
This is the accepted version of the journal article:

Li, Long; Zhan, Wenfeng; Ju, Weimin; [et al.]. «Competition between biogeo-
chemical drivers and land-cover changes determines urban greening or browning».
Remote Sensing of Environment, Vol. 287 (March 2023), art. 113481. DOI
10.1016/j.rse.2023.113481

This version is available at https://ddd.uab.cat/record/289888

under the terms of the license

https://ddd.uab.cat/record/289888


 

 1 / 52 

Competition between biogeochemical drivers and land-cover changes determines 1 

urban greening or browning 2 

 3 

Long  Li a,  Wenfeng  Zhan a, b,*,  Weimin  Ju a,  Josep  Peñuelas c, d,  4 

Zaichun Zhu e,  Shushi  Peng f, Xiaolin Zhu g, Zihan Liu a, Yuyu Zhou h, 5 

Jiufeng Li a, Jiameng Lai a, Fan Huang a, Gaofei Yin i, 6 

Yongshuo Fu j, Manchun Li b, k, Chao Yu l 7 

a Jiangsu Provincial Key Laboratory of Geographic Information Science and 8 

Technology, International Institute for Earth System Science, Nanjing University, 9 

Nanjing, 10 

Jiangsu, China 11 

b Jiangsu Center for Collaborative Innovation in Geographical Information Resource 12 

Development and Application, Nanjing, China 13 

c CSIC, Global Ecology Unit CREAF-CSIC-UAB-UB Bellaterra, Barcelona, 14 

Catalonia, Spain 15 

d CREAF, Bellaterra, Barcelona, Catalonia, Spain 16 

e Peking University Shenzhen Graduate School, Peking University, Shenzhen, 17 

Guangdong, China 18 

f Sino-French Institute for Earth System Science, College of Urban and Environmental 19 

Sciences, Peking University, Beijing, China 20 

g Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic 21 

University, Hong Kong, China 22 

h Department of Geological and Atmospheric Sciences, Iowa State University, Ames, 23 

IA, USA 24 



 

 2 / 52 

i Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong 25 

University, Chengdu, China 26 

j College of Water Sciences, Beijing Normal University, Beijing, China 27 

k School of Geography and Ocean Science, Nanjing University, Nanjing, China 28 

l State Key Laboratory of Remote Sensing Science, The Aerospace Information Research 29 

Institute, Chinese Academy of Sciences, Beijing, China 30 

 31 

CONTACT INFORMATION 32 

* Corresponding author: W. Zhan (zhanwenfeng@nju.edu.cn).  33 

1.  CSIC, Global Ecology Unit CREAF-CSIC-UAB-UB Bellaterra, Barcelona 08193, 34 

Catalonia, Spain 35 

2.   CREAF, Bellaterra, Barcelona 08193, Catalonia, Spain 36 

 37 

 38 

  39 

mailto:zhanwenfeng@nju.edu.cn


 

 3 / 52 

ABSTRACT 40 

Urban vegetation, a harbinger of future global vegetation change, is controlled by 41 

complex urban environments. The urban-rural gradient in vegetation greenness trends 42 

and their responses to biogeochemical drivers (e.g. elevated atmospheric CO2 43 

concentration and climate warming) and land-cover changes, however, remain un- 44 

clear. Here we used satellite-derived enhanced vegetation index to examine the 45 

greenness trends for 1500-plus cities in China for 2000–2019. We developed a 46 

conceptual framework to differentiate between the contributions of four key drivers to 47 

the greenness trends: two biogeochemical drivers, a background biogeochemical 48 

driver (BBD) and an urban biogeochemical driver (UBD), and two drivers of land-49 

cover changes, urban expansion or densification (UED) and urban green recovery 50 

(UGR). We find that the greening trends gradually decreased from urban cores to 51 

urban new towns and then to browning trends in urban fringes. The significant 52 

greening in urban cores was mainly contributed by BBD (25.6%) and UBD (52.3%). 53 

While the minor greening in urban new towns was contributed by both BBD (33.1%) 54 

and UBD (24.1%) and weakened by UED (—39.7%). The UED (—64.4%) 55 

dominated the browning in urban fringes. These results suggest that biogeochemical 56 

drivers and land-cover changes jointly regulated the urban-rural gradient in greenness 57 

trends, which contributes to the assessment of future global vegetation change driven 58 

by complex environmental changes. 59 

 60 

  61 
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INTRODUCTION 62 

As a key component of terrestrial ecosystems, vegetation is extremely critical in 63 

maintaining carbon cycles and providing ecological services (Lee et al., 2011; Forzieri 64 

et al., 2017; Piao et al., 2020). Global-scale studies have reported that the recent 65 

greening of the Earth is regulated by a series of biogeochemical drivers (e.g. the effect 66 

of atmospheric CO2 fertilization, nitrogen deposition, and climate change) and land-67 

cover changes (Nemani et al., 2003; Los, 2013; Schimel et al., 2015; Zhu et al., 2016; 68 

Chen et al., 2019; Piao et al., 2020). Cities are a coupling system between nature and 69 

human beings (Grimm et al., 2008), with more than half of the global population 70 

currently living in cities (United Nations, 2018). Vegetation in cities differs from 71 

natural landscapes and can either be greening or browning, because cities undergo 72 

more drastic land-cover changes (Liu et al., 2020) and because changes in urban 73 

vegetation are affected by more complex biogeochemical drivers (Gregg et al., 2003; 74 

Zhao et al., 2016). Urban environmental changes are the ‘harbingers’ of global change 75 

(Grimm et al., 2008). Investigating urban greening (or browning) and its associated 76 

drivers is therefore valuable for both human settlements and better predictions of 77 

vegetation changes in natural landscapes in the future.  78 

 79 

The growth of vegetation can usually be enhanced more in cities than rural land due 80 

to the significantly larger urban biogeochemical effect (Gregg et al., 2003; Zhao et al., 81 

2016; Dahlhausen et al., 2018; Jia et al., 2018; Ruan et al., 2019) but naturally does 82 

not indicate that the greenness trends are greater in urban than rural areas from a 83 

decadal perspective. Several recent studies focusing on decadal changes in urban 84 

vegetation have suggested that vegetation could be either greening or browning under 85 

various socioeconomic and climatic controls (Du et al., 2019; Corbane et al., 2020; 86 
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Liang et al., 2020). Two important issues, however, persist. First, urban environmental 87 

change depends strongly on the background climate (Zhao et al., 2014) and city size 88 

