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Juan Ruiz-
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SUMMARY

Deficiency in DNA MMR activity results in tumors with a hypermutator pheno-
type, termed microsatellite instability (MSI). Beyond its utility in Lynch syndrome
screening algorithms, today MSI has gained importance as predictive biomarker
for various anti-PD-1 therapies across many different tumor types. Over the past
years, many computational methods have emerged to infer MSI using either
DNA- or RNA-based approaches. Considering this together with the fact that
MSI-high tumors frequently exhibit a hypermethylated phenotype, herein we
developed and validatedMSIMEP, a computational tool for predictingMSI status
from microarray DNA methylation tumor profiles of colorectal cancer samples.
We demonstrated that MSIMEP optimized and reduced models have high perfor-
mance in predicting MSI in different colorectal cancer cohorts. Moreover, we
tested its consistency in other tumor types with high prevalence of MSI such as
gastric and endometrial cancers. Finally, we demonstrated better performance
of both MSIMEP models vis-à-vis a MLH1 promoter methylation-based one in
colorectal cancer.

INTRODUCTION

Microsatellites are short tandem repeat DNA sequences spread throughout the human genome. Because

of their highly repetitive nature, these sequences have a higher propensity for acquiring mutations. Defi-

ciency in DNA mismatch repair (MMR) activity results in a hypermutator phenotype, termed microsatellite

instability (MSI), characterized by the presence of single nucleotide substitutions or insertion-deletion mu-

tations within these microsatellites.1 The MMR deficiency resulting from germline mutations or epigenetic

alterations in any of the MMR genes (MLH1, MSH2, MSH6, and PMS2), as well as deletions in the EPCAM

gene, is the cause of Lynch syndrome (LS) and its variants.2 One of the most aggressive, highly penetrant

childhood cancer predisposition syndromes, the constitutional MMR deficiency syndrome, is caused by ho-

mozygous germline mutations in any of the four MMR genes. Furthermore, LS can result frommosaic germ-

lineMLH1 epimutations. In contrast, biallelic MLH1 promoter methylation is primarily the key somatic event

responsible for the loss of MLH1 expression in �75% of sporadic cancers with MSI.1,2 Although MMR defi-

ciency/MSI determination has been classically the first step in LS screening algorithms, today MSI has

gained importance as predictive biomarker for various anti-PD-1 therapies across many different tumor

types (tumor-agnostic indication) and particularly in colorectal and endometrial cancers.3 Therefore, eval-

uation of MSI, through either PCR-based assays or immunohistochemistry, has become a routine clinical

practice for various cancer types. With the emergence of next-generation sequencing-based technologies,

alternate computational methods to infer MSI using DNA-targeted, whole exome or whole genome

sequencing data (e.g., MSIsensor, MSIsensor-pro, mSINGS, MOSAIC, and MANTIS) have been devel-

oped.4–8 Other computational approaches, instead of observing microsatellites directly to evaluate MSI,

use orthogonal prediction methods based on gene expression9–13 or a combination of DNA methylation

levels and mutations in MMR pathway genes (MIRMMR).14 Based on this and taking into consideration

the fact that MSI-high tumors frequently exhibit a hypermethylated phenotype,15 herein we propose an

MSI prediction method based on microarray DNA methylation tumor tissue profiling. We explore the
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underlying features that predict MSI and develop a reduced version with potential applicability to liquid

biopsy samples.

RESULTS

Model development and optimization

First, to find differentially methylated CpG probes between MSI and MSS tumors, we interrogated Infinium

HumanMethylation 450K array data obtained from 388 colorectal primary tumors from the pooled TheCancer

Genome Atlas (TCGA) Colon Adenocarcinoma (COAD)/Rectum Adenocarcinoma (READ) cohort. After car-

rying out methylation probes filtering, data imputation, and quality control (see STARMethods), we identified

780 probes with an absolute Db>0.3 and a B-H false discovery rate (FDR)-adjusted p value<0.05. Of

these probes 758 (97.2%) were hypermethylated and 22 (2.8%) hypomethylated (Figure S1). Then, these 780

differentially methylated CpG probes were used to train 7 supervised machine learning models on the

same dataset. The generalized linear model (GLM) implemented in GLMNET yielded the best performance

after five repeats of 10-fold cross-validation (accuracy = 0.98, kappa = 0.92). This performance was reached

when setting alpha = 0.1 and lamda = 0.0182 as tuned parameters. GLM performance was significantly better

when compared against the second (Wilcoxon test Holm family-wise error rate (FWER)-adjusted p value =

0.041) and third (Wilcoxon test Holm FWER-adjusted p value = 0.017) best alternative models (Figure 1A).

Once the best model was selected, we carried out recursive feature elimination (RFE) for model optimiza-

tion (Figure S2). Optimized model (alpha = 0.1, lamda = 0.0182, accuracy = 0.98, kappa = 0.92, area under

the receiver operating characteristic curve (AUROC) = 0.98, sensitivity = 0.88, and specificity = 1.00), here-

after MSIMEP, is composed of 400 CpG probes (Figure 1B and Table 1). Importantly, those cases incorrectly

classified by our model presented a MANTIS score statistically significantly closer to 0.4,8 the average dis-

tance threshold established to differentiate MSI from MSS tumors by that computational method,

than those properly classified (MSS vs failed, Wilcoxon test p value<0.001; failed vs MSI, Wilcoxon test

p value = 0.009) (Figure S3). Importantly, MSIMEP performance was consistent across different clinical

and molecular subgroups (Figures S4 and S5).

