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The endothelium is a biologically active interface with multiple functions, some

of them common throughout the vascular tree, and others that depend on

its anatomical location. Endothelial cells are continually exposed to cellular

and humoral factors, and to all those elements (biological, chemical, or

hemodynamic) that circulate in blood at a certain time. It can adapt to

different stimuli but this capability may be lost if the stimuli are strong

enough and/or persistent in time. If the endothelium loses its adaptability it

may become dysfunctional, becoming a potential real danger to the host.

Endothelial dysfunction is present in multiple clinical conditions, such as chronic

kidney disease, obesity, major depression, pregnancy-related complications,

septic syndromes, COVID-19, and thrombotic microangiopathies, among other

pathologies, but also in association with cell therapies, such as hematopoietic

stem cell transplantation and treatment with chimeric antigen receptor T cells.

In these diverse conditions, evidence suggests that the presence and severity

of endothelial dysfunction correlate with the severity of the associated disease.

More importantly, endothelial dysfunction has a strong diagnostic and prognostic

value for the development of critical complications that, although may differ

according to the underlying disease, have a vascular background in common. Our

multidisciplinary team of women has devoted many years to exploring the role of

the endothelium in association with the mentioned diseases and conditions. Our
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research group has characterized some of the mechanisms and also proposed

biomarkers of endothelial damage. A better knowledge would provide therapeutic

strategies either to prevent or to treat endothelial dysfunction.

KEYWORDS

endothelial damage, cardiovascular disease, chronic kidney disease, obesity, major
depression, sepsis, COVID-19, hematopoietic stem cell transplantation

1. Introduction

At the conference on “Women and Science” organized by the
European Parliament and Commission in April 1998 in Brussels,
both institutions agreed in a formal statement on the “need to
identify efforts to increase the presence of women in research in
Europe.” Actually, as the scientific career advances, the proportion
of women decreases (1). In our case, we are proud to constitute a
group of multidisciplinary scientific women who address the same
exciting topic: endothelial activation and damage in association
with different pathologies and as a consequence of certain therapies.

For years, the vascular endothelium was considered an inert
barrier, but, nowadays, it plays a fundamental role in human health
and disease. This biologically active interface is constituted by 1
to 6 × 1013 endothelial cells (ECs) in an adult human being and
covers a large surface area (between 4,000 and 7,000 m2) (2–4).
The endothelium has a huge range of functions (5), including the
maintenance of the vascular homeostatic balance, modulation of
the vascular tone, participation in the recruitment of immune cells,
and the generation of new blood vessels, among others.

All these functions are differentially regulated in space and
time, showing the heterogeneity of the ECs in different organs
in terms of morphology, structure, and barrier function (6, 7).
The pulmonary endothelium is localized at a crucial interface and
it is formed by an heterogenous cell monolayer that acts as a
selective barrier between blood, airways, and lung parenchyma (8).
Blood vessel endothelium crosses every tissue, exhibiting unique
structural and functional properties in each vascular bed. As a
result of organ-specific requirements, the vascular system varies
in its organization and specifically in cell-to-cell junctions, which
are crucial in the integrity of blood vessels, depending on the
anatomical site. While tight junctions are well organized in arteries
and brain microvessels, they are more unstructured in veins,
capillaries, and organs where a higher rate of exchange is needed
(9). Due to their location, the endothelium is directly exposed
to all physiological and pathological stimuli (10, 11). These cells
are able to adapt to a wide range of environmental conditions,
however, noxious stimulus induce local or systemic endothelial
activation (12).

Endothelial cell activation and damage imply a range of
phenotypic changes in the endothelium and differ according to
many physiological variables. If the activation stimuli are persistent
in time and/or intense enough, the endothelium may become
dysfunctional causing abnormal functional and structural changes,
being the main consequence of the loss of vascular integrity with
the detachment of ECs exposing a more thrombogenic extracellular
matrix (ECM) (13). The relevance of endotheliopathy in the

progression of several diseases has been increasingly accepted in
the scientific community. The present review aims to summarize
the complexity of this process in a range of pathological situations
that share endothelial damage (ED) as a common feature.

Historically, our team initiated the research on endothelial
activation and damage in the context of end-stage chronic
kidney disease (CKD). Further collaboration with other teams
in the Hospital Clinic and Institut de Recerca August Pi Sunyer
helped us to expand the investigation into other pathologies
with associated cardiovascular risk, such as obesity and major
depression. A joint venture with obstetricians followed to explore
the role of the endothelium in pregnancy-related pathologies,
such as preeclampsia (PE), in which the dysregulation of the
complement system plays a crucial role. Moreover, a tight
partnership with the intensive care unit (ICU) prompted us to
explore the ED in septic syndromes and how the severity of the
disease could have a gradual impact on the endothelium. Then, with
the global outbreak of the coronavirus SARS-CoV-2 that caused
the COVID-19 pandemic starting in 2020, our efforts were focused
on characterizing the associated endotheliopathy. Furthermore,
in collaboration with the hematopoietic stem cell transplantation
(HCT) unit at the Hospital Clínic, we were one of the first groups
to demonstrate the role of the ED as a pathological substrate for
the complications appearing in early post-transplantation. We are
now progressing in the research of the role of the endothelium
in the development of severe complications that may compromise
the promising curative potential of new therapies, such as the use
of chimeric antigen receptor T (CAR-T) cells. The investigation
performed during these years to explore the mechanisms involved
has already provided us with diagnostic and prognostic biomarkers
and potential therapeutic targets. Future research should still
generate additional tools focused on protecting the endothelium
(Figures 1, 2).

2. Endothelial activation and
damage in end-stage chronic kidney
disease

Chronic kidney disease is a major public health issue with an
increasing prevalence. It is associated with poorer quality of life,
reduced life expectancy, and, therefore, high rates of morbidity
and mortality, and increased hospitalization costs (14, 15). An
increment in cardiovascular diseases has been highlighted as the
main cause of the increased morbidity and mortality in this
population; however, it cannot be fully explained by the presence
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FIGURE 1

Noxa, mechanisms, and biomarkers involved in endothelial dysfunction, and its potential treatment. Different factors alter the endothelial cells
phenotype causing an imbalance that can be identified by the expression of different biomarkers. At right, the principal developed treatments
targeting the endothelium are exposed. Created with BioRender (available from https://www.biorender.com).

