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ABSTRACT 
Myelodysplastic neoplasms (MDS) are a heterogeneous group of hematological stem cell disorders characterized by dysplasia, cytope-
nias, and increased risk of acute leukemia. As prognosis differs widely between patients, and treatment options vary from observation 
to allogeneic stem cell transplantation, accurate and precise disease risk prognostication is critical for decision making. With this aim, 
we retrieved registry data from MDS patients from 90 Spanish institutions. A total of 7202 patients were included, which were divided 
into a training (80%) and a test (20%) set. A machine learning technique (random survival forests) was used to model overall survival 
(OS) and leukemia-free survival (LFS). The optimal model was based on 8 variables (age, gender, hemoglobin, leukocyte count, platelet 
count, neutrophil percentage, bone marrow blast, and cytogenetic risk group). This model achieved high accuracy in predicting OS 
(c-indexes; 0.759 and 0.776) and LFS (c-indexes; 0.812 and 0.845). Importantly, the model was superior to the revised International 
Prognostic Scoring System (IPSS-R) and the age-adjusted IPSS-R. This difference persisted in different age ranges and in all evaluated 
disease subgroups. Finally, we validated our results in an external cohort, confirming the superiority of the Artificial Intelligence Prognostic 
Scoring System for MDS (AIPSS-MDS) over the IPSS-R, and achieving a similar performance as the molecular IPSS. In conclusion, the 
AIPSS-MDS score is a new prognostic model based exclusively on traditional clinical, hematological, and cytogenetic variables. AIPSS-
MDS has a high prognostic accuracy in predicting survival in MDS patients, outperforming other well-established risk-scoring systems.

INTRODUCTION

Myelodysplastic neoplasms (MDS) comprise a variety of 
diagnostic entities characterized by the presence of dysplasia, 

cytopenias and risk of progression to bone marrow (BM) fail-
ure or acute myeloid leukemia.1 Currently, MDS are classified 
according to the presence of defining genetic abnormalities 
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or the observation of morphological dysplasia.2 MDS exhibit 
remarkably different clinical phenotypes and prognosis, which 
is related to its inherent genomic complexity. Driver mutations 
affect genes involved in diverse pathways, such as DNA meth-
ylation, gene expression regulation, chromatin modification, 
signal transduction, and mRNA splicing.3,4 The presence and 
interaction of these different driver mutations dictate the evo-
lutionary trajectory of MDS, and are therefore correlated with 
clinical phenotypes and disease prognosis.3,5 Therefore, clinical 
and laboratory parameters at MDS diagnosis resume the under-
lying molecular background.

Currently, the only curative treatment for MDS is allogeneic 
hematopoietic stem cell transplantation (allo-HCT), but it is 
reserved for a minority of fit patients due to its significant mor-
bidity and mortality.6,7 Furthermore, the variable availability 
of suitable donors and the substantial economic burden asso-
ciated with the procedure pose significant challenges that need 
to be addressed for broader accessibility and improved patient 
outcomes. Improving risk prediction in MDS is key to selecting 
optimal candidates for allo-HCT, facilitating a balanced deci-
sion between toxicity and disease severity. To date, the Revised 
International Prognostic System (IPSS-R) is the standard 
method to determine patient risk of progression to AML and 
death.8,9 This score considers 5 variables: hemoglobin, absolute 
neutrophil count, platelet count, BM blasts and cytogenetic risk 
category, and it assigns patients to 5 asymmetric risk groups. 
Patients with very low and low-risk disease have a prolonged 
survival (median overall survival [OS] of 8.8 and 5.3 years, 
respectively), intermediate-risk patients have a median OS of 3 
years, whereas high and very high-risk patients have an adverse 
prognosis (median OS of 1.6 and 0.8 years, respectively). A vari-
ation of the IPSS-R score which adjusts survival for patient age 
(IPSS-RA) was also developed, but the use of this score has not 
been so extended as that of the IPSS-R.

Recently, a new proposal for risk stratification in MDS 
using molecular data has been proposed (molecular IPSS; 
IPSS-Mol), which incorporates mutations in 31 genes into the 
prognostic system.5 This model achieved a higher discrimina-
tive capacity compared with the IPSS-R (IPSS-Mol c-index; 
0.75; IPSS-R c-index; 0.70), and it is expected to become the 
new gold standard. However, there are some issues related to 
genomic data that need to be evaluated. First, genomic analysis 
is complex and inaccessible to most patients in low and mid-
dle-income countries, becoming a source of increasing inequal-
ity in healthcare delivery.10 Second, it has been observed that 
the prognostic impact of somatic mutations involving some 
drivers of myelodysplasia is heterogeneous, with conflicting 
interpretations and further refinements in the recent literature. 
For example, Bernard et al discovered that monoallelic TP53 
hits did not influence prognosis in MDS patients, whereas 
multihit somatic events were independently associated with 
adverse outcome.11 Results by Montalban-Bravo et al (2020) 
indicate that the prognostic role of TP53 is not only influ-
enced by multihit mutations but also by variant allele fre-
quency and genomic context.12 More recently, Weiberg et al 
(2022) observed an adverse impact of TP53 disruption (both 
as monoallelic or multihit events); and no additional prognos-
tic impact was found neither for TP53 variant allele frequency 
nor for co-occurring somatic mutations.13 In a different case, 
although MDS with SF3B1 mutation has been recognized as a 
different disease subgroup characterized by a relatively indo-
lent prognosis, recent data indicate that the prognostic role 
of SF3B1 is substantially conditioned by the type of mutation 
and genomic diversity.5,14,15 Therefore, although the IPSS-Mol 
advances over previous classifications, some caveats exist 
about both its logistical implementation and the degree of bio-
logical variation used to develop the model.

