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ABSTRACT

Urban vegetation, a harbinger of future global vegetation change, is controlled by
complex urban environments. The urban-rural gradient in vegetation greenness trends
and their responses to biogeochemical drivers (e.g. elevated atmospheric CO2
concentration and climate warming) and land-cover changes, however, remain un-
clear. Here we used satellite-derived enhanced vegetation index to examine the
greenness trends for 1500-plus cities in China for 2000-2019. We developed a
conceptual framework to differentiate between the contributions of four key drivers to
the greenness trends: two biogeochemical drivers, a background biogeochemical
driver (BBD) and an urban biogeochemical driver (UBD), and two drivers of land-
cover changes, urban expansion or densification (UED) and urban green recovery
(UGR). We find that the greening trends gradually decreased from urban cores to
urban new towns and then to browning trends in urban fringes. The significant
greening in urban cores was mainly contributed by BBD (25.6%) and UBD (52.3%).
While the minor greening in urban new towns was contributed by both BBD (33.1%)
and UBD (24.1%) and weakened by UED (—39.7%). The UED (—64.4%)
dominated the browning in urban fringes. These results suggest that biogeochemical
drivers and land-cover changes jointly regulated the urban-rural gradient in greenness
trends, which contributes to the assessment of future global vegetation change driven

by complex environmental changes.
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INTRODUCTION

As a key component of terrestrial ecosystems, vegetation is extremely critical in
maintaining carbon cycles and providing ecological services (Lee et al., 2011; Forzieri
etal., 2017; Piao et al., 2020). Global-scale studies have reported that the recent
greening of the Earth is regulated by a series of biogeochemical drivers (e.g. the effect
of atmospheric CO; fertilization, nitrogen deposition, and climate change) and land-
cover changes (Nemani et al., 2003; Los, 2013; Schimel et al., 2015; Zhu et al., 2016;
Chen et al., 2019; Piao et al., 2020). Cities are a coupling system between nature and
human beings (Grimm et al., 2008), with more than half of the global population
currently living in cities (United Nations, 2018). Vegetation in cities differs from
natural landscapes and can either be greening or browning, because cities undergo
more drastic land-cover changes (Liu et al., 2020) and because changes in urban
vegetation are affected by more complex biogeochemical drivers (Gregg et al., 2003;
Zhao et al., 2016). Urban environmental changes are the ‘harbingers’ of global change
(Grimm et al., 2008). Investigating urban greening (or browning) and its associated
drivers is therefore valuable for both human settlements and better predictions of

vegetation changes in natural landscapes in the future.

The growth of vegetation can usually be enhanced more in cities than rural land due
to the significantly larger urban biogeochemical effect (Gregg et al., 2003; Zhao et al.,
2016; Dahlhausen et al., 2018; Jia et al., 2018; Ruan et al., 2019) but naturally does
not indicate that the greenness trends are greater in urban than rural areas from a
decadal perspective. Several recent studies focusing on decadal changes in urban
vegetation have suggested that vegetation could be either greening or browning under

various socioeconomic and climatic controls (Du et al., 2019; Corbane et al., 2020;
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Liang et al., 2020). Two important issues, however, persist. First, urban environmental
change depends strongly on the background climate (Zhao et al., 2014) and city size
(Oke, 1973), and trends of urban vegetation greenness are anticipated to be highly
spatially heterogeneous along the urban-rural gradient. The urban-rural gradient in the
trends of vegetation greenness nevertheless remains poorly known, especially its
dependence on background climate and city size. Second, the recent greening of
natural vegetation is mainly regulated by biogeochemical drivers (Zhu et al., 2016;
Piao et al., 2020), but urbanization is usually accompanied by significantly more
complex land-cover changes such as urban expansion (or densification) and renewal
(Seto et al., 2012; Zheng et al., 2014). How the trends of the urban-rural gradient of
greenness is affected by the combination of biogeochemical drivers and land-cover

changes, therefore, remains unclear.

Facing these challenges, we investigated the greenness trends identified by satellite-
derived data for the enhanced vegetation index (EVI) and the associated
biogeochemical drivers and land-cover change for >1500 cities in China for 2000-
2019. China has undergone extremely rapid urbanization in the last two decades and
is an ideal laboratory for investigating trends of vegetation greenness in response to
both global and urban environmental change. We divided the developed areas of a city
into three categories, urban cores, urban new towns, and urban fringes, and divided
the rural background of a city into two categories, rural fringes and rural backgrounds
(Supplementary Fig. 1). We further examined the greenness trend of each city
category under different city sizes and background climates. We propose a ‘reference’
method to differentiate between the contributions of biogeochemical drivers (urban

and background biogeochemical drivers) and land-cover changes (urban expansion or
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112  densification and green recovery) to the greenness trend. This study should help to
113  deepen our understanding of future changes to vegetation under global climate
114 change.
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RESULTS AND DISCUSSION