(Oke, 1973), and trends of urban vegetation greenness are anticipated to be highly 89 

spatially heterogeneous along the urban-rural gradient. The urban-rural gradient in the 90 

trends of vegetation greenness nevertheless remains poorly known, especially its 91 

dependence on background climate and city size. Second, the recent greening of 92 

natural vegetation is mainly regulated by biogeochemical drivers (Zhu et al., 2016; 93 

Piao et al., 2020), but urbanization is usually accompanied by significantly more 94 

complex land-cover changes such as urban expansion (or densification) and renewal 95 

(Seto et al., 2012; Zheng et al., 2014). How the trends of the urban-rural gradient of 96 

greenness is affected by the combination of biogeochemical drivers and land-cover 97 

changes, therefore, remains unclear.  98 

 99 

Facing these challenges, we investigated the greenness trends identified by satellite-100 

derived data for the enhanced vegetation index (EVI) and the associated 101 

biogeochemical drivers and land-cover change for >1500 cities in China for 2000-102 

2019. China has undergone extremely rapid urbanization in the last two decades and 103 

is an ideal laboratory for investigating trends of vegetation greenness in response to 104 

both global and urban environmental change. We divided the developed areas of a city 105 

into three categories, urban cores, urban new towns, and urban fringes, and divided 106 

the rural background of a city into two categories, rural fringes and rural backgrounds 107 

(Supplementary Fig. 1). We further examined the greenness trend of each city 108 

category under different city sizes and background climates. We propose a ‘reference’ 109 

method to differentiate between the contributions of biogeochemical drivers (urban 110 

and background biogeochemical drivers) and land-cover changes (urban expansion or 111 



 

 6 / 52 

densification and green recovery) to the greenness trend. This study should help to 112 

deepen our understanding of future changes to vegetation under global climate 113 

change.  114 

 115 

 116 

  117 
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RESULTS AND DISCUSSION 118 

Greenness trends in urban surfaces and their surroundings 119 

The variations in greenness trends from urban cores to rural backgrounds were 120 

typically V-shaped (a decrease followed by an increase) (Fig. 1). Greenness trends 121 

gradually decreased from urban cores to urban fringes and shifted from greening (for 122 

urban cores and urban new towns) to browning (urban fringes), but browning again 123 

shifted to greening from urban fringes to rural backgrounds. Greenness trends in 124 

urban cores were as large as 0.014 ± 0.015 decade−1 (mean ± 1 SD), with 75% of the 125 

cities having a greening trend (Fig. 1a). Greenness trends in urban new towns were 126 

only 0.006 ± 0.020 decade−1, with similar proportions of cities having greening (53%) 127 

and browning trends (47%). More cities had a greening trend in northern than 128 

southern China (Fig. 1b). The mean greenness trend in urban fringes became negative 129 

(−0.015 ± 0.023 decade−1), and only 27% of the cities had a greening trend, again 130 

mainly distributed in northern China (Fig. 1c). The mean greenness trend in rural 131 

fringes became positive again (0.026 ± 0.016 decade−1). Only 16% of the cities in this 132 

category had a browning trend, mostly in southwestern and eastern China (Fig. 1d). 133 

The rural backgrounds of almost all cities (99%) had significant greening trends 134 

(0.033 ± 0.013 decade−1), with only a few exceptions (Fig. 1e).  135 

 136 
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Fig. 1. Annual mean EVI trends of the urban and rural categories for >1500 cities in China | Mean EVI trends for urban cores (a), urban new 138 

towns (b), urban fringes (c), rural fringes (d), and rural backgrounds (e), and comparisons among these five categories (f). This analysis is based on 139 

pixels with significant EVI changes at P < 0.05. The percentage of pixels with significant changes for each city is given in Supplementary Fig. 2.  140 

 141 
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The greenness trends all increased with city size for the three urban categories but not 142 

for the two rural categories (Fig. 2a). The EVI trend for urban cores increased from 143 

0.004  0.016 decade−1 for small towns to 0.019  0.012 decade−1 for megacities. The 144 

EVI trend for urban new towns increased with city size from −0.003  0.022 to 0.009 145 

 0.017 decade−1, indicating a gradual shift from browning (for small towns, small 146 

cities, and medium-sized cities) to greening (for large cities and megacities. The EVI 147 

trend for urban fringes increased from −0.021  0.024 to −0.013  0.024 decade−1, 148 

demonstrating a gradually decreasing browning trend with city size. In contrast, the 149 

variations in the EVI trends for both rural fringes and rural backgrounds were not 150 

significantly correlated with city size; the differences in the EVI trends among cities 151 

with various sizes were small. Such an urban-rural disparity in the relationship 152 

between greenness trend and city size was probably due to the considerably greater 153 

effect of cities on urban than rural vegetation (Jia et al., 2021; see the next section for 154 

a quantitative analysis).  155 

 156 

The trends of urban greenness also depended strongly on background climate (Fig. 157 

2b). For cities in the middle/cold temperate zone, all three urban categories had 158 

greening trends: the EVI trends were 0.015  0.012 decade−1 (urban cores), 0.013  159 

0.015 decade−1 (urban new towns), and 0.005  0.017 decade−1 (urban fringes). By 160 

comparison, these three urban categories all had browning trends for the tropical 161 

cities, with EVI trends of −0.003  0.012 decade−1 (urban cores), −0.012  0.016 162 

decade−1 (urban new towns), and −0.005  0.023 decade−1 (urban fringes). For the 163 

cities in the vertical temperate, warm temperate, and subtropical zones, urban 164 

greening and browning occurred simultaneously for the three urban categories: urban 165 

fringes had browning trends, and urban cores and urban new towns had greening 166 
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trends. The EVI trend variations between the two rural categories were similar across 167 

various background climates and were mostly consistent with previous greening 168 

analyses that focused on natural vegetation rather than cities (Zhu et al., 2016; Piao et 169 

al., 2020).  170 

 171 

Further analysis suggested that greening and browning trends could co-exist across 172 

the three urban categories even within a single city (Supplementary Fig. 3). Such a co-173 

existence may be one of the reasons for the controversy in urban greening or 174 

browning reported by previous studies. For example, cities in the vertical temperate 175 

zone were reported to mostly have browning trends (Liang et al., 2020), but other 176 

studies reported greening trends (Du et al., 2019; Corbane et al., 2020). Another 177 

example is the inconsistent observation of greening or browning for warm temperate 178 

and subtropical cities (Du et al., 2019; Corbane et al., 2020; Liang et al., 2020). The 179 

percentage of cities in our study with simultaneous greening and browning trends 180 

across all three urban categories was highest for the subtropical zone (67%), followed 181 

by the vertical temperate zone (64%), the warm temperate zone (50%), the 182 

middle/cold temperate zone (45%), and the tropical zone (32%, implying that arriving 183 

at contradictory interpretations of urban greening or browning in the first three 184 

climatic zones was more likely when the three urban categories were not well 185 

delineated. That is, the possible sources of this controversy among previous studies 186 

were the different city boundaries used to delineate urban surfaces and the vague or 187 

lack of differentiation of the urban categories.  188 
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 189 

