

---

This is the **accepted version** of the journal article:

Li, Long; Zhan, Wenefeng; Ju, Weimin; [et al.]. «Competition between biogeochemical drivers and land-cover changes determines urban greening or browning». *Remote Sensing of Environment*, Vol. 287 (March 2023), art. 113481. DOI 10.1016/j.rse.2023.113481

---

This version is available at <https://ddd.uab.cat/record/289888>

under the terms of the  license

---

1    **Competition between biogeochemical drivers and land-cover changes determines**  
2    **urban greening or browning**

3

4    Long Li <sup>a</sup>, Wenfeng Zhan <sup>a, b,\*</sup>, Weimin Ju <sup>a</sup>, Josep Peñuelas <sup>c, d</sup>,  
5    Zaichun Zhu <sup>e</sup>, Shushi Peng <sup>f</sup>, Xiaolin Zhu <sup>g</sup>, Zihan Liu <sup>a</sup>, Yuyu Zhou <sup>h</sup>,  
6    Jiufeng Li <sup>a</sup>, Jiameng Lai <sup>a</sup>, Fan Huang <sup>a</sup>, Gaofei Yin <sup>i</sup>,  
7    Yongshuo Fu <sup>j</sup>, Manchun Li <sup>b, k</sup>, Chao Yu <sup>l</sup>

8    *<sup>a</sup> Jiangsu Provincial Key Laboratory of Geographic Information Science and  
9    Technology, International Institute for Earth System Science, Nanjing University,  
10   Nanjing,*

11   *Jiangsu, China*

12   *<sup>b</sup> Jiangsu Center for Collaborative Innovation in Geographical Information Resource  
13   Development and Application, Nanjing, China*

14   *<sup>c</sup> CSIC, Global Ecology Unit CREAF-CSIC-UAB-UB Bellaterra, Barcelona,  
15   Catalonia, Spain*

16   *<sup>d</sup> CREAF, Bellaterra, Barcelona, Catalonia, Spain*

17   *<sup>e</sup> Peking University Shenzhen Graduate School, Peking University, Shenzhen,  
18   Guangdong, China*

19   *<sup>f</sup> Sino-French Institute for Earth System Science, College of Urban and Environmental  
20   Sciences, Peking University, Beijing, China*

21   *<sup>g</sup> Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic  
22   University, Hong Kong, China*

23   *<sup>h</sup> Department of Geological and Atmospheric Sciences, Iowa State University, Ames,  
24   IA, USA*

---

25 *i Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong*  
26 *University, Chengdu, China*

27 *j College of Water Sciences, Beijing Normal University, Beijing, China*

28 *k School of Geography and Ocean Science, Nanjing University, Nanjing, China*

29 *l State Key Laboratory of Remote Sensing Science, The Aerospace Information Research*  
30 *Institute, Chinese Academy of Sciences, Beijing, China*

31

32 **CONTACT INFORMATION**

33 **\* Corresponding author:** W. Zhan ([zhanwenfeng@nju.edu.cn](mailto:zhanwenfeng@nju.edu.cn)).

34 1. *CSIC, Global Ecology Unit CREAF-CSIC-UAB-UB Bellaterra, Barcelona 08193,*  
35 *Catalonia, Spain*

36 2. *CREAF, Bellaterra, Barcelona 08193, Catalonia, Spain*

37

38

39

---

40 **ABSTRACT**

41 Urban vegetation, a harbinger of future global vegetation change, is controlled by  
42 complex urban environments. The urban-rural gradient in vegetation greenness trends  
43 and their responses to biogeochemical drivers (e.g. elevated atmospheric CO<sub>2</sub>  
44 concentration and climate warming) and land-cover changes, however, remain un-  
45 clear. Here we used satellite-derived enhanced vegetation index to examine the  
46 greenness trends for 1500-plus cities in China for 2000–2019. We developed a  
47 conceptual framework to differentiate between the contributions of four key drivers to  
48 the greenness trends: two biogeochemical drivers, a background biogeochemical  
49 driver (BBD) and an urban biogeochemical driver (UBD), and two drivers of land-  
50 cover changes, urban expansion or densification (UED) and urban green recovery  
51 (UGR). We find that the greening trends gradually decreased from urban cores to  
52 urban new towns and then to browning trends in urban fringes. The significant  
53 greening in urban cores was mainly contributed by BBD (25.6%) and UBD (52.3%).  
54 While the minor greening in urban new towns was contributed by both BBD (33.1%)  
55 and UBD (24.1%) and weakened by UED (—39.7%). The UED (—64.4%)  
56 dominated the browning in urban fringes. These results suggest that biogeochemical  
57 drivers and land-cover changes jointly regulated the urban-rural gradient in greenness  
58 trends, which contributes to the assessment of future global vegetation change driven  
59 by complex environmental changes.

60

61

---

62 **INTRODUCTION**

63 As a key component of terrestrial ecosystems, vegetation is extremely critical in  
64 maintaining carbon cycles and providing ecological services (Lee et al., 2011; Forzieri  
65 et al., 2017; Piao et al., 2020). Global-scale studies have reported that the recent  
66 greening of the Earth is regulated by a series of biogeochemical drivers (e.g. the effect  
67 of atmospheric CO<sub>2</sub> fertilization, nitrogen deposition, and climate change) and land-  
68 cover changes (Nemani et al., 2003; Los, 2013; Schimel et al., 2015; Zhu et al., 2016;  
69 Chen et al., 2019; Piao et al., 2020). Cities are a coupling system between nature and  
70 human beings (Grimm et al., 2008), with more than half of the global population  
71 currently living in cities (United Nations, 2018). Vegetation in cities differs from  
72 natural landscapes and can either be greening or browning, because cities undergo  
73 more drastic land-cover changes (Liu et al., 2020) and because changes in urban  
74 vegetation are affected by more complex biogeochemical drivers (Gregg et al., 2003;  
75 Zhao et al., 2016). Urban environmental changes are the ‘harbingers’ of global change  
76 (Grimm et al., 2008). Investigating urban greening (or browning) and its associated  
77 drivers is therefore valuable for both human settlements and better predictions of  
78 vegetation changes in natural landscapes in the future.

79

80 The growth of vegetation can usually be enhanced more in cities than rural land due  
81 to the significantly larger urban biogeochemical effect (Gregg et al., 2003; Zhao et al.,  
82 2016; Dahlhausen et al., 2018; Jia et al., 2018; Ruan et al., 2019) but naturally does  
83 not indicate that the greenness trends are greater in urban than rural areas from a  
84 decadal perspective. Several recent studies focusing on decadal changes in urban  
85 vegetation have suggested that vegetation could be either greening or browning under  
86 various socioeconomic and climatic controls (Du et al., 2019; Corbane et al., 2020;

---

87 Liang et al., 2020). Two important issues, however, persist. First, urban environmental  
88 change depends strongly on the background climate (Zhao et al., 2014) and city size  
89 (Oke, 1973), and trends of urban vegetation greenness are anticipated to be highly  
90 spatially heterogeneous along the urban-rural gradient. The urban-rural gradient in the  
91 trends of vegetation greenness nevertheless remains poorly known, especially its  
92 dependence on background climate and city size. Second, the recent greening of  
93 natural vegetation is mainly regulated by biogeochemical drivers (Zhu et al., 2016;  
94 Piao et al., 2020), but urbanization is usually accompanied by significantly more  
95 complex land-cover changes such as urban expansion (or densification) and renewal  
96 (Seto et al., 2012; Zheng et al., 2014). How the trends of the urban-rural gradient of  
97 greenness is affected by the combination of biogeochemical drivers and land-cover  
98 changes, therefore, remains unclear.

99

100 Facing these challenges, we investigated the greenness trends identified by satellite-  
101 derived data for the enhanced vegetation index (EVI) and the associated  
102 biogeochemical drivers and land-cover change for >1500 cities in China for 2000-  
103 2019. China has undergone extremely rapid urbanization in the last two decades and  
104 is an ideal laboratory for investigating trends of vegetation greenness in response to  
105 both global and urban environmental change. We divided the developed areas of a city  
106 into three categories, urban cores, urban new towns, and urban fringes, and divided  
107 the rural background of a city into two categories, rural fringes and rural backgrounds  
108 (Supplementary Fig. 1). We further examined the greenness trend of each city  
109 category under different city sizes and background climates. We propose a ‘reference’  
110 method to differentiate between the contributions of biogeochemical drivers (urban  
111 and background biogeochemical drivers) and land-cover changes (urban expansion or

---

112 densification and green recovery) to the greenness trend. This study should help to  
113 deepen our understanding of future changes to vegetation under global climate  
114 change.