Greenness trends in urban surfaces and their surroundings

The variations in greenness trends from urban cores to rural backgrounds were
typically V-shaped (a decrease followed by an increase) (Fig. 1). Greenness trends
gradually decreased from urban cores to urban fringes and shifted from greening (for
urban cores and urban new towns) to browning (urban fringes), but browning again
shifted to greening from urban fringes to rural backgrounds. Greenness trends in
urban cores were as large as 0.014 + 0.015 decade ™! (mean + 1 SD), with 75% of the
cities having a greening trend (Fig. 1a). Greenness trends in urban new towns were
only 0.006 + 0.020 decade ™!, with similar proportions of cities having greening (53%)
and browning trends (47%). More cities had a greening trend in northern than
southern China (Fig. 1b). The mean greenness trend in urban fringes became negative
(—0.015 + 0.023 decade ™), and only 27% of the cities had a greening trend, again
mainly distributed in northern China (Fig. 1c). The mean greenness trend in rural
fringes became positive again (0.026 + 0.016 decade ). Only 16% of the cities in this
category had a browning trend, mostly in southwestern and eastern China (Fig. 1d).
The rural backgrounds of almost all cities (99%) had significant greening trends

(0.033 £ 0.013 decade ™), with only a few exceptions (Fig. le).
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Fig. 1. Annual mean EVI trends of the urban and rural categories for >1500 cities in China | Mean EVI trends for urban cores (a), urban new
towns (b), urban fringes (¢), rural fringes (d), and rural backgrounds (e), and comparisons among these five categories (f). This analysis is based on

pixels with significant EVI changes at P < 0.05. The percentage of pixels with significant changes for each city is given in Supplementary Fig. 2.
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The greenness trends all increased with city size for the three urban categories but not
for the two rural categories (Fig. 2a). The EVI trend for urban cores increased from
0.004 + 0.016 decade ™' for small towns to 0.019 + 0.012 decade ! for megacities. The
EVI trend for urban new towns increased with city size from —0.003 £ 0.022 to 0.009
+0.017 decade™!, indicating a gradual shift from browning (for small towns, small
cities, and medium-sized cities) to greening (for large cities and megacities. The EVI
trend for urban fringes increased from —0.021 + 0.024 to —0.013 + 0.024 decade ™,
demonstrating a gradually decreasing browning trend with city size. In contrast, the
variations in the EVI trends for both rural fringes and rural backgrounds were not
significantly correlated with city size; the differences in the EVI trends among cities
with various sizes were small. Such an urban-rural disparity in the relationship
between greenness trend and city size was probably due to the considerably greater
effect of cities on urban than rural vegetation (Jia et al., 2021; see the next section for

a quantitative analysis).

The trends of urban greenness also depended strongly on background climate (Fig.
2b). For cities in the middle/cold temperate zone, all three urban categories had
greening trends: the EVI trends were 0.015 £ 0.012 decade™! (urban cores), 0.013 +
0.015 decade ™! (urban new towns), and 0.005 + 0.017 decade ' (urban fringes). By
comparison, these three urban categories all had browning trends for the tropical
cities, with EVI trends of —0.003 + 0.012 decade ™! (urban cores), —0.012 £ 0.016
decade™! (urban new towns), and —0.005 + 0.023 decade! (urban fringes). For the
cities in the vertical temperate, warm temperate, and subtropical zones, urban
greening and browning occurred simultaneously for the three urban categories: urban

fringes had browning trends, and urban cores and urban new towns had greening
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trends. The EVI trend variations between the two rural categories were similar across
various background climates and were mostly consistent with previous greening

analyses that focused on natural vegetation rather than cities (Zhu et al., 2016; Piao et

al., 2020).

Further analysis suggested that greening and browning trends could co-exist across
the three urban categories even within a single city (Supplementary Fig. 3). Such a co-
existence may be one of the reasons for the controversy in urban greening or
browning reported by previous studies. For example, cities in the vertical temperate
zone were reported to mostly have browning trends (Liang et al., 2020), but other
studies reported greening trends (Du et al., 2019; Corbane et al., 2020). Another
example is the inconsistent observation of greening or browning for warm temperate
and subtropical cities (Du et al., 2019; Corbane et al., 2020; Liang et al., 2020). The
percentage of cities in our study with simultaneous greening and browning trends
across all three urban categories was highest for the subtropical zone (67%), followed
by the vertical temperate zone (64%), the warm temperate zone (50%), the
middle/cold temperate zone (45%), and the tropical zone (32%, implying that arriving
at contradictory interpretations of urban greening or browning in the first three
climatic zones was more likely when the three urban categories were not well
delineated. That is, the possible sources of this controversy among previous studies
were the different city boundaries used to delineate urban surfaces and the vague or

lack of differentiation of the urban categories.
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193  categories have a consistent greening or browning trend, respectively.
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Contributions of biogeochemical drivers and land-cover changes to greenness
trends

The greenness trends within a city were mainly regulated by the biogeochemical
drivers and land-cover changes (Fig. 3). The significant greening in urban cores was
mainly regulated by the biogeochemical drivers (77.8%) rather than land-cover
changes (16.1%). In contrast, the noteworthy browning of urban fringes was mainly
due to land-cover changes (64.4%) rather than biogeochemical drivers (32.6%). The
simultaneous greening and browning for urban new towns was controlled by similar
contributions of these two types of drivers, although more cities had greening than
browning due to the marginally larger contribution from the biogeochemical drivers
(57.2%) than land-cover changes (39.8%; Figs. 1 & 3). The synergy of the
biogeochemical drivers and land-cover changes can determine greenness trends (Piao
etal., 2015; Zhu et al., 2016; Chen et al., 2019), but these studies mainly focused on
natural terrestrial ecosystems rather than cities. We also found that these two types of
drivers acted as competitors within cities; greening occurred when the biogeochemical
drivers dominated, and browning occurred when land-cover changes dominated (e.g.
urban expansion or densification) (Fig. 3). These findings differed from the case of
natural ecosystems, in which biogeochemical drivers (e.g. fertilization effect of
atmospheric CO; concentration) (Piao et al., 2015; Zhu et al., 2016) and land-cover

changes (e.g. afforestation; Chen et al., 2019) mostly promote greening concurrently.
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on the x-axis in (f) correspond to urban cores, urban new towns, urban fringes, rural fringes, and
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223  rural backgrounds, respectively.