Improving prognostic systems using basic information has 
the potential to rapidly impact the field by enabling fast risk 

stratification in most healthcare facilities, which can facilitate 
treatment choice. The recent development of machine learning 
(ML) in medicine has become key to overcoming some of the 
limitations of classical prognostic scores.16,17 ML is a field of 
artificial intelligence in which an algorithm creates predictions 
that are based on a learning phase from real examples, instead 
of depending on human-made rules. In ML, modeling occurs by 
considering simple and complex interactions between multiple 
variables. In the case of MDS, these advanced techniques can 
provide personalized survival predictions based on the clinical 
outcomes of thousands of patients. With this in mind, we aimed 
to develop a new ML model for MDS risk stratification using 
traditional variables obtained at disease diagnosis.

MATERIALS AND METHODS

Data source
We retrieved original data included in the Spanish Registry 

of Myelodysplastic Syndromes, which comprised 7,202 
patients diagnosed with MDS in 90 centers between May 
29, 2006 and January 15, 2022. This is a nationwide regis-
try (code: 2018/0459) contributed by centers affiliated to the 
Grupo Español de Síndromes Mielodisplásicos (GESMD). 
Informed consent for inclusion in the registry was obtained 
from all patients. MDS diagnosis was made according to the 
World Health Organization 2008 classification. The study was 
approved by the GESMD scientific board and was conducted in 
accordance with the Declaration of Helsinki.

The database included 18 variables with a missing rate of 
<50%. The variables were: age at diagnosis, gender, proportion 
of blasts in peripheral blood, proportion of blasts in BM, serum 
erythropoietin, proportion of nucleated red cells in BM, pro-
portion of ring sideroblasts in BM, presence of Auer rods in 
BM, cellularity in BM smear (hypocellular, normocellular and 
hypercellular), serum lactate dehydrogenase, serum ferritin, 
hemoglobin, leukocytes, platelets, absolute neutrophil count, 
the proportion of neutrophils, proportion of monocytes and 
cytogenetic risk group according to the IPSS-R. Patients were 
randomly divided into a training set (80% of the cohort, N= 
5760) and a test set (20% of the cohort, N= 1442). Univariable 
analysis (cox regression) was used to evaluate the relationship 
of these variables with clinical outcomes.

Main study outcomes
OS was defined as time from MDS diagnosis to death from 

any cause. Acute leukemia-free survival (LFS) was defined as time 
from MDS diagnosis to date of leukemic transformation (≥20% 
blasts in BM or peripheral blood) or last contact/date of death.

Variable selection and model development
Univariable Cox regression was used to evaluate the asso-

ciation of each variable with OS in the training set (survival 
package, version 3.5.3).18 Variables with a P-value <0.05 were 
selected for a multivariable model using random survival forests 
(RSF, randomForestSRC package, version 3.2.0).19 The use of 
random forests was based on the tabular nature of our initial 
data. Despite claims of superior performance by deep learn-
ing models, evidence indicates that decision tree-based models 
consistently outperform deep learning across various fields.20 
RSF models were created with 1000 trees. Missing variables 
were imputed using a missing data algorithm developed by 
Ishawarian et al.19 Predictions were cross-validated in the train-
ing cohort and then validated in the test cohort. For cross-val-
idation, sampling was performed without replacement, which 
by default takes 0.632 times the sample size. This was done 
in order to rule out overfitting of performance metrics in the 
training set related to either variable selection or the imputation 
process. The discriminative capacity of the RSF models in the 
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training set was evaluated with out-of-bag estimates of the con-
cordance index (c-index).

A dynamic assessment of the different predictors was per-
formed using time-dependent areas under the curve (AUCs) 
derived from Cox survival models (riskRegression package, ver-
sion 2021.10.10).21 Time-dependent Brier scores, a measure of 
calibration and accuracy, were calculated as the mean squared 
difference between the predicted probability and the actual out-
comes. For these calculations, cross-validation was performed 
using 500 cycles. In each cycle, 75% of samples were used for 
training and 25% for testing. The c-indexes of these Cox mod-
els were computed with bootstrapping in both the training and 
test sets (500 cycles). In the particular case of the training set, 
all RSF predictions used as input for downstream analysis were 
out-of-bag to reduce the risk of overfitting during the training 
phase of the model. By utilizing the 3 different metrics, we aim 
to provide a comprehensive evaluation of our model’s perfor-
mance, covering various aspects of its predictive abilities. Each 
metric offers unique information that informs about different 
aspects of the model’s performance: the C index assesses rank-
ing and discrimination, the Brier score evaluates calibration and 
accuracy, and the time-dependent AUC accounts for dynamic 
discriminatory ability.

External validation
Data from the cohort by Bernard et al (2022) was down-

loaded from their public GitHub repository. Patients with com-
plete annotations for the 8 and 10-variable AIPSS-MDS models 
were selected. The survival function based on data from the 
Spanish cohort was calculated in each of these patients, and 
the accuracy of the prediction was calculated using the c-in-
dex. For comparison with the IPSS-R and IPSS-Mol scores, we 
calculated the AIPSS-MDS score as the result of the cumula-
tive hazard function for each patient. Finally, the comparisons 
between the 3 scores were based on cross-validated AUCs of 
the Cox models.

Data sharing
For original dataset sharing, please contact the following 

email: adrian.mosquera.orgeira@sergas.es.

RESULTS

Study population, clinical outcomes, and variable selection
The baseline characteristics and main clinical outcomes of each 

cohort are presented in Table 1. Median follow-up was 4.93 years 
and 5.20 years in the training and test sets, respectively. 26.11% 
and 24.46% of patients were treated with a disease-modifying 
therapy (demethylating drugs, immunomodulatory imid drugs, 
chemotherapy, or allo-HCT). during follow-up. Seven variables 
had a missing rate >10% in both cohorts, as indicated in Suppl. 
Table S1. Fifteen variables were associated with LFS with a 
P-value ≤0.05 in the training set, and 17 variables did so with 
OS (Table 2).

