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ABSTRACT

A simplified class B laser system is a family of differential polynomial systems of degree two depending on the parameters a and b. Its rich
dynamics has already been observed in 1980s, see Arecchi et al. [Opt. Commun. 51, 308–314 (1984)] and Politi et al. [Phys. Rev. A 33, 4055
(1986)], and still nowadays, it attracts the interest of the researchers. In this paper, we characterize its dynamics near infinity for all values
of the parameters. When a = 0, the partial integrability was already proved by Oppo and Politi [Z. Phys. B Con. Mat. 59, 111–115 (1985)].
Here, we prove that for a = 0, it is completely integrable with two independent first integrals given by Liouvillian functions, and we present
a complete study of its dynamics. When a 6= 0, we study its dynamics in the Poincaré ball B

3, i.e., the interior of this ball is identified with R
3

and its boundary the two-dimensional sphere S
2 is identified with the infinity of R

3.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0169342

A laser is a device that emits light after stimulation of atoms
or molecules. It is a key component of many everyday products
with further uses in manufacturing and in medical procedures.
In particular, a simplified class B laser system is a two paramet-
ric family of nonlinear differential equations in three dimensions
that since 1980s attracts the interest of the researchers. In this
work, we characterize completely its dynamics near the infinity
for all values of the parameters using the Poincaré ball B

3. Our
results, purely analytic, are in accordance with some numerical
results already appeared in the literature. When a parameter is
zero, we succeed to prove the complete integrability of this sys-
tem, and hence, we improve some previous known results. We
note that for a = 0, the partial integrability is already proved in
Ref. 1.

I. INTRODUCTION AND STATEMENT OF THE MAIN
RESULT

The word LASER is an acronym for Light Amplification by
Stimulated Emission of Radiation. It is a device that stimulates atoms
or molecules to emit light at particular wavelengths and amplifies

that light, producing a very narrow beam of radiation. Lasers are
used in optical disk drives, laser printers, barcode scanners, DNA
sequencing instruments, fiber-optic, and free-space optical com-
munication, semiconducting chip manufacturing, laser surgery and
skin treatments, cutting and welding materials, and in laser lighting
displays.

Lasers are typical models that can be described using nonlin-
ear dynamics. In 1984, the authors of Ref. 2 classify the lasers into
following three classes according to the damping rates γ⊥, γq , and
k (rates of polarization, population, and field, respectively); see for
more details, Ref. 3.

Class A: γ⊥ ' γq � k. Polarization and population decay
much faster than the field, and the dynamics are governed by a single
field equation.

Class B: γ⊥ � k & γq . The population decays slowly, so that
the dynamics are described by two coupled rate equations. By injec-
tion of an external signal into a homogeneous line, the dynamics can
be described by a system of three nonlinear coupled equations.

Class C: γq ' γ⊥ ' k. The three decay rates for polarization,
population, and field are of the same order of magnitude.

In particular, class B lasers become reliable devices for studying
chaos and generalized multistability; see Ref. 4.
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Although in the last years multi-mode systems attracted the
interest of many researchers, here we will restrict our study of a sin-
gle mode laser. The dynamics of a laser with an external signal are
of an important consideration in the literature. In Ref. 5, a modified
set of equations for class B laser with an injected signal is studied.
A second-order perturbation is applied and indicates the existence
of an anomalous pushing of the laser frequency. This phenomenon
is confirmed by the numerical analysis. In Ref. 6, the authors con-
cern the locked–unlocked transition for their model, and very rich
dynamics appear due to the combination of local and global effects.
A Silnikov–saddle–node interaction appears in Ref. 7 and is related
to the chaotic behavior. A systematic order-by-order analysis is pre-
sented in Ref. 8, and there is a complex structure of homoclinic and
heteroclinic connections due to the existence of an unstable periodic
orbit.