224
225  We used two categories of biogeochemical drivers, the background biogeochemical
226  driver (BBD, representing the background controls of surface greening when cities are
227  absent) and the urban biogeochemical driver (UBD, representing the additional
228  factors arising from cities) (Supplementary Fig. 4). We differentiated between the
229  contributions from these two categories of biogeochemical drivers and found that
230 their contributions to the local greenness trends varied with city category. The
231  greening of rural fringes and rural backgrounds was mainly regulated by BBD, with
232  contributions of 81.6 and 93.3%, respectively. For the three urban categories (urban
233  cores, urban new towns, and urban fringes), the contribution of BBD was <30% (Fig.
234 3). The contribution of UBD was highest in urban cores and gradually decreased
235  along the urban-rural gradient from urban cores to rural backgrounds (the
236  contributions were 52.3, 24.1, 5.0, 2.3, and 0%, respectively; Fig. 3a & f). The
237  contribution of UBD in urban cores could be even larger than that of BBD, but the
238  contributions were the opposite for urban new towns and urban fringes. The
239  enhancement of annual vegetation growth was larger in urban than rural environments
240  due to the urban effect (Gregg et al., 2003; Zhao et al., 2016; Dahlhausen et al., 2018;
241  Jiaetal, 2018; Ruan et al., 2019). We also found that urban greening could be
242  significantly enhanced by UBD from a decadal perspective. We provide the first
243  quantitative analysis of the gradual variations in the contributions of UBD and BBD
244 to the trends of surface greenness along the urban-rural gradient.
245
246  The drivers of land-cover change could also be divided into two categories, urban

247  expansion or densification (UED, the alteration from natural to impervious surfaces)
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and urban green recovery (UGR, the transformation from developed to vegetation-
dominated surfaces due to urban renewal) (Supplementary Fig. 4). UED and UGR can
induce urban browning and greening, respectively. The contribution of UED to the
greenness trend decreased from urban cores to urban fringes. UED dominated the
browning of urban fringes, with a contribution of —0.028 + 0.020 decade ' (—64.4
46.0%) (Fig. 3). Its contribution was lower for urban new towns but remained
sufficiently significant (—0.016 £ 0.015 decade '; —=39.7 = 37.2%), indicating that
continuous urban densification would lead to the significant browning of urban new
towns, although this category was already urbanized before 2000 (Supplementary Fig.
1). The contribution of UED was smaller for urban cores (—0.004 + 0.007 decade ';
—15.6 £29.6%). The contribution of UGR was considerably lower than the
contribution of UED. The contribution of UGR among the three urban categories was
highest for urban cores, with a value of only 0.00013 + 0.00017 decade ™! (0.50 +
0.70%); its contribution was even smaller for the other two urban categories (<0.50%;
Fig. 3). Green recovery (e.g. new parks or green spaces) is a major contributor to the
greening of urban cores in Chinese cities (Sun et al., 2020), but our results strongly
suggested that this factor was negligible. Our findings were consistent with the intra-
city land-cover mapping, where pixels of green recovery account for <1% of the total

developed surfaces across Chinese cities (Liu et al., 2020).

The increasing trend in greenness with city size for all three urban categories was

probably due to the effect of UBD, indicated by the increasing contribution of UBD
with city size. For example, the contribution of UBD in urban cores increased from
0.006 + 0.002 decade ! in small towns to 0.017 £ 0.003 decade ! in megacities (Fig.

4a). Larger cities usually had higher rates of increase of urban atmospheric CO>
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concentrations, urban temperatures, and urban nitrogen deposition (Tian et al., 2020).
The combination of the boosted impacts of these biogeochemical factors could
therefore lead to a stronger greenness trend in larger cities. The contribution of UED
was also larger in larger cities. For example, the negative contribution of UED in
urban fringes increased from —0.019 + 0.021 decade ™! in small towns to —0.028 +
0.020 decade ! in megacities. Such a positive relationship was significant for urban
new towns and urban fringes but weaker for urban cores, perhaps due to the more
intense urban expansion or densification of larger cities in urban new towns and

fringes compared with urban cores (Liu et al., 2020).

The greenness trends in the three urban categories were also affected by background
climate (Fig. 4b). The significant greening in the three urban categories in the
middle/cold temperate zone was regulated more by the biogeochemical drivers than
by land-cover changes. For example, the combination of the BBD and UBD
contributions (0.021 decade!) was larger than the combination of the UED and UGR
contributions (—0.016 decade '), even for urban fringes. In contrast, UED in the
tropical zone was the main contributor to the urban browning in the three urban
categories (e.g. the UED contribution was —0.029 + 0.019 decade™! for urban fringes).
Such a contrast was probably due to the different major factors restraining urban
vegetation growth between these two climatic zones. Surface temperature is the main
restraining factor for middle/cold temperate cities at relatively high latitudes (Lucht et
al., 2002; Xu et al., 2013), and urban land management is the main restraining factor
for tropical cities where the vegetation is dense. The significant increasing rate of
urban heat island intensity in temperate cities (Yao et al., 2021), under which the

growing season can be prolonged, should be the main regulator of the significant
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urban greening in this zone.

