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Chimeric antigen receptor (CAR) T therapies are being developed for acute

myeloid leukemia (AML) on the basis of the results obtained for other

haematological malignancies and the need of new treatments for relapsed and

refractory AML. The biggest challenge of CART therapy for AML is to identify a

specific target antigen, since antigens expressed in AML cells are usually shared

with healthy haematopoietic stem cells (HSC). The concomitant expression of

the target antigen on both tumour and HSC may lead to on-target/off-tumour

toxicity. In this review, we guide researchers to design, develop, and translate to

the clinic CART therapies for the treatment of AML. Specifically, we describe what

issues have to be considered to design these therapies; what in vitro and in vivo

assays can be used to prove their efficacy and safety; and what expertise and

facilities are needed to treat and manage patients at the hospital.
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1 Introduction

1.1 History of cancer immunotherapy

The beginning of cancer immunotherapy can be traced back to William Coley, often

hailed as the pioneer of this field. In 1891, Coley embarked on a groundbreaking endeavour

to stimulate the immune system as a means to treat sarcoma patients. This involved

injecting heat-inactivated Streptococcus pyogenes and Serratia marcescens to these patients

(1). However, it was not until the last century that several breakthroughs in

immunotherapy, including the development of monoclonal antibodies, the utilization of
frontiersin.org01

https://www.frontiersin.org/articles/10.3389/fimmu.2023.1260470/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1260470/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1260470/full
https://www.frontiersin.org/articles/10.3389/fimmu.2023.1260470/full
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
http://crossmark.crossref.org/dialog/?doi=10.3389/fimmu.2023.1260470&domain=pdf&date_stamp=2023-11-30
mailto:mjuan@clinic.cat
mailto:klein@recerca.clinic.cat
https://doi.org/10.3389/fimmu.2023.1260470
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/immunology#editorial-board
https://www.frontiersin.org/journals/immunology#editorial-board
https://doi.org/10.3389/fimmu.2023.1260470
https://www.frontiersin.org/journals/immunology
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cytokines, oncology vaccines, and the introduction of immune

checkpoint inhibitors (such as CTLA-4 and PD-1) (2), along with

the adoptive cell therapy, catapulted immunotherapy into becoming

the most promising approach for cancer treatment.

The first foray into cell immunotherapy against cancer occurred

with the introduction of allogeneic stem cell transplantation in 1957

by E. Donall Thomas. Leukaemia patients were treated with

intravenous infusion of bone marrow from healthy donors,

inducing the “graft-versus-leukemia” effect (3, 4). A significant

stride in adoptive cell therapy (ACT) occurred in 1986 when Dr.

Rosenberg and his team described the use of tumour infiltrating

lymphocytes (TILS) from melanoma patients. These TILS were

isolated from melanoma surgical specimens, expanded in vitro with

IL-2 for several weeks, and subsequently reintroduced into

melanoma patient, resulting substantial tumour regressions (5).

In subsequent years, two different groups (Kuwana Y, et al.

from Japan and Gross G, et al. from Israel) described the concept

of covalently linking the antibody’s variable domains (VL, VH) to

the TCR constant regions (Ca, Cb), thereby activating T cells in

an HLA-independent manner (6, 7). Subsequently, Eshhar et al.

and Brocker T, et al. independently designed a construct
Frontiers in Immunology 02
composed of a single-chain variable fragment (scFv) of an

antibody linked to the signalling z or g chain of the T-cell

receptor (TCR), allowing the entire expression in one molecule,

thus generating the first CAR molecule (8–11). Since this initial

CAR design, numerous generations of CAR molecules have been

developed (section 1.2).

Today, CAR molecules are synthetic chimeric receptors

comprising an extracellular antigen-binding domain derived from

an antibody and the intracellular signalling domain of the TCR.

CART therapy involves modifying T cells to express CARs that

recognize a specific antigen expressed on the surface of malignant

cells and exert a cytotoxic effect towards them in an HLA-

independent manner. Autologous T cells are isolated from the

patient’s blood by leukapheresis, activated, genetically engineered

ex vivo to express the CAR on their surface, and expanded in close-

manufacturing bioreactors. After obtaining and characterizing the

cell product, these cells are frequently cryopreserved. To ensure the

engraftment of CART cells, patients usually undergo a

lymphodepleting chemotherapy prior to CART infusion

(Figure 1). Finally, they are infused into the patient to specifically

kill cancer cells expressing the target antigen (Figure 1) (12, 13).
FIGURE 1

Steps required for CART therapy. First, T cells are isolated from the patient blood by leukapheresis. Second, they are activated and genetically
engineered ex vivo to express the CARs on their surface. Third, they are expanded in close-manufacturing bioreactors, while patient undergoes
lymphodepleting chemotherapy. Finally, CART cells are re-infused into the patient, where they exert specific cytotoxicity towards tumour cells.
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1.2 CAR structure

CAR molecules are synthetic chimeric receptors characterized

by three distinct domains: the extracellular antigen-binding

domain, the transmembrane domain, and the intracellular CD3z
signalling chain of the TCR (11, 14, 15) (Figure 2).

The extracellular domain is composed of a scFv. This is the

domain that recognizes the antigen expressed on the surface of

target cells. The scFv is a fusion protein that combined the variable

region of a the heavy (VH) and the variable region of the light chain

(VL) of an immunoglobulin, fused by a linker that confers its

flexibility (16). Typically, it is derived from a murine antibody,

although it can also be humanized or even fully human (e.g.

originating from transgenic mice or a phage-display library) (17).

The latter options may be preferred in certain circumstances over

murine scFv as the latter can potentially lead to immunogenicity.

However, disparate data have been reported about the

immunogenicity induced by CART therapy (18–20). Some

patients may develop a humoral anti-CAR response, the so-called

HAMAs (human anti-mouse antibody) (21), which have been
Frontiers in Immunology 03
reported to potentially reduce the persistence and cytotoxic effect

of the CART cells (22, 23). Nevertheless, other groups using the

commercial CART anti-CD19 tisagenlecleucel did not observe any

reduction in CART expansion, persistence or efficacy due to

HAMAs (24).

The spacer or hinge connects the extracellular and the

transmembrane domains, providing flexibility to the scFv and

enhancing the interaction between the CAR and the target cell

(25). Additionally, its length can influence the functionality of the

immunological synapse (26). The transmembrane domain is

embedded in the cellular membrane linking the extracellular and

intracellular domains of the CAR. Both the hinge and the

transmembrane domain are typically derived from either CD28,

CD8 (T-cell surface glycoproteins) or Immunoglobulin G

(IgG) (27).

Depending on the intracellular domain employed, in

accordance with their evolutionary trajectory, five generations of

CARs can be discerned, (Figure 2). The intracellular CD3z chain

from the TCR complex (signalling domain) is a common feature

across all CAR versions. It initiates the first signal for T-cell
FIGURE 2

Structure of different CAR constructs. (A) CARs have three domains: an extracellular, a transmembrane, and an intracellular domain. The extracellular
domain (blue) consists of a single chain variable fragment (scFv) formed by the variable region of a heavy chain (VH) and that of a light chain (VL)
derived from an immunoglobulin, both connected by a linker. A hinge connects the extracellular domain to the transmembrane domain (grey). The
intracellular domain consists of a signalling domain (green) and several possible costimulatory domains (orange, red, yellow, brown), such as 4-1BB
or CD28. Five generations of CART cells varying in the number and type of costimulatory domains are represented in section (A, B). Safety strategies
(B) include the use of suicide genes e.g., herpes virus thymidine kinase (HSV-tk) in combination with ganciclovir (GCV), dual CART cells, and
inducible CART cells using SNIP mechanism. JAK/STAT3/5, janus kinase-signal transducer and activator of transcription pathway; NFAT, nuclear
factor of activated T cells; SNIP, Signal Neutralization by an Inhibitable Protease; TRAC, T-cell receptor alpha constant; TRUCKs, T cells Redirected
for Universal Cytokine Killing.
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activation (22, 28). First-generation CARs rely only on this domain

to promote the activation of CART cells, which does not ensure

sustained cytotoxic activity in vivo. Consequently, second and third

generations of CARs were engineered with one or two additional

costimulatory domains, respectively, incorporating the second

costimulatory signal requisite for T lymphocyte activation. These

augment activation levels, efficacy against target cells and

persistence of the CART cells in vivo (29, 30) (Figure 2). The

most frequently employed costimulatory domains are CD28 (31)

and 4-1BB (CD137) (32), although others like ICOS, OX40, CD27

or DAP-12 have also been utilized (15). Clinical findings indicate

that CARs with a CD28 domain lead to greater T-cell activation,

while those with a 4-1BB domain result in enhanced persistence in

vivo (33–35).