Moreover, in Ref. 9, the authors introduced the following
model to describe the class-B laser with externally injected signal,

φ̇ = −2 −
E0 sin φ

E
,

Ė = wE + E0 cos φ,

ẇ = d − E2 − ε
(

1 + E2
)

w,

(1)

with time τ =
√

kγq t. The variable E denotes the cavity field ampli-
tude, φ is its phase, and w is the population inversion. The parameter
2 denotes the cavity mistuning, E0 is the Rabi frequence of the exter-
nal field, d is the pump parameter referred to the threshold value,

and ε =
√

γqk. System (1) is a special case of a model in Ref. 2
where the authors found numerical evidence of chaos, and this fact
motivates many new studies.

Additionally, in Ref. 9, it is showed that the model (1) can be
approximately described (considering the limit case ε = 0) by the
following reversible three-dimensional system:

ẋ = xz + y + a,

ẏ = yz − x,

ż = b − x2 − y2,

(2)

where there is a rescaling of time by 2, it is written in cartesian
coordinates, and the new parameters are a = E0/22 and b = d/22.
An important result of Ref. 9 is that for suitable parameter ranges,
conservative and dissipative behavior are observed.

Some very recent papers (Refs. 10 and 11) provide information
about the dynamics and the integrability of system (2). Our goal here

is to complete the study of the integrability of system (2) and provide
more information about its dynamics.

System (2) is invariant under the symmetry (x, y, z, t)
→ (−x, y, −z, −t), as already was noted in Ref. 9. Hence, the orbits
of the system are symmetric with respect to the y-axis.

We associate to system (2) its vector field

X = (xz + y + a)
∂

∂x
+ (yz − x)

∂

∂y
+
(

b − x2 − y2
) ∂

∂z
.

Let � be an open subset of R
3 and let X : � → R

3 be the vec-
tor field associated to system (2). Consider p ∈ � and we denote by
8(t) = 8(t, p) = 8p(t) the integral curve of X passing through the
point p when t = 0. We define the sets

ω(p) =
{

q ∈ � : there exist {tn} with tn → ∞ and

8(tn) → q when n → ∞
}

,

α(p) =
{

q ∈ � : there exist {tn} with tn → −∞ and

8(tn) → q when n → ∞
}

.

The sets ω(p) and α(p) are called the ω–limit set and the α-limit set
of p, respectively.

Let U be an open set of R
3. We say that a non-locally constant

analytic function H : U → R is a first integral of system (2) in U if it
is constant on all the orbits of the system contained in U. Thus, the
function H is a first integral of system (2) in U if and only if

Ḣ =
dH

dt
= XH = (xz + y + a)

∂H

∂x
+ (yz − x)

∂H

∂y

+
(

b − x2 − y2
) ∂H

∂z
= 0,

in all the points of U. Roughly speaking, a Liouvillian first integral
is a first integral obtained by a combination of algebraic functions,
integrals, and exponential of integrals of elementary functions; for a
precise definition, see Ref. 12.

Two local first integrals H1 and H2 defined in U are independent
if their gradients are linearly independent in R

3 except perhaps in a
set of measure zero.

The knowledge of a first integral is very useful for under-
standing the dynamics of system (2). Next theorem provides the
expressions of two functionally independent first integrals when the
parameter a is zero and improves the results of Refs. 1 and 10 where
the partial integrability is proved giving the expression of only one
first integral.

Theorem 1. The differential system (2) for a = 0 is completely integrable with the following two functionally independent first integrals:

(a) If a = 0 and b 6= 0,

H1(x, y, z) =
(

x2 + y2
)b

ex2+y2+z2
,

H2(x, y, z) = 2 arctan

(

x

y

)

−
∫ x2+y2

0

1

s

√

b ln(s) − ln
(

e−x2−y2−z2
(

x2 + y2
)b
)

− s

ds.
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(b) For a = b = 0,

H1(x, y, z) = x2 + y2 + z2,

H2(x, y, z) =
exp

(

2
√

x2 + y2 + z2 arctan
( y

x

)

) (

√

x2 + y2 + z2 − z
)2

x2 + y2
.