Fig. 2. Variations in annual mean EVI trends in the three urban categories (urban cores, urban new towns, and urban fringes) and the two 190 

categories of rural surroundings (rural fringes and rural backgrounds) depending on city size (a) and background climate (b) | The arrows in (a) 191 

indicate that the EVI trends increase with city size, and the upward and downward arrows in (b) indicate the climatic zones in which the three urban 192 
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categories have a consistent greening or browning trend, respectively.  193 

 194 
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Contributions of biogeochemical drivers and land-cover changes to greenness 195 

trends 196 

The greenness trends within a city were mainly regulated by the biogeochemical 197 

drivers and land-cover changes (Fig. 3). The significant greening in urban cores was 198 

mainly regulated by the biogeochemical drivers (77.8%) rather than land-cover 199 

changes (16.1%). In contrast, the noteworthy browning of urban fringes was mainly 200 

due to land-cover changes (64.4%) rather than biogeochemical drivers (32.6%). The 201 

simultaneous greening and browning for urban new towns was controlled by similar 202 

contributions of these two types of drivers, although more cities had greening than 203 

browning due to the marginally larger contribution from the biogeochemical drivers 204 

(57.2%) than land-cover changes (39.8%; Figs. 1 & 3). The synergy of the 205 

biogeochemical drivers and land-cover changes can determine greenness trends (Piao 206 

et al., 2015; Zhu et al., 2016; Chen et al., 2019), but these studies mainly focused on 207 

natural terrestrial ecosystems rather than cities. We also found that these two types of 208 

drivers acted as competitors within cities; greening occurred when the biogeochemical 209 

drivers dominated, and browning occurred when land-cover changes dominated (e.g. 210 

urban expansion or densification) (Fig. 3). These findings differed from the case of 211 

natural ecosystems, in which biogeochemical drivers (e.g. fertilization effect of 212 

atmospheric CO2 concentration) (Piao et al., 2015; Zhu et al., 2016) and land-cover 213 

changes (e.g. afforestation; Chen et al., 2019) mostly promote greening concurrently.  214 

 215 
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 216 

Fig. 3. Contributions (decade−1 and percentage) of the background biogeochemical driver 217 

(BBD), the urban biogeochemical driver (UBD), urban expansion or densification (UED), 218 

urban green recovery (UGR), and a residual factor (REF) to the observed EVI trends (OBS) 219 

across the city categories | The two gray rectangles in (a) to (e) represent the biogeochemical 220 

drivers (BBD and UBD) and land-cover changes (UED and UGR), and the numbers 1, 2, 3, 4, and 5 221 

on the x-axis in (f) correspond to urban cores, urban new towns, urban fringes, rural fringes, and 222 
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rural backgrounds, respectively.  223 

 224 

We used two categories of biogeochemical drivers, the background biogeochemical 225 

driver (BBD, representing the background controls of surface greening when cities are 226 

absent) and the urban biogeochemical driver (UBD, representing the additional 227 

factors arising from cities) (Supplementary Fig. 4). We differentiated between the 228 

contributions from these two categories of biogeochemical drivers and found that 229 

their contributions to the local greenness trends varied with city category. The 230 

greening of rural fringes and rural backgrounds was mainly regulated by BBD, with 231 

contributions of 81.6 and 93.3%, respectively. For the three urban categories (urban 232 

cores, urban new towns, and urban fringes), the contribution of BBD was <30% (Fig. 233 

3). The contribution of UBD was highest in urban cores and gradually decreased 234 

along the urban-rural gradient from urban cores to rural backgrounds (the 235 

contributions were 52.3, 24.1, 5.0, 2.3, and 0%, respectively; Fig. 3a & f). The 236 

contribution of UBD in urban cores could be even larger than that of BBD, but the 237 

contributions were the opposite for urban new towns and urban fringes. The 238 

enhancement of annual vegetation growth was larger in urban than rural environments 239 

due to the urban effect (Gregg et al., 2003; Zhao et al., 2016; Dahlhausen et al., 2018; 240 

Jia et al., 2018; Ruan et al., 2019). We also found that urban greening could be 241 

significantly enhanced by UBD from a decadal perspective. We provide the first 242 

quantitative analysis of the gradual variations in the contributions of UBD and BBD 243 

to the trends of surface greenness along the urban-rural gradient.  244 

 245 

The drivers of land-cover change could also be divided into two categories, urban 246 

expansion or densification (UED, the alteration from natural to impervious surfaces) 247 
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and urban green recovery (UGR, the transformation from developed to vegetation-248 

dominated surfaces due to urban renewal) (Supplementary Fig. 4). UED and UGR can 249 

induce urban browning and greening, respectively. The contribution of UED to the 250 

greenness trend decreased from urban cores to urban fringes. UED dominated the 251 

browning of urban fringes, with a contribution of −0.028 ± 0.020 decade−1 (−64.4 ± 252 

46.0%) (Fig. 3). Its contribution was lower for urban new towns but remained 253 

sufficiently significant (−0.016 ± 0.015 decade−1; −39.7 ± 37.2%), indicating that 254 

continuous urban densification would lead to the significant browning of urban new 255 

towns, although this category was already urbanized before 2000 (Supplementary Fig. 256 

1). The contribution of UED was smaller for urban cores (−0.004 ± 0.007 decade−1; 257 

−15.6 ± 29.6%). The contribution of UGR was considerably lower than the 258 

contribution of UED. The contribution of UGR among the three urban categories was 259 

highest for urban cores, with a value of only 0.00013 ± 0.00017 decade−1 (0.50 ± 260 

0.70%); its contribution was even smaller for the other two urban categories (<0.50%; 261 

Fig. 3). Green recovery (e.g. new parks or green spaces) is a major contributor to the 262 

greening of urban cores in Chinese cities (Sun et al., 2020), but our results strongly 263 

suggested that this factor was negligible. Our findings were consistent with the intra-264 

city land-cover mapping, where pixels of green recovery account for <1% of the total 265 

developed surfaces across Chinese cities (Liu et al., 2020).  266 

 267 

The increasing trend in greenness with city size for all three urban categories was 268 

probably due to the effect of UBD, indicated by the increasing contribution of UBD 269 

with city size. For example, the contribution of UBD in urban cores increased from 270 