115

116

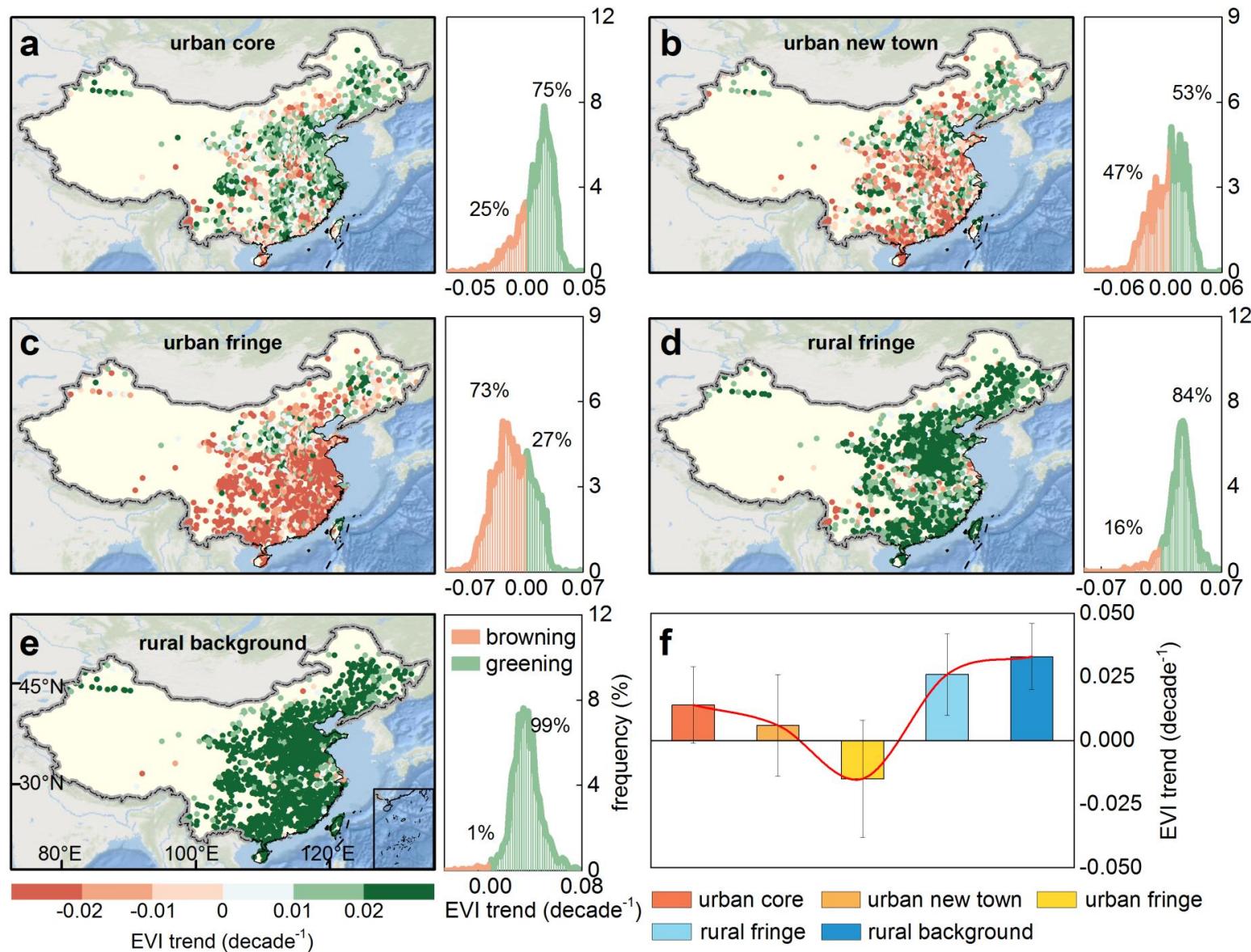
117

---

118 **RESULTS AND DISCUSSION**

119 **Greenness trends in urban surfaces and their surroundings**

120 The variations in greenness trends from urban cores to rural backgrounds were  
121 typically V-shaped (a decrease followed by an increase) (Fig. 1). Greenness trends  
122 gradually decreased from urban cores to urban fringes and shifted from greening (for  
123 urban cores and urban new towns) to browning (urban fringes), but browning again  
124 shifted to greening from urban fringes to rural backgrounds. Greenness trends in  
125 urban cores were as large as  $0.014 \pm 0.015 \text{ decade}^{-1}$  (mean  $\pm 1 \text{ SD}$ ), with 75% of the  
126 cities having a greening trend (Fig. 1a). Greenness trends in urban new towns were  
127 only  $0.006 \pm 0.020 \text{ decade}^{-1}$ , with similar proportions of cities having greening (53%)  
128 and browning trends (47%). More cities had a greening trend in northern than  
129 southern China (Fig. 1b). The mean greenness trend in urban fringes became negative  
130 ( $-0.015 \pm 0.023 \text{ decade}^{-1}$ ), and only 27% of the cities had a greening trend, again  
131 mainly distributed in northern China (Fig. 1c). The mean greenness trend in rural  
132 fringes became positive again ( $0.026 \pm 0.016 \text{ decade}^{-1}$ ). Only 16% of the cities in this  
133 category had a browning trend, mostly in southwestern and eastern China (Fig. 1d).  
134 The rural backgrounds of almost all cities (99%) had significant greening trends  
135 ( $0.033 \pm 0.013 \text{ decade}^{-1}$ ), with only a few exceptions (Fig. 1e).  
136



---

138 **Fig. 1. Annual mean EVI trends of the urban and rural categories for >1500 cities in China** | Mean EVI trends for urban cores (a), urban new  
139 towns (b), urban fringes (c), rural fringes (d), and rural backgrounds (e), and comparisons among these five categories (f). This analysis is based on  
140 pixels with significant EVI changes at  $P < 0.05$ . The percentage of pixels with significant changes for each city is given in [Supplementary Fig. 2](#).

141

---

142 The greenness trends all increased with city size for the three urban categories but not  
143 for the two rural categories ([Fig. 2a](#)). The EVI trend for urban cores increased from  
144  $0.004 \pm 0.016 \text{ decade}^{-1}$  for small towns to  $0.019 \pm 0.012 \text{ decade}^{-1}$  for megacities. The  
145 EVI trend for urban new towns increased with city size from  $-0.003 \pm 0.022$  to  $0.009$   
146  $\pm 0.017 \text{ decade}^{-1}$ , indicating a gradual shift from browning (for small towns, small  
147 cities, and medium-sized cities) to greening (for large cities and megacities). The EVI  
148 trend for urban fringes increased from  $-0.021 \pm 0.024$  to  $-0.013 \pm 0.024 \text{ decade}^{-1}$ ,  
149 demonstrating a gradually decreasing browning trend with city size. In contrast, the  
150 variations in the EVI trends for both rural fringes and rural backgrounds were not  
151 significantly correlated with city size; the differences in the EVI trends among cities  
152 with various sizes were small. Such an urban-rural disparity in the relationship  
153 between greenness trend and city size was probably due to the considerably greater  
154 effect of cities on urban than rural vegetation ([Jia et al., 2021](#); see the next section for  
155 a quantitative analysis).