Additionally, considering a potential applicability to liquid biopsy samples and assuming a limited sacrifice

of accuracy (see STARMethods), we developed a reduced version of MSIMEP composed of 25 CpG probes

(Figures S1, S4, and S6).

Even though MSlMEP is intended for colorectal cancer (CRC), we were interested to test its performance in

other tumor types with high prevalence of MSI such as gastric and endometrial cancers. For this purpose,

we interrogated Infinium Human Methylation 450K array data from the TCGA-Stomach Adenocarcinoma

(STAD) and TCGA-Uterine Corpus Endometrial Carcinoma (UCEC) cohorts. The optimized model yielded

accuracy = 0.84, kappa = 0.56, AUROC = 0.94, sensitivity = 0.9, specificity = 0.82, and precision = 0.52,

and accuracy = 0.88, kappa = 0.70, AUROC = 0.92, sensitivity = 0.72, specificity = 0.95, and precision =

0.86 in STAD and UCEC, respectively (Figure S7). Although far from perfect, reduced MSIMEP yielded

accuracy = 0.75, kappa = 0.43, AUROC = 0.93, sensitivity = 0.94, specificity = 0.71, and precision = 0.41,

and accuracy = 0.89, kappa = 0.73, AUROC = 0.93, sensitivity = 0.82, specificity = 0.91, and precision =

0.81 in STAD and UCEC, respectively (Figure S7).

Underlying features of the MSIMEP model

The compositionof theMSIMEP isbasedona 400CpGprobeset spread through the 22humanautosomes (Fig-

ure2A).Chromosomes3,1, and6have the largestnumberofMSIMEPprobes (41, 34, and28CpGs, respectively),

and the highest density is present on chromosome 19 (21 CpGs, 0.37 CpGs/Mb). Overall, MSIMEP probes tend

to be located on high GC content regions (88%), which reflects not only the composition of the Illumina 450K

Infinium Array but also the intrinsic CpG island methylator phenotype of tumors with MSI.

From the genomic perspective, 63 MSIMEP probes (15.8%) are located at intergenic regions, whereas 337

probes (84.3%) are associated with coding genes. Remarkably, 34 MSIMEP probes (8.5%) are associated

with human cancer genes (COSMIC), including 19 probes associated with genes involved in cancer syn-

dromes such as MLH1, EXT1, WRN, and AXIN2. Twenty-four MSIMEP probes (6%) are associated with tu-

mor suppressor genes, 13 probes (3.3%) with fusion genes, and six probes (1.5%) with proto-oncogenes

(Figure 2A). The top-five relevant genes for the MSIMEP predictive model are MLH1, TRIP10, C1orf95,

EXT1, and GPR160, respectively (Figure 2B). In addition, when evaluating the composition of MSIMEP
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from a functional perspective, 250 probes (62%) are located at regulatory elements. Compared with the In-

finium Human Methylation 450K array, MSIMEP presents a higher proportion of regulatory regions at both

genic (c2 test p value = 0.003) and intergenic regions (c2 test p value = 0.012).

Considering their relevance for gene structure, 219 probes (54.8%) are located within a proximal promoter

region (between 1.5 kb upstream of transcription start site and the first exon). One hundred and nine

probes (26.3%) are located within the gene body, and 13 probes (3.3%) are located within the 30UTR.
When comparing MSI vs MSS tumors from TCGA COAD/READ cohort, hypermethylated probes are

predominantly located on promoter regions (Fisher exact test p value<0.001, hypermethylated vs hypome-

thylated), whereas hypomethylated probes are mainly located on gene bodies (Fisher exact test

p value<0.001, hypermethylated vs hypomethylated) (Figure 2C).

According to the CpG landscape, 231 MSIMEP probes are located at CpG islands (57.8%), and 107 probes are

located on their surroundings: 89 on CpG shores (22.3%) and 18 on CpG shelves (4.5%). Sixty-two MSIMEP

probes are located on open sea genomic regions (15.5%). Again, when comparing MSI vs MSS tumors from

Table 1. MSIMEP optimized model performance in different cohorts

Cohort

Cancer

type Phase

Sample

size (n)

MSI

(%)

MSS

(%) Accuracy Kappa AUROC Sensitivity Specificity Precision

TCGA COAD/

READ

CRC Training 387 15 85 0.98 0.92 0.98 0.88 1.00 0.99

External I CRC Validation 79 14 86 0.97 0.90 0.99 1.00 0.97 0.85

External II CRC Validation 262 15 85 0.95 0.83 0.95 0.88 0.97 0.83

External III CRC Validation 81 11 89 0.86 0.52 0.86 0.89 0.86 0.44

External IV CRC Validation 95 100 NA NA NA NA 0.86 NA 1.00

External Pooled CRC Validation 517 30 70 0.93 0.83 0.93 0.88 0.95 0.88

TCGA-STAD STAD Exploratory 394 18 82 0.84 0.56 0.94 0.90 0.82 0.52

TCGA-UCEC UCEC Exploratory 420 31 69 0.88 0.70 0.92 0.72 0.95 0.86

A B

Figure 1. Development of the MSIMEP classifier

(A) Evaluation of alternative algorithms for MSI/MSS phenotype prediction from array methylation tumor profiles. Model

performance was assessed through 5 rounds of 10-fold cross-validation on the TCGA COAD/READ dataset, and an

optimal algorithm (GLM) was selected based on significant improvement in classification accuracy. Alternative algorithms

(Neural Network, Random Forest, SVM, Decision Tree, KNN, and Naive Bayes) are displayed sorted by average accuracy,

with Holm FWER-adjusted p values showing statistical differences against GLM.