Prediction of OS and leukemic transformation
An RSF model was created to predict OS using the sig-

nificant variables identified in the training set. This model 
achieved a c-index of 0.765 in the training set and 0.782 in 
the test set (Table 3). The c-indexes of the IPSS-R predictor 
considering RSF were 0.656 and 0.705 in the training and 
test set, respectively (Suppl. Figure S1). Seven variables with 
>10% missing rate were discarded, along with the abso-
lute neutrophil count due to its less significant association 
with OS, resulting in a 10-variable model, which achieved 
c-indexes of 0.760 and 0.778 in the training and test set, 
respectively (Suppl. Table S2 and Suppl. Table S3). Finally, 
we reasoned that the proportion of blasts in peripheral blood 

was redundant with the proportion of blasts in BM. We also 
observed that the association of the proportion of monocytes 
with OS was relatively weak (Table  2). Therefore, a model 
containing 8 variables was constructed which achieved c-in-
dexes of 0.759 and 0.776 in the training and test set (Suppl. 
Table S2 and Suppl. Table S3). Due to its reduced dimension-
ality and similar performance to the other models, we chose 
the 8-variable model for further evaluation (Figure  1 and 
Suppl. Table S3). This model included the following baseline 
variables: age, sex, percentage of BM blasts, hemoglobin lev-
els, platelet and leukocyte counts, percentage of neutrophils, 
and cytogenetic risk group according to the IPSS-R classifica-
tion. We also studied the performance of the IPSS-R-related 
variables as input to the RSF model, revealing a better per-
formance compared with the IPSS-R (c-indexes; 0.736 and 
0.746 in the training and test sets), but still inferior to the 
new model.

Then, we tested the 10 and 8-variable models to test time 
to AML transformation using RFS. C-indexes of the 10-vari-
able model were 0.816 and 0.846 in the training and test sets, 
whereas the c-indexes of the 8-variable model were 0.812 and 
0.845 in the training and test sets, respectively (Suppl. Table 
S2). In comparison, the IPSS-R score achieved c-indexes of 
0.715 and 0.807 in the training and test sets. Time-dependent 
cross-validated AUCs also indicated that the new predictor 
achieved high accuracy (Figure 2), which was superior to the 

Table 1

Basal Characteristics of the Training and Test Cohorts

 Training Set Test Set 

N 5760 1442
Median age 75 years 75 years
Gender 59% male/41% female 58% male/42% female
Median BM blasts 2% 2%
Median blasts in peripheral blood 0% 0%
Median Hb 9.9 g/dL, IQR 2.5 9.9 g/dL, IQR 2.5
Median platelets 149.5 × 109/L, IQR 170 157.0 × 109/L, IQR 176
Median PMN 1.98 × 106/L, IQR: 2.29 1.94 × 106/L, IQR 2.22
Median leucocytes 4.09 × 106/L, IQR 3.1 4.00 × 106/L, IQR 3.0
Very good cytogenetics 4.20% 4.44%
Good cytogenetics 70.7% 68.8%
Intermediate risk cytogenetics 10.3% 11.3%
Poor cytogenetics 3.7% 3.9%
Very poor cytogenetics 5.8% 5.8%
IPSS-R very low 25.5% 24.3%
IPSS-R low 38.1% 41.1%
IPSS-R intermediate 17.6% 15.7%
IPSS-R high 10.4% 9.7%
IPSS-R very high 8.4% 9.2%
Median follow-up 4.9 years, IQR 7,3 5.2 years, IQR 7,2
Median OS 4.4 years, IQR 7,2 4.4 years, IQR 7,3
5q- MDS 5.4% 5.7%
MDS-ULD 9.4% 8.8%
MDS-MLD 43.2% 44.7%
RARS 11.8% 11.5%
EB-1 15.7% 14.5%
EB-2 13.9% 14.0%
MDS-unclassified 0.7% 0.8%
AML transformation 10.8% 9.7%
Treated with demethylating drugs 18.95% 17.16%
Treated with IMIDs 6.32% 2.95%
Treated with chemotherapy 0.76% 0.42%
Performed Allo-HCT 4.5% 4.5%

IPSS-Mol = molecular International Prognostic Scoring System; IPSS-R = revised International 
Prognostic Scoring System; IQR = interquartile range; MDS = myelodysplastic neoplasm; MDS-
MLD = myelodysplastic neoplasm with multilineage dysplasia; MDS-ULD = myelodysplastic 
neoplasm with unilineage dysplasia; OS = overall survival; RARS = Refractory Anemia with Ring 
Sideroblast.
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IPSS-R groups and similar to the performance of the numeric 
IPSS-R score.

Comparison of the ML model with the IPSS-R for predicting OS
The performance of the RSF model was assessed using 

cross-validated time-dependent AUCs, and compared with those 
of the IPSS-R and the IPSS-RA. The ML model achieved a higher 
AUC and higher Brier scores compared with the IPSS-R and 
IPSS-RA, in both the training and test cohorts (Figure 3, Table 4, 
and Suppl. Table S4). Moreover, we also observed that the RSF 
model provided superior results compared with Cox regression, 
particularly in the prediction of 5-year mortality. Furthermore, 
we were able to confirm the superiority of the new model over 
the IPSS-R in patients under and over 65 years (Suppl. Figure S2 
and Suppl. Table S5).

To get a graphical perspective about the performance of 
the AIPSS-MDS in comparison with the IPSS-R score, we 
clusterized MDS patients in 5 equally-sized risk groups 
according to the predicted risk. Next, the IPSS-R groups 
were compared with these quintiles of risk predicted. The 
distribution of the IPSS-R groups was unbalanced, with only 
8.54% and 10.29% of patients being assigned to a very high 
and high-risk group. On the contrary, as the distribution of 
patients by the RSF algorithm is continuous, these could be 
represented in balanced groups (Table 1 and Figure 4). The 
comparison revealed that 60.97% and 60.07% of patients 
from the training and test set were assigned to a different 
risk group than that assigned by the IPSS-R, a fact which was 
particularly relevant among low, intermediate, and high-risk 
groups.