0.006 ± 0.002 decade−1 in small towns to 0.017 ± 0.003 decade−1 in megacities (Fig. 271 

4a). Larger cities usually had higher rates of increase of urban atmospheric CO2 272 
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concentrations, urban temperatures, and urban nitrogen deposition (Tian et al., 2020). 273 

The combination of the boosted impacts of these biogeochemical factors could 274 

therefore lead to a stronger greenness trend in larger cities. The contribution of UED 275 

was also larger in larger cities. For example, the negative contribution of UED in 276 

urban fringes increased from −0.019 ± 0.021 decade−1 in small towns to −0.028 ± 277 

0.020 decade−1 in megacities. Such a positive relationship was significant for urban 278 

new towns and urban fringes but weaker for urban cores, perhaps due to the more 279 

intense urban expansion or densification of larger cities in urban new towns and 280 

fringes compared with urban cores (Liu et al., 2020).  281 

 282 

The greenness trends in the three urban categories were also affected by background 283 

climate (Fig. 4b). The significant greening in the three urban categories in the 284 

middle/cold temperate zone was regulated more by the biogeochemical drivers than 285 

by land-cover changes. For example, the combination of the BBD and UBD 286 

contributions (0.021 decade−1) was larger than the combination of the UED and UGR 287 

contributions (−0.016 decade−1), even for urban fringes. In contrast, UED in the 288 

tropical zone was the main contributor to the urban browning in the three urban 289 

categories (e.g. the UED contribution was −0.029 ± 0.019 decade−1 for urban fringes). 290 

Such a contrast was probably due to the different major factors restraining urban 291 

vegetation growth between these two climatic zones. Surface temperature is the main 292 

restraining factor for middle/cold temperate cities at relatively high latitudes (Lucht et 293 

al., 2002; Xu et al., 2013), and urban land management is the main restraining factor 294 

for tropical cities where the vegetation is dense. The significant increasing rate of 295 

urban heat island intensity in temperate cities (Yao et al., 2021), under which the 296 

growing season can be prolonged, should be the main regulator of the significant 297 
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urban greening in this zone.  298 

The faster urbanization in tropical than temperate cities (Song et al., 2020) should 299 

contribute to urban browning in the tropics. The greening of urban cores and urban 300 

new towns in the vertical temperate, warm temperate, and subtropical zones was 301 

mainly regulated by the biogeochemical drivers, and the browning of urban fringes 302 

was affected more by urban expansion or densification (Fig. 4b). The greenness trends 303 

for the cities in these three zones were comparable, but the contributions of the 304 

associated drivers nevertheless differed slightly, especially for subtropical cities. 305 

Urbanization has been faster in the tropics, and the effect of urban expansion or 306 

densification is more intense than in the vertical temperate and warm temperate zones 307 

(Song et al., 2020). The contribution of biogeochemical drivers in subtropical cities, 308 

however, was also larger, which neutralized more of the browning induced by UED.  309 

 310 
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 311 

Fig. 4. Contributions (decade−1) of UBD, BBD, UED, UGR, and REF to the observed EVI trends 312 

(OBS) depending on city size (a) and background climate (b) | The arrows in (a) indicate an increasing 313 

UBD contribution with city size, and the two gray rectangles in each plot highlight the contributions of the 314 

two biogeochemical drivers (UBD and BBD) and the two drivers of land-cover change (UED and UGR).  315 

 316 
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Implications 317 

Urban environmental changes are signs of global change. Investigating greenness 318 

trends and their associated drivers over many cities is critical for understanding the 319 

trends and mechanisms of vegetation changes under future global change. We found 320 

that the variations in greenness trends for >1500 Chinese cities were Λ-shaped, from 321 

urban cores to rural backgrounds (Fig. 1f). We also found that the biogeochemical 322 

drivers and land-cover changes determined this characteristic V-shape to a large extent 323 

(Fig. 3). Specifically, urban cores had the largest greening trend among the three 324 

urban categories. The urban cores had only 20.3% of the vegetation coverage of the 325 

rural backgrounds, but the greenness trend was nevertheless 42.4% of the rural 326 

backgrounds, mainly affected by the large contribution of UBD in the urban cores. 327 

The greening trends were weaker in urban new towns. The vegetation coverage of this 328 

urban category 50.3% of the coverage in rural backgrounds, but its greenness trend 329 

was only 18.2% of that in rural backgrounds. Such a weak greening trend in urban 330 

new towns was mainly due to the neutralization between the biogeochemical drivers 331 

and urban densification. The significant browning for urban fringes could be 332 

attributed to the greening induced by the inadequacy of the biogeochemical drivers to 333 

compensate the browning caused by urban expansion. The vegetation coverage of 334 

urban fringes was 71.2% of that of rural backgrounds, but the greenness trend of 335 

urban fringes became negative and was −45.5% of that in rural backgrounds.  336 

 337 

The area of urban greening in large cities in China is 32% of that of global cities (Sun 338 

et al., 2020). Sun et al. (2020), however, ignored the large number of small cities. We 339 

found that the greening trend in China was much larger for large than small cities 340 

(Fig. 2), implying that focusing on large cities cannot well lead to a full understanding 341 



 

 22 / 52 

of the trends of urban greenness. Lager cities are truly the benchmark for urbanization 342 

in the future, but the overall quality of future urbanization depends more on the 343 

development of the many and widely distributed small cities (or towns) (Fahmi et al., 344 

2014). Regulation of the biogeochemical drivers is relatively difficult, so using urban 345 

land management (e.g. urban renewal) as an effective way to narrow the gap of 346 

greenness trends between small and large cities is therefore plausible. We also found 347 

that browning in tropical cities occurred in all three urban categories (urban cores, 348 

urban new towns, and urban fringes) due to urban expansion or densification, despite 349 

the high vegetation coverage in these cities. Using urban land management as a 350 

critical way to increase the urban green space and sustainability for tropical and/or 351 

small cities is therefore urgent.  352 

 353 

Our findings indicated that the mean contribution of green recovery to the trends of 354 

urban greenness for >1500 cities was relatively small (Fig. 3). These findings, 355 

however, do not negate the importance of green recovery to urban greening and urban 356 

ecological services. Green recovery can still contribute significantly to urban greening 357 

in individual cities using appropriate urban planning. For example, the area of green 358 

recovery was 54.7 km2 in the urban core of Beijing, with its contribution 35.1% of 359 

that for all urban cores. With the advance of urbanization, China would face an 360 

intensified human-land conflict in per capita green space in the future (Chen et al., 361 

2017). As one of the most direct strategies of urban planning to achieve urban 362 

greening (Supplementary Fig. 5), urban green recovery continues to have great 363 

potential for enhancing urban ecosystem services.  364 

 365 

 366 
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MATERIALS AND METHODS 368 