156

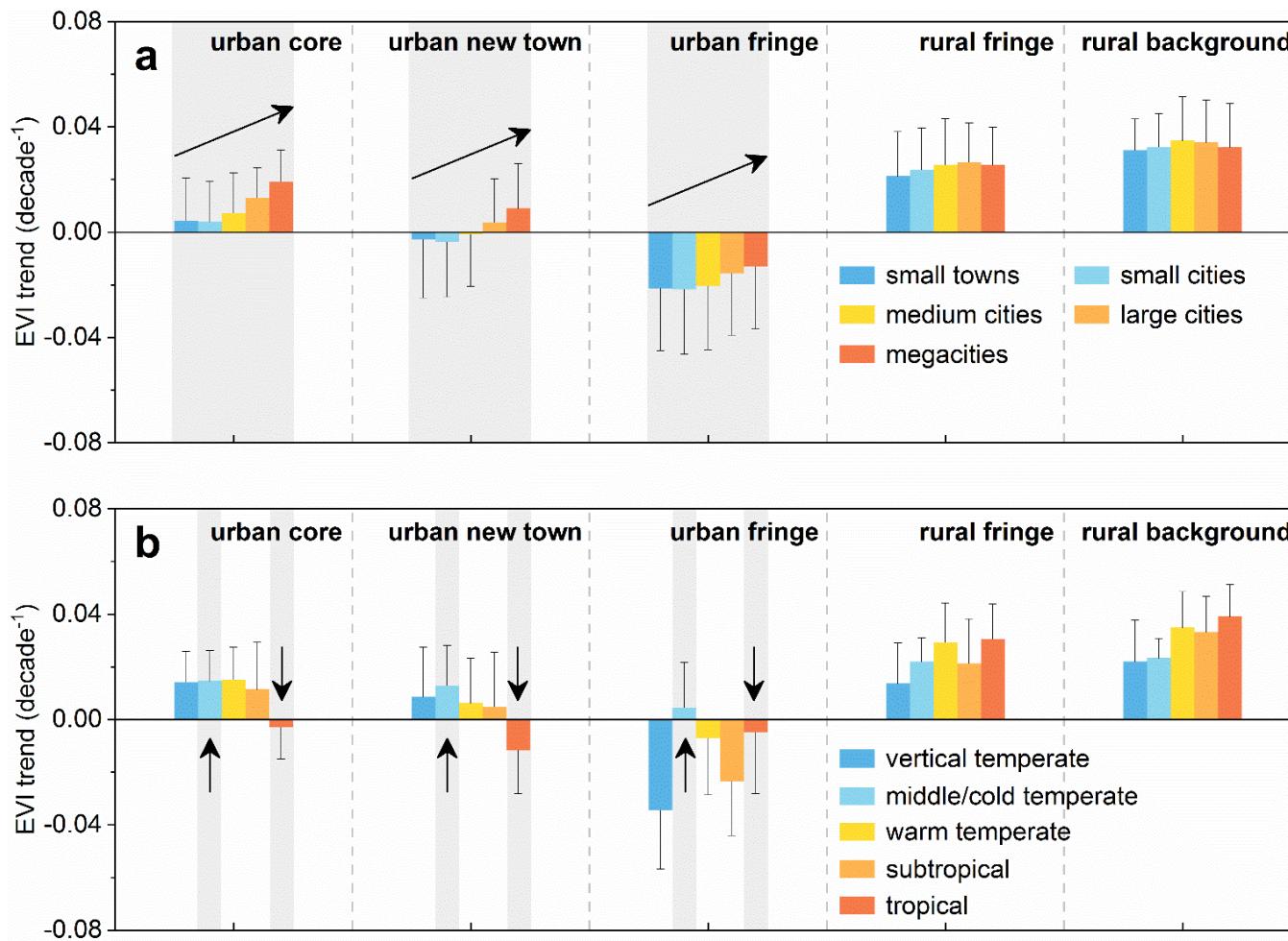
157 The trends of urban greenness also depended strongly on background climate ([Fig.](#)  
158 [2b](#)). For cities in the middle/cold temperate zone, all three urban categories had  
159 greening trends: the EVI trends were  $0.015 \pm 0.012 \text{ decade}^{-1}$  (urban cores),  $0.013 \pm$   
160  $0.015 \text{ decade}^{-1}$  (urban new towns), and  $0.005 \pm 0.017 \text{ decade}^{-1}$  (urban fringes). By  
161 comparison, these three urban categories all had browning trends for the tropical  
162 cities, with EVI trends of  $-0.003 \pm 0.012 \text{ decade}^{-1}$  (urban cores),  $-0.012 \pm 0.016$   
163  $\text{decade}^{-1}$  (urban new towns), and  $-0.005 \pm 0.023 \text{ decade}^{-1}$  (urban fringes). For the  
164 cities in the vertical temperate, warm temperate, and subtropical zones, urban  
165 greening and browning occurred simultaneously for the three urban categories: urban  
166 fringes had browning trends, and urban cores and urban new towns had greening

---

167 trends. The EVI trend variations between the two rural categories were similar across  
168 various background climates and were mostly consistent with previous greening  
169 analyses that focused on natural vegetation rather than cities (Zhu et al., 2016; Piao et  
170 al., 2020).

171

172 Further analysis suggested that greening and browning trends could co-exist across  
173 the three urban categories even within a single city (Supplementary Fig. 3). Such a co-  
174 existence may be one of the reasons for the controversy in urban greening or  
175 browning reported by previous studies. For example, cities in the vertical temperate  
176 zone were reported to mostly have browning trends (Liang et al., 2020), but other  
177 studies reported greening trends (Du et al., 2019; Corbane et al., 2020). Another  
178 example is the inconsistent observation of greening or browning for warm temperate  
179 and subtropical cities (Du et al., 2019; Corbane et al., 2020; Liang et al., 2020). The  
180 percentage of cities in our study with simultaneous greening and browning trends  
181 across all three urban categories was highest for the subtropical zone (67%), followed  
182 by the vertical temperate zone (64%), the warm temperate zone (50%), the  
183 middle/cold temperate zone (45%), and the tropical zone (32%, implying that arriving  
184 at contradictory interpretations of urban greening or browning in the first three  
185 climatic zones was more likely when the three urban categories were not well  
186 delineated. That is, the possible sources of this controversy among previous studies  
187 were the different city boundaries used to delineate urban surfaces and the vague or  
188 lack of differentiation of the urban categories.



189

190 **Fig. 2.** Variations in annual mean EVI trends in the three urban categories (urban cores, urban new towns, and urban fringes) and the two  
 191 categories of rural surroundings (rural fringes and rural backgrounds) depending on city size (a) and background climate (b) | The arrows in (a)  
 192 indicate that the EVI trends increase with city size, and the upward and downward arrows in (b) indicate the climatic zones in which the three urban

---

193 categories have a consistent greening or browning trend, respectively.

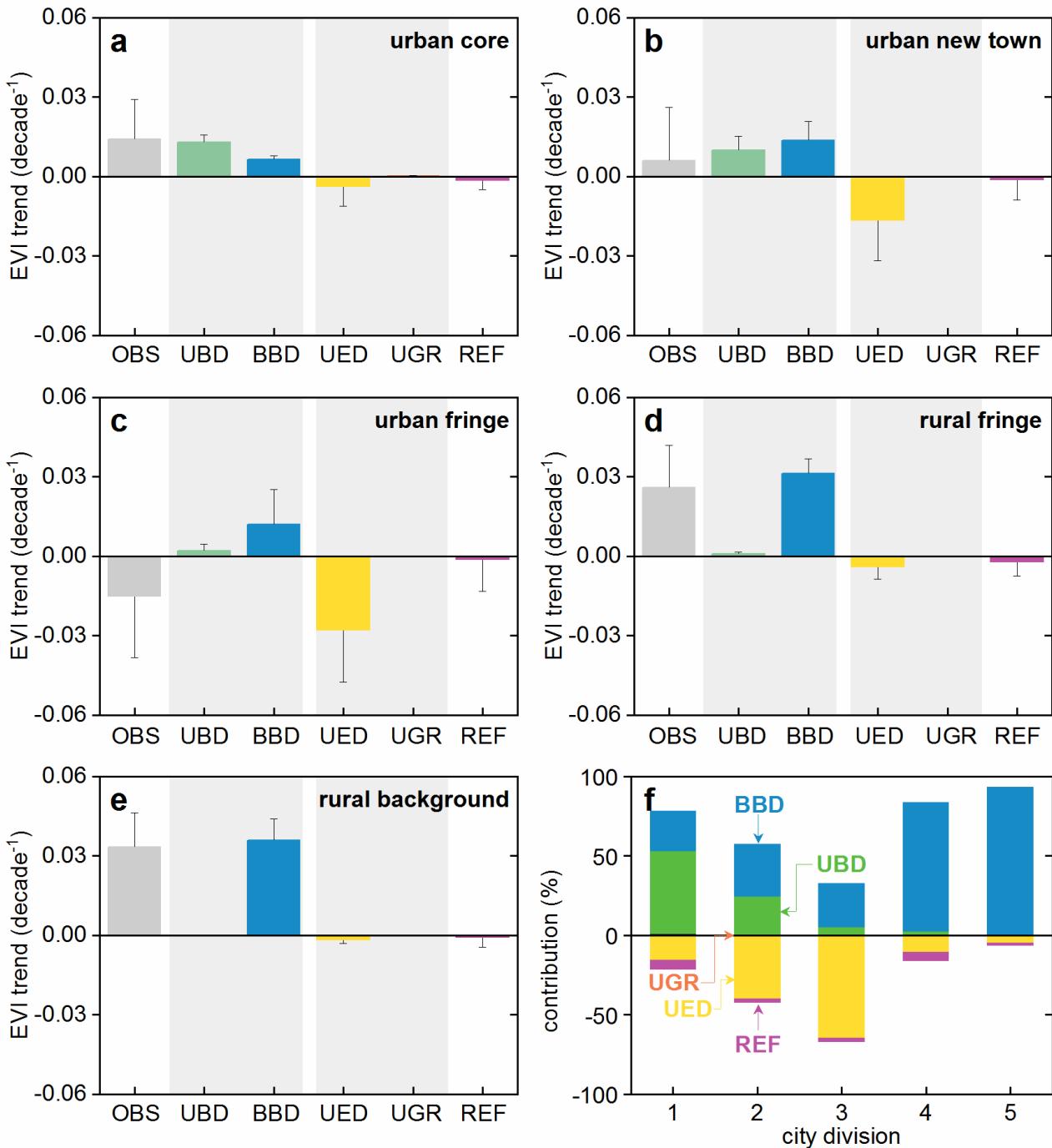
194

---

195 **Contributions of biogeochemical drivers and land-cover changes to greenness**  
196 **trends**

197 The greenness trends within a city were mainly regulated by the biogeochemical  
198 drivers and land-cover changes (Fig. 3). The significant greening in urban cores was  
199 mainly regulated by the biogeochemical drivers (77.8%) rather than land-cover  
200 changes (16.1%). In contrast, the noteworthy browning of urban fringes was mainly  
201 due to land-cover changes (64.4%) rather than biogeochemical drivers (32.6%). The  
202 simultaneous greening and browning for urban new towns was controlled by similar  
203 contributions of these two types of drivers, although more cities had greening than  
204 browning due to the marginally larger contribution from the biogeochemical drivers  
205 (57.2%) than land-cover changes (39.8%; Figs. 1 & 3). The synergy of the  
206 biogeochemical drivers and land-cover changes can determine greenness trends (Piao  
207 et al., 2015; Zhu et al., 2016; Chen et al., 2019), but these studies mainly focused on  
208 natural terrestrial ecosystems rather than cities. We also found that these two types of  
209 drivers acted as competitors within cities; greening occurred when the biogeochemical  
210 drivers dominated, and browning occurred when land-cover changes dominated (e.g.  
211 urban expansion or densification) (Fig. 3). These findings differed from the case of  
212 natural ecosystems, in which biogeochemical drivers (e.g. fertilization effect of  
213 atmospheric CO<sub>2</sub> concentration) (Piao et al., 2015; Zhu et al., 2016) and land-cover  
214 changes (e.g. afforestation; Chen et al., 2019) mostly promote greening concurrently.