The next result characterizes the dynamics of system (2) on
sphere S

2 of the infinity. For more details on Poincaré compacti-
fication, the infinity sphere S

2, and the notations for studying on it
the dynamics of the system, see the Appendix.

Proposition 2. The following statements hold.

(i) The origin P = (0, 0, 0) of the local chart (U3, F3) and the origin
P′ = (0, 0, 0) of the local chart (V3, G3) are the unique infinite
equilibrium points.

(ii) All the orbits on the infinity S
2 of the Poincaré ball B

3 have
α-limit the point P and ω-limit the point P ′.

In the next result, we classify the finite equilibrium points of
system (2).

Proposition 3. The next statements hold.

(i) If a = 0 and b 6= 0, system (2) has no finite equilibrium points.
(ii) If a = 0 and b = 0, the z-axis if filled with equilibrium points.
(iii) If a 6= 0 and b ≤ 0, system (2) has no finite equilibrium points.
(iv) If 0 < b < a2, system (2) has the following two equilibrium

points:

P1 =
(

√

b(a2 − b)

a
, −

b

a
, −

√

b(a2 − b)

b

)

,

(3)

P2 =
(

−
√

b(a2 − b)

a
, −

b

a
,

√

b(a2 − b)

b

)

.

P1 is an attractor and P2 is a repeller. Moreover, P1 (resp. P2)
bifurcates from the infinite equilibrium point P ′ (resp. P) at
b = 0.

(v) If b = a2 > 0, the two equilibrium points P1 and P2 collide
at the finite equilibrium point Q = (0, −a, 0) with eigenvalues

0, ±
√

−2a2 − 1.
(vi) If b > a2 > 0, there are no finite equilibrium points.

The case a = b = 0 corresponds to the laser with no injection
at the laser threshold. From Proposition 3(ii), we have that the z-axis
is filed with equilibrium points, and this corresponds to the zero
emission state with undefined phase.

The next theorem characterizes the phase portraits of
system (2) when a = b = 0.

Theorem 4. The phase portrait in R
3 of the differential

system (2) when a = b = 0 is as follows:

(a) The origin of coordinates is an equilibrium point.
(b) All the spheres x2 + y2 + z2 = r2 > 0 centered at the origin of

coordinates are invariant by the flow of the differential system.
(c) There is an unstable focus at the north pole of the sphere x2 + y2

+ z2 = r2 > 0 and a stable focus at the south pole.

(d) Every orbit of the invariant sphere x2 + y2 + z2 = r2 > 0
different from the two poles is a spiral starting at the north pole
and ending at the south pole.

Statement (d) of Theorem 4 shows a mistake in Theorem 4 of
Ref. 10, where the author states that any integral surface x2 + y2

+ z2 = ε2 contains at least one periodic solution when ε > 0 and
small.

Consider now a = 0 and b 6= 0. In cylindrical coordinates,
system (2) becomes

ṙ = rz, θ̇ = −1, ż = b − r2. (4)

According to Theorem 1(b), system (4) admits the first integral

H1(r, θ , z) = r2b/er2+z2
. Consider the level set H1 = h with h ≥ 0. In

the next theorem, we study the phase portraits of system (4) over the

invariant surfaces r2b = her2+z2
.

Theorem 5. The phase portrait in R
3 of the differential

system (4) when b 6= 0 is as follows:

(a) If b > 0 and h = 0, the level H1 = 0 reduces to the invariant
z-axis, where there is an orbit coming from z = −∞ and going
to z = +∞.

(b) If b > 0 and h ∈ (0, bbe−b), then the invariant surface H1 = h is a
topological torus surrounding the z-axis. On this invariant torus,
either the orbits close and are periodic, or the orbits are dense in
the torus.