(B) Heatmap for themethylation tumor profile (b-values) of TCGACOAD/READ patients for the CpG probes incorporated

into the MSIMEP optimized model. CpG probes (x axis) are displayed following hierarchical clustering criteria, and TCGA

COAD/READ patients (y axis) are grouped by MSI/MSS phenotype (green = MSI, red = MSS).
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D

Figure 2. Features of the MSIMEP model

(A) Genomic distribution of MSIMEP CpG probes. The x axis shows the CpG coordinates across the human autosomes (chromosomes 1–22). The y axis shows

relative density of MSIMEP CpG probes (top), and the relative importance of each CpG for the GLM classification model (bottom). Probes are classified as

genic (green), intergenic (gray), or cancer-related (red). Cancer-related probes are further classified according to the role/s in cancer (tumor suppressor

gene, oncogene, fusion gene, or dual role) of the associated gene. Probes associated with regulatory elements are highlighted with a central dot. Location of

the MLH1 gene is shown.

(B) Top 20 genes profiled by MSIMEP, ranked by the cumulative importance for the GLMmodel of the associated CpG probes. Dot size reflects the number

of probes associated with each gene. Cancer genes are highlighted with an asterisk.
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TCGA COAD/READ cohort, hypermethylated probes are predominant on CpG islands (Fisher exact test p

value<0.001, hypermethylated vs hypomethylated), whereas hypomethylated probes typically are on open

sea regions (Fisher exact test p value<0.001, hypermethylated vs hypomethylated) (Figure 2C).

The composition of the MSIMEP reduced model is based on a 25 CpG probe set (Table 2, Figure S1), con-

formed by 4 probes located at intergenic regions, and 21 CpG probes associated with genes. Among those

probes associated with genes, 9 CpGs are attributed to 3 relevant cancer genes (MLH1, EXT1, and WNK2,

all well-established [Tier I] tumor suppressor genes).

Finally, to fully characterize MSIMEP from a biological viewpoint, we carry out a gene set enrichment anal-

ysis. As expected, when evaluated at promoter level, this analysis revealed an enrichment of important

pathways involved in mismatch repair (B-H FDR-adjusted p value<0.001), colorectal and endometrial can-

cers (B-H FDR-adjusted p value<0.001), andMAPK signaling (B-H FDR-adjusted p value = 0.015) (Figure 2D).

When evaluated either all CpG probes or those located at body gene level, mismatch repair (B-H FDR-

adjusted p value<0.001), and pathways in cancer (B-H FDR-adjusted p value<0.001) appear among the

most significant pathways, confirming again the biological correlation of MSIMEP with the MSI phenotype

in cancer. Other significantly enriched pathways are described in Figure S8. Moreover, through computa-

tional immune cell deconvolution techniques we confirmed that MSIMEP-predictedMSI CRCs preserve the

same immune cell context than those MSI cases originally classified through standard PCR-based assays in

the TCGA COAD/READ cohort (Figure S9).

External validation of MSIMEP models

To further confirm the accuracy of MSIMEP models in predicting MSI status in CRC samples, we evaluated

its performance in four independent CRC cohorts.

First, we tried MSIMEP in the external cohort I. In this cohort, MSIMEP model yielded promising

results when evaluated in either invasive front (accuracy = 0.99, kappa = 0.95, AUROC = 1.00, sensitivity =

1.00, specificity = 0.99, and precision = 0.92), or in luminal (accuracy = 0.99, kappa = 0.95, AUROC = 0.99, sensi-

tivity = 1.00, specificity = 0.99, and precision = 0.92) or center (accuracy = 0.97, kappa = 0.90, AUROC = 0.99,

sensitivity = 1.00, specificity = 0.97, and precision = 0.85) regions (Table 1, Figure 3A). Importantly, the concor-

dance of predictions among the three different tumor regions per case was extremely high (Cochran’s Q test

p value = 0.607, no statistically significant differences found in predictions by tumor region) (Figure 3B).

Next, we evaluatedMSIMEP in cohorts II and III, showing again consistent results (cohort II: accuracy = 0.95,

kappa = 0.83, AUROC= 0.95, sensitivity = 0.88, specificity = 0.97, and precision = 0.83; cohort III: accuracy =

0.86, kappa = 0.52, AUROC = 0.86, sensitivity = 0.89, specificity = 0.86, and precision = 0.44) (Table 1,

Figures 4A and 4B). Moreover, we assessed the predictive potential of MSIMEP in cohort IV, which is

only composed of MSI-H cases. Despite that this represents a challenging cohort due to the lack of MSS

cases, MSIMEP yielded a sensitivity of 0.86 (Table 1, Figure 4C).