215



216

217 **Fig. 3. Contributions (decade<sup>-1</sup> and percentage) of the background biogeochemical driver**  
218 **(BBD), the urban biogeochemical driver (UBD), urban expansion or densification (UED),**  
219 **urban green recovery (UGR), and a residual factor (REF) to the observed EVI trends (OBS)**  
220 **across the city categories** | The two gray rectangles in (a) to (e) represent the biogeochemical  
221 drivers (BBD and UBD) and land-cover changes (UED and UGR), and the numbers 1, 2, 3, 4, and 5  
222 on the x-axis in (f) correspond to urban cores, urban new towns, urban fringes, rural fringes, and

223 rural backgrounds, respectively.

224

225 We used two categories of biogeochemical drivers, the background biogeochemical  
226 driver (BBD, representing the background controls of surface greening when cities are  
227 absent) and the urban biogeochemical driver (UBD, representing the additional  
228 factors arising from cities) ([Supplementary Fig. 4](#)). We differentiated between the  
229 contributions from these two categories of biogeochemical drivers and found that  
230 their contributions to the local greenness trends varied with city category. The  
231 greening of rural fringes and rural backgrounds was mainly regulated by BBD, with  
232 contributions of 81.6 and 93.3%, respectively. For the three urban categories (urban  
233 cores, urban new towns, and urban fringes), the contribution of BBD was <30% ([Fig.](#)  
234 [3](#)). The contribution of UBD was highest in urban cores and gradually decreased  
235 along the urban-rural gradient from urban cores to rural backgrounds (the  
236 contributions were 52.3, 24.1, 5.0, 2.3, and 0%, respectively; [Fig. 3a & f](#)). The  
237 contribution of UBD in urban cores could be even larger than that of BBD, but the  
238 contributions were the opposite for urban new towns and urban fringes. The  
239 enhancement of annual vegetation growth was larger in urban than rural environments  
240 due to the urban effect ([Gregg et al., 2003](#); [Zhao et al., 2016](#); [Dahlhausen et al., 2018](#);  
241 [Jia et al., 2018](#); [Ruan et al., 2019](#)). We also found that urban greening could be  
242 significantly enhanced by UBD from a decadal perspective. We provide the first  
243 quantitative analysis of the gradual variations in the contributions of UBD and BBD  
244 to the trends of surface greenness along the urban-rural gradient.

245

246 The drivers of land-cover change could also be divided into two categories, urban  
247 expansion or densification (UED, the alteration from natural to impervious surfaces)

---

248 and urban green recovery (UGR, the transformation from developed to vegetation-  
249 dominated surfaces due to urban renewal) ([Supplementary Fig. 4](#)). UED and UGR can  
250 induce urban browning and greening, respectively. The contribution of UED to the  
251 greenness trend decreased from urban cores to urban fringes. UED dominated the  
252 browning of urban fringes, with a contribution of  $-0.028 \pm 0.020 \text{ decade}^{-1}$  ( $-64.4 \pm$   
253 46.0%) ([Fig. 3](#)). Its contribution was lower for urban new towns but remained  
254 sufficiently significant ( $-0.016 \pm 0.015 \text{ decade}^{-1}$ ;  $-39.7 \pm 37.2\%$ ), indicating that  
255 continuous urban densification would lead to the significant browning of urban new  
256 towns, although this category was already urbanized before 2000 ([Supplementary Fig.](#)  
257 [1](#)). The contribution of UED was smaller for urban cores ( $-0.004 \pm 0.007 \text{ decade}^{-1}$ ;  
258  $-15.6 \pm 29.6\%$ ). The contribution of UGR was considerably lower than the  
259 contribution of UED. The contribution of UGR among the three urban categories was  
260 highest for urban cores, with a value of only  $0.00013 \pm 0.00017 \text{ decade}^{-1}$  ( $0.50 \pm$   
261 0.70%); its contribution was even smaller for the other two urban categories (<0.50%;  
262 [Fig. 3](#)). Green recovery (e.g. new parks or green spaces) is a major contributor to the  
263 greening of urban cores in Chinese cities ([Sun et al., 2020](#)), but our results strongly  
264 suggested that this factor was negligible. Our findings were consistent with the intra-  
265 city land-cover mapping, where pixels of green recovery account for <1% of the total  
266 developed surfaces across Chinese cities ([Liu et al., 2020](#)).

267

268 The increasing trend in greenness with city size for all three urban categories was  
269 probably due to the effect of UBD, indicated by the increasing contribution of UBD  
270 with city size. For example, the contribution of UBD in urban cores increased from  
271  $0.006 \pm 0.002 \text{ decade}^{-1}$  in small towns to  $0.017 \pm 0.003 \text{ decade}^{-1}$  in megacities ([Fig.](#)  
272 [4a](#)). Larger cities usually had higher rates of increase of urban atmospheric CO<sub>2</sub>

---

273 concentrations, urban temperatures, and urban nitrogen deposition (Tian et al., 2020).  
274 The combination of the boosted impacts of these biogeochemical factors could  
275 therefore lead to a stronger greenness trend in larger cities. The contribution of UED  
276 was also larger in larger cities. For example, the negative contribution of UED in  
277 urban fringes increased from  $-0.019 \pm 0.021 \text{ decade}^{-1}$  in small towns to  $-0.028 \pm$   
278  $0.020 \text{ decade}^{-1}$  in megacities. Such a positive relationship was significant for urban  
279 new towns and urban fringes but weaker for urban cores, perhaps due to the more  
280 intense urban expansion or densification of larger cities in urban new towns and  
281 fringes compared with urban cores (Liu et al., 2020).

