapeutic strategy in acquired trastuzumab- 
resistant HER2+ BC (Fig. 1) [51]. Therefore, independently of the 
AXL inhibition strategy, testing this approach together with trastuzumab 
in selected HER2+ BC patients would be of special interest. Neverthe-
less, future studies to better understand AXL activation in HER2+ dis-
ease will extend the knowledge of its contribution of acquisition to anti- 
HER2 therapy resistance. 

It is important to note that, beyond its role in cancer cells, AXL is 
expressed by immune cells such as natural killer, dendritic cells and 
macrophages, playing also a role in the microenvironment by promoting 
immunosuppression and resolution of inflammation [77,118]. More-
over, AXL has a direct role in modulation of the immune system and 
promotes reprogramming of the metastatic niche in favour to an initial 
EMT and a subsequent MET (mesenchymal to epithelial transition) at 
metastatic sites in BC. Besides, AXL promotes the release of cytokines 
that further contribute to decreasing the antitumor immune response 
[119]. In triple negative BC, AXL also cooperates to promote evasion of 
antitumor immunity in mice models, while TAM-family inhibitors 
induce anti-tumor immune response and act synergistically with anti- 
PD1 blockade [120–121]. 

Regarding HER2+ disease, clinical trials of combined immune 
checkpoint blockade plus trastuzumab showed modest benefit [122]. 
However, recent studies evaluated the role of AXL in the tumor micro-
environment in HER2+ BC in vivo models and demonstrated that tar-
geting AXL during immunotherapy enhanced anti–PD1 therapy response 
by promoting a proinflammatory tumor microenvironment [123]. 
Furthermore, simultaneous targeting of macrophages and HER2 repre-
sents a potential therapeutic strategy in HER2+ BC that have progressed 
to anti-HER2 agents. The combination of anti-CD47 macrophage 
checkpoint immunotherapy and trastuzumab overcomes resistance to 

Fig. 1. Proposed mechanism of AXL–driven resistance to HER2 blockade in HER2þ solid tumors. A) HER2 homodimerization activates PI3K/AKT and MAPK/ 
ERK signaling pathways leading to survival, invasion, migration, proliferation and EMT. B) Trastuzumab interferes HER2 signaling through different mechanisms 
such as inhibition of dimerization, receptor internalization, inhibition of PI3K/AKT pathway and antibody-dependent cellular cytotoxicity (not shown). C) AXL 
heterodimerization with HER2 activates PI3K/AKT and MAPK/ERK signaling pathways in a GAS6-independent manner bypassing HER2 blockade. D) Simultaneous 
pharmacological inhibition of AXL and HER2 in tumor cells would prevent PI3K/AKT and MAPK/ERK pathway activation. 
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anti-HER2 therapies [124]. Therefore, these results support the hy-
pothesis that AXL inhibition can overcome trastuzumab resistance not 
only in a tumor intrinsic manner but also by the modulation of the tumor 
microenvironment on different immune cell populations. However, 
further studies to elucidate this emerging role of AXL in the stroma are 
required. 

As a result, past and current studies open the door to a new area of 
investigation that need to clarify the role of AXL in anti-HER2 resistance, 
the combinatorial use of AXL inhibition plus HER2 blockade as a ther-
apeutic strategy, and the emerging role of AXL as a a potential strategy 
to improve response not only to HER2 targeted therapies but also to 
immunotherapy in HER2+ disease. 
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