(c) If b > 0 and h = bbe−b, then the level H1 = bbe−b is a periodic

orbit of radius
√

b in the plane z = 0.
(d) If b < 0 and h = 0, then the level H1 = 0 reduces to the invariant

z-axis, where there is an orbit coming from z = +∞ and goes to
z = −∞.

(e) If b < 0 and h > 0, then the invariant surface H1 = h is a
topological cylinder surrounding the z-axis. On this cylinder, the
orbits come from the z = +∞ and go to z = −∞ rotating in
clockwise sense.

Remark 6. Taking s = ln r in system (4), we obtain the second-
order differential equation,

s̈ + e2s − b = 0,

that is, the Toda oscillator of Ref. 13. Now considering the new

variables q = 2s − ln b and τ = (2b)1/2t. We have

d2q

dτ 2
= 1 − eq, (5)

Chaos 33, 103119 (2023); doi: 10.1063/5.0169342 33, 103119-3

© Author(s) 2023

 06 M
arch 2024 15:13:25

https://pubs.aip.org/aip/cha


Chaos ARTICLE pubs.aip.org/aip/cha

and Eq. (5) already appears in Ref. 1 and admits the invariant of
motion,

E ≡
1

2

(

dq

dτ

)2

− q + eq − 1 =
z2

b
+

r2

b
− ln

(

r2

b

)

− 1.

Note that E is also a first integral of system (4). We recall that

system (4) admits the first integral H1 = r/er2+z2
, and we have

eE = b

/(

eH
1
b
1

)

.

In the next theorem for a 6= 0, we characterize the phase
portraits of system (2) in B

3.
Theorem 7. The phase portraits in B

3 of the differential
system (2) for a 6= 0 are as follows:

(a) If b ≤ 0. All the orbits are heteroclinic starting at the equilibrium
point P and ending at the equilibrium point P ′.

(b) If 0 < b < a2. There are heteroclinic orbits starting at the equilib-
rium point P and ending at the equilibrium point P ′. Addition-
ally, we have found numerically that there are heteroclinic orbits
between the equilibria P and P ′.

(c) If b = a2 > 0. There are heteroclinic orbits starting at the equi-
librium point P1 and ending at the equilibrium point P2. Addi-
tionally, there are homoclinic orbits to the equilibria Q and some
periodic orbits.

(d) If b > a2 > 0. There are heteroclinic orbits starting at the north
pole of the ball B

3 and ending on its south pole, and there are
some periodic orbits.

II. PROOF OF THE RESULTS

A. The Poincaré compactification and the infinite
equilibrium points

The Poincaré ball B
3, roughly speaking, is the closed ball of

radius one centered at the origin of coordinates of R
3. Its interior

is identified with R
3 and its boundary, the two-dimensional sphere

S
2, is identified with the infinity of R

3, because in R
3 we can go to

infinity in as many directions as points have R
3. For more details,

see the Appendix.
Proof of Proposition 2. From the Appendix in the local chart

(U1, F1), the compactified polynomial differential system (2) is

ż1 = −z3

(

az1z3 + z2
1 + 1

)

,

ż2 = −az2 z2
3 + b z2

3 − z1z2z3 − z2
1 − z2

2 − 1,

ż3 = −z3

(

a z2
3 + z1z3 + z2

)

,

and in z3 = 0, there are no equilibrium points, so in the local chart
(U1, F1) there are no infinite equilibria.

In the local chart (U2, F2), system (2) becomes

ż1 = z3

(

az3 + z1
2 + 1

)

,

ż2 = b z2
3 + z1z2z3 − z2

1 − z2
2 − 1,

ż3 = z3 (z1z3 − z2) ,

and again, there are no infinite equilibrium points in the chart
(U2, F2).

The origin (0, 0, 0) of the local chart (U3, F3) is the unique infi-
nite equilibrium point in the chart as we get from the equations of
the compactified system (2) in this chart,

ż1 = −bz1 z2
3 + a z2

3 + z3
1 + z1 z2

2 + z2z3 + z1,

ż2 = −bz2 z2
3 + z2

1z2 + z3
2 − z1z3 + z2,

ż3 = −z3

(

b z2
3 − z2

1 − z2
2

)

.