Study area and materials 369 

Cities in China vary greatly in size and background climate (Jia et al., 2021), and 370 

urbanization has been rapid in recent decades (Kuang, 2020). Drastic changes in both 371 

biogeochemical cycles and land-cover types for urban surfaces and associated rural 372 

surroundings have accompanied the rapid urbanization. Cities in China are therefore 373 

ideal laboratories for examining how trends of surface greenness can be 374 

simultaneously affected by biogeochemical drivers and land-cover changes. This 375 

study focused on all county-level or larger cities in China, a total of 1560 cities. These 376 

cities were divided into five categories depending on urban area: 519 small towns 377 

(with a mean urban area of 10 km2), 417 small cities (26 km2), 312 medium-sized 378 

cities (56 km2), 207 large cities (134 km2), and 105 megacities (341 km2) 379 

(Supplementary Fig. 6). These cities were in six climatic zones: 29 cities in the 380 

vertical temperate zone, 247 cities in the middle/cold temperate zone, 581 cities in the 381 

warm temperate zone, 683 cities in the subtropical zone, and 20 cities in the tropical 382 

zone.  383 

 384 

We used two vegetation indices, the normalized difference vegetation index (NDVI) 385 

and the enhanced vegetation index (EVI), both from the MOD13Q1 MODIS product, 386 

with a spatial resolution of 250 m and a temporal resolution of 16 d, ranging from 387 

March 2000 to February 2020. NDVI can better indicate vegetation coverage and is 388 

therefore used to estimate percent vegetation cover (PVC) (Purevdorj et al., 1998). 389 

EVI has been extensively used as a proxy of vegetation greenness (Xu et al., 2011; 390 

Zhang et al., 2017; Zhou et al., 2014) due to its greater sensitivity to changes in 391 

vegetation greenness over surfaces with high biomass (Huete et al., 2002). We also 392 
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used the yearly MCD12Q1 MODIS data product for land cover and land use with a 393 

spatial resolution of 500 m, for the same period. Pixels labeled as water bodies were 394 

excluded to eliminate the impact of water bodies on the detection of trends of urban 395 

greenness.  396 

 397 

We used the urban boundary data for 1990, 2000, and 2018 generated using a globally 398 

consistent boundary definition and mapping method (Li et al., 2020). These urban 399 

boundary data were applied for categorizing the urban and rural areas. We used the 400 

annual data for global artificial impervious area (GAIA) (Gong et al., 2020) to 401 

quantify the contribution of urban expansion or densification to the urban-rural 402 

gradient in greenness trends. The GAIA data had an overall accuracy of >90% and a 403 

spatial resolution of 30 m (Gong et al., 2020). We used the yearly data for urban green 404 

recovery (Liu et al., 2020) to quantify the contribution of urban green recovery to the 405 

greenness trends. The spatial resolution of the green-recovery data was also 30 m, 406 

with an overall accuracy of about 80% (Liu et al., 2020). The GAIA and green-407 

recovery data were both resampled to 250 m to match the spatial resolution of the 408 

vegetation indices using majority resampling.  409 

 410 

Estimation of urban-rural gradient in greenness trends 411 

The trends of urban greenness are anticipated to be closely associated with city 412 

category and indirectly associated with the local status of the biogeochemical drivers 413 

and land-cover changes. We divided the urban and rural surfaces of a city into five 414 

categories, three urban and two rural: (1) urban cores (delineated by the urban 415 

boundaries in 1990), (2) urban new towns (delineated by the urban boundaries 416 

between 1990 and 2000), (3) urban fringes (delineated by the urban boundaries 417 
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between 2000 and 2018, (4) rural fringes (buffer zones surrounding the urban 418 

peripheries), and (5) rural backgrounds (buffer zones far from the urban peripheries) 419 

(Supplementary Fig. 1). The interannual trends of EVI were then examined for all five 420 

city categories using linear regression. Only pixels with statistically significant 421 

changes in EVI at P < 0.05 were included in the analysis. The category-based pixel 422 

percentages with significant EVI changes (P < 0.05) are also provided for assessing 423 

the representativeness of the significant samples. The greenness trends may also 424 

depend on vegetation type, but we did not consider the impact of vegetation type due 425 

to the very complex structure and composition of the urban-rural vegetation gradient. 426 

This issue is discussed further in Supplementary Note 1.  427 

 428 

Decomposition of greenness trends 429 

The trends of vegetation greenness were determined using two types of drivers, 430 

biogeochemical drivers (e.g. effect of fertilization by atmospheric CO2, nitrogen 431 

deposition, and climate change) and land-cover changes (e.g. afforestation) (Zhu et 432 

al., 2016; Piao et al., 2015; Piao et al., 2020; Chen et al., 2019). Differentiating 433 

between the impacts of atmospheric CO2 concentration, nitrogen deposition, and 434 

climate change on greenness trends is extremely difficult at the local scale within a 435 

city (Liang et al., 2020; Zhao et al., 2016), so we combined these factors and referred 436 

to them as biogeochemical drivers. Cities had two types of biogeochemical drivers, a 437 

background biogeochemical driver (BBD) and an urban biogeochemical driver 438 

(UBD). BBD represents the environmental changes arising at a large (global or 439 

regional) scale, such as elevated atmospheric CO2 concentrations, increased nitrogen 440 

deposition, and climatic warming (Piao et al., 2020), and UBD represents the urban 441 

environmental changes arising at a local (city) scale, such as high CO2 emissions, 442 
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nitrogen deposition, and urban heat islands (Zhao et al., 2016). The influence of land-443 

cover changes to the trends of vegetation greenness is also twofold. The first category 444 

of urban land-cover change is the transition from natural landscapes to impervious 445 

surfaces or the further increase in the percentage of impervious surfaces 446 

(Shahtahmassebi et al., 2016), i.e. urban expansion or densification (UED). The 447 

second category is the transition from developed to vegetation-dominated surfaces, 448 

usually due to a series of urban-renewal activities (Haase et al. 2017), i.e. urban green 449 

recovery (UGR). UED generally leads to a decrease in urban vegetation (i.e. urban 450 

browning; Gong et al., 2020), and UGR generally leads to an increase in urban 451 

vegetation (i.e. urban greening) (Liu et al., 2020). The observed EVI trend (OBS, a 452 

proxy for the trends of vegetation greenness) can be expressed as:  453 

 O = B + U + E + G + r (1) 454 

where O is the observed EVI trend (i.e. OBS), and B, U, E, G, and r represent the 455 

contributions from BBD, UBD, UED, UGR, and a residual factor (REF), respectively. 456 