Fourth-generation CARs also produce and secrete transgenic

proteins, such us cytokines like interleukin 12 (IL-12) under the

control of the nuclear factor of activated T cells (NFAT) (15, 36).

Cytokine secretion can either improve the activation of CART cells

or diminish the immunosuppressive tumour microenvironment,

thereby increasing their survival and persistence. This, in turn,

translates into a higher cytotoxicity over an extended period in

preclinical models (37). Fourth-generation CARs are also referred

to TRUCKs: T cells Redirected for Universal Cytokine Killing (37).

Finally, consensus is lacking regarding what constitutes a

“fifth-generation”. In fact, next-generation CART cells come in

at least two flavours. The first option involves a signal from a

truncated cytoplasmatic cytokine receptor, such as IL2Rb, which
activates the JAK-STAT3/5 pathway. These CART cells have

three immune activation signals – TCR activation by the CD3z,
the costimulatory signal (typically 4-1BB or CD28) and the

cytokine signal through IL2Rb (38). The second option entails

gene-edited CART cells, for instance, with inactivation of the T-

cell receptor alpha constant (TRAC) gene via CRISPR-Cas9, to

prevent TCR expression for donor-derived allogeneic CART cells

(39) (Figure 2A).

CAR construct modifications focusing on safety will be

discussed in more detail later. Briefly, there are several strategies

that employ a suicide gene or express an antigen on the CART cells.

This allows for the targeting of CART cells by approved antibodies,

inducing antibody-dependent cell-mediated cytotoxicity (ADCC)

and enabling the elimination of CART cells in cases of severe

toxicity (40) (Figure 2B). Other strategies to enhance CART safety

involve engineering them to exert a cytotoxic effect only when more

than one target antigen is detected (e.g., dual CART cells) or

conditionally expressing CAR molecules, such as Signal

Neutralization by an Inhibitable Protease (SNIP) (41) (Figure 2B).
1.3 Clinical approved CART products

The initial successful clinical outcomes of CART cells were

simultaneously reported by three distinct institutions: 1) the

National Cancer Institute (NCI) (42), 2) the Memorial Sloan-

Kettering Cancer Center (MSKCC) (43) and 3) the University of

Pennsylvania (UPenn) (44). Various second-generation CART

therapies targeting the CD19 antigen were developed and assessed
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in patients. The NCI group treated a patient with advanced

follicular lymphoma, resulting in a partial response and B-cell

aplasia after CART treatment (42). At MSKCC Hospital, nine

patients diagnosed with refractory chronic lymphocytic leukemia

(CLL) or relapsed B-cell acute lymphoblastic leukemia (B-ALL)

were treated with CART therapy, demonstrating both safety and

promising therapeutic potential (43). Meanwhile, UPenn reported

the initial complete response of patient with refractory CLL treated

with anti-CD19 CART therapy (44).

Since then, six CART therapies have received approval from the

U.S. Food and Drug Administration (FDA) (Figure 3). Among

them, four of them are CART cells targeting the B-cell antigen

CD19: tisagenlecleucel (Kymriah) (45), axicabtagene ciloleucel

(Yescarta) (46), brexucabtagene autoleucel (Tecartus) (47), and

lisocabtagene maraleucel (Breyanzi) (48). The remaining two

target the B-cell maturation antigen (BCMA): idecabtagene

vicleucel (Abecma) (49) and ciltacabtagene autoleucel (Carvykti)

(50). CD19-directed CART therapies are approved for treatment of

patients with relapsed or refractory (R/R) B-ALL and B-cell

lymphomas; while BCMA-directed CART therapies are indicated

for R/R multiple myeloma (MM). All approved CART products

express second-generation CARs, with either a 4-1BB or CD28

costimulatory domain. The majority of approved products employ a

murine scFv with the exception of ciltacabtagene autoleucel, which

utilizes a 2-epitope binding camelid. The different domains utilized

in each CAR, including the hinge and TM domains, are illustrated

in Figure 3. Additionally, there is the option of clinical application

via a clause known as Hospital Exemption, as exemplified by

varnimcabtagene autoleucel for the treatment of adult patients

with R/R ALL in Spain (51).
2 Design of CART therapy for AML

2.1 State of the art of AML treatment

Acute myeloid leukemia (AML) is a heterogeneous neoplasm

characterized by uncontrolled clonal expansion of transformed

immature haematopoietic precursors, often associated with

recurrent genetic alterations (52, 53). Its incidence is

approximately 4.2 cases per 100,000 habitants, with a median age

of presentation of 68 years, although it can be manifest at any age

(54, 55).

For patients eligible for intensive treatments, chemotherapeutic

agents remain the therapy of choice, typically including cytarabine

and anthracyclines in most cases. However, new drugs are

progressively being introduced. For patients who are not eligible

for intensive treatments, novel active low-intensity regimens have

been emerged and provide meaningful antileukemic activity. These

include the combination of the bcl-2 inhibitor, venetoclax, with

hypomethylating agents or low-dose cytarabine, as well as the

isocitrate dehydrogenases 1 (IDH1) inhibitor, ivosidenib, for

AML cases harbouring an activating mutation in this metabolic

gene (56, 57). Nonetheless, none of these therapeutic approaches

lead to complete leukemia eradication, and most patients will

experience a clinical progression after several cycles.
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Allogeneic haematopoietic stem-cell transplantation (allo-HSCT)

has been a pivotal procedure for non-favourable risk AML, due to its

potential to eliminate residual leukemic cells through the graft-versus-

leukemia (GvL) effect (58, 59). Relapsed or refractory (R/R) AML

presents a frequent and challenging scenario, occurring in 40-50% of

younger patients and even more frequently in older individuals. A

standard treatment protocol for these patients is still lacking and survival

is poor, with an overall survival rate of 10% at 5 years (60, 61). Therefore,

there is a clear need for novel therapeutic approaches in this scenario.
Frontiers in Immunology 05
The therapeutic landscape of AML has undergone recent

transformation with the introduction of monoclonal antibodies

(mAb), such as CD33 gemtuzumab ozogamicin, (GO) and targeted

therapies like the aforementioned venetoclax, as well as IDH1/2 and

FLT3 inhibitors (56, 57, 62). Novel immunotherapeutic approaches

are also being explored. For instance, ongoing clinical trials are

assessing the efficacy of CD3-engaging bispecific antibodies, such as

the CD123xCD3-targeting flotetuzumab. Additional targets being

explored include CD33xCD3 and WT1xCD3 (63, 64).
FIGURE 3

Design of CAR T cells approved by the FDA. All are second-generation CARs, composed by an scFv (anti-CD19 in yellow or anti-BCMA in blue); a
hinge (CD28, CD8a or IgG4mut); a transmembrane domain (CD28 or CD8 in grey), one costimulatory domain (CD28 in red or 4-1BB in orange) and
CD3z signalling domain in green.
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Another interesting approach involves utilizing drugs relieving

the blockage imposed by various immune checkpoints expressed by

leukemic cells. Whereas CTLA-4 and PD-1 inhibitors, which are

efficacious in several solid tumours and specific lymphoma

subtypes, have not exhibited significant antileukemic activity in

AML, promising initial results have been reported targeting other

innate immune checkpoints. For example, the anti-TIM3

monoclonal antibody sabatolimab or the antibodies magrolimab

and lemzoparlimab targeting CD47 (“do not eat me” signal), may

restore macrophage phagocytosis of AML cells, and are currently

under investigation in several clinical trials (65–67).