The linear part at (0, 0, 0) of this system is




1 0 0
0 1 0
0 0 0



 ,

and the eigenvalues of the matrix are 1, 1, 0. So the north pole of the
sphere S

2 is an unstable node. Hence, the origin of the local chart
V3, i.e., the south pole of S

2, is an unstable node. This completes the
proof of Proposition 2. �

B. Finite equilibrium points

Here, we present the proof of Proposition 3 that characterize
the finite equilibrium points of system (2).

Proof. First, we consider a = 0.

(i) b 6= 0. System (2) has no finite equilibrium points.
(ii) b = 0. The z-axis {(0, 0, z), z ∈ R} is filled with equilibrium

points.

Now we consider a 6= 0. We distinguish the following cases:

(iii) b ≤ 0. System (2) has no finite equilibrium points.
(iv) For b & 0. Two finite equilibrium points, P1 and P2, bifurcate

from the infinity. The point P1 born from the south pole and
the point P2 born from the north pole. For 0 < b < a2. The
expressions of the two finite equilibrium points are given in
(3). The characteristic polynomial of the Jacobian matrix at the
equilibrium point P1 is

λ3 +
2
√

b
(

a2 − b
)

λ2

b
+
(

a2 + 2b2
)

λ

b
+ 2

√

b
(

a2 − b
)

,

and from the Routh–Hurwitz criterium, we have that all the
eigenvalues have negative real parts, and so the point P1 is
an attractor. Since system (2) admits the symmetry (x, y, z, t)
→ (−x, y, −z, −t), we have that the equilibrium point P2 is a
repeller.

(v) b = a2 > 0. The two finite equilibrium points collapse and now
we have one equilibrium point Q = (0, −a, 0). The Jacobian
matrix at the point Q is





0 1 0
−1 0 −a
0 2a 0



 ,

and its eigenvalues are 0, ±
√

−2a2 − 1.
(vi) b > a2 > 0. System (2) has no finite equilibrium points.

This completes the proof of Proposition 3. �
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C. Phase portraits of system (2) in RRR
3 when a =0.

Proof of Theorem 4. Consider a = b = 0 in system (2). Then,
from Theorem 1(b), system (2) has the first integral H1(x, y, z)
= x2 + y2 + z2. Hence the space R

3 is foliated by the invariant
spheres x2 + y2 + z2 = r2 > 0. The z-axis is filled with equilibrium
points. So, in particular, the origin of coordinates is an equilibrium
point. Therefore, statements (a) and (b) are proved.

Now over each invariant sphere, the equilibrium point (0, 0, r)
has eigenvalues 0, r + i, r − i, so it is an unstable focus, and the equi-
librium point (0, 0, −r) has eigenvalues 0, −r + i, −r − i, and is a
stable focus. Since ż = −(x2 + y2) < 0 on all the points of the invari-
ant sphere, except at its two poles, every orbit is a spiral that starts at
the north pole and end at the south pole. So statements (c) and (d)
are proved. �

Proof of Theorem 5. First consider b > 0. For h = 0, the energy
level H1 = 0 yields to r = 0 and so it reduces to the invariant z-axis.
Since ż = b > 0, there is an orbit coming from z = −∞ and goes to
z = +∞, and so statement (a) is proved.