Additionally, we evaluated MSIMEP performance across different important clinical and molecular sub-

groups in a pooled CRC cohort (external cohorts I to IV). As expected, MSIMEP yielded consistent results,

even when stratified by MLH1 promoter methylation status, a challenging predictive scenario considering

the high relative importance of MLH1 CpG probes in MSIMEP model (Figure S10).

MSIMEP reducedmodel performance was also robust in all the external cohorts (I to IV) (Table 3, Figures 3A

and 4) and across all subgroups in the pooled cohort (Figure S11).

Altogether, these results suggest that MSIMEP models can be used to predict MSI status from microarray

DNA methylation profiles from both fresh-frozen FF and formalin-fixed paraffin-embedded (FFPE) tumor

CRC samples.

Figure 2. Continued

(C) Comparison of the distribution of hypermethylated and hypomethylated MSIMEP CpG probes (MSI vs MSS tumors from TCGA COAD/READ cohort)

according to gene and CpG island context regions.

(D) Pathway enrichment analysis showing overrepresented KEGG terms in MSIMEP at promoter level (n = 134 CpG probes), ranked by B-H FDR-adjusted p

values.
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Comparison of MSIMEP models with a MLH1 promoter methylation-based model

Taking into consideration the roleof biallelicMLH1promotermethylation inmost of the sporadicCRCswithMSI,

we compared the performance of our MSIMEP models with a MLH1 promoter methylation-based model

(Table S1) in a pooled CRC cohort (external cohorts I to IV). As expected, MSIMEP optimized and reduced

models yielded a better sensitivity (0.88 for bothMSIMEPmodels vs 0.71 forMLH1 promotermethylation-based

model) at the expense of a slightly lower specificity than theMLH1 promotermethylation-basedmodel (0.95 and

0.92 for MSIMEP optimized and reduced models, respectively, vs 0.96 for MLH1 promoter methylation-based

model) (Figure 5). Congruent results were obtained when stratified by MLH1 promoter methylation status, con-

firming the increased sensitivity of MSIMEP models to detect those non-MLH1 dependent cases (Figure S12).

DISCUSSION

We developed MSIMEP, a computational tool for predicting MSI status from microarray DNA methylation

profiles of CRC samples. We demonstrated the accuracy and robustness of MSIMEP by testing it in multiple

CRC cohorts with varying tumor sample types (either FF or FFPE) from two different Illumina platforms

(either Infinium Human Methylation 450K or Infinium MethylationEPIC arrays). Additionally, we tested its

performance in other tumor types with high prevalence of MSI such as gastric and endometrial cancers,

obtaining consistent results.

As described by others,16 DNA methylation profiling represents a solid approach for blood-based liquid

biopsy due to, among other aspects, the better limit of detection of methylation-based approaches and

the advantage of avoiding somatic mutations derived from normal tissues, benign diseases, and clonal

Table 2. Description of the 25 CpG probes of the MSIMEP reduced model

CpG probe Chromosome Position Strand Gene Gene region Methylation statusa (MSI vs MSS)

cg15592945 1 226736711 F C1orf95 1st Exon Hypermethylated

cg03745431 1 226736713 F C1orf95 1st Exon Hypermethylated

cg17621259 3 37035168 F MLH1 TSS200 Hypermethylated

cg14671526 3 37035200 R MLH1 TSS200 Hypermethylated

cg27331401 3 37035207 F MLH1 TSS200 Hypermethylated

cg06590608 3 37035228 F MLH1 TSS200 Hypermethylated

cg11224603 3 37035282 R MLH1 1st Exon Hypermethylated

cg14598950 3 37035355 F MLH1 1st Exon Hypermethylated

cg04563996 3 57093519 R ARHGEF3 50UTR Hypomethylated

cg15048832 3 150130775 R TSC22D2 Body Hypermethylated

cg12350863 3 169758289 F GPR160 50UTR Hypermethylated

cg20288341 6 31683131 F LY6G6E TSS1500 Hypermethylated

cg06226516 7 13072314 R NA IGR Hypermethylated

cg02200207 7 29605237 R PRR15 50UTR Hypermethylated

cg05313153 8 119122430 F EXT1 1st Exon Hypermethylated

cg21602557 8 119122878 R EXT1 1st Exon Hypermethylated

cg13563298 9 95948059 R WNK2 Body Hypermethylated

cg27240158 11 12698019 R TEAD1 50UTR Hypermethylated

cg19524009 13 52735075 R NEK3 TSS1500 Hypermethylated

cg06223834 16 4103161 R ADCY9 Body Hypermethylated

cg09294739 16 55218782 R NA IGR Hypomethylated

cg11582717 17 63452460 R NA IGR Hypermethylated

cg13860006 19 6741178 R TRIP10 Body Hypermethylated

cg06410591 19 6741181 R TRIP10 Body Hypermethylated

cg05232694 20 48809539 R NA IGR Hypermethylated

F, forward; IGR, intergenic region; NA, not applicable; R, reverse.
aMethylation status is described based on the comparison of MSI vs MSS tumors from TCGA COAD/READ cohort.
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hematopoiesis of indeterminate potential.16,17 Acknowledging this fact, we developed and validated the

MSIMEP reduced model, which could be adapted, and facilitate its translation to the clinic as a cost-effec-

tive liquid biopsy test.