While several CART products targeting CD19 or BCMA have

yielded outstanding clinical outcomes and some have been gained

regulatory approval for treating B-cell malignancies, none has yet

received regulatory approval for AML. In the subsequent sections,

we describe the CART approaches that have been tested or are

currently under investigation in AML. Finally, we integrate

published data with the expertise of our group in the

development CART products, offering guidance to researchers on

how to design, develop, and translate these therapies for the

treatment of AML.
2.2 Designing of CART for AML

The foremost challenge in CART therapy for AML lies in

identifying a specific target antigen that is expressed on the

surface of malignant cells but not on healthy cells, since the

concomitant expression of the target antigen on both leukemic

and healthy cells could result in on-target/off-tumour toxicity of

varying severity. For instance, in B-cell malignancies, CD19-

directed CART cells eradicate both malignant and healthy B cells/

B-cell progenitors. However, B-cell aplasia and consequent

hypogammaglobulinemia can be effectively managed with

intravenous immunoglobulin reposition (68). In contrast, in some

cases, on-target/off-tumour toxicity can be fatal, as was the case of a

patient who died five days after receiving ERBB2-directed CART

therapy for metastatic colon cancer. In this instance, CART cells

targeted pulmonary epithelial cells expressing the ERBB2 antigen

leading to severe respiratory distress followed by cardiac arrest (69).

Therefore, choosing an appropriate target is the pivotal initial step

in designing a CART cell (70).

The majority of surface antigens identified to date in AML cells

are either shared with healthy haematopoietic stem cells (HSC) or

not universally expressed in all AML cells. The on-target/off-

tumour effect of CART cells on HSC could result in prolonged

cytopenia, putting the patient at risk of infections or bleeding. This

challenge can only be circumvented if targets exclusively expressed

in AML cells are identified. This can be achieved, for example,

through whole-genome sequencing (71), scrutinizing the

surfaceome of AML (72) or carrying out proteomic and

transcriptomic studies to compare antigen expression in leukemic

stem cells and healthy stem cells (70). The ideal target antigen

should possess the following characteristics: 1) restricted expression

to malignant cells, i.e. minimally or not expressed at all on their

healthy counterparts to minimize hematologic toxicity; 2) restricted
Frontiers in Immunology 06
expression to malignant cells without being expressed on other

healthy tissues to avoid further on-target/off-tumour toxicity; 3)

prevalent expression in most AML cases, enduring over time and

under selective pressure; 4) expression in both malignant myeloid

mature blasts and leukemic stem cells (LSC) to prevent the escape of

the latter, which could lead to relapse (73).
2.3 Common antigens targeted by
CART in AML

In this section, we will discuss the most frequently targeted

antigens by CART therapies (Figure 4), and later, we will provide a

summary of the pertinent clinical data associated with these

products (Table 1).

CD33 is a transmembrane receptor expressed in the majority of

AML cases (approximately 80%) and has therefore been extensively

studied as a target for CART therapy in AML (89, 90). However, it is

also expressed on myeloid cells, both mature and progenitors, as

well as on certain cells of lymphoid lineage (91, 92). The humanized

anti-CD33 antibody drug-conjugated GO (GO, Mylotarg® Pfizer)

has gained approval for frontline therapy, in combination with

intensive chemotherapy, especially in cases with favourable-risk

cytogenetics AML (93). The main toxicities associated with GO

include myelotoxity and the risk of inducing sinusoidal obstruction

syndrome (SOS). Nonetheless, this latter side effect appears to be

target-independent damage, probably related to the conjugated

moiety of the drug, calicheamicin. This is evident as a similar

toxicity is also observed with inotuzumab ozogamicin, an anti-

CD22 antibody conjugated with the same molecule (94, 95).

CD123 or alpha chain of the interleukin 3 receptor (IL-3Ra) is
expressed in 80% to 90% of AML cases. Moreover, it is prevalent not

only in the bulk of AML blasts but also in LSC. Preclinical studies

have demonstrated robust anti-leukemia effects with CD123-

directed CART cells (96–98). Several CART therapies targeting

this antigen are currently in clinical development for AML.

However, this antigen is also expressed on healthy myeloid

lineage cells, and there is conflicting data regarding the

myelotoxic effect of CD123-directed CART cells. Some studies

report low expression of CD123 on HSC (99, 100) while others

describe a myeloablative effect of CD123-directed CART cells in

various humanized mouse models (101). Consequently, in most

clinical trials, CD123-directed CART therapy is utilized as a bridge

therapy to allo-HSCT (see section on Clinical trials in AML) (76).

Additionally, CD123 is expressed on healthy endothelial cells of

small-calibre blood vessels (102, 103) and this introduces another

potential on-target/off-tumour effect of CD123-directed CART

cells, namely capillary leak syndrome. CD123 has been clinically

validated as a target for the treatment of blastic plasmacytoid

dendritic-cell neoplasm (BPDCN) with the use of tagraxofusp

(SL-401), a CD123-directed cytotoxin containing a truncated

diphtheria toxin (70). Notably, capillary leak syndrome was a

frequent adverse effect experienced by approximately 25%

of patients.

CLL-1 or C-type lectin-like molecule 1 (also known as C-type

lectin domain family 12 member A, CLEC12A) is expressed in over
frontiersin.org
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FIGURE 4

Target antigens of CART therapies for AML. CLL-1, C-type lectin-like molecule-1; FLT-3, FMS-like tyrosine kinase 3; FRb, folate receptor b; LeY,
Lewis Y; NKG2, natural killer group 2 member.
TABLE 1 Published clinical trials using CART in AML: CART design.

Clinical trial N° Target Vector ScFv Construct
Cell

source
Reference

NCT01716364 Lewis Y Retroviral Humanized LeY-CD8aH-CD28TM-CD28-CD3z Autologous (74)

NCT02623582 CD123 mRNA NA mRNA (biodegradable) CD123-41BB Autologous (75)

NCT02159495 CD123 Lentiviral Murine CD123-IgG4op-CD28-CD3z, safety switch EGFRt Autologous (76)

NCT04318678 CD123 Lentiviral NA CD123-CD28-CD3z, safety switch CD20 Autologous (77)

NCT04106076 CD123 Lentiviral Murine
universal CD123-CD8HTM-41BB-CD3z, safety switch

RQR8, TCR KO, CD52 KO
Allogeneic (78)

NCT01864902 CD33 Lentiviral NA CD33-CD8aHTM−41BB-CD3z Autologous (79)

NCT03927261 CD33
Non-viral

gene transfer
NA CD33-mbIL15, safety switch Autologous (80)

NCT03795779
CD33-
CLL1

NA NA CLL1-P2A-CD33 intracellular part NA Autologous (81)

NA CLL1 NA Murine NA Autologous (82)

NCT03222674/
ChiCTR1800015883

CLL1 Lentiviral Humanized
4th generation CLL1-CD28-CD27-CD3z, safety switch

iCasp9
Autologous (83)

ChiCTR2000041054 CLL1 NA NA NA Autologous (84)

(Continued)
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80% of AML cases, on both blasts and LSC (104, 105). It is also

expressed on healthy differentiated myeloid cells, but notably not on

HSC or other non-haematologic human tissues (104, 106).

Preclinical studies have demonstrated robust anti-leukemia

activity of CLL-1-directed CART cells, both in vitro and in in

vivo, without causing myelosuppression (107–109). This makes

CLL-1 a promising target for CART therapy in AML.

In addition to the previously mentioned targets, which are

common myeloid antigens, several others are currently under

exploration. For instance, NKG2D exhibits an up-regulation in

AML and while maintaining limited expression in healthy tissues.

Nevertheless, it is important to note that inflammation and stressful

events can lead to an up-regulation of this antigen in healthy tissues

(110). CD7 is expressed in approximately 30% of adult AML cases

and is associated with a more aggressive course of disease. However,

it is also expressed on normal activated T cells, NK cells, and some

progenitor cells. Consequently, CD7-directed CART therapies may

lead to CART fratricide, and knocking out CD7 in autologous cells

might be a necessary step in the CART generation process.