Performance analysis in relevant diagnostic subgroups
The algorithm outperformed the numeric IPSS-R and the 

IPSS-RA in the prediction of 5-year mortality in all MDS sub-
types, including MDS with unilineage dysplasia, MDS with mul-
tilineage dysplasia, MDS with Excess Blasts type 1 (MDS-EB-1), 
MDS with Excess Blasts type 2 (MDS-EB-2), Refractory Anemia 
with Ring Sideroblasts and MDS with isolated 5q deletion 
(Suppl. Figure S3, Suppl. Figure S4, Suppl. Figure S5, Suppl. 
Figure S6, Suppl. Figure S7, Suppl. Figure S8, and Suppl. Table 
S6). Importantly, 5-year survival predictions made by the ML 
model in the test set were superior to the remaining models 
in all diagnostic subgroups, with particularly high differences 
observed in the case of MDS-EB-1, MDS-EB-2, and MDS with 
isolated 5q deletion.

External validation of the model and comparison with the IPSS-Mol
The cohort data published by Bernard et al (2022) was 

retrieved from a public repository.5 Overall, the database con-
tained data from 2957 patients. In all those cases with miss-
ing annotations in any of the variables used to construct the 
AIPSS-MDS model, the IPSS-R score or the IPSS-Mol score were 
removed. This resulted in 1548 patients for the analysis of OS 
and 1427 patients for the analysis of LFS.

For OS prediction, the RFS model trained with 8 and 10 
variables in the Spanish cohort achieved c-indexes of 0.734 and 
0.735 in the cohort by Bernard et al (2022).5 Then, the cumula-
tive hazard scores were retrieved for comparison with the IPSS-R 
and IPSS-Mol scores in this group of patients. The results of Cox 
regression models suggested a similar performance between the 
AIPSS-MDS models and the IPSS-Mol, with an apparent advan-
tage of the IPSS-Mol in terms of c-index within the standard 
error margin with the AIPSS-MDS model (Table 5). To evaluate 
if this difference was derived from overfitting of the IPSS-Mol 
to its original training set, cross-validated AUCs were computed 
and plotted (Figure 5 and Suppl. Table S7). The findings con-
firmed the superiority of the AIPSS-MDS score over the IPSS-R 
grouping and scoring systems. More importantly, the results of 
the AIPSS-MDS were similar to those of the IPSS-Mol score and 
superior to the IPSS-Mol grouping strategy.

Similarly, we used the LFS model trained in the Spanish cohort 
to derive LFS risk estimates. The results of these predictions ren-
dered c-indexes of 0.804 and 0.801 using the 8 and 10-variable 

Table 2

Association of the Different Variables With LFS and OS in the Training Set (Univariable Cox P-value)

Variable 
OS  

P-value and HR (95% CI) 
Leukemia-free Survival 
P-value and HR (95% CI) 

Age <0.0001, 1.03 (1.026–1.033) <0.0001, 0.98 (0.98–0.99)
Gender (female vs male) <0.0001, 1.34 (1.24–1.44) 0.0084, 1.25 (1.06–1.47)
Peripheral blood blasts (%) <0.0001, 1.14 (1.12–1.16) <0.0001, 1.23 (1.21–1.26)
Bone marrow blasts (%) <0.0001, 1.10 (1.09–1.10) <0.0001, 1.18 (1.17–1.20)
Absolute value of red nucleated cells in bone marrow smear (%) 0.005, 1.00 (1.00–1.01) <0.0001, 1.00 (1.00–1.01)
Presence of Auer rods (no vs yes) 0.003, 1.75 (1.22–2.49) <0.0001, 5.25 (3.27–8.42)
Ring sideroblasts (%) <0.0001, 0.99 (0.99–0.99) <0.0001, 0.98 (0.97–0.98)
Bone marrow cellularity (hypercellular vs normal) 0.002, 0.86 (0.79–0.94) 0.06, 0.87 (0.72–1.05)
Bone marrow cellularity (hypercellular vs hypocellular) 0.07, 1.05 (0.92–1.19) 0.15, 1.29 (0.99–1.67)
LDH (units/µL) <0.0001, 1.00 (1.00–1.01) <0.0001, 1.00 (1.00–1.01)
Serum erythropoietin <0.0001, 0.99 (0.99–1.00) 0.05, 0.98 (0.98–0.99)
Free transferrin light chain <0.0001, 1.00 (1.00–1.01) 0.0005, 1.00 (1.00–1.01)
Hemoglobin (g/dL) <0.0001, 0.82 (0.81–0.83) <0.0001, 0.88 (0.84–0.91)
Leukocytes 0.007, 0.98 (0.96–0.99) <0.0001, 0.93 (0.90–0.07)
Platelets <0.0001, 0.99 (0.99–0.99) <0.0001, 0.99 (0.99–0.99)
Neutrophil count 0.04, 0.98 (0.96–0.99) <0.0001, 0.86 (0.81–0.91)
Neutrophil % <0.0001, 0.99 (0.99–0.99) <0.0001, 0.97 (0.97–0.98)
Monocyte % 0.02, 0.99 (0.98–0.99) 0.03, 0.98 (0.97–0.99)

CI = confidence interval; LDH = lactate dehydrogenase; LFS = leukemia-free survival.

