
TIM3, a human acute myeloid leukemia stem cell marker, 
does not enrich for leukemia-initiating stem cells in B-cell 
acute lymphoblastic leukemia

Here, we prompted to determine in molecularly distinct 
B-cell acute lymphoblastic leukemia (B-cell ALL) patients 
whether TIM3 represents a leukemia-initiating stem cell 
(LIC) marker enabling the prospective isolation of LIC-en-
riched B-cell ALL cells and found that in contrast to what 
has been shown in acute myeloid leukemia (AML), TIM3 
does not enrich for LIC in B-ALL.  
Relapse remains a major challenge in the clinical manage-
ment of both AML and B-cell ALL and is driven by rare 
therapy-resistant LIC that reside in specific bone marrow 
(BM) niches.1 The clinical implications of LIC are beyond 
any doubt, as evidenced by the large number of preclinical 
and clinical studies elucidating the phenotype and mol-
ecular determinants of LIC.2,3 In human AML, where the 
hierarchical leukemic stem cell model is well established, 
multiple surface proteins that have been proposed to en-
rich for AML-LIC.4-8 Among these, stands out T-cell immu-
noglobulin mucin-3 (TIM3), a human AML stem cell marker 
which has been shown to enable the prospective isolation 
of LIC-enriched AML cells.9 In fact, TIM3 has been sug-

gested to be a promising target to selectively eliminate 
AML-LIC and several TIM3 inhibitors are being clinically 
tested in patients with advanced AML.10,11 The stem cell 
model picture is less clear in B-cell ALL. Conflicting studies 
could not resolve the phenotype of the B-cell ALL-LIC yet. 
Consequently, whether B-cell ALL follows a hierarchical 
leukemogenic model, driven by a rare population of LIC, or 
a stochastic leukemogenic model where most of the blasts 
(even at different maturational stages) can reconstitute in 
serial xenotransplantation assays and re-establish the 
complete leukemic phenotype remains unresolved.  
Here, we initially profiled by fluorescence-activated cell 
sorting (FACS) the expression of TIM3 in 85 BM samples 
from both pediatric and adult B-cell patients (Online Sup-
plementary Table S1) and found that TIM3 protein is het-
erogeneously expressed in B-cell ALL blasts from both 
diagnostic (Dx, n=47) and relapsed (n=38) patients (Figure 
1A-C). The proportion of TIM3-expressing CD34+CD19+ B-
cell blasts at Dx was ∼2-fold higher than that observed in 
normal B-cell/B-cell progenitor counterparts from healthy 

Figure 1. Expression of TIM3 in blasts from B-cell acute lympho-
blastic leukemia patients at disease presentation and relapse. (A) 
Representative fluorescence-activated cell sorting analysis show-
ing the expression of TIM3 in B-cell acute lymphoblastic leukemia 
(ALL) blasts (CD45low/+ CD34+CD19+). (B, C) Percentage (B) and mean 
fluorescence intensity (MFI) (C) of TIM3+ B-cell ALL cells in bone 
marrow (BM) at diagnosis (Dx) and relapse. CD19+ B-cell progenitors 
and mature B cells were analyzed in healthy BM. Healthy BM, n=21; 
Dx B-cell ALL, n=47; relapsed B-cell ALL, n=38. (D) Bulk RNA se-
quencing-based TIM3 expression obtained at Dx from n=10 pedi-
atric MLL4-AF4+ proB-cell ALL patients and in the corresponding 
matched B-cell ALL (no lineage switch) relapse (n=5) or myeloid 
lineage-switched relapse (n=5).
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Figure 2. Leukemia reconstitution in vivo of TIM3+ and TIM3- B-cell acute lymphoblastic leukemia blasts in cell dose limiting 
dilution primograft xenotransplantation assays. (A) Detailed experimental design for assessing in vivo the leukemia-initiating 
stem cells (LIC) frequency in cell dose-limiting dilution primograft xenotransplantation assays using 5 primary B-cell acute lym-
phoblastic leukemia (B-ALL) samples (2 ETV6-RUNX1+ and 3 MLL-AF4+). Decreasing doses (200,000 down to 5,000) of TIM3+ and 
TIM3- B-cell ALL blasts were intra-bone marrow (intra-BM) transplanted into NSG mice. Mice health and leukemia development 
was monitored over 20 weeks. Mice were sacrificed when i) signs of disease were evident, ii) B-cell ALL graft was >10% in pe-
ripheral blood in the absence of signs of disease or iii) at day 140 (end point) in the absence of symptoms or leukemia engraftment. 
(B) Kaplan-Meier event-free and overall survival curves for each cell fraction (TIM3+ vs. TIM3-) and cell dose (200,000 down to 
5,000). N=150 mice studied in total: 30 mice/leukemia; 75 mice/cell fraction, 10 mice/cell dose. (C) Estimated frequency (and 
95% confidence interval) of LIC in primografts transplanted with TIM3+ and TIM3- blasts. (D) Penetrance of leukemic mice at end 
point (number engrafted mice/total number transplanted mice). IBMT: intra-bone marrow transplant.
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Figure 3. TIM3 expression does not enrich for B-cell acute lymphoblastic leuke-
mia-initiating stem cells capacity in secondary recipients. (A) Detailed experimental 
design for assessing in vivo the leukemia-initiating stem cells (LIC) frequency in 
serial xenotransplantation assays. Bone marrow (BM) cells were retrieved from 20 
primografts engrafted (>80%) with TIM3+ (n=10) or TIM3- (n=10) B-cell acute lym-
phoblastic leukemia (B-ALL) blasts and transplanted at 2 different doses (50,000 
and 25,000) in secondary irradiated recipients (1 primograft into 4 secondary; n=80 
secondary mice, 16 mice/leukemia, 40 mice/cell fraction). Mice health and leukemia 
development was monitored over 20 weeks. Mice were sacrificed when i) signs of 
disease were evident, ii) B-cell ALL graft was >10% in peripheral blood (PB) in the 
absence of signs of disease or iii) at day 140 (end point) in the absence of symptoms 
or leukemia engraftment. (B) Kaplan-Meier event-free and overall survival curves 
for each cell fraction (TIM3+ vs. TIM3-) and cell dose (50,000 and 25,000). N=80 mice 
studied in total: 16 mice/leukemia; 40 mice/cell fraction, 40 mice/cell dose. (C) Es-
timated frequency (and 95% confidence interval) of LIC in secondary mice. (D) Pen-
etrance of leukemic mice at end point (number engrafted mice/total number 
transplanted mice). IBMT: intra-bone marrow transplant.
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BM (20%, range, 0.3-56.4 vs. 12%, range, 2.8-28.4; 
P=0.0028), and the proportion of TIM3+CD34+CD19+ cells 
further increased significantly in B-cell blasts at relapse 
(32%, range, 2-80; P=0.0008) (Figure 1A, B). The levels of 
TIM3 expression in CD34+CD19+ B-cell blasts, measured by 
mean intensity fluorescence, showed a very similar trend 
to the proportion of TIM3+CD34+CD19+ cells, further con-
firming an upregulation of TIM3 expression in B-cell ALL 
patients during disease progression (Dx>relapse) (Figure 
1C). We next analyzed the TIM3 RNA expression in ten 