Other potential targets include Lewis Y (LeY), which was the

initial targeted in CART therapy for AML patients (69, 70); FLT3

(111, 112); folate receptor b (113, 114); CD38 (115); CD44v6 (116,

117); CD117 or c-kit (118); CD276 (119); and B7-H3 (120). All

these targets have shown promising preclinical results.
2.4 Future prospects of CART in AML

While various antigens have been explored in preclinical and

clinical settings for CART in AML, none has yet demonstrated

results comparable to those achieved with CD19 antigens in the

context of B-cell malignancies, both in terms of efficacy and safety.

However, there are emerging strategies that hold the potential to

broaden the therapeutic window of CART therapy in AML.

2.4.1 Strategies to enhance efficacy
The choice of various domains in CART cells is pivotal in

increasing their efficacy and persistence. The scFv derived from

different murine antibodies, humanized antibodies or fully human

scFv exhibit varying binding affinities to antigens (121). Hence, it

proves beneficial to assess multiple scFv directly against the same

antigen and select the one that best suits the chosen strategy.
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Additionally, studies have noted that CART cells containing

CD28 as the costimulatory domain display greater sensitivity to

low levels of antigen compared to CART with 4-1BB. On the other

hand, CART cells containing the 4-1BB costimulatory domain have

demonstrated increased persistence in vitro, in vivo and in clinical

trials (35, 122, 123).

TRUCKs, the fourth generation of CART, offer two distinct

avenues for enhancement. They can heighten the cytotoxicity of

CART cells by releasing cytokines like IL-12, or alternatively,

promote their expansion and persistence through the release of

cytokines such as IL-15. Atilla PA and collaborators found that

CLL1-CART cells co-expressing transgenic IL-15 displayed a less

terminally differentiated state and demonstrated superior expansion

compared to CART cells lacking IL-15 (124). Moving forward, the

fifth generation of CART cells further heightens the persistence of

CART cells through the provision of a third immune activation

signal. In addition, gene editing of the CAR gene in TRAC locus

using CRISPR-Cas9 technology presents another option to enhance

the potency of CART cells (39).

The comb ina t i on o f CART the r apy w i th o the r

immunotherapies, such as immune checkpoints inhibitors, holds

the potential for a synergistic effect, ultimately increasing its

efficacy. Ongoing clinical trials are investigating whether the

combination of CART-19 and PD-1 or PD-L1 blockade can

enhance CART persistence and clinical responses (125, 126).

Given the heterogeneity of AML, selecting a single antigen

present in all tumoral cells can be challenging. Some identified

antigens for AML exhibit a regulatable expression. For instance,

CD70 is widely expressed on AML cells but not on normal HSC and

its expression on malignant cells can be heightened by the use of

azacytidine (127). Similarly, the folate receptor B is typically

expressed on 70% of AML cells, but its expression can be

upregulated when AML cells are treated with all-trans retinoic

acid (ATRA) (113).

An alternative approach involves engineering dual CART cells

to modulate antigen recognition on tumour cells. There exists a

wide range of dual CAR options, employing Boolean logic to

determine when CART cells will be activated. Three primary logic

gates can be distinguished: 1) AND: both antigens must be

recognized for CART activation; 2) OR: either one of the two

antigens must be recognized for CART activation, and 3) NOT:

only antigen 1 must be present; the presence of antigen 2 inhibits
TABLE 1 Continued

Clinical trial N° Target Vector ScFv Construct
Cell

source
Reference

NCT03222674/
ChiCTR1900027684

CCL1 Lentiviral Murine CLL1-41BB-CD3z CART Autologous (85)

NCT02203825
NKG2D
ligands

Retroviral Human NKG2D-CD3z Autologous (86)

NCT04351022 CD38 NA NA 3rd generation CD38-CD8aHTM-CD28-41BB-CD3z
Autologous/
Allogeneic (87)

NCT04538599 CD7 Retroviral NA
universal CD7-CD8aHTM-41BB-CD3z, CD7 KO, TCR KO,
HLA−II KO, NK inhibitory receptor

Allogeneic (88)
H, hinge; iCasp9, inducible caspase 9 motif; TM, transmembrane domain; NA, not available.
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CART activation (128). In cases where the antigen is downregulated

or expressed at low levels, a dual CAR with an “OR logic-gate”

strategy may prevent tumour escape. Here, CART is fully activated

when targeting either one of the two target antigens (e.g. tandem,

bicistronic or co-infusion CARTs).

Taking this concept further, a combination of a CAR with an

HLA-Independent TCR (HIT) can increase sensitivity and decrease

tumour escape associated with low target antigen expression.

Theoretically, this strategy allows for a more precise selection of

both target antigens compared to the dual strategy. Mansilla-soto

and collaborators proposed choosing a lower-density target for the

HIT (increasing sensitivity to this target and avoiding antigen

escape) and a higher-density target for the CAR (129).

2.4.2 Strategies to enhance safety
Currently, the majority of procedures in clinical trials involving

CART cells in AML are followed by an allo-HSCT to overcome

their potential myelotoxic effect. One strategy to improve safety

involves engineering dual CART cells that calibrate their affinity to

antigens present on both malignant and healthy cells, thereby

reducing the on-target/off-tumour effect.

One approach is to design dual CART cells that only eliminate

cells that express both target antigens, utilizing an “AND logic-gate”

strategy, as previously described (Figure 2). In this scenario, two

CARmolecules are expressed in the same T cell. One CAR molecule

is a first-generation CAR that recognizes antigen 1 with the

intracellular CD3z signalling domain and the second CAR

molecule is a chimeric costimulatory receptor (CCR) that

recognizes antigen 2 with an intracellular costimulatory domain

(130). With this AND-gate strategy, CART cells are fully activated

only when encountering both antigens (131–133). For instance,

dual CART cells can be engineered to target a specific leukemia

antigen (e.g., CD7) and an antigen both expressed on the leukemic

blasts and on HSC (e.g., CD33). These bispecific CART cells would

exert a cytotoxic effect only when encountering leukemic cells

expressing both target antigens (i.e., CD33+ CD7+), but not when

encountering HSC (CD33+ CD7-) or mature T cells (CD33-,

CD7+) (134).

Another innovative approach is the new “IF-better gate”

strategy, which modulates the detection and activity of CART

cells based on the density of antigens expressed on both leukemic

cells and healthy cells. In this scenario, the CART cell targets

malignant cells with a high density of target 1 through the CAR

(first construct). Cells with a low density of target 1 are only

eliminated when they also exhibit a high density of target 2,

recognized simultaneously by the concomitant CCR recognition

(135, 136).

Another approach is the “NOT logic-gate” strategy. In this

scenario, the first CAR molecule recognizes an antigen present on

tumour cells, while the second CAR recognizes an antigen present

only on healthy cells. This second recognition inhibits the activation

of the first CAR in a reversible manner (130).

Utilizing mRNA CART cells is a different strategy to enhance

safety; mRNA CART are “biodegradable” CARs since RNA is not

integrated into the genome. This means they will not persist in the
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patient for more than a few days, aiming to mitigate myelotoxicity.

However, this approach carries the potential risk of disease relapse

due to low persistence of CART cells (137, 138). This mRNA

strategy has been studied both in vitro and in vivo with CD33

(139) and CD123 (140) antigens for AML. Nevertheless, initial

clinical trials with CD123 “biodegradable” CART cells did not yield

clinical responses (75).

To mitigate myelotoxicity, one approach is to generate CART

cells targeting an antigen on leukemic cells that has been

deliberately knocked out from the donor HSC for the subsequent

allo-HSCT (141). Kim and co-workers successfully deleted CD33

from HSC, leading to a long-term and functional engraftment with

an immune system resistant to the anti-CD33 CART cells in a

xenograft mouse model (141). Similarly, Nils and colleagues

published a CART therapy targeting the pan-haematologic CD45

antigen. They base-edited the targeted CD45 epitope in human

HSC (CD45edited) to prevent their killing by the anti-CD45 CART

cells (142, 143).