To explore the underlying features of our MSI predictive model, we assessed the relative importance of the

different predictors of MSIMEP in their genomic context. Although probes located at intergenic regions

numerically represented only 15.8% of the total of predictors included in MSIMEP, taken as a whole,

they accumulated a major relative importance in the model. Although the biological interpretation of

this finding is complex and out of the scope of the present study, considering that intergenic regions

may contain important functional sequences such as promoters and other regulatory elements, their

role in the MSI phenotype and its regulation by DNA methylation deserve further investigation. Regarding

probes located in genic regions, their highest proportion was in MLH1, reflecting the role of the methyl-

ation of its promoter as the primary somatic event responsible for the majority of sporadic MSI-H CRCs.18

Additionally, confirming our expectations, (1) GSEA revealed an enrichment of pathways involved not only in

mismatch repair but also in colorectal andendometrial cancers and (2) computational immunecell deconvolution

techniques confirmed a consistent immune cell context betweenMSIMEP predicted and PCR-basedMSI CRCs.

Last, and after confirming MSIMEP performance across different important clinical and molecular sub-

groups, we carried out a face-to-face comparison of our MSIMEP models with a MLH1 promoter methyl-

ation-based model in a pooled CRC cohort composed of external cohorts I to IV, which confirmed a higher

sensitivity of MSIMEP to detect MSI samples, mainly due to an increased capacity to detect those non-

MLH1-dependent cases.

In summary, MSIMEP could have useful applications in both basic and translational research by providing a

cost-effective technique to characterize MSI status alongside methylation profiles in CRC. Future studies

are needed to open MSIMEP to a wider range of tumor types, platforms, and biospecimens.

A

B

Figure 3. MSIMEP evaluation in CRC external cohort I

(A) Barplots showing complementary metrics (accuracy, kappa, AUROC, sensitivity, specificity, and precision) for the

evaluation of MSIMEP classification capacity of MSI/MSS patients across different CRC regions (invasive front, luminal,

and center). Models: MSIMEP optimized (red) and MSIMEP reduced (blue).

(B) Venn diagram showing the concordance in MSI/MSS prediction across different CRC regions from external cohort I

patients. Cohort: external I (n = 79, 14% MSI).
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Limitations of the study

Our tool MSIMEP has several limitations. First, because the training data used for its development comes

from Infinium Human Methylation 450K arrays, it should be adapted before moving to other types of plat-

forms. Second, becauseMSIMEP is focused on the prediction ofMSI in CRC, its performance in other tumor

types such as gastric cancer or those neoplasms with low prevalence of MSI deserves further investigation.

Third, the evaluation of MSI status of tumors by using distinct PCR-based assays introduced bias that only

could be solved with a centralized reevaluation. All these aspects, together with the assessment of the

MSIMEP reduced model in circulating tumor DNA samples, represent areas of improvement to be priori-

tized to realize the translation of MSIMEP to the daily clinical practice. Furthermore, it would be of interest

to evaluate if MSIMEP offers an increased value in detecting potential candidates for anti-PD-1 therapies

beyond PCR-based MSI status.

A

B

C

Figure 4. MSIMEP evaluation in CRC external cohorts II–IV

(A–C) Barplots showing complementary metrics (accuracy, kappa, AUROC, sensitivity, specificity, and precision) for the evaluation of MSIMEP classification

capacity of MSI vs MSS patients. ROC curves showing MSIMEP classification performance at alternative predictive thresholds. Models: MSIMEP optimized

(red) and MSIMEP reduced (blue). Circle chart showing the fraction of detected cases in a cohort of MSI patients (ID-001 to ID-095). (A) Cohort External II

(n = 262, 15% MSI), (B) External cohort III (n = 81, 11% MSI), and (C) external cohort IV (n = 95, 100% MSI).
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Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

B Data and code availability

d EXPERIMENTAL MODEL AND SUBJECT DETAILS

B TCGA cohorts

B External cohorts

d METHOD DETAILS

B TCGA datasets annotation

B Analysis of DNA methylation arrays

B Machine-learning predictive models

B Model description

B MSIMEP exploratory analysis in alternative TCGA cohorts

B MSIMEP validation in external colorectal cancer cohorts

B Deconvolution of immune cell populations

d QUANTIFICATION AND STATISTICAL ANALYSIS

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2023.106127.

Table 3. MSIMEP reduced model performance in different cohorts

Cohort Cancer type Phase Sample size (n) MSI (%) MSS (%) Accuracy Kappa AUROC Sensitivity Specificity Precision

TCGA COAD/READ CRC Training 387 15 85 0.98 0.92 0.99 0.86 1.00 0.95

External I CRC Validation 79 14 86 0.97 0.90 0.99 1.00 0.97 0.85

External II CRC Validation 262 15 85 0.93 0.75 0.96 0.88 0.94 0.73

External III CRC Validation 81 11 89 0.80 0.40 0.86 0.89 0.79 0.35

External IV CRC Validation 95 100 NA 0.86 NA NA 0.86 NA 1.00

External pooled CRC Validation 517 30 70 0.91 0.78 0.93 0.88 0.92 0.82

TCGA-STAD STAD Exploratory 394 18 82 0.75 0.43 0.93 0.94 0.71 0.41

TCGA-UCEC UCEC Exploratory 420 31 69 0.89 0.73 0.93 0.82 0.91 0.81

NA, not applicable.