Table 3

C-indexes and 95% CI of the Different ML Models for OS Prediction

C-index Training Set Test Set 

ML1 (18 variables) 0.765 0.782
ML2 (10 variables) 0.760 0.778
ML3 (8 variables) 0.759 0.776

ML = machine learning; OS = overall survival.
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AIPSS-MDS model. Cox regression results suggested a similar 
performance between the IPSS-Mol grouping and the AIPSS-MDS 
models, but a slightly better result for the IPSS-Mol quantita-
tive scores. Using cross-validated Cox regression, we confirmed 
the superiority of the AIPSS-MDS score over both the IPSS-R 
(Figure 6 and Suppl. Table S7). In this case, the performance of the 
AIPSS-MDS was similar to that of the IPSS-Mol grouping strategy 
but slightly inferior to that of the IPSS-Mol quantitative scores.

DISCUSSION

In the present study, we created a ML model to predict overall 
and LFS in MDS based on a large cohort of patients developed 
by the Spanish Myelodysplastic Syndromes Group (GESMD). 

As a result, we constructed a supervised ML model based on 
an RSF algorithm which comprised 8 variables obtained at the 
time of MDS diagnosis. The Artificial Intelligence Prognostic 
Scoring System for MDS (AIPSS-MDS) model outperforms 
currently established prognostic systems, such as the IPSS-R 
and the IPSS-RA. In addition, the AIPSS-MDS model produces 
balanced risk groups, reclassifying roughly 60% of the patients 
into a different risk category compared with the IPSS-R. Other 
important advantages of the new model are that it provides a 
personalized risk estimate for each individual patient; and that 
it is not based on genomic data, enabling a rapid implementa-
tion in most types of healthcare facilities.

Due to the remarkable clinical heterogeneity of MDS, an opti-
mal risk stratification is key for treatment decision, particularly 

Figure 1. Representation of OS for patients in the training (A) and test (B) sets according to the different quintiles of expected survival predicted 
by the ML model. ML = machine learning; OS = overall survival. 

Figure 2. Time-dependent AUCs at 2.5, 5, 7.5, and 10 years after diagnosis of the different prognostic models for the prediction of LFS. Results 
for the training (A) and test (B) sets are represented. Only the 8-variable ML model is represented for the sake of simplicity. AUCs = areas under the curve; LFS = 
leukemia-free survival; ML = machine learning. 
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for those fit patients who could benefit from allo-HCT. The 
IPSS-R score has been the gold standard method until now, but 
evidence indicates a marginal improvement in discriminative 
power for OS and LFS prediction compared with other methods 
such as the IPSS and the WHO Classification-based Prognostic 

Scoring System.22 Furthermore, the performance of the IPSS-R 
in some groups of patients appears to be suboptimal. For exam-
ple, data from the European LeukemiaNet indicate that the 
IPSS and IPSS-R have a modest performance in the prediction 
of OS among low-risk MDS patients, with substantial improve-
ments provided by the IPSS-RA.23 An interesting approach to 
improve over these scores was presented by Nazha et al, who 
used ML tools to incorporate both traditional information and 
NGS data into the risk stratification. This resulted in a model 
which achieved greater discriminative power for both OS and 
AML transformation prediction than the IPSS and the IPSS-R 
scores.24 More recently, the IPSS-Mol has been proposed, which 
incorporates the mutation status of 31 prognostic genes, hemo-
globin level, platelet count, BM blasts, and the IPSS-R cytoge-
netic group.5 The score was designed as a weighted sum of the 
prognostic variables and finally categorized patients into 6 risk 
groups. This model outperformed the prognostic capacity of the 
IPSS-R model, reclassifying up to 44% of the patients. The com-
parison of the AIPSS-MDS with the IPSS-Mol revealed a similar 
performance of the 2 scores for OS prediction, with the AIPSS-
MDS score strategy being moderately superior to the IPSS-Mol 
grouping and similar to the IPSS-Mol quantitative score. With 
regard to the prediction of LFS, the AIPSS-MDS tended to be 
slightly inferior to the IPSS-Mol in both cases. Nevertheless, 
it should be noted that this cohort was the same used to con-
struct the IPSS-Mol score, and some overfitting of this model 
to the population characteristics could be expected. Therefore, 
we believe that the head-to-head comparison of the 2 scores in 
other independent cohorts will shed new light about the real 
performance of the IPSS-Mol with respect to the AIPSS-MDS 
system.

Four main factors drive the good performance of the AIPSS-
MDS model. First, there is a widely known correlation between 
somatic mutations and clinical phenotypes. Therefore, the vari-
ability explained by hematological parameters and classical cyto-
genetics partially overlaps with the information derived from the 
mutational profile.25 Second, we included some new features 
associated with clinical outcomes, such as age and gender, which 
have been previously suggested to be used for refining risk scores 
in MDS.26 Third, we substituted absolute neutrophil counts by 
relative counts, as these were more informative according to our 

Figure 3. Time-dependent AUCs at 2.5, 5, 7.5, and 10 years after diagnosis of the different prognostic models for the prediction of OS. Results 
for the training (A) and test (B) sets are represented. AUCs = areas under the curve; OS = overall survival. 

Table 4

Time-dependent AUCs for the Different OS Predictors in the 
Training and Test Sets