Another alternative to mitigate both myelosuppression and

cytokine release syndrome (CRS) induced by CART cells is the

implementation of switch-off strategies (Figure 2) (40, 133), such as

the expression of suicide genes. For instance, the inducible Caspase-

9 suicide gene (iCasp9) can be expressed in CART cells, where the

administration of the AP1903 molecule induces the Caspase3

apoptosis pathway in this cell. Another well-studied suicide gene

is the Herpes Simplex virus thymidine kinase (HSV-tk); with the

addition of ganciclovir (GCV); the HSV-tk phosphorylates GCV

developing a toxic triphosphate which competes with triphosphate

triggering to DNA synthesis inhibition and cell apoptosis (144). The

other switch-off strategy, as previously described, is to express an

antigen on the CART cells that can be targeted by antibodies to

induce ADCC. For instance, the expression of EGFR or CD20 on

the surface of CART cells, that could be targeted with the

monoclonal antibodies cetuximab or rituximab, respectively, to

induce ADCC and eliminate the CART cells if needed (145).

Moreover, recently, SNIP CART cells have been successfully

engineered to be non-constitutively active, but instead switched

between an ON- and an OFF-status by a protease, thus enabling

tuning of CAR activity to improve safety (41, 146).

In conclusion, a range of strategies have been devised to enhance

the safety of CART therapy in AML. These include the precise and

sophisticated engineering of dual CART cells, the utilization of

biodegradable mRNA CART cells, and the implementation of

switch-off mechanisms. Additionally, gene editing of donor HSCs

offer promising avenues to mitigate potential toxicities.
3 Preclinical development of new
CART therapies for AML

3.1 Engineering CARTs

Creating effective CART therapies involves adjusting various

components like the scFv’s affinity and recognized epitope. This

includes the scFv itself, the order of its VH/VL domains, the length
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of the linker in between, as well as the hinge, TM domain,

costimulatory domain/s, and implementing a safety strategy if

wanted. By modifying one or more of these factors, different

CARTs can be designed with distinct efficacy and safety profiles

(147, 148). These CARTs are then assessed through a series of lab

tests to select the most promising candidate for further

clinical development.
3.2 Isolating, activating, and expanding
effector cells

The majority of CART therapies currently in development

utilize T cells, which are potent killers and relatively easy to

manipulate. These T cells can be obtained either from the patient

(autologous) or a healthy donor (allogeneic). By using autologous

CART cells, the risk of graft-versus-host disease (GvHD) is avoided.

In some cases, patients have relapsed after an allo-HSCT before

receiving the CART treatment. In these cases, CART cells are

engineered from autologous T cells, which technically come from

the patient’s rebuilt donor immune system. Surprisingly, even in

that case, significant GvHD has not been observed (149, 150).

Alongside T cells, other immune cells like natural killer cells (NK),

cytokine-induced killer cells (CIK), macrophages and regulatory or

gd T cells are being explored (151). NK or gd T cells are

advantageous as they do not cause GvHD, allowing them to be

used in “off-the-shelf” allogeneic therapies (152–154). Another

approach to prevent GvHD involves knocking out (KO) the

endogenous T-cell receptor (TCR by TRAC gene KO) using

genome editing tools like zing-finger nuclease or CRISPR/Cas9

(98, 154, 155).

From this point forward, we will focus on the steps needed to

generate autologous CART cells. First, T cells are separated from

peripheral blood mononuclear cells (PBMC) by isolating the cells

that are positive for CD3 antigen. The ratio between the

subpopulations of CD4+ helper T cells and CD8+ cytotoxic T cells

can vary from person to person. Some studies suggest using

products with a specific ratio (e.g., 1:1), while others do not

adjust this parameter (48, 156). Currently, among the six FDA-

approved CART products, only one has a defined 1:1 CD4:CD8

ratio (157). Further research is required to determine if a particular

CD4:CD8 ratio is necessary to achieve better therapeutic results.

After isolating the T cells, they need to be activated with

antibodies or antibody-coated beads (CD3-CD28) and cytokines

(IL-2/IL-7/IL-15). Then, they are expanded using a culture

medium supplemented with the cytokines (IL-2 or IL-7/IL-15)

(158). Traditionally, IL-2 is used for in vitro expansion. However,

it has been reported that using IL-15 leads to less T-cell

senescence, which could improve their efficacy and persistence

in the body (159).
3.3 Gene-editing

Gene editing can be achieved in two ways: permanently using

through viral means (such as g-retroviruses, lentiviruses,
Frontiers in Immunology 10
adenoviruses or adeno-associated viruses) or temporarily through

non-viral means (like transposons or mRNA).

The retroviridae family includes g-retroviruses and lentiviruses.

They facilitate the integration of the new genetic information

(transgene) into the genome of T cells, allowing for stable, long-

term gene expression (112). While g-retroviruses can only infect

dividing-cells, lentiviruses can infect both dividing and non-

dividing cells. Among the lentiviruses, the second and third

generations lentiviruses (LV) are commonly used in this process.

The former has a higher transduction rate, while the latter is

considered safer (160). It is important to note that when using

these methods, the transgene is inserted randomly into the genome

of T cells (29).

On the other hand, transposons are a more cost-effective option

as they do not need the extensive viral manufacturing process.

While they theoretically allow for transgene integration in less

critical areas of the genome compared to viruses, potentially

making them safer, they still insert genes randomly (161–163). In

2016, the first clinical trial using a non-viral Sleepy Beauty system to

generate anti-CD19 CART cells was published (164). This method

is not as established as the viral technology and requires further

research (165).

Finally, mRNA transfer through electroporation is highly

efficient in terms of cost, time, and achieving desired expression

levels. However, CAR expression will decrease and eventually fade

away in days or weeks as T cells divide, since RNA is not integrated

into the genome (139, 166). A CART product that used mRNA

electroporation to transiently express the CAR was found to be safe

but did not show efficacy in AML patients (75).

To date, most CART cells used to treat AML patients have been

genetically engineered using retroviral (108, 151, 167) or lentiviral

methods (83, 101, 154). This approach allows for efficient and

reproducible genetic modification of T cells that can be produced at

scale following good manufacturing practices (GMP).
3.4 In vitro efficacy testing

Typically, confirmation of CAR expression on T cells is

determined using either by flow cytometry or real-time PCR

(168). Additionally, the impact of CAR expression on T-cell

subsets distribution and the expression of exhaustion and

senescence markers can be assessed using flow cytometry.

Subsequently, in vitro efficacy is evaluated by testing: 1)

cytotoxicity towards tumour cells, 2) proliferation and 3) cytokine

production (169).

Cytotoxicity is studied by co-culturing CART cells with AML

target cells at various effector: target ratios (ranging from 10:1 to

1:8) for different durations (from 4 to 96 hours). The commonly

utilized AML models include the MOLM-13/14, THP-1, Kasumi-1

and K562 cell lines. The latter is derived from a chronic myeloid

leukemia at a blast crisis. It is crucial to determine the level of

expression of the target antigen in the chosen cell line(s). Using one

or more cell lines with varying expression levels (high/low) can be

advantageous. Target cells can be easily distinguished from CART

cells through flow cytometry by transfecting them with a reporter
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like green fluorescent protein (GFP) or a monomeric cherry red

fluorescent protein (mCherry) (170). Common cytotoxicity assays

are the 4-hour Chromium-51 (51Cr) release assay (108, 171); the

luciferase killing assay (172); and assays where the surviving target

cells are quantified by flow cytometry at the end of the co-culture

(e.g., with 7-AAD or GFP/mCherry as preciously explained) (101).

Based on the existing literature, it is anticipated that effective CART

cells can eliminate the majority of target AML cells after 24 or 48

hours at low effector: target ratios (101).

Efficient CART cells demonstrate the ability to multiply when

they engage with their specific antigen. This can be evaluated by co-

culturing previously labelled CART cells (using carboxyfluorescein

succinimidyl ester (CFSE)) with one or more target cells, and then

tracking their proliferation by measuring CFSE dilution over several

generations using flow cytometry (112). In this assay, IL-2 can be

used as a positive, non-specific stimulus.