We used REF to express both the estimation error and the possible influence of other 457 

controls in addition to these four drivers (see Supplementary Note 1).  458 

 459 

The contributions of BBD, UBD, UED, and UGR vary across a city and therefore 460 

depend on city category. We categorized the pixels for each city category into four 461 

groups: (1) pixels with urban expansion or densification (labeled as Pix_ED pixels), 462 

(2) pixels with green recovery (Pix_GR pixels), (3) pixels with unchanged land-cover 463 

type but with a positive EVI trend (Pix_PE pixels), and (4) pixels with unchanged 464 

land-cover type but with a negative EVI trend (Pix_NE pixels). The first three groups 465 

of pixels (Pix_ED, Pix_GR, and Pix_PE pixels) accounted for 95.1% of the total 466 

pixels, and the Pix_NE pixels accounted for only 4.9%. To estimate the contributions 467 
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of these drivers to the Pix_ED and Pix_GR pixels, we further combined the two 468 

categories of pixels with unchanged land cover (i.e. Pix_PE and Pix_NE pixels) and 469 

designated them as Pix_LCU pixels. Eqs. (8) to (10) provide more explanations.  470 

 471 

The greenness trends of these four groups of pixels (the Pix_ED, Pix_GR, Pix_PE, 472 

and Pix_NE pixels) can all be affected by BBD and UBD. We disregarded the Pix_NE 473 

pixels, however, in the calculations of the contributions of BBD and UBD due to the 474 

low pixel percentage (<5%) compared with the other three types of pixels and partly 475 

because the Pix_NE pixels should be affected more by other factors (e.g. change in 476 

building height) rather than by the biogeochemical drivers (BBD and UBD), because 477 

BBD and UBD both enhance greenness trends and lead to positive EVI trends. The 478 

contributions of BBD and UBD to the trends of urban greenness can therefore be 479 

estimated by:  480 

 B = BPix_PE + BPix_ED + BPix_GR (2) 481 

 U = UPix_PE + UPix_ED + UPix_GR (3) 482 

where BPix_PE, BPix_ED, BPix_GR, UPix_PE, UPix_ED, and UPix_GR represent the contributions of 483 

BBD and UBD for the associated groups of pixels. By comparison, UED can only 484 

affect the EVI trends of the Pix_ED pixels with urban expansion or densification, and 485 

UGR can only affect the Pix_GR pixels with green recovery. The contributions of 486 

UED and UGR to the EVI trend can therefore be estimated by:  487 

 E = EPix_ED (4) 488 

 G = GPix_GR (5) 489 

where EPix_ED and GPix_GR represent the UED and UGR contributions for the Pix_ED 490 

and Pix_GR pixels, respectively. According to Eqs. (2) to (5), the estimates of the 491 

contributions of BBD, UBD, UED, and UGR can therefore be transformed to 492 
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calculate eight parameters: BPix_PE, BPix_ED, BPix_GR, UPix_PE, UPix_ED, UPix_GR, EPix_ED, and GPix_GR 493 

(see Supplementary Fig. 7). These parameters were calculated separately for each city 494 

category.  495 

 496 

(1) Calculation of BPix_PE and UPix_PE 497 

BPix_PE refers to the contribution of BBD to the EVI trend of the pixels with unchanged 498 

land-cover type but with a positive EVI trend (i.e. the Pix_PE pixels). This parameter 499 

is closely associated with the influence of BBD in rural backgrounds and associated 500 

vegetation coverages (see Supplementary Fig. 7a for more explanations). BPix_PE can 501 

therefore be calculated using the following three components, (i) the contribution of 502 

BBD to the EVI trend in rural backgrounds, (ii) the ratio of PVC between a specific 503 

city category and rural backgrounds, and (iii) the ratio between the number of Pix_PE 504 

pixels and the total number of pixels for a specific city category. For the first 505 

component, the contribution of BBD to the EVI trend of the Pix_PE pixels of a 506 

specific urban category can be considered equivalent to that of rural backgrounds, 507 

mostly because the rural background chosen was relatively far from the urban 508 

categories (Supplementary Fig. 1) and would consequently be rarely affected by UBD 509 

(Du et al., 2019). That is, the contribution of BBD to the EVI trend of the Pix_PE 510 

pixels of a specific urban category can be indirectly measured using the EVI trends of 511 

the Pix_PE pixels of rural backgrounds (EVIPix_PE_RB). For the second component, the 512 

accurate calculation of BPix_PE requires the consideration of the PVC difference 513 

between a specific urban category and a rural background (Supplementary Fig. 8). 514 

That is, BPix_PE is not equivalent to EVIPix_PE_RB, because the PVC difference between a 515 

specific urban category and a rural background is usually large. For the third 516 

component, BPix_PE is also understandably affected by the ratio between the number of 517 
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Pix_PE pixels and the total number of pixels for a specific city category. Based on the 518 

above analysis, BPix_PE can therefore be calculated by:  519 

 BPix_PE = EVIPix_PE_RB  ¡Error!  ¡Error! (6) 520 

where EVIPix_PE_RB represents the mean EVI trend for the same type of Pix_PE pixels in 521 

a rural background, PVCPix_PE and PVCPix_PE_RB represent the PVC of the Pix_PE pixels 522 

for a specific urban category and a rural background, respectively, and APix_PE and A 523 

are the number of Pix_PE pixels for a specific urban category and all pixels for this 524 

specific urban category, respectively. The calculation of PVC is explained in more 525 

detail in Supplementary Note 2.  526 

 527 

UPix_PE refers to the influence of UBD on the EVI trends of the Pix_PE pixels. The 528 

EVI trends of the Pix_PE pixels would only be affected by BBD and UBD, because 529 

land cover does not change for this group of pixels. UPix_PE can therefore be calculated 530 

by removing the contribution of BBD from the EVI trends of the Pix_PE pixels (EVI531 

Pix_PE), given as:  532 

 UPix_PE = EVIPix_PE  ¡Error! − BPix_PE (7) 533 

where EVIPix_PE represents the mean EVI trend of the Pix_PE pixels for a specific 534 

urban category. 535 

 536 

(2) Calculation of BPix_ED, UPix_ED, BPix_GR, and UPix_GR 537 

BPix_ED refers to the contribution of BBD to the EVI trend of the pixels with urban 538 

expansion or densification (i.e. the Pix_ED pixels). The urbanization levels for the 539 

Pix_ED pixels and the pixels with unchanged land-cover type in the same city 540 

category (i.e. the Pix_LCU pixels) are relatively similar, so inferring that the 541 

contribution ratio between BBD and UBD for these two types of pixels (the Pix_ED 542 
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and Pix_LCU pixels) in the same city category are also similar is reasonable 543 