Model Times Training Set AUC Test Set AUC 

ML predictor—18 variables 2.5 00823 (0.802–0.844) 0.852 (0.813–0.894)
ML predictor—18 variables 5 0.816 (0.791–0.839) 0.854 (0.809–0.896)
ML predictor—18 variables 7.5 0.793 (0.759–0.823) 0.821 (0.755–0.877)
ML predictor—18 variables 10 0.769 (0.714–0.811) 0.805 (0.703–0.898)
ML predictor—10 variables 2.5 0.818 (0.796–0.840) 0.848 (0.809–0.890)
ML predictor—10 variables 5 0.815 (0.791–0.838) 0.851 (0.808–0.891)
ML predictor—10 variables 7.5 0.796 (0.764–0.826) 0.823 (0.757–0.880)
ML predictor—10 variables 10 0.775 (0.722–0.817) 0.818 (0.722–0.909)
ML predictor—8 variables 2.5 0.816 (0.795–0.834) 0.846 (0.804–0.886)
ML predictor—8 variables 5 0.816 (0.791–0.838) 0.848 (0.801–0.889)
ML predictor—8 variables 7.5 0.797 (0.764–0.825) 0.821 (0.757–0.876)
ML predictor—8 variables 10 0.776 (0.725–0.819) 0.822 (0.735–0.908)
Cox-PH—8 variables 2.5 0.797 (0.772–0.821) 0.819 (0.777–0.861)
Cox-PH—8 variables 5 0.805 (0.782–0.831) 0.837 (0.789–0.876)
Cox-PH—8 variables 7.5 0.800 (0.769–0.832) 0.817 (0.754–0.874)
Cox-PH—8 variables 10 0.800 (0.750–0.841) 0.834 (0.753–0.915)
IPSS-R groups 2.5 0.753 (0.728–0.778) 0.771 (0.714–0.821)
IPSS-R groups 5 0.724 (0.695–0.754) 0.744 (0.693–0.795)
IPSS-R groups 7.5 0.680 (0.645–0.715) 0.713 (0.645–0.776)
IPSS-R groups 10 0.651 (0.600–0.701) 0.704 (0.597–0.810)
IPSS-R numeric score 2.5 0.765 (0.740–0.790) 0.788 (0.735–0.839)
IPSS-R numeric score 5 0.740 (0.710–0.769) 0.764 (0.709–0.815)
IPSS-R numeric score 7.5 0.694 (0.657–0.731) 0.728 (0.650–0.794)
IPSS-R numeric score 10 0.660 (0.607–0.773) 0.706 (0.600–0.616)
IPSS-RA numeric score 2.5 0.785 (0.760–0.810) 0.814 (0.767–0.859)
IPSS-RA numeric score 5 0.773 (0.748–0.801) 0.804 (0.755–0.853)
IPSS-RA numeric score 7.5 0.742 (0.705–0.777) 0.775 (0.702–0.841)
IPSS-RA numeric score 10 0.721 (0.665–0.773) 0.776 (0.669–0.881)

AUCs = areas under the curve; IPSS-R = revised International Prognostic Scoring System; ML = 
machine learning; OS = overall survival.
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data, a finding which was also reported during the development 
of the IPSS-Mol.5 Finally, we used an ML tool trained in a high 
number of patient cases, integrating their information into a 
simplified survival prediction for each new patient, instead of 
classifying patients into closed-risk groups. The improved prog-
nostication of the AIPSS-MDS affected most of the patients, with 
up to 60% of them being reclassified to a different risk level. 
Such improvement was related to the ability of the AIPSS-MDS 
to redefine the very low, low, intermediate, and high-risk cate-
gories of the IPSS-R classification. In the future, the addition of 
mutational profiles and frailty classifications to this score will be 
studied to evaluate further improvements in risk stratification.

The comprehensive evaluation of our proposed risk assess-
ment tool by the wider community of treating physicians 
should be encouraged. By comparing its performance with 
established scores, such as IPSS-R and IPSS-M, we can gain 
valuable insights into its clinical utility and potential benefits 
for prognostication and treatment decisions across different 
chronic myeloid malignancies and in multiple geographical 
regions. As we recognize the parallel use of multiple prognosis 
scores in other disease contexts, our model presents one among 

many solutions. Nonetheless, the principal advantage of the 
present prognostic model relies on its capacity to accurately 
predict MDS prognosis without the need for complex genomic 
data. We emphasize that our approach is specifically designed 
to cater to patient cohorts in less developed countries, where 
access to complex genomic data might be limited. By focus-
ing on essential clinical parameters, such as cytomorphology, 
peripheral blood count, and cytogenetics, our web-based calcu-
lator provides a valuable risk stratification tool that can signifi-
cantly benefit many patients in resource-constrained settings. 
While we acknowledge that IPSS-M might represent the future 
of risk assessment, the present calculator serves as a practical 
solution for those without access to advanced genomic tools, 
helping to bridge the gap in risk prediction and ensuring equi-
table healthcare outcomes for diverse socioeconomic and geo-
graphical populations. In this line, it has been proposed that the 
incorporation of NGS in clinical practice would increase the 
inequalities that exist between patients from different socioeco-
nomic and geographic areas.27 In fact, a retrospective observa-
tional study using the Flatiron Health database, which includes 
longitudinal data of patients with advanced/metastatic solid 
tumors, revealed that the use of NGS-based biomarkers was the 
most relevant difference between white and black patients in 
the United States, impacting the choices of the latter for being 
recruited in clinical trials.28 The application of improved risk 
models based on simple variables, such as the one proposed in 
this article, provides a possibility to equalize the access to effec-
tive risk stratification tools for most socioeconomic and geo-
graphical areas, thereby reducing the disparities associated with 
the rapid expansion of genomic tools. Nevertheless, if available, 
an NGS analysis should always be considered due to the fol-
lowing reasons: (1) to improve the quality of the diagnosis; (2) 
to test for potential drug targets and/or available trials testing 
targeted drugs; (3) to compare the performance of the different 
modeling strategies; and (4) to evaluate possible discrepancies 
and/or complementarities between the different scores.

The main limitations of the present study derive from its reg-
istry-based nature. Data quality depends on local physicians 
entering data at many different centers over a long follow-up 
period. In this regard, the GESMD group has implemented a 

Figure 4. Transition plots between IPSS-R groups and the quintiles of expected OS predicted by the ML model in the training (A) and test (B) 
sets. IPSS-R = revised International Prognostic Scoring System; ML = machine learning; OS = overall survival. 