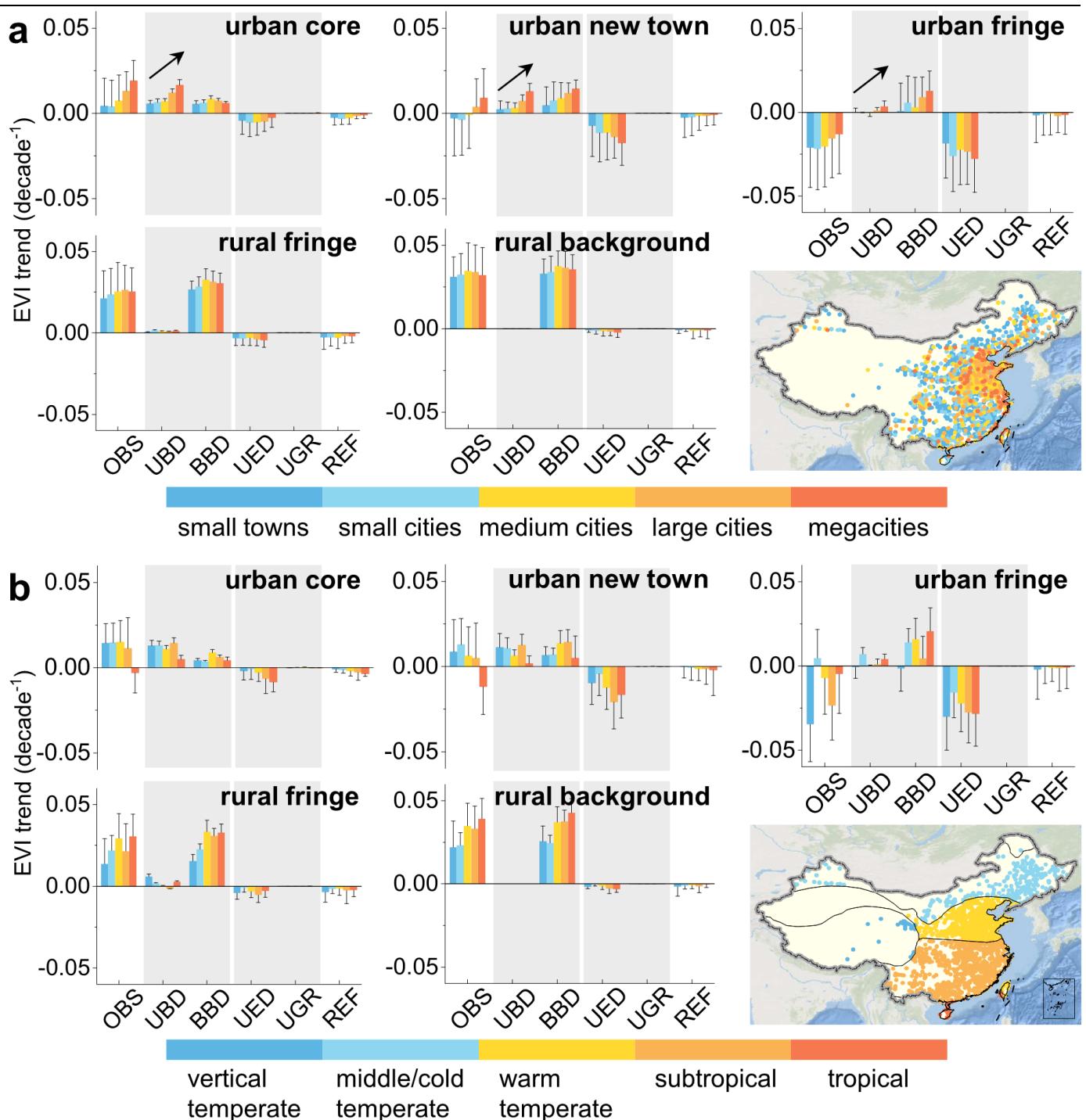
282

283 The greenness trends in the three urban categories were also affected by background  
284 climate (Fig. 4b). The significant greening in the three urban categories in the  
285 middle/cold temperate zone was regulated more by the biogeochemical drivers than  
286 by land-cover changes. For example, the combination of the BBD and UBD  
287 contributions ( $0.021 \text{ decade}^{-1}$ ) was larger than the combination of the UED and UGR  
288 contributions ( $-0.016 \text{ decade}^{-1}$ ), even for urban fringes. In contrast, UED in the  
289 tropical zone was the main contributor to the urban browning in the three urban  
290 categories (e.g. the UED contribution was  $-0.029 \pm 0.019 \text{ decade}^{-1}$  for urban fringes).  
291 Such a contrast was probably due to the different major factors restraining urban  
292 vegetation growth between these two climatic zones. Surface temperature is the main  
293 restraining factor for middle/cold temperate cities at relatively high latitudes (Lucht et  
294 al., 2002; Xu et al., 2013), and urban land management is the main restraining factor  
295 for tropical cities where the vegetation is dense. The significant increasing rate of  
296 urban heat island intensity in temperate cities (Yao et al., 2021), under which the  
297 growing season can be prolonged, should be the main regulator of the significant

---

298 urban greening in this zone.

299 The faster urbanization in tropical than temperate cities ([Song et al., 2020](#)) should  
300 contribute to urban browning in the tropics. The greening of urban cores and urban  
301 new towns in the vertical temperate, warm temperate, and subtropical zones was  
302 mainly regulated by the biogeochemical drivers, and the browning of urban fringes  
303 was affected more by urban expansion or densification ([Fig. 4b](#)). The greenness trends  
304 for the cities in these three zones were comparable, but the contributions of the  
305 associated drivers nevertheless differed slightly, especially for subtropical cities.  
306 Urbanization has been faster in the tropics, and the effect of urban expansion or  
307 densification is more intense than in the vertical temperate and warm temperate zones  
308 ([Song et al., 2020](#)). The contribution of biogeochemical drivers in subtropical cities,  
309 however, was also larger, which neutralized more of the browning induced by UED.  
310



311 **Fig. 4. Contributions (decade<sup>-1</sup>) of UBD, BBD, UED, UGR, and REF to the observed EVI trends**

312 **(OBS) depending on city size (a) and background climate (b)** | The arrows in (a) indicate an increasing  
 313 UBD contribution with city size, and the two gray rectangles in each plot highlight the contributions of the  
 314 UBD and BBD drivers. The two gray rectangles in each plot highlight the contributions of the  
 315 UED and UGR drivers. The two gray rectangles in each plot highlight the contributions of the  
 316

---

317 **Implications**

318 Urban environmental changes are signs of global change. Investigating greenness  
319 trends and their associated drivers over many cities is critical for understanding the  
320 trends and mechanisms of vegetation changes under future global change. We found  
321 that the variations in greenness trends for >1500 Chinese cities were Λ-shaped, from  
322 urban cores to rural backgrounds (Fig. 1f). We also found that the biogeochemical  
323 drivers and land-cover changes determined this characteristic V-shape to a large extent  
324 (Fig. 3). Specifically, urban cores had the largest greening trend among the three  
325 urban categories. The urban cores had only 20.3% of the vegetation coverage of the  
326 rural backgrounds, but the greenness trend was nevertheless 42.4% of the rural  
327 backgrounds, mainly affected by the large contribution of UBD in the urban cores.  
328 The greening trends were weaker in urban new towns. The vegetation coverage of this  
329 urban category 50.3% of the coverage in rural backgrounds, but its greenness trend  
330 was only 18.2% of that in rural backgrounds. Such a weak greening trend in urban  
331 new towns was mainly due to the neutralization between the biogeochemical drivers  
332 and urban densification. The significant browning for urban fringes could be  
333 attributed to the greening induced by the inadequacy of the biogeochemical drivers to  
334 compensate the browning caused by urban expansion. The vegetation coverage of  
335 urban fringes was 71.2% of that of rural backgrounds, but the greenness trend of  
336 urban fringes became negative and was -45.5% of that in rural backgrounds.  
337  
338 The area of urban greening in large cities in China is 32% of that of global cities (Sun  
339 et al., 2020). Sun et al. (2020), however, ignored the large number of small cities. We  
340 found that the greening trend in China was much larger for large than small cities  
341 (Fig. 2), implying that focusing on large cities cannot well lead to a full understanding

---

342 of the trends of urban greenness. Larger cities are truly the benchmark for urbanization  
343 in the future, but the overall quality of future urbanization depends more on the  
344 development of the many and widely distributed small cities (or towns) (Fahmi et al.,  
345 2014). Regulation of the biogeochemical drivers is relatively difficult, so using urban  
346 land management (e.g. urban renewal) as an effective way to narrow the gap of  
347 greenness trends between small and large cities is therefore plausible. We also found  
348 that browning in tropical cities occurred in all three urban categories (urban cores,  
349 urban new towns, and urban fringes) due to urban expansion or densification, despite  
350 the high vegetation coverage in these cities. Using urban land management as a  
351 critical way to increase the urban green space and sustainability for tropical and/or  
352 small cities is therefore urgent.

353

354 Our findings indicated that the mean contribution of green recovery to the trends of  
355 urban greenness for >1500 cities was relatively small (Fig. 3). These findings,  
356 however, do not negate the importance of green recovery to urban greening and urban  
357 ecological services. Green recovery can still contribute significantly to urban greening  
358 in individual cities using appropriate urban planning. For example, the area of green  
359 recovery was 54.7 km<sup>2</sup> in the urban core of Beijing, with its contribution 35.1% of  
360 that for all urban cores. With the advance of urbanization, China would face an  
361 intensified human-land conflict in per capita green space in the future (Chen et al.,  
362 2017). As one of the most direct strategies of urban planning to achieve urban  
363 greening (Supplementary Fig. 5), urban green recovery continues to have great  
364 potential for enhancing urban ecosystem services.

365

366



---

368 **MATERIALS AND METHODS**

369 **Study area and materials**

370 Cities in China vary greatly in size and background climate ([Jia et al., 2021](#)), and  
371 urbanization has been rapid in recent decades ([Kuang, 2020](#)). Drastic changes in both  
372 biogeochemical cycles and land-cover types for urban surfaces and associated rural  
373 surroundings have accompanied the rapid urbanization. Cities in China are therefore  
374 ideal laboratories for examining how trends of surface greenness can be  
375 simultaneously affected by biogeochemical drivers and land-cover changes. This  
376 study focused on all county-level or larger cities in China, a total of 1560 cities. These  
377 cities were divided into five categories depending on urban area: 519 small towns  
378 (with a mean urban area of 10 km<sup>2</sup>), 417 small cities (26 km<sup>2</sup>), 312 medium-sized  
379 cities (56 km<sup>2</sup>), 207 large cities (134 km<sup>2</sup>), and 105 megacities (341 km<sup>2</sup>)  
380 ([Supplementary Fig. 6](#)). These cities were in six climatic zones: 29 cities in the  
381 vertical temperate zone, 247 cities in the middle/cold temperate zone, 581 cities in the  
382 warm temperate zone, 683 cities in the subtropical zone, and 20 cities in the tropical  
383 zone.