(Supplementary Fig. 7b). Such a ‘proximity-pixel-reference’ method has been widely 544 

accepted and used (Peng et al., 2014; Li et al., 2015; Hong et al., 2020). BPix_ED can 545 

therefore be calculated indirectly using (i) the EVI trend of the Pix_LCU pixels for 546 

the same city category (EVIPix_LCU) and (ii) the proportion of the contribution of BBD to 547 

the EVI trend for the Pix_PE pixels:  548 

 BPix_ED = EVIPix_LCU  ¡Error!  ¡Error! (8) 549 

where EVIPix_LCU represents the mean EVI trend of the Pix_LCU pixels for a specific 550 

city category, BPix_PE and UPix_PE can be estimated using Eqs. (6) and (7), respectively, 551 

and APix_ED denotes the number of Pix_ED pixels for the associated urban category. 552 

 553 

UPix_ED refers to the influence of UBD on the EVI trend of the pixels with urban 554 

expansion or densification (i.e. the Pix_ED pixels). UPix_ED can be similarly calculated 555 

indirectly using (i) the EVI trend of the Pix_LCU pixels for the same city category 556 

(EVIPix_LCU) and (ii) the proportion of the contribution of UBD to the EVI trend for the 557 

Pix_PE pixels:  558 

 UPix_ED = EVIPix_LCU  ¡Error!  ¡Error! (9) 559 

Similar to the calculation of BPix_ED and UPix_ED, we calculated the contributions of BBD 560 

and UBD to the EVI trends for the pixels with green recovery, i.e. BPix_GR and UPix_GR. 561 

More details on the calculation of these two components are provided in 562 

Supplementary Note 3.  563 

 564 

(3) Calculation of EPix_ED and GPix_GR 565 

EPix_ED refers to the contribution of UED to the EVI trend of the pixels with urban 566 

expansion or densification (i.e. the Pix_ED pixels). For the same city category, the 567 



 

 32 / 52 

only difference in the controls of the trends of surface greenness between the pixels 568 

with urban expansion or densification (i.e. the Pix_ED pixels) and the Pix_LCU 569 

pixels are due to the contribution of UED. Calculating EPix_ED using the difference of 570 

the EVI trends between the Pix_ED and Pix_LCU pixels (Supplementary Fig. 7b) is 571 

therefore plausible:  572 

 EPix_ED = (EVIPix_ED − EVIPix_LCU)  ¡Error! (10) 573 

where EVIPix_ED represents the mean EVI trend of the Pix_ED pixels for a specific city 574 

category.  575 

GPix_GR refers to the contribution of UGR to the EVI trend of the pixels with green 576 

recovery (i.e. the Pix_GR pixels). The calculation of GPix_GR is similar to that of EPix_ED; 577 

more details are provided in Supplementary Note 3.  578 

 579 

We used the methods described above to quantify the contributions of BBD, UBD, 580 

UED, and UGR to the EVI trends using Eqs. (2) to (5) for each city category. For a 581 

better comparison among the various drivers, we further calculated the percentage 582 

contributions of these four drivers based on the procedures described in 583 

Supplementary Note 4. 584 

 585 

  586 
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A. Supplementary notes 701 

Note 1: Uncertainties of urban-rural gradients in greenness trends due to drivers 702 

other than the biogeochemical drivers and land-cover changes 703 

In addition to the biogeochemical drivers and land-cover changes, the urban-rural 704 

gradient in the satellite-derived greenness trends can also be affected by other drivers 705 

such as increases in building height (Zhang et al., 2015), a higher frequency of heat 706 

waves (Qiu et al., 2020), and insect-induced disturbance (Tai et al., 2019). Increases in 707 

building height during urbanization usually decreases the satellite-derived EVI due to 708 

the greater effect of shadows with higher buildings (Zhang et al., 2015). A higher 709 

frequency of heat waves and insect-induced disturbance can also interrupt vegetation 710 

metabolism, damage vegetation physiological function, and accordingly affect the 711 

observed EVI (Qiu et al., 2020; Tai et al., 2019). Vegetation greenness usually 712 

increases or remains relatively stable for pixels with a stable land-cover type (Zhu et 713 

al., 2016; Piao et al., 2020), so we inferred that the browning of the pixels with 714 

unchanged land-cover type (the Pix_NE pixels, see Materials and methods) should be 715 

due more to these additional drivers, such as increases in building height. We did not 716 

discern the contributions from these additional drivers but incorporated them into the 717 

residual term in Eq. (1), mostly because (1) the Pix_NE pixels accounted for <5% of 718 

the total pixels and because (2) accurately quantifying the contributions of these 719 

additional drivers to the urban-rural gradient in greenness trends currently remains a 720 

great challenge and may even be impossible.  721 

 722 

The urban-rural greenness trends were also closely associated with vegetation type. 723 

We acknowledge that differentiating between types of vegetation cover can help to 724 

interpret the urban-rural gradient in greenness trends in response to human activities 725 
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(e.g. field management) and global change (Piao et al., 2003). Differentiating between 726 

the types of urban vegetation across >1500 cities, however, is very difficult and even 727 

unfeasible for urban surfaces due to the very complex structure and composition of 728 

the vegetation. The vegetation types for rural fringes and rural backgrounds were 729 

mainly forest, grassland, and farmland: forests were mainly around the northeastern 730 

and southwestern cities, grassland was mainly around the northwestern cities, and 731 

farmland was mainly around the eastern cities on plains or in basins. These 732 

distributions indicated that standardizing the vegetation types in rural fringes and rural 733 

backgrounds was not plausible for all cities, because the type of rural vegetation 734 

differed greatly across the background climates. Our study therefore did not examine 735 

the impact of vegetation type on the quantification of contribution. Our study is 736 

consistent with previous studies of urban-rural contrasts in surface phenology (Zhao et 737 

al., 2016; Jia et al., 2018; Tian et al., 2020), for which vegetation type was usually not 738 

considered due to the great complexity of vegetation type and structure along the 739 

urban-rural gradient.  740 

 741 

Note 2: Estimation of percent vegetation cover 742 

The percent vegetation cover (PVC) required for differentiating between the 743 

contributions from the background and urban biogeochemical drivers was calculated 744 

using linear regression based on NDVI data (Purevdorj et al., 1998; Gao et al., 2020). 745 

The MODIS NDVI data during the growing season (April-October) were used, and 746 

the thresholds required for this method were set at 0.15 and 0.80, representing the 747 

scenarios of no vegetation and full vegetation coverage, respectively (Purevdorj et al., 748 