The faster urbanization in tropical than temperate cities (Song et al., 2020) should
contribute to urban browning in the tropics. The greening of urban cores and urban
new towns in the vertical temperate, warm temperate, and subtropical zones was
mainly regulated by the biogeochemical drivers, and the browning of urban fringes
was affected more by urban expansion or densification (Fig. 4b). The greenness trends
for the cities in these three zones were comparable, but the contributions of the
associated drivers nevertheless differed slightly, especially for subtropical cities.
Urbanization has been faster in the tropics, and the effect of urban expansion or
densification is more intense than in the vertical temperate and warm temperate zones
(Song et al., 2020). The contribution of biogeochemical drivers in subtropical cities,

however, was also larger, which neutralized more of the browning induced by UED.
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Implications

Urban environmental changes are signs of global change. Investigating greenness
trends and their associated drivers over many cities is critical for understanding the
trends and mechanisms of vegetation changes under future global change. We found
that the variations in greenness trends for >1500 Chinese cities were A-shaped, from
urban cores to rural backgrounds (Fig. 1f). We also found that the biogeochemical
drivers and land-cover changes determined this characteristic V-shape to a large extent
(Fig. 3). Specifically, urban cores had the largest greening trend among the three
urban categories. The urban cores had only 20.3% of the vegetation coverage of the
rural backgrounds, but the greenness trend was nevertheless 42.4% of the rural
backgrounds, mainly affected by the large contribution of UBD in the urban cores.
The greening trends were weaker in urban new towns. The vegetation coverage of this
urban category 50.3% of the coverage in rural backgrounds, but its greenness trend
was only 18.2% of that in rural backgrounds. Such a weak greening trend in urban
new towns was mainly due to the neutralization between the biogeochemical drivers
and urban densification. The significant browning for urban fringes could be
attributed to the greening induced by the inadequacy of the biogeochemical drivers to
compensate the browning caused by urban expansion. The vegetation coverage of
urban fringes was 71.2% of that of rural backgrounds, but the greenness trend of

urban fringes became negative and was —45.5% of that in rural backgrounds.

The area of urban greening in large cities in China is 32% of that of global cities (Sun
et al., 2020). Sun et al. (2020), however, ignored the large number of small cities. We
found that the greening trend in China was much larger for large than small cities

(Fig. 2), implying that focusing on large cities cannot well lead to a full understanding
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of the trends of urban greenness. Lager cities are truly the benchmark for urbanization
in the future, but the overall quality of future urbanization depends more on the
development of the many and widely distributed small cities (or towns) (Fahmi et al.,
2014). Regulation of the biogeochemical drivers is relatively difficult, so using urban
land management (e.g. urban renewal) as an effective way to narrow the gap of
greenness trends between small and large cities is therefore plausible. We also found
that browning in tropical cities occurred in all three urban categories (urban cores,
urban new towns, and urban fringes) due to urban expansion or densification, despite
the high vegetation coverage in these cities. Using urban land management as a
critical way to increase the urban green space and sustainability for tropical and/or

small cities is therefore urgent.

Our findings indicated that the mean contribution of green recovery to the trends of
urban greenness for >1500 cities was relatively small (Fig. 3). These findings,
however, do not negate the importance of green recovery to urban greening and urban
ecological services. Green recovery can still contribute significantly to urban greening
in individual cities using appropriate urban planning. For example, the area of green
recovery was 54.7 km? in the urban core of Beijing, with its contribution 35.1% of
that for all urban cores. With the advance of urbanization, China would face an
intensified human-land conflict in per capita green space in the future (Chen et al.,
2017). As one of the most direct strategies of urban planning to achieve urban
greening (Supplementary Fig. 5), urban green recovery continues to have great

potential for enhancing urban ecosystem services.
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MATERIALS AND METHODS

Study area and materials

Cities in China vary greatly in size and background climate (Jia et al., 2021), and
urbanization has been rapid in recent decades (Kuang, 2020). Drastic changes in both
biogeochemical cycles and land-cover types for urban surfaces and associated rural
surroundings have accompanied the rapid urbanization. Cities in China are therefore
ideal laboratories for examining how trends of surface greenness can be
simultaneously affected by biogeochemical drivers and land-cover changes. This
study focused on all county-level or larger cities in China, a total of 1560 cities. These
cities were divided into five categories depending on urban area: 519 small towns
(with a mean urban area of 10 km?), 417 small cities (26 km?), 312 medium-sized
cities (56 km?), 207 large cities (134 km?), and 105 megacities (341 km?)
(Supplementary Fig. 6). These cities were in six climatic zones: 29 cities in the
vertical temperate zone, 247 cities in the middle/cold temperate zone, 581 cities in the
warm temperate zone, 683 cities in the subtropical zone, and 20 cities in the tropical

zone.