FIGURE 2

Endothelial damage mechanisms. Exposure of the endothelium to
different noxa leads to a convergence among inflammation,
immunity, and endothelial activation. As depicted, several soluble,
cellular, and signaling mediators are involved in this orchestrated
response.

of traditional cardiovascular risk factors. Endothelial activation
and damage in CKD patients have been described as related to
sustained toxic, oxidative stress, and inflammatory conditions.
Endothelial dysfunction has been proposed as a pathophysiological
substrate for accelerated atherothrombosis, hemostasis alterations,
inflammatory activity, and impaired immune response in these
patients (16, 17).

Endothelial activation in CKD may be attributed to different
factors: the pulsatile blood flow and disturbed shear stress (18),
the presence of uremic toxins, such as indoxyl sulfate, and the
production and release of oxidative stress and inflammation related
products to the circulation (19). All these elements constitute
the uremic environment, and could be classified into three major

categories of mediators: (i) soluble, (ii) cellular, and (iii) signal
transduction mediators (19).

Innate immune system alterations have been also reported in
association with end-stage renal disease, aggravated by dialysis
procedures. In addition, CKD is related to gut dysbiosis,
with a significant loss of the gut microbiota diversity due to
the uremic condition, dietary restrictions, administered drugs
(antibiotics, phosphate binders, and oral iron supplementation),
and hypervolemia, leading to intestinal wall congestion and edema
(20, 21). In addition to the impaired renal function, there is
also a reduced function of the intestinal barrier with increased
permeability to different size molecules. All together enrich the
toxic milieu in uremia

There is in vivo and in vitro evidence demonstrates endothelial
activation and damage in association with CKD, causing impaired
endothelium-dependent vasodilatation and increased plasma levels
of circulating cell adhesion molecules, such as intercellular
adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule
1 (VCAM-1), and E-selectin (22–24). Also, other ED-derived
proteins, such as monocyte chemoattractant protein-1 (MCP-
1) (25), angiopoietin-2 (Ang-2) (26), tissue factor (TF) (27–29),
and total von Willebrand factor (VWF) (30, 31) are elevated in
circulation. Endothelial activation is considered an early trigger
for atherosclerosis and, therefore, in the setting of CKD may
explain the increased cardiovascular risk in this population, beyond
traditional cardiovascular risk factors (32).

Our research group has carefully studied the ED in uremia
by exposing ECs to culture media supplemented with sera from
patients on renal replacement therapy. ECs exhibited alterations
in their morphology, with accelerated proliferation (33). They also
showed signs of inflammation, expressing VCAM-1, ICAM-1 on
their surface, with activation of the intracellular protein p38MAPK
(34). The ECM produced by these ECs was characterized by a less
intricate network of fibrils (27) and an increased thrombogenicity,
mainly due to a higher expression of TF (27), VWF (34), and
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thrombomodulin (TM). No changes in ADAMTS-13 activity, the
VWF metalloprotease, were detected in patients’ plasma (35).

The analysis of the proteome of ECs grown under uremic
conditions versus control (36) provided information on the
differentially expressed proteins. Also, antioxidant enzymes,
such as glutathione peroxidase, superoxide dismutase, and
peroxiredoxin, were detected to be increased, suggesting an
adaptive response to the oxidative stress induced by uremic media.
Most of the proteins found to be unregulated in the uremic ECs
are related to nuclear factor kappa B (NF-κB) (35). This protein
is key in mediating inflammatory and immunological responses
and oxidative stress. In addition, elements participating in innate
immunity, such as Toll-like receptor 4 and the inflammasome
nucleotide-binding oligomerization domain-like receptor prying
domain-containing-3 (NLRP3, also known as NALP3) were also
upregulated in ECs exposed to the uremic milieu (37). ED can also
develop into apoptotic changes (38, 39).

Therefore, endothelial activation is associated with
inflammation, oxidative stress, and alterations of immune
mechanisms in CKD patients. Therapies focused on protecting
the endothelium at different levels could diminish the accelerated
cardiovascular risk in this population.

3. The endothelium in obesity

Obesity is a chronic systemic metainflammation. Is
associated with oxidative stress, endothelial dysfunction, and
vasculopathy, and, therefore, constitutes an important risk factor
for atherothrombotic cardiovascular morbidity and mortality (40,
41). In addition, obesity is related to dyslipidemia, hypertension,
insulin resistance, and diabetes mellitus, which are conditions that
also have a deleterious impact on the endothelium.

The increase in the number and size of adipocytes appears
to be the initial event of adipose tissue dysfunction, resulting
in hypoxia and defects in the lipids accumulation, together with
infiltration of inflammatory macrophages, the switch of adipose
tissue-resident macrophages to a proinflammatory phenotype, and
conversion of preadipocytes to macrophages. Activation of non-
adipocyte stromal cells and secretion of factors from the adipose
tissue lead to an increased presence of chemokines and cytokines
in plasma, which may participate in the development of chronic
inflammation, angiogenesis, and atherothrombotic changes (42–
46). There is evidence of the secretion of cytoadipokines from
different adipose tissue depots (42, 47–49).

In studies performed by our group, cultured ECs were exposed
to the secretome of adipose tissue from visceral and subcutaneous
locations of obese and non-obese individuals (50). The cytokines
secreted by the adipose tissue of obese subjects caused an adverse
effect on the cultured ECs (50), characterized by increased
proliferation, morphology alteration, higher expression of VCAM-
1, ICAM-1, and VWF, and production of a more thrombogenic
ECM. The visceral secretomes induced the strongest expression
of these markers, which occurred through NF-κB activation in
ECs, together with an increased presence of proinflammatory
cytokines (interleukin-6, IL-6), and neutrophil and monocyte
chemo-attractants (MCP-1, MCP-2, MIP-1β, CXCL1, and CCL14),
in the secretomes from obese adipose tissue (42–47). All these

alterations could be involved in vascular and systemic aging (51,
52). Our findings are in agreement with observations by several
groups of a better cardiovascular risk profile for those obese
individuals with low levels of visceral adipose tissue, known as
“healthy obesity.”