Figure 5. Comparison of the performance of three GLM models in a pooled CRC cohort (external cohorts I to IV)

Barplots showing complementary metrics (accuracy, kappa, AUROC, sensitivity, specificity, and precision) for the

evaluation of MSIMEP classification capacity of MSI vs MSS patients. ROC curves showing MSIMEP classification

performance at alternative predictive thresholds. Models: MSIMEP optimized (red), MSIMEP reduced (blue), and

promoter MLH1 (green). Cohort: external pool (n = 517, 30% MSI).
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STAR+METHODS

KEY RESOURCES TABLE

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead con-

tact, Juan Ruiz-Bañobre (juan.ruiz.banobre@sergas.es).

Materials availability

This study did not generate new unique reagents or material.

Data and code availability

d Methylation data analyzed in this study is publicly available at Genomic Data Commons (GDC) data

portal (TCGA-COAD, TCGA-READ, TCGA-STAD, and TCGA-UCEC) (Table S2A), Gene Expression

Omnibus (GEO) data repository (GEO accession number: GSE69550) (External cohort I) (Table S2B),

European Genome-phenome Archive (EGA accession number: EGAS00001004293) (External cohort II)

(Table S2C), ArrayExpress Archive of Functional Genomics Data repository (accession number:

E-GEOD-68060) (External cohort III) (Table S2D), and Japanese Geno-type-phenotype Archive (JGA)

(JGA accession number: JGAS00000000113) (External cohort IV) (Table S2E). Accession codes for all

these required datasets are included in the key resources table.

d All the original code, including MSIMEP package and associated models, has been deposited on our

GitLab repository (https://gitlab.com/mobilegenomesgroup/msimep) and is publicly available.

d Any additional information required to reanalyze the data reported in this paper is available from the

lead contact upon request.

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA Colon Adenocarcinoma GDC Data Portal TCGA-COAD

TCGA Rectum Adenocarcinoma GDC Data Portal TCGA-READ

TCGA Colon and Rectal Cancer UCSC Xena Portal TCGA-COADREAD

TCGA Stomach Carcinoma GDC Data Portal TCGA-STAD

TCGA Uterine Corpus Endometrial Carcinoma GDC Data Portal TCGA-UCEC

External cohort I GEO GSE69550

External cohort II EGA EGAS00001004293

External cohort III ArrayExpress E-GEOD-68060

External cohort IV JGA JGAS00000000113

UCSC Genome Browser GRCh37 Kent et al., 200219 https://genome.ucsc.edu

COSMIC v96 - Cancer Gene Census Sondka et al., 201820 https://cancer.sanger.ac.uk/cosmic

Software and algorithms

R R Core Team, 202121 https://www.R-project.org/

ChAMP v2.24.0 Morris et al., 201422 https://github.com/YuanTian1991/ChAMP

caret v6.0-91 Kuhn, 200823 https://github.com/topepo/caret

methylGSA v1.12.0 Ren and Kuan, 201924 https://github.com/reese3928/methylGSA

MLeval v0.3 John, 202025 https://CRAN.R-project.org/package=MLeval

VennDiagram v1.7.1 Chen and Boutros, 201126 https://github.com/cran/VennDiagram

CIBERSORTx Newman et al., 201927 https://cibersortx.stanford.edu/

MSIMEP This paper https://gitlab.com/mobilegenomesgroup/

msimep

ll
OPEN ACCESS

12 iScience 26, 106127, March 17, 2023

iScience
Article

mailto:juan.ruiz.banobre@sergas.es
https://gitlab.com/mobilegenomesgroup/msimep
https://genome.ucsc.edu
https://cancer.sanger.ac.uk/cosmic
https://www.R-project.org/
https://github.com/YuanTian1991/ChAMP
https://github.com/topepo/caret
https://github.com/reese3928/methylGSA
https://CRAN.R-project.org/package=MLeval
https://github.com/cran/VennDiagram
https://cibersortx.stanford.edu/
https://gitlab.com/mobilegenomesgroup/msimep
https://gitlab.com/mobilegenomesgroup/msimep


EXPERIMENTAL MODEL AND SUBJECT DETAILS

TCGA cohorts

Methylation datasets were downloaded from the GDCData Portal (Project IDs TCGA-COAD, TCGA-READ,

TCGA-STAD and TCGA-UCEC). Experimental Plat-form was Infinium Human Methylation 450K from

Illumina. Downloaded data corresponded to 353 TCGA-COAD samples, 106 TCGA-READ samples,

TCGA-STAD 397 samples and TCGA-UCEC 485 samples (Data S1). Only 450K methylation profiles from

fresh-frozen (FF) primary solid tumors samples were included.