We used two vegetation indices, the normalized difference vegetation index (NDVI)
and the enhanced vegetation index (EVI), both from the MOD13Q1 MODIS product,
with a spatial resolution of 250 m and a temporal resolution of 16 d, ranging from
March 2000 to February 2020. NDVI can better indicate vegetation coverage and is
therefore used to estimate percent vegetation cover (PVC) (Purevdorj et al., 1998).
EVI has been extensively used as a proxy of vegetation greenness (Xu et al., 2011;
Zhang et al., 2017; Zhou et al., 2014) due to its greater sensitivity to changes in

vegetation greenness over surfaces with high biomass (Huete et al., 2002). We also
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used the yearly MCD12Q1 MODIS data product for land cover and land use with a
spatial resolution of 500 m, for the same period. Pixels labeled as water bodies were
excluded to eliminate the impact of water bodies on the detection of trends of urban

greenness.

We used the urban boundary data for 1990, 2000, and 2018 generated using a globally
consistent boundary definition and mapping method (Li et al., 2020). These urban
boundary data were applied for categorizing the urban and rural areas. We used the
annual data for global artificial impervious area (GAIA) (Gong et al., 2020) to
quantify the contribution of urban expansion or densification to the urban-rural
gradient in greenness trends. The GAIA data had an overall accuracy of >90% and a
spatial resolution of 30 m (Gong et al., 2020). We used the yearly data for urban green
recovery (Liu et al., 2020) to quantify the contribution of urban green recovery to the
greenness trends. The spatial resolution of the green-recovery data was also 30 m,
with an overall accuracy of about 80% (Liu et al., 2020). The GAIA and green-
recovery data were both resampled to 250 m to match the spatial resolution of the

vegetation indices using majority resampling.

Estimation of urban-rural gradient in greenness trends

The trends of urban greenness are anticipated to be closely associated with city
category and indirectly associated with the local status of the biogeochemical drivers
and land-cover changes. We divided the urban and rural surfaces of a city into five
categories, three urban and two rural: (1) urban cores (delineated by the urban
boundaries in 1990), (2) urban new towns (delineated by the urban boundaries

between 1990 and 2000), (3) urban fringes (delineated by the urban boundaries
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between 2000 and 2018, (4) rural fringes (buffer zones surrounding the urban
peripheries), and (5) rural backgrounds (buffer zones far from the urban peripheries)
(Supplementary Fig. 1). The interannual trends of EVI were then examined for all five
city categories using linear regression. Only pixels with statistically significant
changes in EVI at P < 0.05 were included in the analysis. The category-based pixel
percentages with significant EVI changes (P < 0.05) are also provided for assessing
the representativeness of the significant samples. The greenness trends may also
depend on vegetation type, but we did not consider the impact of vegetation type due
to the very complex structure and composition of the urban-rural vegetation gradient.

This issue is discussed further in Supplementary Note 1.

Decomposition of greenness trends

The trends of vegetation greenness were determined using two types of drivers,
biogeochemical drivers (e.g. effect of fertilization by atmospheric CO>, nitrogen
deposition, and climate change) and land-cover changes (e.g. afforestation) (Zhu et
al., 2016; Piao et al., 2015; Piao et al., 2020; Chen et al., 2019). Differentiating
between the impacts of atmospheric CO; concentration, nitrogen deposition, and
climate change on greenness trends is extremely difficult at the local scale within a
city (Liang et al., 2020; Zhao et al., 2016), so we combined these factors and referred
to them as biogeochemical drivers. Cities had two types of biogeochemical drivers, a
background biogeochemical driver (BBD) and an urban biogeochemical driver
(UBD). BBD represents the environmental changes arising at a large (global or
regional) scale, such as elevated atmospheric CO2 concentrations, increased nitrogen
deposition, and climatic warming (Piao et al., 2020), and UBD represents the urban

environmental changes arising at a local (city) scale, such as high CO2 emissions,
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nitrogen deposition, and urban heat islands (Zhao et al., 2016). The influence of land-
cover changes to the trends of vegetation greenness is also twofold. The first category
of urban land-cover change is the transition from natural landscapes to impervious
surfaces or the further increase in the percentage of impervious surfaces
(Shahtahmassebi et al., 2016), i.e. urban expansion or densification (UED). The
second category is the transition from developed to vegetation-dominated surfaces,
usually due to a series of urban-renewal activities (Haase et al. 2017), i.e. urban green
recovery (UGR). UED generally leads to a decrease in urban vegetation (i.e. urban
browning; Gong et al., 2020), and UGR generally leads to an increase in urban
vegetation (i.e. urban greening) (Liu et al., 2020). The observed EVI trend (OBS, a
proxy for the trends of vegetation greenness) can be expressed as:
O=B+U+E+G+r (1)
where O is the observed EVI trend (i.e. OBS), and B, U, E, G, and r represent the
contributions from BBD, UBD, UED, UGR, and a residual factor (REF), respectively.
We used REF to express both the estimation error and the possible influence of other

controls in addition to these four drivers (see Supplementary Note 1).

The contributions of BBD, UBD, UED, and UGR vary across a city and therefore
depend on city category. We categorized the pixels for each city category into four
groups: (1) pixels with urban expansion or densification (labeled as Pix_ED pixels),
(2) pixels with green recovery (Pix_GR pixels), (3) pixels with unchanged land-cover
type but with a positive EVI trend (Pix_PE pixels), and (4) pixels with unchanged
land-cover type but with a negative EVI trend (Pix_NE pixels). The first three groups
of pixels (Pix_ED, Pix_GR, and Pix_PE pixels) accounted for 95.1% of the total

pixels, and the Pix_NE pixels accounted for only 4.9%. To estimate the contributions
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of these drivers to the Pix_ED and Pix_GR pixels, we further combined the two
categories of pixels with unchanged land cover (i.e. Pix_PE and Pix_NE pixels) and

designated them as Pix LCU pixels. Egs. (8) to (10) provide more explanations.