We believe that excessive fat accumulation causes activation
of the stromal cell fraction, altering the adipose tissue secretion
pattern. The synergic proinflammatory and prothrombotic
profiles of the obese secretome are responsible for the systemic
macrovascular endothelial activation observed in obesity.

4. Major depression and
cardiovascular risk: role of the
endothelium

Major depression and cardiovascular disease are two comorbid
conditions highly prevalent that constitute an important
health concern in developed countries Signs of ED have been
demonstrated in major depression (53, 54). In this regard,
inflammation and ED are mechanisms potentially connecting
depression to cardiovascular disease (55–57).

Our group was able to demonstrate significant elevation in
circulation of different biomarkers of ED, such as circulating
endothelial cell (CEC), VWF, and soluble VCAM-1, in patients
with the diagnose of major depression (58). Moreover, treatment
with the selective serotonin reuptake inhibitor (SSRI) escitalopram
exhibited a protective role since biomarker levels decreased
substantially in a gradual manner. In addition, when cultured ECs
were exposed to the sera from these patients, these findings were
reproducible. ECs exhibited signs of inflammation, oxidative stress,
and increased thrombogenicity of the ECM generated, which were
inhibited significantly by the presence of escitalopram in vitro (58).

There is strong evidence on the role of serotonin in the
cardiovascular system. Platelets, the main carriers of serotonin
(59), play a key role in the development of cardiovascular events.
In experimental studies performed by our group, exogenous
addition of serotonin to blood samples potentiated platelet
functions, increasing their procoagulant behavior, and enhancing
thrombus formation on damaged vascular surfaces, effects that
were inhibited by the presence of SSRIs (60, 61). In addition,
in experiments performed with blood samples from patients
with major depression, a pronounced procoagulant profile, with
increased platelet thrombus and fibrin formation, was observed
at the moment of diagnosis and normalized after 24 weeks of
treatment with escitalopram (62). Altogether, our results suggest
that both platelets and endothelium are two key hemostatic
components, whose responses may be altered and may be acting
synergistically in major depression (63).

5. Endothelial damage in
pregnancy-associated
complications

Preeclampsia is a life-threatening pregnancy-associated
disorder that affects 2–8% of pregnancies (64). It is defined as
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new-onset hypertension with other signs of endothelial systemic
damage, accompanied by signs of end-organ damage, such as
proteinuria, acute kidney failure, liver dysfunction, hemolysis or
thrombocytopenia, occurring after 20 weeks of gestation (65).
PE is a heterogenous disorder, with a large variability in its
associated risk factors and clinical presentation (66). The exact
pathophysiology remains unclear despite exhaustive investigation
(67). However, the most accepted hypothesis is known as the
two-stage model claiming that complications originate during
abnormal placentation at the beginning of pregnancy, followed
by generalized inflammation and progressive maternal ED (68).
Resulting placental insufficiency and overt clinical signs of PE do
not manifest usually until the last pregnancy trimester (69) with a
possibly rapid and unexpected progression from mild to severe PE
(70). Unfortunately, there is no effective treatment and delivery if
the only available intervention (71).

Endothelial dysfunction has been accepted as one of the
key mechanisms in PE development (72). In normal pregnancy,
the uterine vasculature undergoes significant adaptations to
ensure proper blood supply to the developing fetus (73). These
adaptations mainly involve increased vasodilation and decreased
vasoconstriction, allowing for higher blood flow to the uterus
(73). However, these adaptations are disrupted in PE, leading to
vasoconstriction and inadequate blood supply to the placenta and
fetus (74).

The dysfunctional endothelium promotes the production and
release of pro-inflammatory cytokines (75), such as tumor necrosis
factor-alpha (TNF-α), interleukin 6 and 1b (IL-6 and IL-1b), and
adhesion molecules (VCAM-1 and ICAM-1) (76). The cytokines
activate immune cells, causing excessive inflammatory responses
(77), and the adhesion molecules promote the breakdown of EC-
cell contacts (78). Prolonged ECs activation results in a cycle of
inflammation and oxidative stress. This inflammatory environment
contributes to the extensive ED and organ dysfunction seen
in PE, including kidney, liver, and brain involvement (79).
Furthermore, this ED is associated with a dysregulation of the
complement system (80). The maternal innate immune system
is crucial throughout pregnancy, providing protection against
pathogens while inducing tolerance to semi-allogeneic fetal and
placental development (81). Dysregulation of the maternal immune
system during PE leads to overstimulation of the complement
system as a compensatory mechanism (82), with recruitment of
phagocytic cells and neutrophils to the site of stimulation (83). This
phenomenon manifests with elevated plasma C5b9 in PE mothers
and C5b9 deposits on ECs (76, 83).

In addition, there is imbalance in the coagulation system
(80). Damaged endothelium does not produce sufficient
anticoagulant factors, such as tissue factor pathway inhibitor
(TFPI), and TM (84), in association with increased VWF (85).
This prothrombotic state increases the risk of thrombosis and
microvascular fibrin deposition, further impairing placental blood
flow (86) and contributing to the development of maternal organ
dysfunction (87).

Angiogenic factors have emerged as the most specific
biomarkers of PE ever described and have recently been
incorporated as essential components in the prediction, diagnosis
and prognosis of PE (88). A proper angiogenic balance during
pregnancy is critical for adequate development of fetus and placenta
together with appropriate maternal cardiovascular adaptation to

pregnancy (89). Indeed, angiogenic factors are essential not only for
new vessel formation but also to keep the maternal endothelium
healthy by promoting vasorelaxation, adequate permeability and
cell survival (90). In PE, placental inflammation and increased
oxidative stress cause release of larger amounts of sFlt1 over
PIGF (91), with an antiangiogenic profile reflecting placental
malfunctioning and maternal endothelial dysfunction (92).