Additionally, when in contact with target cells, CART cells

rapidly produce and release various cytokines. In most studies, this

is determined by co-culturing CART cells with target cells that

either express or do not express the specific antigen (e.g., CD123-

directed CART cells are co-cultured with CD123+ and CD123-

AML cells). The levels of these cytokines in the culture medium are

typically measured using enzyme-linked immunosorbent assay (e.g.

ELISA) (171). Specifically, IL-2 is measured to assess the activation

status of CART cells, while interferon g (IFN-g) and granzyme B are

checked to evaluate their cytotoxic activity. Both aspects can also be

evaluated using CD107a degranulation assay; CD107a expression

indicates the activation and cytotoxic degranulation state of

immune cells (173). CART cells also release numerous pro-

inflammatory cytokines, such as tumour necrosis factor a (TNF-

a), interleukin 6 (IL-6), and interleukin 1b (IL-1b), which play a key

role in activating the immune system. However, an exacerbated

secretion of these molecules may lead to a strong cytokine release

syndrome (CRS), although this can be managed with treatments

like anti-IL-6 antibodies (174).
3.5 In vitro safety assessments

Considering the characteristics of most AML antigens, it is crucial

to investigate whether CART cells can recognize the target antigen on

HSC and assess if they might eliminate or hinder the proliferation of

these cells, potentially causing haematologic toxicity.

To carry out these tests, HSC may be obtained from a cord blood

unit or from the bone marrow (BM) of a healthy donor for allo-HSCT

(151). These samples can then be used to measure the expression of

the target antigen using flow cytometry. If the target antigen is present,

cytotoxicity assays and proliferation colony-formation unit assays can

be performed after co-culturing the HSC with CART cells. This

approach has been employed to establish that both CD123- and

CD33-directed CART cells reduced the capacity of HSC to form

colonies (101, 167), suggesting that targeting these antigens may lead

to myelosuppression. Indeed, in a clinical setting, it is essential to have

an available allogeneic donor in case patients require an allo-HSCT

after CD123- or CD33- directed CART treatment.
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3.6 In vivo efficacy studies

To assess the efficacy of a novel CART cell in a living organism

in vivo, it is recommended to initially study their ability to eliminate

grafts of AML cell lines first, followed by assessments on AML

patient-derived xenograft (PDXs). Nod-scid-gamma (NSG) mice

are typically the preferred model for in vivo experiments (175) due

to their immunodeficiency, which allows human AML cells to

engraft in their bone marrow. To improve cell engraftment of

cells, especially that of PDX cells, mice are often sub-lethally

irradiated 4 to 24 hours prior to the injection of AML cells. The

majority of published in vivo studies employ AML cell lines like

MOLM-13 (101), MOLM-14 (166), THP-1 (176), or Kasumi-1

(175). In these cases, leukemic cells are usually modified with a

plasmid expressing the luciferase enzyme, allowing their growth to

be periodically monitored through bioluminescence imaging after

injecting luciferin intraperitoneally in live mice. Additionally, cells

can be transfected with a reporter, such as GFP, to assess their

presence in the peripheral blood during the experiment and in other

tissues at the end of the study using flow cytometry (139, 167).

At the beginning of the experiment, AML cells (typically 0.1-

10x106) are intravenously (i.v.) injected into mice. Once the AML is

established, it can be detected through bioluminescence. Following

this, which can take from one to several days, CART cells can be i.v.

injected into the mice. The dosage of AML cells and CART cells will

be determined by the AML proliferation rate and the specific

objectives of the study. The most important measurement in

these experiments is to quantify the presence of malignant cells.
3.7 In vivo safety studies

For investigating potential myelotoxicity induced by CART

therapy in vivo, utilizing a humanized mouse model, which involves

mice with a “human” immune system, is the most effective approach.

In this model, a human immune system is established by i.v. injecting

human HSC or PBMC (175, 176) into previously irradiated NSG or

NSG-SGM3mice (6-12 weeks old). TheNSG-SGM3 strain, whilemore

immunosuppressed than NSG, allows for superior engraftment of

human cells, leading to in vivo expansion of a greater number of

human cells from both lymphoid and myeloid lineages. It is worth

noting that this strain is more expensive and delicate.

Once the haematopoietic system is established (approximately 6 to

12 weeks after HSC or PBMC injection), animals are treated with either

autologous human CART cells (derived from the humanized mice)

(Figure 5 option 1) or heterologous CART cells (derived from a human

donor) (Figure 5 option 2). In the latter case, it is important to consider

a potential allogeneic effect if the HSC/PBMC and T cells are sourced

from different donors (and are not HLA-matched). To evaluate the

myelotoxicity induced by CART cells, the condition of the animals and

the persistence of HSC will be regularly monitored. The persistence of

HSC can be assessed during the experiment through bone marrow

aspirates and in peripheral blood, or at the end of the experiment

through flow cytometry quantification of HSC in the bone marrow

(typically 4 to 12 weeks after CART injection) (120, 177).
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Pérez-Amill et al. 10.3389/fimmu.2023.1260470
The humanized mouse model can also be utilized to evaluate

efficacy. This can be achieved by injecting HSC into the liver of sub-

lethally irradiated newborn NSG-SGM3 mice (176) or by following

the method described in the previous paragraph (141); waiting until

the animals develop a human immune system; injecting AML cells

as previously outlined; and finally, administering CART cells

engineered from T cells obtained from the humanized mice. This

model enables simultaneous study of both myelotoxicity and

efficacy (elimination of AML cells).

Additionally, a humanized mouse model proves valuable in to

assessing CRS potentially caused by the CART cells. These animals

contain human monocytes, T cells, and other cells implicated in this

syndrome (176).
4 Translation of CART therapies
for AML

4.1 GMP production of CART therapies

At the Hospital Clıńic of Barcelona, we have developed several

academic CART products, including varnimcabtagene autoleucel

(ARI-0001) for patients with R/R B-ALL, B-cell lymphoma and

CLL, as well as cesnicabtagene autoleucel (ARI-0002h) for R/R MM
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patients (21, 169, 170). Drawing from our experience in conducting

clinical trials with CART cells and insights from existing literature,

we will now outline the requirements for GMP production of

CART therapies.

As previously mentioned, in the majority of clinical trials

involving CART therapies for AML, autologous T cells are

preferred over allogeneic T cells. Autologous T cells are obtained

via leukapheresis from the patient, followed by a T-cell selection

process (Figure 1). After 24 h, retroviral or lentiviral vectors that

were previously manufactured are introduced to the cell culture in

order to transduce T cells in accordance with GMP standards.

Subsequently, the CART cells need to be expanded for a period

ranging from 6 to 12 days (depending on required dosage for each

clinical trial. This is done in specialized, close-automated

bioreactors such as the CliniMacs Prodigy® (178), Wave®
Bioreactor (154), G-Rex® or Cocoon® (179).

Of note, Milone’s group achieved highly effective lentiviral

transduction of non-activated T cells, managing to produce

CART cells within 24 hours (180). Both the CliniMacs Prodigy®
and the Cocoon® offer complete automation of the entire

production process, ensuring steri l i ty and enhancing

reproducibility under GMP conditions. In our view, these

bioreactors currently represent the best options for point-of-care

production of CART cells (181). CART cells are typically
FIGURE 5

Humanized mouse model to study myelosuppression. NSG or NSG-SGM3 mice are irradiated on day 0 and a human immune system is established
by human CD34+ haematopoietic stem cells or PBMC transplantation. Once the animals present a “human” immune system (between 6 and 12
weeks later), human CART cells are injected; they can be engineered with T cells obtained from the same humanized mouse (option 1) or from a
human T-cell donor (option 2).
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cryopreserved while undergoing sterility and microbiological safety

assessments. They are thawed just prior to infusion into the patient.

In certain clinical trials (e.g., Atalanta-1/CP0201-NHL), fresh

CART cells are administered to patients with a vein-to-vein time

of only 7 days. In such cases, a sample is rigorously assessed for

safety beforehand.

CART cells must meet specific criteria during the final stages of

the manufacturing process. These criteria encompass aspects such

as visual appearance, viability, quantity, potency, sterility and safety.

Only after meeting these standards can the CART cells be approved

for release.