The greenness trends of these four groups of pixels (the Pix_ED, Pix_GR, Pix_PE,
and Pix_NE pixels) can all be affected by BBD and UBD. We disregarded the Pix NE
pixels, however, in the calculations of the contributions of BBD and UBD due to the
low pixel percentage (<5%) compared with the other three types of pixels and partly
because the Pix_NE pixels should be affected more by other factors (e.g. change in
building height) rather than by the biogeochemical drivers (BBD and UBD), because
BBD and UBD both enhance greenness trends and lead to positive EVI trends. The
contributions of BBD and UBD to the trends of urban greenness can therefore be
estimated by:

B = Brixre + Bricip + Brixar (2)

U= Urixre + Urixip + Urix ar 3)
where Brix pe, Brix e, Brix 6r, Urix pe, Uric i, and Urix 6k represent the contributions of
BBD and UBD for the associated groups of pixels. By comparison, UED can only
affect the EVI trends of the Pix_ED pixels with urban expansion or densification, and
UGR can only affect the Pix_GR pixels with green recovery. The contributions of
UED and UGR to the EVI trend can therefore be estimated by:

E = Eric o 4)
G = Gricr )

where Eri ep and Grixor represent the UED and UGR contributions for the Pix_ED
and Pix_GR pixels, respectively. According to Egs. (2) to (5), the estimates of the

contributions of BBD, UBD, UED, and UGR can therefore be transformed to
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calculate Eight parameters: BPixﬁPE, BPixﬁED, BPixﬁGR, UPixﬁPE, UPixﬁED, Uprix 6r, EPixiED, and Gbrix cr
(see Supplementary Fig. 7). These parameters were calculated separately for each city

category.

(1) Calculation of Beixre and Ui re

Brixpe refers to the contribution of BBD to the EVI trend of the pixels with unchanged
land-cover type but with a positive EVI trend (i.e. the Pix_PE pixels). This parameter
is closely associated with the influence of BBD in rural backgrounds and associated
vegetation coverages (see Supplementary Fig. 7a for more explanations). Beix »: Can
therefore be calculated using the following three components, (i) the contribution of
BBD to the EVI trend in rural backgrounds, (ii) the ratio of PVC between a specific
city category and rural backgrounds, and (iii) the ratio between the number of Pix_PE
pixels and the total number of pixels for a specific city category. For the first
component, the contribution of BBD to the EVI trend of the Pix_PE pixels of a
specific urban category can be considered equivalent to that of rural backgrounds,
mostly because the rural background chosen was relatively far from the urban
categories (Supplementary Fig. 1) and would consequently be rarely affected by UBD
(Du et al., 2019). That is, the contribution of BBD to the EVI trend of the Pix_PE
pixels of a specific urban category can be indirectly measured using the EVI trends of
the Pix_PE pixels of rural backgrounds (EVIei re_rs). For the second component, the
accurate calculation of Bri »e requires the consideration of the PVC difference
between a specific urban category and a rural background (Supplementary Fig. 8).
That is, Brixpe 1S N0t equivalent to EVlsi e rs, because the PVC difference between a
specific urban category and a rural background is usually large. For the third

component, Bri re IS also understandably affected by the ratio between the number of
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Pix_PE pixels and the total number of pixels for a specific city category. Based on the
above analysis, Bri »= can therefore be calculated by:

Brire = EVIiceers x jError! x jError! (6)
where EVIrix re rs represents the mean EVI trend for the same type of Pix_PE pixels in
a rural background, PVCrix re and PVCrixre re represent the PVC of the Pix_PE pixels
for a specific urban category and a rural background, respectively, and Arix e and A
are the number of Pix_PE pixels for a specific urban category and all pixels for this
specific urban category, respectively. The calculation of PVC is explained in more

detail in Supplementary Note 2.

U»ri e refers to the influence of UBD on the EVI trends of the Pix_PE pixels. The
EVI trends of the Pix_PE pixels would only be affected by BBD and UBD, because
land cover does not change for this group of pixels. Uri »= can therefore be calculated
by removing the contribution of BBD from the EVI trends of the Pix_PE pixels (EVI
rix PE), iVeN as:

Urixre = EVIrixve x jError! — Bricee (7
where EVIpix pe represents the mean EVI trend of the Pix_PE pixels for a specific

urban category.

(2) Calculation of Beix kb, Urix e, Brix cr, and Uris_cr

Brix ep refers to the contribution of BBD to the EVI trend of the pixels with urban
expansion or densification (i.e. the Pix_ED pixels). The urbanization levels for the
Pix_ED pixels and the pixels with unchanged land-cover type in the same city
category (i.e. the Pix_LCU pixels) are relatively similar, so inferring that the

contribution ratio between BBD and UBD for these two types of pixels (the Pix ED
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and Pix_LCU pixels) in the same city category are also similar is reasonable
(Supplementary Fig. 7b). Such a ‘proximity-pixel-reference’ method has been widely
accepted and used (Peng et al., 2014; Li et al., 2015; Hong et al., 2020). Beix s> can
therefore be calculated indirectly using (7) the EVI trend of the Pix LCU pixels for
the same city category (EVIrix 1cv) and (i7) the proportion of the contribution of BBD to
the EVI trend for the Pix PE pixels:

Briceo = EVIicicu x jError! x jError! (8)
where EVIrix 1cu represents the mean EVI trend of the Pix_LCU pixels for a specific
city category, Brix e and Uri re can be estimated using Eqs. (6) and (7), respectively,

and Ari o denotes the number of Pix_ED pixels for the associated urban category.