In conclusion, endothelial dysfunction is key in the
pathogenesis of PE. Impaired NO production, increased
vasoconstriction, inflammation, innate immunity dysregulation,
and coagulation and angiogenic imbalance contribute to the
hypertension, poor placental perfusion, and multiple organ
damage occurring in this condition. Other pathways, like altered
lipid metabolism (93), mitochondrial dysfunction (94), and
maternal response to circulating trophoblast-derived extracellular
vesicles (95) may be also involved. Furthermore, endothelial
dysfunction seems to act as a cardiometabolic stressor that may
culminate in long-term cardiovascular complications in women
who developed PE during pregnancy (96). Further elucidation of
the molecular mechanisms involved is critical for the development
of potential therapeutic strategies aim at preventing or reducing
the adverse consequences associated with this syndrome.

6. Endothelial alterations in septic
syndromes

Sepsis is a life-threatening organ dysfunction caused by a
dysregulated host response to infection (97). The endothelium
orchestrates a beneficial local host response to infection by
regulating the vasomotor tone, leukocyte trafficking, vascular
permeability and hemostasis. However, when the response
is overproduced, a systemic and untargeted dysregulated
inflammatory response leads to endothelial hyperactivation,
resulting in tissue hypoperfusion and subsequent multi-organ
failure and death. In the lung, this translates as a localized injury
to the alveolar-capillary membrane, fostering the onset of acute
respiratory distress syndrome (ARDS). ARDS is characterized by
an acute onset of respiratory failure typically requiring mechanical
ventilation and radiographic bilateral pulmonary opacities of
non-cardiogenic origin. Direct ARDS occurs after a direct insult to
the lung tissue, leading to an increase in the capillary hydrostatic
pressure and interstitial and alveolar flooding, impaired gas
exchange, and decreased lung compliance. Indirect ARDS is
triggered by a systemic insult and the release of inflammatory
mediators that eventually damage the pulmonary endothelium. Its
most common cause is sepsis (98).

Activation of the endothelium in sepsis occurs directly
by recognition of pathogen-associated molecular patterns
(PAMPs) through patron recognition receptors, such as Toll-
like receptors (TLRs) expressed in ECs, and, indirectly, by
released proinflammatory cytokines, such as TNF-α, IL-6, and
IL-1, complement components or neutrophil extracellular traps
(NETs) (99). Damage-associated molecular patterns (DAMPs) can
also be recognized by ECs, contributing to the amplification
of the inflammatory cascade. This endothelial activation
leads to a proadhesive, proinflammatory, prothrombotic, and
proapoptotic phenotype.
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The endothelial barrier integrity is altered during sepsis due to
the action of inflammatory mechanisms, such as metalloproteinases
and heparanase, causing glycocalyx deconstruction and disruption
of ECs junctions, and increasing endothelial permeability, albumin
extravasation, and capillary leak (100). Glycocalyx degradation
may be potentially compounded by fluid resuscitation practices
(101). In addition, there is dysregulation of the NO pathway
with a decreased activity of the endothelial nitric oxide synthase
(eNOS) and an increased NO production by inducible nitric
oxide synthase (iNOS), altering the vascular vasomotor tone
toward vasodilatation and producing reactive nitrogen species
(102). Moreover, infection triggers ECs to produce ROS, leading
to EC apoptosis and production of proinflammatory cytokines,
acting not only as a victim but also as an active participant and
amplifier of the inflammation. This proinflammatory environment
increases expression of adhesion molecules (VCAM-1, ICAM-
1, and selectins) on the ECs surface, promoting subsequent
leukocyte rolling, adhesion and transmigration, contributing to
inflammation and progression of endothelial dysfunction (103).
The activated endothelium also interacts with platelets, which
are activated directly by PAMPs or indirectly by innate immune
cells, promoting a prothrombotic phenotype in which an increased
production of VWF seems to play a major role. ADAMTS-13
activity has been found to be decreased in patients with sepsis,
which may increase platelet-vessel wall interaction by an increased
presence of ultra-large VWF multimers (104, 105). Furthermore,
activated platelets also contribute to inflammation by releasing
proinflammatory proteins that help establish a “cross-talk” with the
endothelium (106). Indeed, thrombocytopenia is frequently seen in
sepsis, probably due to excessive peripheral consumption, and it is
associated with increased disease severity and mortality (107).

Upon sepsis-induced endothelial activation, there is also
an increased expression of TF with subsequent extrinsic
coagulation pathway activation. This procoagulant state is
favored by a dysregulation of the endothelial anticoagulant and
fibrinolytic properties, with decreased protein C activation, TM
and TFPI and increased PAI-1 release. This procoagulant state
favors thrombosis in the microvasculature, potentially causing
disseminated intravascular coagulation (DIC), which is associated
with poor prognosis in patients with sepsis (108, 109).

Neutrophil extracellular traps have also an important role in
sepsis-induced endothelial dysfunction, causing the expression of
adhesion molecules, participating in the prothrombotic state by
increasing platelet adhesion on the ECs surface, and contributing
to thrombin-mediated fibrin generation (110, 111).

This ED significantly alters the microcirculation, with
decreased vascular flow and subsequent organ hypoperfusion, with
mitochondrial dysfunction leading to organ failure and death.
Experimental and clinical studies have demonstrated a correlation
between endothelial dysfunction and sepsis severity, highlighting
the crucial role of the endothelium in the pathophysiology of sepsis-
induced organ dysfunction, and arising as an attractive therapeutic
target (112–114). Thus, in the last decades, experimental and
clinical studies have strived to find effective treatments targeting
sepsis-induced endothelial dysfunction (111), however, none of
them have shown survival improvement in large randomized
clinical trials. Our group has demonstrated the utility of an in vitro
model of ED in sepsis, able to show a gradual effect depending on

the severity of the disease, which may constitute a useful tool to
explore different treatments.