Clinical information was downloaded from the GDC Data Portal [Project IDs: TCGA-COAD (458 cases),

TCGA-READ (172 cases), TCGA-STAD (443 cases), TCGA-UCEC (560 cases)]. Gene expression and single

nucleotide variant information was downloaded from GDC Data Portal (TCGA-COAD) (Data S2 and Data

S3). Additionally, CIMP status information of samples from TCGA COAD/READ cohort was downloaded

from the UCSC Xena Portal (dataset ID: TCGA.COADREAD.sampleMap/COADREAD_clinicalMatrix).

MSI status was evaluated through PCR-based assays as previously described.28–30 For each patient MSI sta-

tus was encoded as a binary phenotype after considering MSS and MSI-Low profiles as MSS, and MSI-High

profiles asMSI, in order tomaximize themodel predictive capacity toward relevant cases, as recommended

by previous studies.7

Among downloaded cases, only those from primary solid tumors with available DNA methylation beta

(b)-values and MSI status information were used. From the pooled TCGA-COAD/READ cohort, 387 out

of 459 cases fulfilled these criteria (Table S2A). From TCGA-STAD and TCGA-UCEC cohorts, 394 out of

397 cases and 420 out of 485 cases fulfilled these criteria, respectively.

External cohorts

External cohort I

Methylation dataset was downloaded from the Gene Expression Omnibus (GEO) data repository

(GEO accession number: GSE69550). Experimental Plat-form was Infinium Human Methylation 450K from

Illumina. Downloaded data correspond to 79 formalin-fixed paraffin-embedded (FFPE) colorectal primary

tumors. Three regions per primary tumor were selected: the region nearest the digestive tract

surface (luminal), the central bulk (center), and the invasive front (front). MSI status was provided by the cor-

responding author upon request (Table S2B).31

External cohort II

Methylation dataset was downloaded from the European Genome-phenome Archive (EGA accession num-

ber: EGAS00001004293). Experimental Plat-form was Infinium Human Methylation 450K from Illumina.

Downloaded data correspond to 262 FF colorectal primary tumors. MSI status and clinical characteristics

were provided by the corresponding author upon request (Table S2C).32

External cohort III

Methylation dataset and MSI status information were downloaded from the ArrayExpress Archive of Func-

tional Genomics Data repository (accession number: E-GEOD-68060). Experimental Plat-form was Infinium

Human Methylation 450K from Illumina. Downloaded data correspond to 81 FF colorectal primary tumors.

Clinical characteristics were provided by the corresponding author upon request (Table S2D).

External cohort IV

Methylation dataset was downloaded from the Japanese Geno-type-phenotype Archive (JGA) (JGA

accession number: JGAS00000000113). Experimental Plat-form was Infinium MethylationEPIC array from

Illumina. Downloaded data correspond to 95 FF MSI-H colorectal primary tumors. MSI status and clinical

characteristics were provided by the corresponding author upon request (Table S2E).33

METHOD DETAILS

TCGA datasets annotation

Annotation for methylation datasets was obtained with the ChAMP v2.24.0 R package31 retrieving relevant

information: probe type, strand, genomic coordinates, CpG island context (island ID and associated
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features) and gene context (gene symbol and associated features). Gene promoter was defined including

probes located up to 1.5 kb upstream from the transcription start site (TSS1500 and TSS200 features).

Annotation for cancer genes was obtained from the Cancer Gene Census database (COSMIC v96 release),

retrieving relevant information (such as tier, role in cancer, and cancer syndrome) for each cancer gene.

Genome-wide annotation for regulatory elements (curated regulatory regions, TFBS and regulatory poly-

morphisms) was obtained from the Open Regulatory Annotation track available at the UCSC Genome

Browser database.

Analysis of DNA methylation arrays

Analysis of DNA methylation arrays was performed with the ChAMP v2.24.0 R package.22 Methylation

probe filtering was performed with champ.filter, setting the exclusion of (I) non-CpG probes, (II) Multi-

Hit probes, (III) probes matching SNPs, and (IV) probes located in chromosomes X and Y. Methylation

data imputation was performed with champ.impute under combined method (partial removal

followed by KNN imputation) setting ProbeCutoff = 0.2, SampleCutoff = 0.2 and k = 5 parameters. Quality

control steps were performed with champ.QC generating mdsplots, densityPlots and dendrograms for

methylation distribution. Normalization of Type-I and Type-II probes was performed with champ.norm un-

der peak-based correction (PBC) method. Identification of differential methylation positions was

performed with champ.DMP by comparing MSI vs MSS samples, applying Benjamini-Hochberg (B-H)

False Discovery Rate (FDR) p value adjustment after limma analysis. MLH1 promoter methylation status

was defined as previously described.34 Briefly, if b-value for all four MLH1 CpG sites cg23658326,

cg11600697, cg21490561, and cg00893636 were greater than or equal to 0.18, 0.27, 0.11, and 0.10, respec-

tively, the sample was considered hypermethylated forMLH1 promoter. Otherwise, the sample was consid-

ered non-hypermethylated.

Machine-learning predictive models

The selection of predictors was done by retaining those probes from pooled TCGA COAD/READ dataset

with an absolute delta b-value (Db)>0.3 between MSI and MSS, and B-H FDR adjusted p value<0.05. Both

hypermethylated and hypomethylated relevant probes were included as predictors, and patient binary

MSI/MSS status was considered as response variable.