1998). We acknowledge that uncertainties may occur for the selection of appropriate 749 

thresholds for different vegetation types. We nevertheless used a consistent standard 750 
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of threshold, because this analysis was based on the average PVC of the urban and 751 

rural surfaces and because we only used the ratio between the urban and rural PVCs.  752 

 753 

Note 3: Calculation of BPix_GR, UPix_GR, and GPix_GR 754 

BPix_GR refers to the contribution of BBD to the EVI trend of the pixels with green 755 

recovery (i.e. the Pix_GR pixels). The urbanization level was similar for the Pix_GR 756 

and Pix_LCU pixels in the same city category, so deducing that the contribution ratio 757 

between BBD and UBD for these two types of pixels in the same city category were 758 

also similar was rational (Supplementary Fig. 7b). BPix_GR can therefore be calculated 759 

indirectly using (i) the EVI trend of the Pix_LCU pixels in the same city category 760 

(EVIPix_LCU) and (ii) the proportion of the contribution of BBD to the EVI trend for the 761 

Pix_GR pixels:  762 

 BPix_GR = EVIPix_LCU  ¡Error!  ¡Error! (S1) 763 

where EVIPix_LCU represents the mean EVI trend of the Pix_LCU pixels for a specific 764 

city category, BPix_PE and UPix_PE are obtainable using Eqs. (6) and (7), APix_GR represents 765 

the number of Pix_GR pixels for the associated urban category, and A represents all 766 

pixels for this urban category.  767 

 768 

UPix_GR refers to the influence of UBD on the EVI trend of the pixels with green 769 

recovery (i.e. the Pix_GR pixels). UPix_GR can similarly be indirectly estimated using 770 

(i) the EVI trend of the Pix_LCU pixels in the same city category (EVIPix_LCU) and (ii) 771 

the proportion of the contribution of UBD to the EVI trend for the Pix_GR pixels:  772 

 UPix_GR = EVIPix_LCU  ¡Error!  ¡Error! (S2) 773 

 774 

GPix_GR refers to the contribution of UGR to the EVI trend of the pixels with green 775 
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recovery (i.e. the Pix_GR pixels). The contribution of UGR was the only difference in 776 

the controls of the trends of surface greenness between the pixels with green recovery 777 

(i.e. the Pix_GR pixels) and the Pix_LCU pixels for the same city category. 778 

Calculating GPix_GR using the difference of the EVI trends between the Pix_GR and 779 

Pix_LCU pixels was consequently feasible (Supplementary Fig. 7b), given by: 780 

 GPix_GR = (EVIPix_GR − EVIPix_LCU)  ¡Error! (S3) 781 

where EVIPix_GR represents the mean EVI trend of the Pix_GR pixels for a specific city 782 

category.  783 

 784 

Note 4: Calculation of percent contribution of each driver 785 

The percent contribution of each driver was calculated by (Liu et al., 2019):  786 

 Ci = ¡Error!  100% (S4) 787 

where Ci represents the percent contribution of driver i to the EVI trend (i = B, U, E, 788 

G, or r). We used the absolute instead of the original values to calculate the 789 

contributions to avoid the percent contribution of a single factor >100% and to avoid a 790 

denominator equal to zero.  791 

 792 

 793 
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B. Supplementary figures 794 

 795 

 796 

Supplementary Figure 1. Schematic of the three urban and two rural categories for Beijing (a) 797 

and Chengdu (b) | Urban cores are delineated by the urban boundaries in 1990, urban new towns 798 

include urbanized surfaces from 1990 to 2000, urban fringes include urbanized surfaces from 2000 to 799 

2018, rural fringes are buffer zones around urban fringes with a buffer distance of d that guarantees 800 

an area of rural fringes equivalent to that of the combination of the three urban categories, and rural 801 

backgrounds are delineated by another buffer zone with an area equivalent to the combination of the 802 

three urban categories and with a distance of 5d from urban fringes for suppressing the impact of 803 

urbanization as much as possible (Du et al., 2019).  804 

 805 

 806 

  807 
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 808 

Supplementary Figure 2. Percentage of areas with significant EVI changes (P < 0.05) in the five 809 

city categories across 1560 Chinese cities | Area percentages in urban cores (a), urban new towns 810 

(b), urban fringes (c), rural fringes (d), and rural backgrounds (e), and the means and standard 811 

deviations in area percentage for the five city categories (f).  812 

 813 

  814 
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 815 

Supplementary Figure 3. Consistency (or heterogeneity) of greenness trends for the three 816 

urban categories, urban cores, urban new towns, and urban fringes, and the associated 817 

proportions in the climatic zones | Orange indicates that all three urban categories have browning, 818 

red indicates that both browning and greening occurs for the three urban categories, and green 819 

indicates that all three urban categories have greening. 820 

 821 
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 822 

Supplementary Figure 4. Conceptual diagram of the impacts of the background biogeochemical driver (BBD), the urban biogeochemical 823 

driver (UBD), urban expansion (UED), and green recovery (UGR) on EVI trends | Biogeochemical drivers include BBD and UBD, and 824 

drivers of land-cover changes include UED and UGR.  825 
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826 

 827 

Supplementary Figure 5. Means and standard deviations of the EVI trends for 828 

all pixels, the pixels with green recovery, and the pixels with urban expansion or 829 

densification for each city category. 830 

 831 

  832 
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 833 

Supplementary Figure 6. Spatial (a) and frequency (b) distribution of city size of 834 

the 1560 cities at the county level or above in China | These cities are divided into 835 

five categories based on city size: small towns (accounting for 33.3% of all cities), 836 

small cities (26.7%), medium-sized cities (20.0%), large cities (13.3%), and 837 

megacities (6.7%).  838 

 839 
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 840 

Supplementary Figure 7. Schematic for differentiating between the contribution of each driver for 841 

each city category| Comparison of the impacts of the background biogeochemical driver (BBD) and the 842 

urban biogeochemical driver (UBD) on the urban-rural gradient of EVI trends (a), comparison of the 843 



 

 49 / 52 

impacts of BBD, UBD, urban expansion or densification (UED), and urban green recovery (UGR) on the 844 

urban-rural gradient of EVI trends for areas with and without changes in land-cover type (b), and impacts 845 

(or contributions) of these four drivers on the EVI trend over different categories of pixels (c).  846 

 847 

  848 



 

 50 / 52 

 849 

Supplementary Figure 8. Relationship between percent vegetation cover (PVC) 850 

and EVI trend | The relationships between PVC and the EVI trends in regions with 851 

positive EVI trends (a) and regions with negative EVI trends (b). 852 

 853 

 854 
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