7. The endotheliopathy developed in
COVID-19

The COVID-19 pandemic, caused by the emergence and
worldwide spread of the SARS-CoV-2 virus, exerted profound and
far-reaching impacts on global healthcare and the economy. It is
now widely acknowledged that the endothelium plays a pivotal
role in its pathogenesis and manifestations (115, 116). Intracellular
penetration of SARS-CoV-2 into human cells occurs via union of
its spike protein to the angiotensin converting enzyme 2 (ACE2)
(117). While ACE2 receptors are ubiquitous, they are particularly
overexpressed on the alveoli and the ECs (118), leading to an
immediate interaction with the endothelium from the very initial
stage of infection. As viral replication progresses, more severe
symptoms may appear accompanied by a hyperinflammatory
activation of host immunity. Key features at this stage are elevated
acute phase reactants, such as C-reactive protein, D-dimer, and
ferritin, as well as increased circulating cytokine levels. As discussed
below, the endothelium is a primary contributor in sustaining and
intensifying this maladaptive immune response (119, 120).

Critically ill COVID-19 patients develop pulmonary infiltrates
leading to acute respiratory distress syndrome with an eventual
need for respiratory support. The development of ARDS in
COVID-19 involves a complex interplay of immune responses
and inflammatory processes. Both direct (lung tissue-specific)
and indirect (systemically triggered) mechanisms are involved
in the pathogenesis of ARDS, but there is no evidence of
a specific phenotype related to COVID-19 (121). The clinical
diagnosis of ARDS is based on the Berlin definition (122) of
sudden refractory hypoxemia and bilateral shadows in the lung
fields. The endothelium plays a pivotal role in the spreading of
inflammation and damage to the lung and the alveolar-capillary
membrane, which culminates in fluid accumulation, compromised
gas exchange, and pulmonary vasculature hypertension. The
initial virus mediated pneumocyte injury triggers local cytokine
production and, via paracrine cell communication, the alveolar
capillary ECs sense the signaling distress (123). This activates
the endothelium, which responds with the induction of a
proinflammatory cell recruitment state, mediated by the expression
of cell adhesion molecules (124). As a result, oxidative stress,
endotheliitis and EC dysfunction ensue. Multiple mechanisms
are involved in the switching of the endothelium into a
hypercoagulative state, such as TF coagulation activation, platelet
pro-aggregation due to increased release of VWF, NET-mediated
thrombin generation and fibrinolytic shutdown. This is supported
by the fact that COVID-19 patients present with increased
circulating endothelial stress products (proinflammatory cytokine
levels, VWF, soluble VCAM-1 and heparan sulfate) in correlation
with disease severity (105). Also, biomarkers of complement
activation, fibrinolysis inhibition, proangiogenic factors, and NET
formation have shown to be significantly higher in the serum of
COVID-19 patients (125–127). Several postmortem histological
lung studies (128, 129) have widely evidenced the aforementioned
mechanisms involved in the cascade of endothelial modifications,
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showing increased levels of inflammatory cytokines, such as IL-6
and TNF-α (130), and upregulation of ICAM-1 and VWF (131).

Other organs are often affected in the spectrum of COVID-
19 manifestations, notably the cardiovascular system (132, 133).
Thrombosis, coronary infarction and stroke are more frequently
observed in the setting of critical illness (134). Further evidence
pointing toward endotheliopathy as a predictor of COVID-19
morbidity and mortality emerges from the strong association
between pre-existing cardiovascular risk factors (i.e., advanced age,
hypertension, and obesity) and the likelihood of disease progression
(135). In the brain, neurologic symptoms such as anosmia,
ageusia or even encephalopathy were widely reported during the
pandemics. In the skin, cutaneous lesions have also demonstrated
endothelial activation. Histological studies evidenced complement-
mediated vascular injury (136), particularly in severe COVID-19.

Current strategies primarily focus on high-efficacy antivirals
and immunosuppressants. The combination of therapies targeting
inflammation, coagulopathy, and endotheliopathy is a promising
strategy to address disease complications. Many publications have
explored other approaches to reduce ED, such as defibrotide (137),
ACE inhibitors and ACE2 receptor blockers, statins, heparins, and
direct oral anticoagulants. These therapies appear to be promising
due to their pleiotropic mechanisms of action and their ability to
regulate the endothelium (138).

Lastly, evidence of persistent endothelial dysfunction has been
found in the subset of patients who develop long-term sequelae
after acute infection. Elevated inflammatory markers, cytokine
levels, and cytotoxic T cells subsist in convalescent patients (139),
and vascular barrier injury is considered to be responsible for the
disruption of normal organ physiology (140), leading to severely
impairing systemic symptoms. While days of high infection
incidence and overwhelming ICU admissions may be behind us,
the implications of endothelial dysregulation remain relevant in
the current era of persisting COVID-19. Therefore, endothelial
protection remains a valid target for preventing both acute critical
illness and long-term COVID-19 complications.

Our group of researchers has contributed to improving the
knowledge of the endotheliopathy associated with COVID-19. We
have provided evidence on biomarkers that may be useful for
the stratification of disease severity and also to guide specific
therapeutic strategies to prevent endotheliopathy progression.
Some of these biomarkers help to differentiate COVID-19
endotheliopathy from the one that occurs in septic syndromes,
in which ED is also a pathological substrate (120). Similarly,
we have demonstrated that preeclampsia and severe COVID-
19, which may be clinically similar, exhibit distinctive biomarker
profiles related to ED, coagulopathy, and angiogenic imbalance.
Therefore, differential diagnosis of these entities could be done
based on these results.

8. The endothelium as a central
player in thrombotic
microangiopathies

Thrombotic microangiopathies (TMAs) are a group of
disorders characterized by microangiopathic hemolytic anemia
and ischemic organ dysfunction, resulting in a wide spectrum

of symptoms. The most commonly affected organs in TMAs are
the brain, kidneys, and gastrointestinal system (141). Although
uncommon, these are life-threatening conditions that require
urgent management (142). ED is the common underlying
mechanism among different forms of TMAs, leading to the
microvasculature thrombosis observed histologically (143).

Classically, primary TMAs have been classified according to the
identification of the following pathogenic mechanisms: thrombotic
thrombocytopenic purpura (TTP), mediated by a deficiency in
the activity of ADAMTS-13 enzyme; typical hemolytic uremic
syndrome, caused by a Shiga-toxin–producing Escherichia coli
(STEC-HUS); and primary atypical HUS (aHUS), due to the
dysregulation of the alternative complement pathway (ACP) (142).