Model development was performed with caret v6.0-91 R package,23 training the following machine-learning

classifiers: GLM (glmnet), KNN (knn), SVM (svmLinear), NaiveBayes (naive_bayes), NeuralNetwork (nnet),

DecissionTree (rpart), and RandomForest (cforest).

Classifier performance was evaluated through 5 repeats of 10-fold cross-validation, and hyperparameter

tuning was done through grid search. Average model accuracies were compared through Friedman

Rank-Sum Test and Pair-wise Wilcoxon Rank-Sum Test (paired, p.adjust.method = "holm"), and the less

complex model among those with significantly better performance was selected.

RFE was used to decrease model complexity, selecting an optimized model and a reduced version with

suitable performance (less than 1% accuracy loss). Outer resampling method with 3 repeats of 2-fold

cross-validation was applied. Predictors retained during the backward selection steps corresponded to

700, 600, 500, 400, 300, 200, 100, 50, 25, 10, 5 and 2 CpG probes.

Model description

Relative probe importance for the classification model was measured with caret varImp, considering the

absolute value of the coefficients corresponding to the optimized GLM model. Relative gene importance

was assessed by adding the absolute importance of individual CpG probes associated with each gene,

normalized by the total number of genes represented in the model.

Gene set enrichment analysis was performed with the methylGSA v1.12.0 R package,24 which implements

logistic regression adjusting for the number of methylation probes. Enrichment in KEGG categories was

evaluated with methylglm function. CpGs present in alternative gene context regions of the Infinium Hu-

man Methylation 450K array were considered (‘‘group = promoter’’, ‘‘group = body’’ and ‘‘group = all’’).

Gene sets composed by 20–500 members were displayed and ranked according to their B-H FDR-adjusted

p value.

ll
OPEN ACCESS

14 iScience 26, 106127, March 17, 2023

iScience
Article



MSIMEP exploratory analysis in alternative TCGA cohorts

Prediction of MSI/MSS phenotype in TCGA-UCEC and TCGA-STAD cohorts was performed using the caret

predict function, by assessing the methylation profiles for the same 400 predictors (MSIMEP optimized

model), or 25 predictors (MSIMEP reduced model), and considering patient binary MSI/MSS status as

response variable. Methylation b-values were processed under a common framework (see Analysis of

DNA methylation arrays). Accuracy, Kappa, ROC, Sensitivity, Specificity, and Precision metrics were calcu-

lated from the predicted class probabilities (predict ‘‘type = prob’’) and associated confusion matrix

comparing predicted and expected MSI/MSS status. ROC curves were generated using the MLeval

v0.3 R package.25

MSIMEP validation in external colorectal cancer cohorts

Prediction of MSI/MSS phenotype in External cohort I, External cohort II, External cohort III, and External

cohort IV was performed using the caret predict function, by assessing themethylation profiles for the same

400 predictors (MSIMEP optimizedmodel), or 25 predictors (MSIMEP reducedmodel), and considering pa-

tient binary MSI/MSS status as response variable. Methylation b-values were processed under a common

framework (see Analysis of DNA methylation arrays). Accuracy, Kappa, ROC, Sensitivity, Specificity, and

Precision metrics were calculated from the predicted class probabilities (caret:predict ‘‘type = prob’’)

and associated confusion matrix comparing predicted and expected MSI/MSS status. ROC curves were

generated using the MLeval v0.3 R package.25 Venn diagram was generated using the VennDiagram

v1.7.1 R package.26

Deconvolution of immune cell populations

The CIBERSORTx deconvolution algorithm27 was used to infer immune cell infiltration from TCGA-COAD

and TCGA-READ bulk RNA-seq data. CIBERSORTx job type: ‘‘Impute cell fractions’’ was launched in abso-

lute mode on the LM22 signature, with active Bmode batch correction and quantile normalization disabled

(recommended conditions for bulk RNA-seq mixtures), executed with 500 permutations. Low-quality sam-

ples with p value for deconvolution >0.05 were discarded from downstream analyses. Relative cell propor-

tions were obtained by normalizing the CIBERSORTx output to the sample-level sum of cell scores

rendering percentages of immune infiltration. Relative cell proportions were compared between predicted

MSIMEP MSI CRCs and MSI cases diagnosed through standard PCR-based assays. Profiled immune cell

types were B cells (naive and memory), plasmatic cells, T cells (CD8, CD4 naive, CD4 memory resting,

CD4 memory activated, follicular helper, regulatory and gamma-delta), NK cells (resting and activated),

monocytes, macrophages (M0, M1 and M2), dendritic cells (resting and activated), mast cells (resting

and activated), eosinophils, and neutrophils.

QUANTIFICATION AND STATISTICAL ANALYSIS

Comparisons between patient and disease characteristics were carried out using X2 or Fisher exact test

(categorical variables), and T-Student or Wilcoxon tests (continuous variables). All p values were 2-sided,

and those less than 0.05 were considered statistically significant. Statistical details can be found in table

and figure legends, results and method details. All statistical analyses were performed using R.
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