For h & 0 and h ∈ (0, bbe−b), the energy level H1 = h yields to

z2 = log(r2b/h) − r2 and in the (r, z) plane is an oval, see Fig. 1(a).
Moreover, for z > 0, we have ṙ > 0, and for z < 0, we have ṙ < 0.
So on the oval, the orbits rotate in a clockwise sense. In R

3, since
θ̇ = −1, from the oval we obtain that the energy level is a topological
torus surrounding the z-axis. On this torus we define meridians and
parallels as in Fig. 1(b). Note that on the torus, the orbits have two
movements of rotation; one running the meridians in the clockwise
sense and the other one running parallel also in the clockwise sense.
So the orbits of system (4) follow these two rotations, and either
close and are periodic, or are dense, see Fig. 1(b). This is because the
Poincaré map over the invariant torus defined on the circle θ = 0

is a diffeomorphism. Such diffeomorphism has a rotation number.
If it is rational, all the orbits on the torus are periodic, and if it is
irrational, all the orbits on the torus are dense. For more details,
see Ref. 14. Now while h increases, the torus becomes smaller. This
completes the proof of statement (b).

For h = bbe−b and z = 0, we have ṙ = 0, and from the level
set H1 = bbe−b, we obtain r =

√
b, so the torus collapses to a cir-

cle and system (4) becomes ṙ = 0, θ̇ = −1, ż = 0, and the energy
level is formed by a periodic orbit. This completes the proof of
statement (c).

We note that the tori correspond to the levels H1 = h with
h ∈ (0, bbe−b). When h & 0 the tori tends to infinity and when
h ↗ bbe−b, the tori collapse to the periodic orbit of the statement
(c). Such periodic orbit is in the interior of the region limited by all
the tori.

Now consider b < 0.
For h = 0, the energy level H1 = 0 yields to r = 0, and so it

reduces to the invariant z-axis. Since ż = b < 0, there is an orbit
coming from z = +∞ and goes to z = −∞, and so statement (d)
is proved.

For h > 0, the level set H1 = h in the (r, z) plane is the curve
shown in Fig. 2(a) and in R

3 gives rise to a cylinder. On this cylinder
since ż < 0, the orbits come from the z = +∞ and go to z = −∞,
and since θ̇ = −1, they are rotating in the clockwise sense. This
completes the proof of statement (e). �

D. Phase portraits on the Poincaré ball BBB
3 for a 6=0.

Proof of Theorem 7. We distinguish the following cases for
a 6= 0.

FIG. 1. b > 0.
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FIG. 2. b < 0.

Case b < 0. Note that for system (2), we have ż < 0 in R
3, and

if b = 0, then ż < 0 in R
3\{(0, 0, z) : z ∈ R}. So the α-limit of the

orbits is the origin of the chart (U3, F3), namely the point P, whereas
the ω–limit of the orbits is the origin of the chart (V3, G3), namely,
the point P ′. All the orbits are heteroclinic, see Fig. 3(a).

Case 0 < b < a2. Consider the cylinder x2 + y2 = b or the
cylinder ż = 0. Note that the two finite equilibrium points P1 and
P2 are on this cylinder. From Proposition 2(ii) and since outside the
cylinder x2 + y2 = b, we have ż < 0, as in the previous case, there are
heteroclitic orbits near the sphere of the infinity S

2 and far from the
cylinder x2 + y2 = b, having α-limit the origin of the chart (U3, F3),
namely, the north pole P, and having ω–limit the origin of the chart
(V3, G3), namely the south pole point P ′, see Fig. 3(b). Numerically,
we have found heteroclinic orbits with α-limit in the unstable point
P2 and ω-limit in the stable P1. The dynamics between these two
behaviors is complicated.

Case b = a2 > 0. The finite equilibrium point Q = (0, −a, 0)
has eigenvalues 0, ±

√
−2a2 − 1 and so is a zero-Hopf equilibrium

point. In this case again there are heteroclinic orbits near the sphere
of the infinity S

2 and far from the cylinder x2 + y2 = b with α-limit
the equilibrium P and ω-limit the equilibrium P ′. Some of the hete-
roclinic orbits going from P2 to P1 when b . a2 now become homo-
clinic orbits at the point Q, see Fig. 3(c). Furthermore, numerically,
we have detect some periodic orbit.