Thrombotic thrombocytopenic purpura is characterized by
ADAMTS-13 deficiency, resulting in a deficient excision of the
ultra-large VWF multimers presented in the VWF molecule
on ECs, causing platelet adhesion and aggregation with rapid
generation of disseminated microthrombi. However, evidence
generated from clinical, in vitro, and in vivo studies suggests that
ADAMTS-13 deficiency may be a necessary but not sufficient
condition to induce TTP. Weibel–Palade bodies (WPBs) are
endothelial-specific organelles that contain molecules involved in
the regulatory functions of the endothelium, such as ultra-large
VWF multimers (proaggregating), P-selectin (proinflammatory)
or Endothelin-1 (vasoconstricting). The “second hit” model
suggests that in TTP, besides ADAMTS-13 deficiency, endogenous
(antibodies or cytokines) and/or exogenous (virus or drugs) factors
induce endothelial activation leading to an uncontrolled WPBs
degranulation and, finally, to endothelial dysfunction (144).

In STEC-HUS, Shiga-toxin (Stx) is thought to be the key
element in the pathogenesis of ED through several mechanisms. Stx
induces the production of adhesive molecules (E-selectin, ICAM-
1, and VCAM-1) and chemokines (MCP-1, IL-8, and fractalkine),
leading to the adhesion of leukocytes to cultured human ECs.
Moreover, Stx induces rapid release of ultra-large VWF multimers
inhibiting its cleavage by ADAMTS-13, therefore enhancing
platelet adhesion and clot formation in the microvasculature. In
addition, Stx modifies gene expression, with mRNA production,
and release of chemokines and cytokines that may aggravate ED
(145, 146).

As mentioned before, dysregulation of the ACP occurs as the
primary event in aHUS, prompting the activation of the terminal
complement phase and the deposit of the lytic complex C5b-9
on the EC surface (146). Eculizumab, a humanized monoclonal
antibody against C5, and ravulizumab, a long-acting C5 inhibitor,
are first-line treatments for aHUS (147). In this regard, it has
been observed that the measurement of C5b-9 deposits on ECs
constitutes a reliable tool to explore the complement system
dysregulation in aHUS, as well as to monitor the response efficiency
to eculizumab treatment in these patients (83).

Although aHUS is the prototype of complement-mediated
TMAs, the contribution of dysregulated complement activation to
ED has been widely demonstrated in other TMA forms. Increased
levels of soluble C5b-9 (sC5b-9) have been detected in patients
with acute TTP, probably due to the activation of the classical
complement pathway by immunocomplexes of ADAMTS-13 and
anti-ADAMTS-13 antibodies (146). In STEC-HUS, the ED is
caused by different mechanisms driven by Stx, including ACP
activation, resulting in increased levels of C3a, Bb, and sC5b-9
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during the active phase of the disease. In this regard, eculizumab has
been employed for the treatment of children and adults with STEC-
HUS, with no systematic assessment of its efficacy or safety (145).

Secondary forms of TMAs may occur in multiple clinical
settings: autoimmune diseases, cancer, pregnancy, solid organ and
HCT, certain medications, and infections (141). The underlying
pathogenic mechanism has been attributed to a direct ED
conferring a more procoagulant and proinflammatory phenotype
in ECs, inducing a “second-hit” in which complement activation
and its perpetuation occurs, aggravating TMA (148). Among them,
TMAs after kidney transplantation should be highlighted due to
the well-known involvement of ED in its pathogenesis, which
can occur due to the combination of multiple triggers: ischemia-
reperfusion injury, immunosuppressive drugs (calcineurin and
m-TOR inhibitors), viral infections (mainly cytomegalovirus), and
acute or chronic humoral rejection (148).

Thrombotic microangiopathies differential diagnosis is a major
challenge due to their variable clinical presentation and the absence
of pathognomonic histological findings or specific biomarkers
(141). Moreover, differentiation between primary or secondary
forms may be difficult in clinical practice because triggering factors,
such as infections or drugs, are often identified in patients with
primary aHUS (142). Therefore, there is an urgent need for new
diagnostic tools, based on functional and genetic studies, to assess
the involvement of complement dysregulation in the pathogenesis
of the different forms of TMAs (146). In this regard, the use
of complement-targeted therapies in patients with secondary
refractory TMAs to traditional therapy could be useful. The
duration of the treatment should be tailored based on the presence
of complement abnormalities and response to therapy (149).

9. Hematopoietic stem cell
transplantation and endothelial
damage

Hematopoietic stem cell transplantation is the best-known
form of cellular therapy, widely used for the treatment of malignant
and non-malignant hematologic, metabolic, or autoimmune
disorders (150). During the last decades, HCT has experienced
significant improvements in terms of donor selection, in allogeneic
HCT (allo-HCT), and treatment refinement in both, allo- and
autologous HCT (auto-HCT) (151, 152), allowing the expansion of
HCT to older adults or patients with comorbidities. More recently,
the scope of cellular therapy has expanded through the emergence
of immunotherapies based on the cytotoxic effect of autologous
cells, as CAR-T cells and tumor-infiltrating lymphocytes (TIL), for
refractory/relapsed hematological malignancies and solid tumors,
respectively. Despite the curative potential of cell based therapies,
there are associated complications that may compromise the
success of the treatment. In these complications, the endothelium
seems to play a main role.

Sinusoidal obstruction syndrome (SOS), formerly known as
veno-occlusive disease, was the first post-HCT complication where
endotheliopathy was proven as its pathophysiological substrate
and targeted for its treatment (153, 154). Consecutively, growing
evidence points to endothelial dysfunction underlying other highly

incident HCT-related complications, such as acute graft-versus-
host disease (aGVHD) (155, 156), and the main CAR-T cell-related
toxicities (157, 158).