384

385 We used two vegetation indices, the normalized difference vegetation index (NDVI)  
386 and the enhanced vegetation index (EVI), both from the MOD13Q1 MODIS product,  
387 with a spatial resolution of 250 m and a temporal resolution of 16 d, ranging from  
388 March 2000 to February 2020. NDVI can better indicate vegetation coverage and is  
389 therefore used to estimate percent vegetation cover (PVC) ([Purevdorj et al., 1998](#)).  
390 EVI has been extensively used as a proxy of vegetation greenness ([Xu et al., 2011](#);  
391 [Zhang et al., 2017](#); [Zhou et al., 2014](#)) due to its greater sensitivity to changes in  
392 vegetation greenness over surfaces with high biomass ([Huete et al., 2002](#)). We also

---

393 used the yearly MCD12Q1 MODIS data product for land cover and land use with a  
394 spatial resolution of 500 m, for the same period. Pixels labeled as water bodies were  
395 excluded to eliminate the impact of water bodies on the detection of trends of urban  
396 greenness.

397

398 We used the urban boundary data for 1990, 2000, and 2018 generated using a globally  
399 consistent boundary definition and mapping method ([Li et al., 2020](#)). These urban  
400 boundary data were applied for categorizing the urban and rural areas. We used the  
401 annual data for global artificial impervious area (GAIA) ([Gong et al., 2020](#)) to  
402 quantify the contribution of urban expansion or densification to the urban-rural  
403 gradient in greenness trends. The GAIA data had an overall accuracy of >90% and a  
404 spatial resolution of 30 m ([Gong et al., 2020](#)). We used the yearly data for urban green  
405 recovery ([Liu et al., 2020](#)) to quantify the contribution of urban green recovery to the  
406 greenness trends. The spatial resolution of the green-recovery data was also 30 m,  
407 with an overall accuracy of about 80% ([Liu et al., 2020](#)). The GAIA and green-  
408 recovery data were both resampled to 250 m to match the spatial resolution of the  
409 vegetation indices using majority resampling.

410

#### 411 **Estimation of urban-rural gradient in greenness trends**

412 The trends of urban greenness are anticipated to be closely associated with city  
413 category and indirectly associated with the local status of the biogeochemical drivers  
414 and land-cover changes. We divided the urban and rural surfaces of a city into five  
415 categories, three urban and two rural: (1) urban cores (delineated by the urban  
416 boundaries in 1990), (2) urban new towns (delineated by the urban boundaries  
417 between 1990 and 2000), (3) urban fringes (delineated by the urban boundaries

---

418 between 2000 and 2018, (4) rural fringes (buffer zones surrounding the urban  
419 peripheries), and (5) rural backgrounds (buffer zones far from the urban peripheries)  
420 ([Supplementary Fig. 1](#)). The interannual trends of EVI were then examined for all five  
421 city categories using linear regression. Only pixels with statistically significant  
422 changes in EVI at  $P < 0.05$  were included in the analysis. The category-based pixel  
423 percentages with significant EVI changes ( $P < 0.05$ ) are also provided for assessing  
424 the representativeness of the significant samples. The greenness trends may also  
425 depend on vegetation type, but we did not consider the impact of vegetation type due  
426 to the very complex structure and composition of the urban-rural vegetation gradient.  
427 This issue is discussed further in [Supplementary Note 1](#).

428

#### 429 **Decomposition of greenness trends**

430 The trends of vegetation greenness were determined using two types of drivers,  
431 biogeochemical drivers (e.g. effect of fertilization by atmospheric CO<sub>2</sub>, nitrogen  
432 deposition, and climate change) and land-cover changes (e.g. afforestation) ([Zhu et](#)  
433 [al., 2016; Piao et al., 2015; Piao et al., 2020; Chen et al., 2019](#)). Differentiating  
434 between the impacts of atmospheric CO<sub>2</sub> concentration, nitrogen deposition, and  
435 climate change on greenness trends is extremely difficult at the local scale within a  
436 city ([Liang et al., 2020; Zhao et al., 2016](#)), so we combined these factors and referred  
437 to them as biogeochemical drivers. Cities had two types of biogeochemical drivers, a  
438 background biogeochemical driver (BBD) and an urban biogeochemical driver  
439 (UBD). BBD represents the environmental changes arising at a large (global or  
440 regional) scale, such as elevated atmospheric CO<sub>2</sub> concentrations, increased nitrogen  
441 deposition, and climatic warming ([Piao et al., 2020](#)), and UBD represents the urban  
442 environmental changes arising at a local (city) scale, such as high CO<sub>2</sub> emissions,

---

443 nitrogen deposition, and urban heat islands (Zhao et al., 2016). The influence of land-  
444 cover changes to the trends of vegetation greenness is also twofold. The first category  
445 of urban land-cover change is the transition from natural landscapes to impervious  
446 surfaces or the further increase in the percentage of impervious surfaces  
447 (Shahtahmassebi et al., 2016), i.e. urban expansion or densification (UED). The  
448 second category is the transition from developed to vegetation-dominated surfaces,  
449 usually due to a series of urban-renewal activities (Haase et al. 2017), i.e. urban green  
450 recovery (UGR). UED generally leads to a decrease in urban vegetation (i.e. urban  
451 browning; Gong et al., 2020), and UGR generally leads to an increase in urban  
452 vegetation (i.e. urban greening) (Liu et al., 2020). The observed EVI trend (OBS, a  
453 proxy for the trends of vegetation greenness) can be expressed as:

454 
$$O = B + U + E + G + r \quad (1)$$

455 where  $O$  is the observed EVI trend (i.e. OBS), and  $B$ ,  $U$ ,  $E$ ,  $G$ , and  $r$  represent the  
456 contributions from BBD, UBD, UED, UGR, and a residual factor (REF), respectively.  
457 We used REF to express both the estimation error and the possible influence of other  
458 controls in addition to these four drivers (see [Supplementary Note 1](#)).

459  
460 The contributions of BBD, UBD, UED, and UGR vary across a city and therefore  
461 depend on city category. We categorized the pixels for each city category into four  
462 groups: (1) pixels with urban expansion or densification (labeled as Pix\_ED pixels),  
463 (2) pixels with green recovery (Pix\_GR pixels), (3) pixels with unchanged land-cover  
464 type but with a positive EVI trend (Pix\_PE pixels), and (4) pixels with unchanged  
465 land-cover type but with a negative EVI trend (Pix\_NE pixels). The first three groups  
466 of pixels (Pix\_ED, Pix\_GR, and Pix\_PE pixels) accounted for 95.1% of the total  
467 pixels, and the Pix\_NE pixels accounted for only 4.9%. To estimate the contributions

---

468 of these drivers to the Pix\_ED and Pix\_GR pixels, we further combined the two  
469 categories of pixels with unchanged land cover (i.e. Pix\_PE and Pix\_NE pixels) and  
470 designated them as Pix\_LCU pixels. [Eqs. \(8\) to \(10\)](#) provide more explanations.

471

472 The greenness trends of these four groups of pixels (the Pix\_ED, Pix\_GR, Pix\_PE,  
473 and Pix\_NE pixels) can all be affected by BBD and UBD. We disregarded the Pix\_NE  
474 pixels, however, in the calculations of the contributions of BBD and UBD due to the  
475 low pixel percentage (<5%) compared with the other three types of pixels and partly  
476 because the Pix\_NE pixels should be affected more by other factors (e.g. change in  
477 building height) rather than by the biogeochemical drivers (BBD and UBD), because  
478 BBD and UBD both enhance greenness trends and lead to positive EVI trends. The  
479 contributions of BBD and UBD to the trends of urban greenness can therefore be  
480 estimated by:

481 
$$B = B_{\text{Pix\_PE}} + B_{\text{Pix\_ED}} + B_{\text{Pix\_GR}} \quad (2)$$

482 
$$U = U_{\text{Pix\_PE}} + U_{\text{Pix\_ED}} + U_{\text{Pix\_GR}} \quad (3)$$

483 where  $B_{\text{Pix\_PE}}$ ,  $B_{\text{Pix\_ED}}$ ,  $B_{\text{Pix\_GR}}$ ,  $U_{\text{Pix\_PE}}$ ,  $U_{\text{Pix\_ED}}$ , and  $U_{\text{Pix\_GR}}$  represent the contributions of  
484 BBD and UBD for the associated groups of pixels. By comparison, UED can only  
485 affect the EVI trends of the Pix\_ED pixels with urban expansion or densification, and  
486 UGR can only affect the Pix\_GR pixels with green recovery. The contributions of  
487 UED and UGR to the EVI trend can therefore be estimated by:

488 
$$E = E_{\text{Pix\_ED}} \quad (4)$$

489 
$$G = G_{\text{Pix\_GR}} \quad (5)$$

490 where  $E_{\text{Pix\_ED}}$  and  $G_{\text{Pix\_GR}}$  represent the UED and UGR contributions for the Pix\_ED  
491 and Pix\_GR pixels, respectively. According to [Eqs. \(2\) to \(5\)](#), the estimates of the  
492 contributions of BBD, UBD, UED, and UGR can therefore be transformed to

---

493 calculate eight parameters:  $B_{\text{Pix\_PE}}$ ,  $B_{\text{Pix\_ED}}$ ,  $B_{\text{Pix\_GR}}$ ,  $U_{\text{Pix\_PE}}$ ,  $U_{\text{Pix\_ED}}$ ,  $U_{\text{Pix\_GR}}$ ,  $E_{\text{Pix\_ED}}$ , and  $G_{\text{Pix\_GR}}$   
494 (see [Supplementary Fig. 7](#)). These parameters were calculated separately for each city  
495 category.