Table 5

C-indexes of the Cox Models Based on the AIPSS-MDS, IPSS-R, 
and IPSS-Mol Scores in the Cohort by Bernard et al (2022)5

 
OS C-index  

(s.e.) R2 Value 
LFS C-index  

(s.e.) R2 Value 

8-variable ML model 0.735 (0.01) 0.23 0.804 (0.01) 0.14
10-variable ML model 0.736 (0.01) 0.24 0.801 (0.01) 0.13
IPSS-R groups 0.700 (0.01) 0.18 0.766 (0.02) 0.13
IPSS-M groups 0.735 (0.01) 0.24 0.804 (0.01) 0.18
IPSS-R score 0.704 (0.01) 0.18 0.782 (0.02) 0.12
IPSS-M score 0.749 (0.01) 0.26 0.822 (0.01) 0.19

AIPSS-MDS = Artificial Intelligence Prognostic Scoring System for myelodysplastic neoplasm; 
IPSS-Mol = molecular International Prognostic Scoring System; IPSS-R = revised International 
Prognostic Scoring System; LFS = leukemia-free survival; ML = machine learning; OS = overall 
survival; s.e. = standard error.
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centralized review of the data by a hematologist, which con-
tributes to minimizing errors. Nonetheless, the large size of the 
patient series, followed over a long observation period and the 
external validation, is a principal strength of our study, reflect-
ing the actual clinical course of the entire MDS population with-
out the set of inclusion and exclusion criteria used in controlled 

clinical trials. It should also be noted that, contrary to molec-
ular risk models, the present score is intended to be calculated 
with complete, but easily obtainable, data. Working with com-
plete data is preferable to using imputed data as it ensures more 
robust and reliable predictions without introducing additional 
uncertainty from the imputation process. A common criticism 

Figure 5. Time-dependent AUCs of the different cross-validated Cox models comparing the AIPSS-MDS, IPSS-R, and IPSS-Mol models for OS 
prediction. A) The AIPSS-MDS quantitative core is compared with the IPSS-R and IPSS-Mol groups. B) The AIPSS-MDS quantitative core is compared with 
the IPSS-R and IPSS-Mol quantitative scores. AIPSS-MDS = Artificial Intelligence Prognostic Scoring System for myelodysplastic neoplasm; AUCs = areas under the curve; IPSS-Mol 
= molecular International Prognostic Scoring System; IPSS-R = revised International Prognostic Scoring System; OS = overall survival. 

Figure 6. Time-dependent AUCs of the different cross-validated Cox models comparing the AIPSS-MDS, IPSS-R, and IPSS-Mol models for LFS 
prediction. (A) The AIPSS-MDS quantitative core is compared with the IPSS-R and IPSS-Mol groups. (B) The AIPSS-MDS quantitative core is compared with 
the IPSS-R and IPSS-Mol quantitative scores. AIPSS-MDS = Artificial Intelligence Prognostic Scoring System for myelodysplastic neoplasm; AUCs = areas under the curve; IPSS-Mol 
= molecular International Prognostic Scoring System; IPSS-R = revised International Prognostic Scoring System; LFS = leukemia-free survival. 
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of all current prognostic scores relies on the impact of active 
treatments (e.g., hypomethylating agents) on patient survival. 
It has been argued that the impact of treatment on survival is 
minimal because it only affects a minority of high-risk patients, 
and that external validation in different cohorts should be suf-
ficient to confirm the robustness of the predictor.24 At the same 
time, it has been noted that the exclusion of patients who were 
subsequently treated for their MDS would represent a bias in 
the data, with over- and under-optimistic outcome predictions 
for patients with lower and higher risk disease.5 A focused anal-
ysis of patients who require active treatment for their MDS is 
needed to identify optimal treatment strategies.29

In conclusion, we present a new prognostic model for MDS 
based on data from the Spanish Myelodysplastic Syndromes 
registry. The present model can provide patient-specific predic-
tions, outperforms other well-established risk stratifying sys-
tems (e.g., IPSS-R), and has similar accuracy as the IPSS-Mol 
for the prediction of mortality. Furthermore, this model does 
not require molecular data, thereby facilitating its applicability 
in most healthcare settings. An interactive web calculator of the 
model can be accessed using the following link: https://www.
gesmd.es/aipss-mds/

AUTHOR CONTRIBUTIONS

The GESMD group collected the data. AMO analyzed the data. AMO, 
MMPE, and DV wrote the article. DC created the online calculator. The 
remaining authors reviewed the article, made recommendations, and gave 
final approval for publication.

DATA AVAILABILITY STATEMENT

The data supporting the findings of this study are not publicly available 
due to privacy or ethical restrictions but are available on request from the 
manuscript corresponding authors. The study was approved by the scientific 
board of GESMD.

DISCLOSURES

The authors have no conflicts of interest to disclose.

SOURCES OF FUNDING

The authors report no sources of funding to declare.

REFERENCES

 1. Arber DA, Orazi A, Hasserjian RP, et al. International Consensus 
Classification of Myeloid Neoplasms and Acute Leukemias: 
integrating morphologic, clinical, and genomic data. Blood. 
2022;140:1200–1228.

 2. Khoury JD, Solary E, Abla O, et al. The 5th edition of the World Health 
Organization classification of haematolymphoid tumours: myeloid and 
histiocytic/dendritic neoplasms. Leukemia. 2022;36:1703–1719.

 3. Papaemmanuil E, Gerstung M, Malcovati L, et al. Clinical and biolog-
ical implications of driver mutations in myelodysplastic syndromes. 
Blood. 2013;122:3616–27; quiz 3699.

 4. Ogawa S. Genetics of MDS. Blood. 2019;133:1049–1059.
 5. Bernard E, Tuechler H, Greenberg PL, et al. Molecular international 

prognostic scoring system for myelodysplastic syndromes. NEJM Evid. 
2022;1:EVIDoa2200008.

 6. Penack O, Peczynski C, Mohty M, et al. How much has allogeneic stem 
cell transplant-related mortality improved since the 1980s? A retrospec-
tive analysis from the EBMT. Blood Adv. 2020;4:6283–6290.