KMT2A-AFF1+ proB-cell ALL patients at Dx and in matched 
relapses (Figure 1D).12 Half of these MLL-AF4+ proB-cell ALL 
patients relapsed as CD19+ B-cell ALL while the other half 
relapsed as a CD19- myeloid lineage-switched. Very inter-
estingly, the expression levels of TIM3 were dramatically 
higher in all KMT2A-AFF1+ myeloid lineage-switched re-
lapses than in KMT2A-AFF1+ CD19+ B-cell relapses or the Dx 
samples, further linking TIM3 with AML-LIC/AML progres-
sion. 
We next interrogated the ability of highly purified (FACS 
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purity >98%, data not shown) TIM3+ and TIM3- blasts to 
initiate B-cell ALL in vivo upon intra-BM transplantation 
into NSG mice (n=150) in limiting dilution assays (LDA) 
(Figure 2A). All primary leukemias (2 ETV6-RUNX1+ and 3 
KMT2A-AFF1+) engrafted onto primografts reproducing the 
Dx phenotype (data not shown). As expected, both the 
event-free survival (EFS) and the overall survival (OS) de-
creased with increasing doses of transplanted blasts (Fig-
ure 2B); however, no significant differences were found in 
either EFS or OS between TIM3+ and TIM3- populations 
across cell doses (Figure 2B). Importantly, the estimated 
LIC frequency, calculated in LDA using the ELDA software13 
was similar between TIM3+ and TIM3- B-cell blast popu-
lations (Figure 2C). Similarly, despite a trend towards a 
slightly higher frequency of engrafted mice (leukemia pen-
etrance) in primografts transplanted with lower doses of 
TIM3- blasts, no significant differences were observed 
overall in the frequency of engrafted mice between TIM3+ 
and TIM3- B-cell blast populations (Figure 2D). 
For serial transplantation experiments, 50,000 and 25,000 
B-cell ALL cells from primografts were intra-BM trans-
planted into secondary mice, rendering a significantly 
lower EFS and OS (higher aggressiveness) (Figure 3A, B) 
than that observed in primary recipients; however, no dif-
ferences in either EFS or OS were observed between sec-
ondary recipients transplanted with TIM3+ or TIM3- B-cell 
blast populations (Figure 3B). Similarly, the estimated LIC 
frequency (Figure 3C) and leukemic penetrance (frequency 
of engrafted mice) were very similar between secondary 
recipients transplanted with TIM3+ or TIM3- B-cell blast 
populations (Figure 3D). Taken together, our data demon-
strate that despite an increased expression of TIM3 in B-
cell ALL blasts during disease progression, TIM3 does not 
enrich for LIC in B-cell ALL. 
We report here that, in contrast to what has been shown 
in AML, TIM3 does not represent a stem cell marker ca-
pable of prospectively isolating LIC in either high-risk 
KMT2A-AFF1+ and low/standard-risk ETV6-RUNX1+ B-cell 
ALL. All individual high-risk and standard-risk leukemic pri-
mary BM samples engrafted in NSG mice even at very low 
doses, validating this immunodeficient mouse model to 
functionally assess for candidate human leukemia stem 
cell populations. Furthermore, our intra-BM transplantation 
assay provides a highly sensitive and specific assay for in-
terrogating LIC in acute leukemia because it overcomes 
potential survival and BM homing intrinsic deficiencies of 
transplanted cells.14 These findings are in line with previous 
reports and reinforce that distinct immunophenotypically 
defined B-cell ALL blast populations, even at different 
maturation stages, have stem cell properties,14,15 reinforcing 
that some hematopoietic malignancies (as for AML and 
other myeloid neoplasms) are maintained by a rare popu-
lation of LIC (hierarchical model) whereas in B-cell ALL 
most of the blasts possess “stemness” features (stochastic 

model) being capable of initiating and recapitulating the 
disease in vivo. Further work is needed to understand the 
role of, and alteration in, the expression of the immune 
checkpoint receptor TIM3 in blasts patients with acute 
leukemia, especially for rationalizing and interpreting cur-
rent clinical trials testing TIM3 inhibitors in relapsing/re-
fractory AML and myelodysplastic syndrome patients.11 
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