Endotheliopathy has not only shown to be involved in the
pathogenesis of the complications of cellular therapies but also to
be the result of different harms toward ECs before and during
the treatment. Mainly due to drugs used during the induction or
consolidation chemotherapeutic schemes (159, 160) or the ones
used for the conditioning treatment before and after the infusion
of the autologous or allogeneic cells (161–165). Consequently, it
is essential to understand the involvement of the endothelium and
other associated pathways in the pathogenesis of cellular therapies-
complications in order to better-stratify risk patients and develop
targeted treatments and preventive strategies.

The HCT treatment itself induces endothelial dysregulation,
leading to a hypercoagulable state. Studies demonstrate that while
procoagulant molecules increase, levels of the main natural-
anticoagulant molecules decrease in the context of HCT (166,
167). Furthermore, the innate and adaptative immune reactions,
the PAMPs resulting from infections occurring during the HCT
process, together with the toxic agents included in the preparative
regimens, have been identified as noxa toward the endothelium.

Endothelial dysfunction after HCT has multiple origins and
varies according to the time after HCT and anatomical location.
In most cases, it implies increased leukocyte adhesion and
transmigration, molecule extravasations, platelet activation, and
cytokine liberation (168). The ED occurring after HCT and
derived from the mentioned stressors would consist of the
following: (1) increased synthesis of Ang-2, which is involved
in endothelial inflammation increasing its permeability (169),
(2) overexpression of adhesion molecules (such as ICAM-1,
VCAM-1, E-selectin, and P-selectin), responsible for leukocyte
recruitment and transmigration through the endothelium (170), (3)
dysregulation of the vascular tone, since the endothelial synthesis
of NO and prostacyclin is reduced, and (4) elevation of angiogenic
molecules, such as vascular endothelial growth factor A (VEGFA),
fibroblast growth factor 2 (FGF2), and Ang-2, molecules that have
their respective receptors (VEGFR1 and VEGFR2, FGR1, and TIE-
2) (171).

The complex link existing between endothelial activation and
progression to endothelial dysfunction occurring during the HCT
process has been investigated in different in vitro and pre-
clinical studies. Results obtained indicate that ECs are activated
and damaged by different factors, including drugs used in the
conditioning regimen, radiotherapy, cytokines released by the
injured tissues, endogenous microbial products that translocated
through damaged mucosal barriers, immunosuppressants in allo-
HCT, the engraftment process itself, and allo-reactivity (163, 168,
172, 173). Studies by our group and others, using an in vitro
model of ED, allowed the investigation of the specific responses of
the endothelium to controlled and well-known stimuli at different
stages of the HCT, and also to molecules associated with HCT, such
as lipopolysaccharide or TNF-α (174).

In the HCT setting, the ED occurring since the start of the
conditioning regimen and during the post-transplant process is
involved in a group of early and potentially life-threatening post-
HCT endothelial complications (175, 176). These events generally
appear during the first 100 days after the stem cell infusion,
their diagnosis is mainly based on medical signs and symptoms,
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and all of them seem to begin at the capillary level and result
from an endothelial dysfunction occasioned by the administration
of chemotherapy, calcineurin inhibitors, G-CSF, infections, and
allogeneic-derived reactivity (12, 168, 177).

Historically, SOS was the first complication in which the role
of ED was proposed. Nevertheless, there is increasing evidence
of the implication of the endothelium in the pathophysiology
of other post-HCT vascular endothelial complications, such
as engraftment syndrome, capillary leak syndrome, transplant-
associated thrombotic microangiopathy (TA-TMA), GVHD, and
the vascular idiopathic pneumonia syndrome.

Several groups, in which ours is included, have investigated
the presence of circulating biomarkers for diagnosis and
prognostication of post-HCT vascular endothelial complications
(177–180). In general, the majority of the studies show increased
levels of ED biomarkers, especially in patients with HCT
complications (179, 181–183). The complexity of the diagnosis
and clinical management required to treat post-HCT vascular
endothelial complications enhances the need to increase the
knowledge of predictors and clinical manifestations for the
early detection of these syndromes to decrease mortality after
HCT (168). Furthermore, the increasing knowledge of the
physiopathology of these complications opens up potential
pharmacologic interventions to prevent and treat ED and,
therefore, to improve the outcome of patients receiving HCT.

10. Endotheliopathy in CAR-T cell
immunotherapy

Treatment with CAR-T cells has risen as a viable and safe
procedure for the treatment of relapsed/refractory hematological
malignancies. CAR-T cell technology is based on the cytotoxic
effect of T lymphocytes of the patient modified in vitro to
target antigens present in tumoral cells. This immunotherapy has
proven to be effective for the treatment of acute lymphoblastic
leukemia and lymphomas expressing CD19 antigen and for
myeloma patients when targeting B-cell maturation antigen. To
date, only a few therapeutic schemes and constructs have been
approved by Food and Drug Administration and European
Medicines Agency (184, 185) whereas many others are still
being under assessment in clinical assays (186). Despite the
promising remission rates of these novel therapies, cytokine
release syndrome (CRS) and immune effector cell-associated
neurotoxicity syndrome (ICANS), are highly incident toxicities,
and potentially life-threatening (187–189). Growing evidence
sustains that endotheliopathy underlies and promotes the onset of
these toxicities. However, not all endothelial dysfunction can be
attributed to the administration of the construct but to different
noxa before and during immunotherapy.

The use of conditioning, or lymphodepletion, before CAR-
T cell infusion has proven to enhance the in vivo expansion of
the construct, and both its engraftment and anti-tumoral function
(190–192). The most commonly used drugs are cyclophosphamide
(Cy) and fludarabine (Flu) in combination. Both, Cy and Flu, have
shown to cause deleterious effects on ECs (173, 193) in in vitro
assays. In fact, Flu has been observed to increase the incidence of
CAR-T related toxicities (194, 195). Nevertheless, the individual

impact of these drugs, in vivo, and the incidence of endothelial-
related complications has to be elucidated.

Up to 80% of patients treated with CAR-T cell
immunotherapy present CRS of any grade, clinically ranging
from fever ± hypoxemia, hypotension, capillary leak and/or signs
of specific-organ toxicity, depending on the severity of the case
(196). Less incident, ICANS can be suspected by a wide range
of symptoms and signs, such as headache, cognitive or motor
impairment, delirium and seizures. Since ICANS is predisposed
in the vast majority of cases by severe/early onset CRS (157, 197),
the pathways involved in their development seem to be common.
For this reason, the pathophysiology of CRS and ICANS will be
reviewed altogether except when otherwise specified.