Case b > a2 > 0. Consider the cylinder x2 + y2 = b with
ż = 0. There are also heteroclitic orbits near the sphere of the infin-
ity S

2 and far from the cylinder x2 + y2 = b, having α-limit the P

and having ω-limit the P ′, see Fig. 3(d). Numerically, we know that
for b & a2, there are periodic orbits. �

III. FINAL REMARKS

The class B laser system (2) introduced by Refs. 1, 2, 3, and 9 is
already studied partially in more recent works like Refs. 10 and 11.
Due to its rich dynamics, it attracts the interest of the researchers.
Since 1980s as in Ref. 9, numerical evidence shows the coexis-
tence of conservative and dissipative behavior of this system: The
authors considered the realistic fixed values of b = 4/3 = 1.333 and
0 < a < 2/

√
3 = 1.154 700 538 in order to have physical meaning.

Note that equilibrium points appear for a = 2/
√

3 = 1.154 700 538.
The authors detect numerically in system (2) the existence of invari-
ant tori, period 2-solutions, and a period 11-solution. Additionally,
the numerical results of the polynomial differential system (2) are in
agreement with the behavior of the initial no polynomial differential
system (1), see Ref. 9.

According to Proposition 3(iv), system (2) has the two finite
equilibrium points P1 (atractor) and P2(repeller). According to
Theorem 7(b), there are heteroclinic orbits starting at the infinite
equilibrium point P and ending at the infinite equilibrium point P ′,
and there are heteroclinic orbits between the equilibria P and P ′.

In Ref. 11, the authors detect numerically the coexistence of
dissipative and conservative flows of system (2). Concretely, they
study the dynamics of system (2) for the fixed value b = 1. For
0 < a ≤ 0.31, the authors detect numerically that the motion is only
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FIG. 3. The phase portraits of system (2) in the Poincaré ball B3 for a 6= 0.

volume conservative, while for 0.31 < a < 1, it is additionally vol-
ume contractive. In Ref. 11, also they proved that for a = b = 0,
system (2) is the energy conserved system. This is in accordance with
our Theorems 1(b) and 4.

IV. CONCLUSIONS

In this paper, for first time in the literature, are proved the
following results:

(i) System (2) for a = 0 is completely integrable and admits two
functionally independent first integrals that are Liouvillian

functions, see Theorem 1. This improves the known result
about partially integrability proved already by Oppo and Politi
in Ref. 1.

(ii) The dynamics of system (2) is described in the neighborhood
of infinity, i.e., in the neighborhood of the infinite sphere S

2. In
particular, for all the values of the parameters a and b 6= 0, there
are orbits that start at the infinite point at the end of the positive
z-axis and end at the infinite point at the end of the negative
z-axis, see Proposition 2 and Theorem 7.

(iii) The dynamics of system (2) have been completely described
when the parameter a = 0, see Theorems 4 and 5.
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APPENDIX: POINCARÉ COMPACTIFICATION IN RRR
3.

Poincaré in his classical work (Ref. 15) of 1881 introduced a
technique for studying the behavior of the planar vector field in a
neighborhood of infinity, see also Refs. 16 and 17. For the extension
of this study in higher dimensional vector fields, see Refs. 17 and 18.

Here, we consider the polynomial differential system in R
3,

ẋ = P1(x, y, z), ẏ = P2(x, y, z), ż = P3(x, y, z),

and its associated vector field

X = P1(x, y, z)
∂

∂x
+ P2(x, y, z)

∂

∂y
+ P3(x, y, z)

∂

∂z

of degree n = max
{

deg(P1), deg(P2), deg(P3)
}

. We denote by

S
3 =

{

y =
(

y1, y2, y3, y4

)

∈ R
4 : ||y|| = 1

}

,

the unit sphere in R
4, and we define the northern and southern

hemispheres,

S
3+ =

{

y ∈ S
3 : y4 > 0

}

, S
3− =

{

y ∈ S
3 : y4 < 0

}

,

respectively. We denote by TyS
3 the tangent space to S

3

at the point y. Note that the tangent hyperplane T(0,0,0,1)