To gain regulatory approval for a clinical trial, the validation of

the CART production process under GMPmust be submitted to the

national regulatory agency. This validation process meticulously

covers every aspect of the CART therapy production, ensuring

compliance with GMP and conducting through quality controls to

ensure safety and evaluate efficacy (168).
4.2 Monitoring patients treated
with CART cells

The emergence of CART therapies for haematologic

malignancies requires specialized training for healthcare

professionals, including physicians and nurses. Additionally, it

entails the establishment of specific units dedicated to the

administration and management of these treatments.

Clinical trials involving CART therapies for AML entail the

collaboration of various hospital departments. These include: 1.

Haemato-Oncology Department: responsible for treating the patient

and, if necessary, overseeing the allo-HSCT; 2. Apheresis Unit:

where T cells are collected from the patient; 3. Immunotherapy

Unit: this Unit is responsible for generating or receiving, processing

and analysing the CART product; and 4. Intensive Care Unit (ICU)

that may also be involved in patient care (21).

Serious side effects, such as CRS and neurological toxicity, have

been reported in up to one third of AML patients undergoing CART

therapies (182, 183). Other reported adverse effects include

infections, persistent cytopenia, macrophage activation syndrome,

as well as various on-target/off-tumour effects.

Cytokine-release syndrome results from the massive release of

inflammatory cytokines (e.g., IL-1 and IL-6) following target

recognition by the CART cells. This leads to the activation of

other immune cell, like tissue macrophages, which can induce

changes or damage in extra tumoral tissues. Neurotoxicity, also

known as immune effector cell-associated neurotoxicity syndrome

(ICANS), shares a similar underlying pathophysiology with CRS. In

this case, the inflammatory cytokines produced by CART cells and

the tumour microenvironment diffuse into the central nervous

system. This, in turn, can trigger activation of microglial cells,

leading to neurological symptoms (184).

As previously mentioned, the majority of the antigens found on

AML cells are also present on healthy HSC. CART cells targeting

these antigens could potentially result in prolonged cytopenia.

Specialized care is required to manage these conditions.
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Therefore, utilizing risk-stratification tools like the CAR-

HEMATOTOX score may prove beneficial in assessing the risk of

hematotoxicity and anticipating patient needs. This tool can

correlate the duration of severe neutropenia based on predictive

biomarkers of hematotoxicity for R/R B-cell lymphoma (185). In

2023, a comprehensive survey conducted by EHA-EBMT groups

outlined grading and management guidelines for hematoxicity

following CART therapy. The results emphasized the widespread

use of CTCAE (Common Terminology Criteria for Adverse Events)

criteria for grading post-CART cytopenias and CIBMTR for

evaluating hematopoieitic recovery by clinicians (6).

Given the anticipated side effects, AML patients who are

considered for CART therapy must exhibit a satisfactory

performance status and lack major comorbidities that could

potentially worsen their prognosis. Eligibility assessments should

be conducted by a multidisciplinary team experienced in this form

of therapy, and equipped with the necessary resources to manage or

treat potential complications.
4.3 Clinical trials utilizing CART
cells in AML

The inaugural Phase I trial evaluating CART cells in AML

patients was documented in 2013. This trial utilized a second-

generation CAR featuring a CD28 costimulatory domain, targeting

the LeY antigen. Four patients with R/R AML participated (74), and

this trial yielded the initial indication of CART activity against AML

in humans. Notably, three patients exhibited either disease stability

or a reduction in blast count. Moreover, one patient with skin

infiltration (known as leukemia cutis) experienced a transient

improvement, as confirmed by a lymphocytic infiltration in the

skin biopsy. This finding suggested that CART cells may be effective

in eliminating AML in cases of extramedullary disease.

Currently, CD123 is the most frequently targeted antigen by

CART therapies in AML patients (see Figure 6). As mentioned

earlier, CD123 is expressed in the majority of AML cases and its

expression has also been identified on LSC (177, 186). However, it is

also present in endothelial cells, which means that on-target/off-

tumour toxicity could lead to life-threatening consequences, such as

capillary-leak syndrome (103). Moreover, since CD123 is found in

HSC, CD123-targeted CART cells may impair normal

haematopoiesis and potentially cause irreversible myeloablation,

though this is still a subject of debate (100, 101, 187). The first

patient treated with an allogeneic “universal” CD123-directed

CART therapy (UCART123; NCT03203369) was a 78-year-old

male diagnosed with BPDCN who died due to a combination of

CRS and capillary-leak syndrome. Consequently, the trial was

initially discontinued (188) and later resumed with a dose

reduction and the introduction of an upper age limit (78).

Another trial employed a distinct strategy to decrease toxicity: a

“biodegradable” CD123-directed CAR through mRNA

electroporation (75). Published data revealed that all treated

patients experienced fever, and four out of five suffered from CRS;

the trial was discontinued due to lack of antitumoral efficacy.
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Finally, ongoing trials in the USA and China (NCT02159495,

NCT04318678, and NCT03114670) involve a CD123 CAR

construct that also expresses EGFR or CD20 on the T-cell

surface, providing a safety switch off upon treatment with EGFR/

CD20-specific antibodies (cetuximab and rituximab, respectively)

(77, 145).

CD33 is another target currently being explored in clinical trials

for AML patients (80, 167, 186). However, there have been limited

published results from registered trials involving CART

(NCT01864902, NCT0186902, and NCT03126864) or CAR-NK

cell therapies targeting CD33 (NCT02944162) in AML. Preliminary

findings from a trial conducted in China (NCT01864902) indicated

that one patient experienced an initial reduction in blasts and

systemic inflammatory symptoms; however, after two weeks, the

disease progressed (79). Notably, this patient did not exhibit clinical

or analytical signs of sinusoidal obstruction syndrome, a

complication associated with GO, as previously described (189).

A CART therapy targeting two antigens, either CD33 or CLL-1,

is currently undergoing phase I trial testing (NCT03795779). It has

been reported that a patient enrolled in this study was able to

undergo allo-HSCT after successful eradication of leukemia and

myeloablation (81).

The most recent clinical trial utilizing CART therapy directed

specifically towards CLL-1, either alone or in combination with

CD33 as previously mentioned (81), obtained promising outcomes

in both adult patients (84) and paediatric R/R AML patients (82,

85), (Table 1). Among the eight paediatric patients treated, four

achieved a state of morphologic leukemia-free state (MLFS) along

minimal residual disease (MRD) negativity (85).

A CART therapy targetingNKG2D has also undergone evaluation

in a phase I trial encompassing AML and other haematological

neoplasms (NCT02203825) (86). In this study, CART cells exhibited
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biological activity, as evidenced by an increase in inflammation

parameters post-injection. Nevertheless, their anti-AML effect was

limited (190). The potential improvement of clinical efficacy through

combination with therapies that upregulate NKG2D expression, such

as decitabine (191), warrants further investigation.

Furthermore, CART therapies targeting additional antigens are

currently undergoing patient trials, albeit with limited published data,

as seen in trials NCT03473457, NCT03291444, NCT04351022, etc.

See Tables 1 and 2 for detailed results of published clinical trials for

AML (87, 88).
4.4 Combining CART therapy and
allogeneic HSCT: a dual
immunotherapeutic strategy?

Allogeneic hematopoietic stem cells transplantation remains a

cornerstone in the therapeutic plan for eligible AML patients,

serving both as a consolidation approach for high-risk AML and

as part of a salvage option for R/R AML (141). Therefore,

integrating CART therapy into the treatment of these patients

needs a comprehensive plan that includes allo-HSCT (192–194).

In the case of R/R AML patients who have not previously

undergone allo-HSCT, the administration of a CART therapy

followed by allo-HSCT represents a rational strategy. This

approach aims to combine the potential benefits of CART

infusion, which is critical for achieving AML cytoreduction, with

the advantages of allo-HSCT. The latter can provide both additional

GvL effects and a haematopoietic rescue after cytopenia probably

caused by the CART cells. Executing this combined strategy is

nonetheless logistically and clinically challenging, particularly

managing the short interval between CART infusion and allo-
FIGURE 6

Number of clinical trials of CART therapies for AML divided by target antigen and country. CLL1, C-type lectin-like molecule-1 FLT3: FMS-like
tyrosine kinase 3 LILRB4, leukocyte immunoglobulin like receptor B4. Source: www.clinicaltrials.gov (26/06/2023).
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TABLE 2 Published clinical trials using CART in AML: Clinical results.