Clinically, different risk factors have been associated with an
increased risk of developing CRS and ICANS: lymphodepletion
schemes containing Flu, high burden/bone marrow involvement
of the basal disease, and infusion of high doses of the CAR-T
cell construct leading to high peaks of in vivo proliferation (188,
194). Biologically, elevations of proinflammatory cytokines (IL-6,
interferon-γ, and TNF-α) after the construct infusion were firstly
reported as the potential cause of CRS/ICANS in correlation with
the clinical severity (187, 198).

Endothelial dysfunction appearing as a consequence of the
mentioned cytokine storm, among other causes (199), has been
hypothesized as a relevant pathway in the development of CAR-
T cell-related toxicities (200). In the specific context of ICANS, the
increased permeability within the endothelium of the blood-brain
barrier was proven after observing the presence of CAR-T cells on
the cerebrospinal fluid (157, 201–203). Recently, scores based on
indirect biomarkers of endotheliopathy, such as EASIX or modified
EASIX, have demonstrated to be reliable tools to predict the
incidence or severe CRS and/or ICANS and their related decrease
of the progression-free survival (204–207). Similar to other diseases
with ED (112, 208, 209), innate immune activation and hemostasis
imbalance are linked pathways also altered in CAR-T cell patients
developing toxicities (210–213).

Coagulopathy is an underestimated adverse effect of CAR T-cell
therapies (214) that usually derives from severe CRS or ICANS
(157, 211). While isolated changes in coagulation parameters,
such as elevation in D-dimer, increase in fibrinogen degradation
product, decrease of fibrinogen levels and prolongation of activated
partial thromboplastin time (aPTT), can be observed in a high
proportion of patients (215, 216), the analytical and clinical
phenotype of DIC occurs only in cases of high-grade toxicities and
is related to an increase of the non-relapse mortality (215). More
specifically, a recent study has described increased prothrombin
time (PT) and aPTT, fibrinogen, D-dimer, factor VIII (FVIII)
and VWF antigen levels in ≥grade 2 CRS. The manifestation of
ICANS was associated with elevated PT, D-dimer, FVIII and VWF
antigen levels and decreased fibrinogen and platelet count (207).
Moreover, patients with high-grade ICANS were found to present
higher levels of Ang-2 and VWF, lower levels of ADAMTS-13
metalloprotease and loss of VWF high molecular weight multimers
than patients with lower severity grades (157, 198, 200). Although
the consumptive mechanism seems to be the predominant one for
the development of DIC, impairment of the liver function has also
been described as an early indicator (217).

Recently, we have demonstrated that different circulating
biomarkers of endotheliopathy, innate-immunity activation,
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hemostasis alterations and fibrinolytic imbalance may be good
early-predictors of severe CRS/ICANS (ST2, Ang-2, and NETs).
Also, the use of some of these biomarkers could be a feasible
discriminating tool for the differential diagnosis between CAR
T-cell-related severe toxicities and sepsis (Ang-2, NETs, sC5b-9,
VWF antigen, and PAI-1 antigen) (213).

11. Pharmacological armamentarium

Targeted treatments against the noxa responsible for
endothelial activation and dysfunction is the ideal first line
therapy, though, in most cases we do not have that kind of
treatments available. In terms of pharmacological armamentarium
targeting the endothelium, different options are under assessment.
For instance, statins, vitamin C, direct oral anticoagulants,
heparins, and N-acetylcysteine are cheap and safe drugs that
have demonstrated a protective effect toward the endothelium by
reducing the oxidative stress (218–224). The use of drugs able to
restore the anti-inflammatory and anticoagulant properties of the
endothelium, such as defibrotide, activated protein C, recombinant
TM, and Ang-1 levels (an endothelium stabilizer molecule as
opposed to Ang-2) have shown promising effects in in vitro and
in murine models of endothelial dysfunction (225–231). However,
disappointing results were found in clinical trials using activated
protein C for severe sepsis, highlighting the complexity of the
mechanisms involved in ED. In addition, the use of complement
inhibitors, such as eculizumab and ravulizumab, in diseases in
which terminal complement activation prevails like aHUS, has
shown to play a prominent role (83, 147). Other compounds, like
TNF-α, IL-1β, and ACE2 receptor blockers, ACE inhibitors or
SSRIs, used in synergy with other treatments (i.e., those for CAR
T-related toxicities, COVID-19 or major depression) could be
worth exploring in clinical trials as potential useful novel therapies
in the specific context in which ED is implied (232).

12. Conclusion and future
perspectives

The endothelium is an endocrine organ that plays essential
functions in maintaining homeostasis. It regulates the vascular
tone, hemostasis and fibrinolysis; it shows anti-inflammatory and
anticoagulant actions; and it participates in angiogenesis, among
other functions. The failure of the endothelial adaptability to the
different circulating stimuli, independently of their nature, may
cause in the loss of endothelial integrity and function, which is
critical for the development of cardiovascular disease.

Endothelial damage, and alterations of several linked pathways,
are increasingly being proposed as a pathophysiological substrate
for different pathologies and cell therapy complications. The
knowledge generated during the last years has promoted the
development of panels composed of ED biomarkers for the
early prediction of these complications, to stratify their risk,
and to facilitate their follow-up. In this regard, new and old
therapeutic and prophylactic strategies focused on endothelial
protection are being proposed. However, their impact on the

incidence of complications and non-relapse mortality should be
further explored.

More basic research is needed to elucidate the whole bunch
of mechanisms by which the endothelium becomes dysfunctional
in a variety of pathological conditions, and more investment in
clinical assays is necessary to demonstrate the effect of potentially
useful drugs to prevent and treat the endothelium. Additionally,
considering that the endothelium is the biggest organ in the body,
probably followed by the gastrointestinal tract, we are convinced
that the future investigations on the endothelium should consider
the crosstalk between both organs, in which the microbiome could
be cornerstone (233).
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