Urix eo refers to the influence of UBD on the EVI trend of the pixels with urban
expansion or densification (i.e. the Pix_ED pixels). Uri e can be similarly calculated
indirectly using (i) the EVI trend of the Pix LCU pixels for the same city category
(EVIvix 1cu) and (ii) the proportion of the contribution of UBD to the EVI trend for the
Pix_PE pixels:

Urixeo = EVIricico % jError! x jError! 9)
Similar to the calculation of Bri eo and Usi o, We calculated the contributions of BBD
and UBD to the EVI1 trends for the pixels with green recovery, i.e. Brix ak and Uri cr.
More details on the calculation of these two components are provided in

Supplementary Note 3.

(3) Calculation of Erixeo and Grix cr
Eri ep refers to the contribution of UED to the EVI trend of the pixels with urban

expansion or densification (i.e. the Pix ED pixels). For the same city category, the
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only difference in the controls of the trends of surface greenness between the pixels
with urban expansion or densification (i.e. the Pix ED pixels) and the Pix LCU
pixels are due to the contribution of UED. Calculating Eri o using the difference of
the EVI trends between the Pix ED and Pix LCU pixels (Supplementary Fig. 7b) is
therefore plausible:

Evicio = (EVIvicio — EVIricicu) x jError! (10)
where EVIrix eo represents the mean EVI trend of the Pix ED pixels for a specific city
category.

Grix ar refers to the contribution of UGR to the EVI trend of the pixels with green
recovery (i.e. the Pix_GR pixels). The calculation of Gri cr is similar to that of Epi ev;

more details are provided in Supplementary Note 3.

We used the methods described above to quantify the contributions of BBD, UBD,
UED, and UGR to the EVI trends using Egs. (2) to (5) for each city category. For a
better comparison among the various drivers, we further calculated the percentage
contributions of these four drivers based on the procedures described in

Supplementary Note 4.
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A. Supplementary notes

Note 1: Uncertainties of urban-rural gradients in greenness trends due to drivers
other than the biogeochemical drivers and land-cover changes

In addition to the biogeochemical drivers and land-cover changes, the urban-rural
gradient in the satellite-derived greenness trends can also be affected by other drivers
such as increases in building height (Zhang et al., 2015), a higher frequency of heat
waves (Qiu et al., 2020), and insect-induced disturbance (Tai et al., 2019). Increases in
building height during urbanization usually decreases the satellite-derived EVI due to
the greater effect of shadows with higher buildings (Zhang et al., 2015). A higher
frequency of heat waves and insect-induced disturbance can also interrupt vegetation
metabolism, damage vegetation physiological function, and accordingly affect the
observed EVI (Qiu et al., 2020; Tai et al., 2019). Vegetation greenness usually
increases or remains relatively stable for pixels with a stable land-cover type (Zhu et
al., 2016; Piao et al., 2020), so we inferred that the browning of the pixels with
unchanged land-cover type (the Pix_NE pixels, see Materials and methods) should be
due more to these additional drivers, such as increases in building height. We did not
discern the contributions from these additional drivers but incorporated them into the
residual term in Eq. (1), mostly because (1) the Pix NE pixels accounted for <5% of
the total pixels and because (2) accurately quantifying the contributions of these
additional drivers to the urban-rural gradient in greenness trends currently remains a

great challenge and may even be impossible.

The urban-rural greenness trends were also closely associated with vegetation type.
We acknowledge that differentiating between types of vegetation cover can help to

interpret the urban-rural gradient in greenness trends in response to human activities
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(e.g. field management) and global change (Piao et al., 2003). Differentiating between
the types of urban vegetation across >1500 cities, however, is very difficult and even
unfeasible for urban surfaces due to the very complex structure and composition of
the vegetation. The vegetation types for rural fringes and rural backgrounds were
mainly forest, grassland, and farmland: forests were mainly around the northeastern
and southwestern cities, grassland was mainly around the northwestern cities, and
farmland was mainly around the eastern cities on plains or in basins. These
distributions indicated that standardizing the vegetation types in rural fringes and rural
backgrounds was not plausible for all cities, because the type of rural vegetation
differed greatly across the background climates. Our study therefore did not examine
the impact of vegetation type on the quantification of contribution. Our study is
consistent with previous studies of urban-rural contrasts in surface phenology (Zhao et
al., 2016; Jia et al., 2018; Tian et al., 2020), for which vegetation type was usually not
considered due to the great complexity of vegetation type and structure along the

urban-rural gradient.

Note 2: Estimation of percent vegetation cover

The percent vegetation cover (PVC) required for differentiating between the
contributions from the background and urban biogeochemical drivers was calculated
using linear regression based on NDVI data (Purevdorj et al., 1998; Gao et al., 2020).
The MODIS NDVI data during the growing season (April-October) were used, and
the thresholds required for this method were set at 0.15 and 0.80, representing the
scenarios of no vegetation and full vegetation coverage, respectively (Purevdorj et al.,
1998). We acknowledge that uncertainties may occur for the selection of appropriate

thresholds for different vegetation types. We nevertheless used a consistent standard
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of threshold, because this analysis was based on the average PVC of the urban and

rural surfaces and because we only used the ratio between the urban and rural PVCs.