S
3 =

{

(x1, x2, x3, 1) ∈ R
4
}

is identified with R
3. Through the central

projections,

f± : R
3 = T(0,0,0,1)S

3 → S
± with f± = ±

1

1(x)
(x1, x2, x3, 1),

the R
3 can be identified with northern and southern hemi-

spheres. Moreover, the equator S
2 = {y ∈ S

3 : y4 = 0} of S
3 can

be identified with the infinity of R
3. Here, we denote by 1(x)

=
√

1 + x2
1 + x2

2 + x2
3. The maps f± define two copies of X, one

in each hemisphere. We denote by X̄ the vector field on S
3\S

2

= S
+ ∪ S

− such that X̄|S+ = Df+ ◦ X and X̄|S− = Df− ◦ X.
Now we consider the orthogonal projection of the closed north-

ern hemisphere to y4 = 0, and we obtain the closed ball B
3 of radius

one centering at the origin of coordinates. The interior of this ball is
diffeomorphic to R

3 and its boundary S
2 is the infinity of R

3.
We need to extend analytically the vector field X̄ to the bound-

ary of the ball B
3 in a such a way that the flow on the boundary is

invariant. This extention is done with

p(X) = yn−1
4 X̄(y)

and is called the Poincaré compactification of X, on the whole ball B3.
Now we shall give the expressions of p(X) in each local chart

of the differential manifold B
3 (for more details on their computa-

tions, see Refs. 17 and 18). For this, we consider the eight local charts,
(Ui, Fi), (Vi, Gi) for i = 1, 2, 3, 4, where Ui = {y ∈ S

3 : yi > 0},
Vi =

{

y ∈ S
3 : yi < 0

}

, Fi : Ui → R
3, and Gi : Vi → R

3 for i = 1, 2,
3, 4. The diffeomorphisms Fi, Gi are the inverses of the central
projections from the origin to the tangent planes at the points
(±1, 0, 0, 0), (0, ±1, 0, 0), (0, 0, ±1, 0), and (0, 0, 0, ±1), respectively.

The expression of the analytic vector field p(X) in the chart
(U1, F1) is

p(X) =
zn

3

(1(z))n−1
(−z1P1 + P2, −z2P1 + P3, −z3P1) ,

Pi = Pi

(

1

z3

,
z1

z3

,
z2

z3

)

, i = 1, 2, 3.

In the chart (U2, F2), we have

p(X) =
zn

3

(1(z))n−1
(−z1P2 + P1, −z2P2 + P3, −z3P2) ,

Pi = Pi

(

z1

z3

,
1

z3

,
z2

z3

)

, i = 1, 2, 3,

and in the chart (U3, F3),

p(X) =
zn

3

(1(z))n−1
(−z1P3 + P1, −z2P3 + P2, −z3P3) ,

Pi = Pi

(

z1

z3

,
z2

z3

,
1

z3

)

, i = 1, 2, 3.

Now, in the chart (U4, F4), we have

P(X) = zn+1
3 (P1, P2, P3), Pi = Pi(z1, z2, z3), i = 1, 2, 3.

In the local charts (Vi, Gi), the expression of the compactified vector
field p(X) is the same as in the charts (Ui, Fi) multiplied by the fac-
tor (−1)n−1. Hence, the infinite equilibrium points appear on pairs
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diametrally opposite on S
2 and if n is odd have the same stability

while if n is even have the opposite stability.
By a rescaling of the time, we can omit the expression (1(z))n−1

in the above expressions of p(X). Note that all the points at infinity
in the coordinates of any local chart have z3 = 0. The equilibrium
points of p(X) that are on S

2 (the boundary of the ball B
3) are called

infinite equilibrium points, and the ones that are in the interior of the
ball are the finite equilibrium points.
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