496

497 **(1) Calculation of  $B_{\text{Pix\_PE}}$  and  $U_{\text{Pix\_PE}}$**

498  $B_{\text{Pix\_PE}}$  refers to the contribution of BBD to the EVI trend of the pixels with unchanged  
499 land-cover type but with a positive EVI trend (i.e. the Pix\\_PE pixels). This parameter  
500 is closely associated with the influence of BBD in rural backgrounds and associated  
501 vegetation coverages (see [Supplementary Fig. 7a](#) for more explanations).  $B_{\text{Pix\_PE}}$  can  
502 therefore be calculated using the following three components, (i) the contribution of  
503 BBD to the EVI trend in rural backgrounds, (ii) the ratio of PVC between a specific  
504 city category and rural backgrounds, and (iii) the ratio between the number of Pix\\_PE  
505 pixels and the total number of pixels for a specific city category. For the first  
506 component, the contribution of BBD to the EVI trend of the Pix\\_PE pixels of a  
507 specific urban category can be considered equivalent to that of rural backgrounds,  
508 mostly because the rural background chosen was relatively far from the urban  
509 categories ([Supplementary Fig. 1](#)) and would consequently be rarely affected by UBD  
510 ([Du et al., 2019](#)). That is, the contribution of BBD to the EVI trend of the Pix\\_PE  
511 pixels of a specific urban category can be indirectly measured using the EVI trends of  
512 the Pix\\_PE pixels of rural backgrounds ( $\text{EVI}_{\text{Pix\_PE\_RB}}$ ). For the second component, the  
513 accurate calculation of  $B_{\text{Pix\_PE}}$  requires the consideration of the PVC difference  
514 between a specific urban category and a rural background ([Supplementary Fig. 8](#)).  
515 That is,  $B_{\text{Pix\_PE}}$  is not equivalent to  $\text{EVI}_{\text{Pix\_PE\_RB}}$ , because the PVC difference between a  
516 specific urban category and a rural background is usually large. For the third  
517 component,  $B_{\text{Pix\_PE}}$  is also understandably affected by the ratio between the number of

---

518 Pix\_PE pixels and the total number of pixels for a specific city category. Based on the  
519 above analysis,  $B_{\text{Pix\_PE}}$  can therefore be calculated by:

520 
$$B_{\text{Pix\_PE}} = EVI_{\text{Pix\_PE\_RB}} \times |\text{Error!}| \times |\text{Error!}| \quad (6)$$

521 where  $EVI_{\text{Pix\_PE\_RB}}$  represents the mean EVI trend for the same type of Pix\_PE pixels in  
522 a rural background,  $PVC_{\text{Pix\_PE}}$  and  $PVC_{\text{Pix\_PE\_RB}}$  represent the PVC of the Pix\_PE pixels  
523 for a specific urban category and a rural background, respectively, and  $A_{\text{Pix\_PE}}$  and  $A$   
524 are the number of Pix\_PE pixels for a specific urban category and all pixels for this  
525 specific urban category, respectively. The calculation of PVC is explained in more  
526 detail in [Supplementary Note 2](#).

527

528  $U_{\text{Pix\_PE}}$  refers to the influence of UBD on the EVI trends of the Pix\_PE pixels. The  
529 EVI trends of the Pix\_PE pixels would only be affected by BBD and UBD, because  
530 land cover does not change for this group of pixels.  $U_{\text{Pix\_PE}}$  can therefore be calculated  
531 by removing the contribution of BBD from the EVI trends of the Pix\_PE pixels ( $EVI_{\text{Pix\_PE}}$ ), given as:

533 
$$U_{\text{Pix\_PE}} = EVI_{\text{Pix\_PE}} \times |\text{Error!}| - B_{\text{Pix\_PE}} \quad (7)$$

534 where  $EVI_{\text{Pix\_PE}}$  represents the mean EVI trend of the Pix\_PE pixels for a specific  
535 urban category.

536

537 **(2) Calculation of  $B_{\text{Pix\_ED}}$ ,  $U_{\text{Pix\_ED}}$ ,  $B_{\text{Pix\_GR}}$ , and  $U_{\text{Pix\_GR}}$**

538  $B_{\text{Pix\_ED}}$  refers to the contribution of BBD to the EVI trend of the pixels with urban  
539 expansion or densification (i.e. the Pix\_ED pixels). The urbanization levels for the  
540 Pix\_ED pixels and the pixels with unchanged land-cover type in the same city  
541 category (i.e. the Pix\_LCU pixels) are relatively similar, so inferring that the  
542 contribution ratio between BBD and UBD for these two types of pixels (the Pix\_ED

---

543 and Pix\_LCU pixels) in the same city category are also similar is reasonable  
544 ([Supplementary Fig. 7b](#)). Such a ‘proximity-pixel-reference’ method has been widely  
545 accepted and used ([Peng et al., 2014; Li et al., 2015; Hong et al., 2020](#)).  $B_{\text{Pix\_ED}}$  can  
546 therefore be calculated indirectly using (i) the EVI trend of the Pix\_LCU pixels for  
547 the same city category ( $EV_{\text{Pix\_LCU}}$ ) and (ii) the proportion of the contribution of BBD to  
548 the EVI trend for the Pix\_PE pixels:

549 
$$B_{\text{Pix\_ED}} = EV_{\text{Pix\_LCU}} \times \frac{A_{\text{Pix\_ED}}}{A_{\text{Pix\_PE}}} \times \frac{U_{\text{Pix\_PE}}}{U_{\text{Pix\_ED}}} \quad (8)$$

550 where  $EV_{\text{Pix\_LCU}}$  represents the mean EVI trend of the Pix\_LCU pixels for a specific  
551 city category,  $B_{\text{Pix\_PE}}$  and  $U_{\text{Pix\_PE}}$  can be estimated using [Eqs. \(6\)](#) and [\(7\)](#), respectively,  
552 and  $A_{\text{Pix\_ED}}$  denotes the number of Pix\_ED pixels for the associated urban category.

553

554  $U_{\text{Pix\_ED}}$  refers to the influence of UBD on the EVI trend of the pixels with urban  
555 expansion or densification (i.e. the Pix\_ED pixels).  $U_{\text{Pix\_ED}}$  can be similarly calculated  
556 indirectly using (i) the EVI trend of the Pix\_LCU pixels for the same city category  
557 ( $EV_{\text{Pix\_LCU}}$ ) and (ii) the proportion of the contribution of UBD to the EVI trend for the  
558 Pix\_PE pixels:

559 
$$U_{\text{Pix\_ED}} = EV_{\text{Pix\_LCU}} \times \frac{A_{\text{Pix\_ED}}}{A_{\text{Pix\_PE}}} \times \frac{B_{\text{Pix\_PE}}}{B_{\text{Pix\_ED}}} \quad (9)$$

560 Similar to the calculation of  $B_{\text{Pix\_ED}}$  and  $U_{\text{Pix\_ED}}$ , we calculated the contributions of BBD  
561 and UBD to the EVI trends for the pixels with green recovery, i.e.  $B_{\text{Pix\_GR}}$  and  $U_{\text{Pix\_GR}}$ .  
562 More details on the calculation of these two components are provided in  
563 [Supplementary Note 3](#).

564

565 **(3) Calculation of  $E_{\text{Pix\_ED}}$  and  $G_{\text{Pix\_GR}}$**

566  $E_{\text{Pix\_ED}}$  refers to the contribution of UED to the EVI trend of the pixels with urban  
567 expansion or densification (i.e. the Pix\_ED pixels). For the same city category, the

---

568 only difference in the controls of the trends of surface greenness between the pixels  
569 with urban expansion or densification (i.e. the Pix\_ED pixels) and the Pix\_LCU  
570 pixels are due to the contribution of UED. Calculating  $E_{\text{Pix\_ED}}$  using the difference of  
571 the EVI trends between the Pix\_ED and Pix\_LCU pixels ([Supplementary Fig. 7b](#)) is  
572 therefore plausible:

573 
$$E_{\text{Pix\_ED}} = (EVI_{\text{Pix\_ED}} - EVI_{\text{Pix\_LCU}}) \times \text{!Error!} \quad (10)$$

574 where  $EVI_{\text{Pix\_ED}}$  represents the mean EVI trend of the Pix\_ED pixels for a specific city  
575 category.

576  $G_{\text{Pix\_GR}}$  refers to the contribution of UGR to the EVI trend of the pixels with green  
577 recovery (i.e. the Pix\_GR pixels). The calculation of  $G_{\text{Pix\_GR}}$  is similar to that of  $E_{\text{Pix\_ED}}$ ;  
578 more details are provided in [Supplementary Note 3](#).