Note 3: Calculation of Brix_cr, Urix_cr, and Grix cr

Brix ar refers to the contribution of BBD to the EVI trend of the pixels with green
recovery (i.e. the Pix GR pixels). The urbanization level was similar for the Pix GR
and Pix_LCU pixels in the same city category, so deducing that the contribution ratio
between BBD and UBD for these two types of pixels in the same city category were
also similar was rational (Supplementary Fig. 7b). Brior can therefore be calculated
indirectly using (i) the EVI trend of the Pix_LCU pixels in the same city category
(EVIrix1cv) and (ii) the proportion of the contribution of BBD to the EVI trend for the
Pix_GR pixels:

Brixar = EVlicicu x jError! x jError! (S1)
where EVIrix 1cu represents the mean EVI trend of the Pix_LCU pixels for a specific
city category, Bri re and Uric pe are obtainable using Eqs. (6) and (7), Arix sk represents
the number of Pix_GR pixels for the associated urban category, and 4 represents all

pixels for this urban category.

Urix ar refers to the influence of UBD on the EVI trend of the pixels with green
recovery (i.e. the Pix_GR pixels). Uri oz can similarly be indirectly estimated using
(7) the EVI trend of the Pix_LCU pixels in the same city category (EVIrix Lcu) and (i7)
the proportion of the contribution of UBD to the EVI trend for the Pix_GR pixels:

Urix v = EVIvic1cu x jError! x jError! (S2)

Griar refers to the contribution of UGR to the EVI trend of the pixels with green
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recovery (i.e. the Pix_GR pixels). The contribution of UGR was the only difference in
the controls of the trends of surface greenness between the pixels with green recovery
(i.e. the Pix GR pixels) and the Pix LCU pixels for the same city category.
Calculating Grix sr using the difference of the EVI trends between the Pix GR and
Pix LCU pixels was consequently feasible (Supplementary Fig. 7b), given by:

Grior = (EVIixar — EVIricicu) x jError! (S3)
where EVIrix ar represents the mean EVI trend of the Pix_GR pixels for a specific city

category.

Note 4: Calculation of percent contribution of each driver
The percent contribution of each driver was calculated by (Liu et al., 2019):

C: = jError! x 100% (S4)
where C: represents the percent contribution of driver i to the EVItrend (i =B, U, E,
G, or r). We used the absolute instead of the original values to calculate the
contributions to avoid the percent contribution of a single factor >100% and to avoid a

denominator equal to zero.
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B. Supplementary figures

urban core

rural background

Beijing Chengdu

Supplementary Figure 1. Schematic of the three urban and two rural categories for Beijing (a)
and Chengdu (b) | Urban cores are delineated by the urban boundaries in 1990, urban new towns
include urbanized surfaces from 1990 to 2000, urban fringes include urbanized surfaces from 2000 to
2018, rural fringes are buffer zones around urban fringes with a buffer distance of d that guarantees
an area of rural fringes equivalent to that of the combination of the three urban categories, and rural
backgrounds are delineated by another buffer zone with an area equivalent to the combination of the
three urban categories and with a distance of 5d from urban fringes for suppressing the impact of

urbanization as much as possible (Du et al., 2019).
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Supplementary Figure 2. Percentage of areas with significant EVI changes (P < 0.05) in the five
city categories across 1560 Chinese cities | Area percentages in urban cores (a), urban new towns
(b), urban fringes (¢), rural fringes (d), and rural backgrounds (e), and the means and standard

deviations in area percentage for the five city categories (f).

43 | 52



815
816

817

818

819

820

821

80:’ E 90:’ E 10(3“ E 1101" E 12q° E 1301" E

Legend
* consistent urban browning

urban greening/browning

©consistent urban greening

50° N
1
—

z
og i
z
percent (%)
0 20 40 60 80100
subtropical #:
- vertical temperate
o) warm temperate
& middle/cold temperate

Supplementary Figure 3. Consistency (or heterogeneity) of greenness trends for the three
urban categories, urban cores, urban new towns, and urban fringes, and the associated
proportions in the climatic zones | Orange indicates that all three urban categories have browning,
red indicates that both browning and greening occurs for the three urban categories, and green

indicates that all three urban categories have greening.
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834  Supplementary Figure 6. Spatial (a) and frequency (b) distribution of city size of
835  the 1560 cities at the county level or above in China | These cities are divided into
836  five categories based on city size: small towns (accounting for 33.3% of all cities),
837  small cities (26.7%), medium-sized cities (20.0%), large cities (13.3%), and

838  megacities (6.7%).
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Supplementary Figure 7. Schematic for differentiating between the contribution of each driver for
each city category| Comparison of the impacts of the background biogeochemical driver (BBD) and the

urban biogeochemical driver (UBD) on the urban-rural gradient of EVI trends (a), comparison of the
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urban-rural gradient of EVI trends for areas with and without changes in land-cover type (b), and impacts

(or contributions) of these four drivers on the EVI trend over different categories of pixels (c).
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850  Supplementary Figure 8. Relationship between percent vegetation cover (PVC)
851 and EVI trend | The relationships between PVC and the EVI trends in regions with
852  positive EVI trends (a) and regions with negative EVI trends (b).
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