 7. Guru Murthy GS, Kim S, Hu ZH, et al. Relapse and disease-free 
survival in patients with myelodysplastic syndrome undergoing 
allogeneic hematopoietic cell transplantation using older matched 
sibling donors vs younger matched unrelated donors. JAMA Oncol. 
2022;8:404–411.

 8. Greenberg PL, Tuechler H, Schanz J, et al. Revised international 
prognostic scoring system for myelodysplastic syndromes. Blood. 
2012;120:2454–2465.

 9. Snowden JA, Sánchez-Ortega I, Corbacioglu S, et al. Indications for 
haematopoietic cell transplantation for haematological diseases, solid 
tumours and immune disorders: current practice in Europe, 2022. Bone 
Marrow Transplant. 2022;57:1217–1239.

 10. Brito AF, Semenova E, Dudas G, et al. Global disparities in SARS-
CoV-2 genomic surveillance. medRxiv. 2021:2021.08.21.21262393. 
doi: 10.1101/2021.08.21.21262393. Update in: Nat Commun. 
2022;13:7003. 

 11. Bernard E, Nannya Y, Hasserjian RP, et al. Implications of TP53 allelic 
state for genome stability, clinical presentation and outcomes in myelo-
dysplastic syndromes. Nat Med. 2020;26:1549–1556.

 12. Montalban-Bravo G, Kanagal-Shamanna R, Benton CB, et al. Genomic 
context and TP53 allele frequency define clinical outcomes in TP53-
mutated myelodysplastic syndromes. Blood Adv. 2020;4:482–495.

 13. Weinberg OK, Siddon A, Madanat YF, et al. TP53 mutation defines a 
unique subgroup within complex karyotype de novo and therapy-re-
lated MDS/AML. Blood Adv. 2022;6:2847–2853.

 14. Malcovati L, Stevenson K, Papaemmanuil E, et al. SF3B1-mutant MDS 
as a distinct disease subtype: a proposal from the International Working 
Group for the Prognosis of MDS. Blood. 2020;136:157–170.

 15. Kanagal-Shamanna R, Montalban-Bravo G, Sasaki K, et al. Only SF3B1 
mutation involving K700E independently predicts overall survival in 
myelodysplastic syndromes. Cancer. 2021;127:3552–3565.

 16. Rajkomar A, Dean J, Kohane I. Machine learning in medicine. N Engl J 
Med. 2019;380:1347–1358.

 17. Radakovich N, Nagy M, Nazha A. Machine learning in haematological 
malignancies. Lancet Haematol. 2020;7:e541–e550.

 18. Therneau TM, Grambsch PM. Modeling Survival Data: Extending the 
Cox Model. New York: Springer; 2000. ISBN 0-387-98784-3.

 19. Ishwaran H, Kogalur U, Blackstone E, et al. “Random survival forests”. 
Ann Appl Stat. 2008;2:841–860. https://arXiv.org/abs/0811.1645v1.

 20. Shwartz-Ziv R, Armon A. Tabular data: deep learning is not all you 
need. Inf Fusion. 2022;81:84–90.

 21. Gerds T, Ohlendorff J, Ozenne B. riskRegression: Risk Regression 
Models and Prediction Scores for Survival Analysis with Competing 
Risks. R package version 2023.03.22. 2023. Available at: https://
CRAN.R-project.org/package=riskRegression.

 22. Moreno Berggren D, Folkvaljon Y, Engvall M, et al. Prognostic scoring sys-
tems for myelodysplastic syndromes (MDS) in a population-based setting: a 
report from the Swedish MDS register. Br J Haematol. 2018;181:614–627.

 23. de Swart L, Smith A, Johnston TW, et al. Validation of the revised inter-
national prognostic scoring system (IPSS-R) in patients with lower-risk 
myelodysplastic syndromes: a report from the prospective European 
LeukaemiaNet MDS (EUMDS) registry. Br J Haematol. 2015;170:372–383.

 24. Nazha A, Komrokji R, Meggendorfer M, et al. Personalized Prediction 
Model to Risk Stratify Patients With Myelodysplastic Syndromes. J Clin 
Oncol. 2021;39:3737–3746.

 25. Cazzola M, Della Porta MG, Malcovati L. The genetic basis of myelo-
dysplasia and its clinical relevance. Blood. 2013;122:4021–4034.

 26. Nösslinger T, Tüchler H, Germing U, et al. Prognostic impact of age 
and gender in 897 untreated patients with primary myelodysplastic syn-
dromes. Ann Oncol. 2010;21:120–125.

 27. McCombie WR, McPherson JD. Future promises and concerns of ubiq-
uitous next-generation sequencing. Cold Spring Harb Perspect Med. 
2019;9:a025783.

 28. Bruno DS, Hess LM, Li X, et al. Disparities in biomarker testing and 
clinical trial enrollment among patients with lung, breast, or colorectal 
cancers in the United States. JCO Precis Oncol. 2022;6:e2100427.

 29. Radakovich N, Sallman DA, Buckstein R, et al. A machine learning 
model of response to hypomethylating agents in myelodysplastic syn-
dromes. iScience. 2022;25:104931.

D
ow

nloaded from
 http://journals.lw

w
.com

/hem
asphere by B

hD
M

f5eP
H

K
av1zE

oum
1tQ

fN
4a+

kJLhE
Z

gbsIH
o4X

M
i0hC

y
w

C
X

1A
W

nY
Q

p/IlQ
rH

D
3i3D

0O
dR

yi7T
vS

F
l4C

f3V
C

4/O
A

V
pD

D
a8K

2+
Y

a6H
515kE

=
 on 03/06/2024

https://www.gesmd.es/aipss-mds/
https://www.gesmd.es/aipss-mds/
https://arXiv.org/abs/0811.1645v1
https://CRAN.R-project.org/package=riskRegression
https://CRAN.R-project.org/package=riskRegression