Clinical trial
number

Phase Lymphodepletion Dose Indication Patients Response Toxicity Country Reference

NCT01716364 I F-Cytarabine

1.1x109

(range 5 ×
108/kg to 1.3
× 109/kg)

AML 4

2 SD; 1
transient
blast

reduction; 1
transient

cytogenetics
remission

CRS: Grade I/ II
(neurotoxicity no

comments)
Australia (74)

NCT02623582 I Optional C

Cohort 1: 3
doses, each
4x106 cells/
kg; Cohort
2: 6 doses,
each 4x106

cells/kg

AML 7 (5) 5 PD

CRS Grade I: 8%;
grade II: 33% ;
grade III: 50%;

grade IV: 8%; No
vascular,

neurological or
hematologic
toxicity

USA (75)

NCT02159495 I FC

DL 1:
50x106

CART; DL
2: 200x106

CART

AML/ BPDCN 7 (6)

1 MLFS ;
2CR; 2 blast

count
reductions

CRS 5 pts grade I-
II; 1 rash grade III
(neurotoxicity no

comments)

USA (76)

NCT04318678 I FC

DL1: 3x105/
kg, DL2:
1x106/kg,

DL3: 3x106/
kg, DL4:
1x107/kg

Pediatric AML 12

1 blast
count

reduction; 1
CR.

CRS Grade I; no
neurotoxicity

USA (77)

NCT04106076 I FC/ FCA

DL1:
2.5x105;
DL2:

6.25x105;
DL2i:
1.5x106;
DL3:

3.03x106

AML 16

4 pts: 2 SD;
1 MLFS; 1
MRD-

negative CR

CRS: 15 pts (3 pts
≥ grade III; (2:

grade III; 1 grade
V)) ICANS: 1 pt≥

grade III

USA (78)

NCT01864902 I/II No

1.12x109 ;
fraccionated
doses on

consecutive
days: 1 ×
108, 1.2 ×

108, 4 × 108,
5 × 108

AML 1
Blast count
reduction

CRS grade IV,
pancytopenia

China (79)

NCT03927261 I No FC/ FC
1.8-83 x106

CART cells
AML/ CMML/

MDS
24 (20)

7 Blast
count

reduction; 1
CRi; 1 CR; 1
PR; 1 SD

CRS grade I: 10
pts; grade II: 6 pts;
grade III: 1 pt. No

cases of bone
marrow aplasia

USA (80)

NCT03795779 I FC

Two doses,
each of
1x106

CART/kg on
consecutive

days

AML NA 1 CR NA China (81)

NA I NA
0.35-

1x106CART/
kg

Peadiatric
AML

3
2 MRD- CR;
1 MRD+ CR

CRS: grade I: 2
pts; grade II: 1 pt;
no neurotoxicity;
pancytopenia

China (82)

NCT03222674/
Pediatric

ChiCTR1800015883
I/II FC

1x106

CART/kg
Pediatric AML 4 3 CR; 1 PD

CRS:grade I: 1pt;
grade II: 2 pts

ICANS: 1pt grade
I/II, no HLH,

transient grade IV
neutropenia

China (83)

(Continued)
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HSCT (see Figure 7). It requires precise coordination with the

haematopoietic cell donation process to minimize the period of

CART-induced myelotoxicity and maximize the effectiveness of the

CART cells. Moreover, the removal of CART cells to avoid

interference with engraftment requires the lymphodepleting

effects of a conditioning allo-HSCT regimen. Finally, patients may

face frequent and sometimes severe complications associated with

this sequential tandem procedure. These include immune-mediated
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complications post-CART infusion (e.g., CRS, ICANS, …) and the

complications typically linked with allo-HSCT, such as GvHD and

severe immunosuppression.

Furthermore, CART cells hold promise for treating AML who

experience a relapse after undergoing allo-HSCT. In this setting, any

severe cytopenia following CART infusion could potentially be

rescued using the same graft source utilized in the previous

allo-HSCT.
TABLE 2 Continued

Clinical trial
number

Phase Lymphodepletion Dose Indication Patients Response Toxicity Country Reference

ChiCTR2000041054 I FC
1-2x106

CART/kg
AML 10

3 MRD+
CR/CRi; 4
MRD- CR/
CRi; 3 PD

CRS grade I-II: 4
pts; grade III-IV: 6

pts; severe
pancytopenia: 10
pts (incl. 2 deaths
due to severe
infection), no
neurotoxicity

China (84)

NCT03222674/
Pediatric

ChiCTR1900027684
I/II FC

0.35- 1x106/
kg CART

Pediatric AML 8

4 CR MRD-;
1 CRi MRD
+; 1 MLFS
MRD+; 1
PR; 1 SD

CRS: grade I-II: 8
pts; no

neurotoxicity; 8
pancytopenia

China (85)

NCT02203825 I No

DL1: 1x106;
DL2: 3x106;
DL3: 1x107;
DL4: 3x107

(T cells)

AML/MM 12 (7) 2 SD; 5 PD

No CRS,
noneurotoxicity,
no autoimmunity,
2/12 grade 1 rash

USA (86)

NCT04351022 I/II FC
6.1-10x106/

kg
AML 6

1 CR, 3 CRi,
1 blast
count

reduction, 1
PD

CRS: grade I-II: 5
pts; grade III: 1 pt;
no neurotoxicity,

no GvHD,
neutropenia

(<500/mcL) 6 pts,
thrombocytopenia
(<10000/mcL)

6pts

China (87)

NCT04538599 I FCE 1-3x107/kg

CD7-positive
haematological
malignancies
(1 AML)

12 (1) 1 CRi
CRS: grade I, no
neurotoxicity, no

GvHD
China (88)
fro
Only data from AML patients are reported. Cell dose is reported for all patients included in the clinical trial. Total cell dose indicated, if not otherwise specified (i.e. CART/kg). Total number of
treated patients in the clinical trial and AML treated patients in parenthesis. Toxicity is reported about AML patients or all patient if is not specify. A, alemtuzumab; BPDCN, blastic plasmacytoid
dendritic cell neoplasm; C, Cyclophosphamide; CR, complete response; CRi, complete response with incomplete haematological recovery; CRS, cytokine release syndrome; E, etoposide; F,
Fludarabine; HLH, hemophagocytic; HMA, hypomethylating agent; MDS, myelodysplastic syndrome; MLFS, morphologic leukemia-free state; MM, multiple myeloma; MRD, measurable
residual disease; NA, not available; PD, progression disease; PR, partial response; SD, stable disease.
FIGURE 7

Combination of CART therapy and allo-HSCT. Flu, fludarabine; Cy, cyclophosphamide; CRS, cytokine release syndrome; ICANS, immune effector
cell-associated neurotoxicity syndrome; GVHD, graft-versus-host disease.
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5 Discussion

While CART therapies have shown remarkable success in

treating haematological diseases such as B-ALL, B-cell lymphoma

and MM, their application in AML patients has faced greater

challenges. The primary hurdle is the lack of a specific antigen

exclusively expressed in AML cells. Despite this, clinical trials have

predominantly focused on targets like CD123, CD33 and CLL-1.

While published clinical data offer glimpses of the potential of

CART therapies in AML treatment, they also underscore the

limitations due to on-target/off-tumour toxicities. Therefore, in

the majority of clinical trials involving CART therapies for AML,

the availability of an allogeneic HSC donor is imperative to

eventually rescue patients from life-threatening cytopenia. There

are safety strategies, including switch-off mechanisms or the

exploration of various dual CAR strategies, that can be employed

to mitigate the potential toxicity induced by CART cells in AML

(21, 195). Finally, refining clinical protocols, like combining CART

cells with other therapies or integrating allo-HSCT, may help

unlock the full potential of this therapeutic modality in AML

patients, rendering it both safer and more effective (196).
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