579

580 We used the methods described above to quantify the contributions of BBD, UBD,  
581 UED, and UGR to the EVI trends using [Eqs. \(2\) to \(5\)](#) for each city category. For a  
582 better comparison among the various drivers, we further calculated the percentage  
583 contributions of these four drivers based on the procedures described in  
584 [Supplementary Note 4](#).

585

586

---

587 **REFERENCES**

588 Chen, B. et al. Quantitative estimation of 21st-century urban greenspace changes in  
589 Chinese populous cities. *Sci. Total Environ.* **609**, 956–965 (2017).

590 Chen, C. et al. China and India lead in greening of the world through land-use  
591 management. *Nat. Sustain.* **2**, 122–129 (2019).

592 Corbane, C. et al. The grey-green divide: multi-temporal analysis of greenness across  
593 10,000 urban centres derived from the Global Human Settlement Layer (GHSL).  
594 *Int. J. Digit. Earth* **13**, 101–118 (2020).

595 Dahlhausen, J. et al. Urban climate modifies tree growth in Berlin. *Int. J. Biometeorol.*  
596 **62**, 795–808 (2018).

597 Du, J. et al. Effects of rapid urbanization on vegetation cover in the metropolises of  
598 China over the last four decades. *Ecol. Indic.* **107**, 105458 (2019).

599 Fahmi, F. Z. et al. Extended urbanization in small and medium-sized cities: The case  
600 of Cirebon, Indonesia. *Habitat Int.* **42**, 1–10 (2014).

601 Forzieri, G. et al. Satellites reveal contrasting responses of regional climate to the  
602 widespread greening of Earth. *Science* **356**, 1180–1184 (2017).

603 Gong, P. et al. Annual maps of global artificial impervious area (GAIA) between 1985  
604 and 2018. *Remote Sens. Environ.* **236**, 111510 (2020).

605 Gregg, J. W. et al. Urbanization effects on tree growth in the vicinity of New York  
606 City. *Nature* **424**, 183–187 (2003).

607 Grimm, N. B. et al. Global change and the ecology of cities. *Science* **319**, 756–760  
608 (2008).

609 Haase, D. Greening cities—To be socially inclusive? About the alleged paradox of  
610 society and ecology in cities. *Habitat Int.* **64**, 41–48 (2017).

611 Hong, S. et al. Divergent responses of soil organic carbon to afforestation. *Nat.*

---

612 *Sustain.* **3**, 694–700 (2020).

613 Huete, A. et al. Overview of the radiometric and biophysical performance of the  
614 MODIS vegetation indices. *Remote Sens. Environ.* **83**, 195–213 (2002).

615 Jia, W. et al. Vegetation growth enhancement in urban environments of the  
616 Conterminous United States. *Glob. Change Biol.* **24**, 4084–4094 (2018).

617 Jia, W. et al. Urbanization imprint on land surface phenology: The urban–rural  
618 gradient analysis for Chinese cities. *Glob. Change Biol.* **27**, 2895–2904 (2021).

619 Kuang, W. 70 years of urban expansion across China: trajectory, pattern, and national  
620 policies. *Sci. Bulletin* **65**, 1970–1974 (2020).

621 Liang, Z. et al. Exploring the Combined Effect of Urbanization and Climate  
622 Variability on Urban Vegetation: A Multi-Perspective Study Based on More than  
623 3000 Cities in China. *Remote Sens.-Basel* **12**, 1328 (2020).

624 Lee, X. et al. Observed increase in local cooling effect of deforestation at higher  
625 latitudes. *Nature* **479**, 384–387 (2011).

626 Liu, X. et al. High-spatiotemporal-resolution mapping of global urban change from  
627 1985 to 2015. *Nat Sustain.* **3**, 564–570 (2020).

628 Li, X. et al. Mapping global urban boundaries from the global artificial impervious  
629 area (GAIA) data. *Environ. Res. Lett.* **15**, 094044 (2020).

630 Li, Y. et al. Local cooling and warming effects of forests based on satellite  
631 observations. *Nat. Commun.* **6**, 1–8 (2015).

632 Los, S. O. Analysis of trends in fused AVHRR and MODIS NDVI data for 1982–  
633 2006: Indication for a CO<sub>2</sub> fertilization effect in global vegetation. *Global  
634 Biogeochem. Cy.* **27**, 318–330 (2013).

635 Lucht, W. et al. Climatic control of the high-latitude vegetation greening trend and  
636 Pinatubo effect. *Science* **296**, 1687–1689 (2002).

---

637 Nemani, R. R. et al. Climate-driven increases in global terrestrial net primary  
638 production from 1982 to 1999. *Science* **300**, 1560–1563 (2003).

639 Oke, T. R. City size and the urban heat island. *Atmos. Environ.* **7**, 769–779 (1973).

640 Peng, S. S. et al. Afforestation in China cools local land surface temperature. *Proc.*  
641 *Natl. Acad. Sci. USA* **111**, 2915–2919 (2014).

642 Piao, S. et al. Characteristics, drivers and feedbacks of global greening. *Nat. Rev.*  
643 *Earth Environ.* **1**, 1–14 (2020).

644 Piao, S. et al. Detection and attribution of vegetation greening trend in China over the  
645 last 30 years. *Glob. Change Biol.* **21**, 1601–1609 (2015).

646 Purevdorj, T. S. et al. Relationships between percent vegetation cover and vegetation  
647 indices. *Int. J. Remote Sens.* **19**, 3519–3535 (1998).

648 Ruan, Y. et al. Enhanced vegetation growth in the urban environment across 32 cities  
649 in the Northern Hemisphere. *J. Geophys. Res. Biogeog.* **124**, 3831–3846 (2019).

650 Schimel, D. et al. Effect of increasing CO<sub>2</sub> on the terrestrial carbon cycle. *Proc. Natl*  
651 *Acad. Sci. USA* **112**, 436–441 (2015).

652 Seto, K. C. Global forecasts of urban expansion to 2030 and direct impacts on  
653 biodiversity and carbon pools. *Proc. Natl Acad. Sci. USA* **109**, 16083–16088  
654 (2012).

655 Shahtahmassebi, A. R. et al. Remote sensing of impervious surface growth: A  
656 framework for quantifying urban expansion and re-densification mechanisms.  
657 *Int. J. Appl. Earth Obs.* **46**, 94–112 (2016).

658 Song, Y. et al. How does urban expansion impact people's exposure to green  
659 environments? A comparative study of 290 Chinese cities. *J. Clean. Prod.* **246**,  
660 119018 (2020).

661 Sun, L. et al. Dramatic uneven urbanization of large cities throughout the world in

---

662 recent decades. *Nat. Commun.* **11**, 1–9 (2020).

663 Tian, J. et al. Investigating the urban-induced microclimate effects on winter wheat

664 spring phenology using Sentinel-2 time series. *Agr. Forest Meteorol.* **294**,

665 108153 (2020).

666 United Nations. World Urbanization Prospects: The 2018 Revision online edn (2018).

667 Xu, L. et al. Temperature and vegetation seasonality diminishment over northern

668 lands. *Nat. Clim. Change* **3**, 581–586 (2013).

669 Xu, L. et al. Widespread decline in greenness of Amazonian vegetation due to the

670 2010 drought. *Geophys. Res. Lett.* **38**, L07402 (2011).

671 Yao, R. et al. Long-term trends of surface and canopy layer urban heat island intensity

672 in 272 cities in the mainland of China. *Sci. Total Environ.* **772**, 145607 (2021).

673 Zhang, Y. et al. Reanalysis of global terrestrial vegetation trends from MODIS

674 products: Browning or greening? *Remote Sens. Environ.* **191**, 145–155 (2017).

675 Zhao, L. et al. Strong contributions of local background climate to urban heat islands.

676 *Nature* **511**, 216–219 (2014).

677 Zhao, S. et al. Prevalent vegetation growth enhancement in urban environment. *Proc.*

678 *Natl Acad. Sci. USA* **113**, 6313–6318 (2016).

679 Zheng, H. W. et al. A review of recent studies on sustainable urban renewal. *Habitat*

680 *Int.* **41**, 272–279 (2014).

681 Zhou, L. et al. Widespread decline of Congo rainforest greenness in the past decade.

682 *Nature* **509**, 86–90 (2014).

683 Zhu, Z. et al. Greening of the Earth and its drivers. *Nat. Clim. Change* **6**, 791–795

684 (2016).

685

686

---

687 **Supplementary Information (SI)**

688 **This file includes:**

689

690 **A. Supplementary notes**

691 Supplementary [Notes 1 to 4](#)

692

693 **B. Supplementary figures**

694 Supplementary [Figures 1 to 8](#)

695

696 **C. Supplementary references**

697 Supplementary [References 1 to 11](#)

698

699

700

---

701 **A. Supplementary notes**

702 **Note 1: Uncertainties of urban-rural gradients in greenness trends due to drivers**

703 ***other than the biogeochemical drivers and land-cover changes***

704 In addition to the biogeochemical drivers and land-cover changes, the urban-rural  
705 gradient in the satellite-derived greenness trends can also be affected by other drivers  
706 such as increases in building height (Zhang et al., 2015), a higher frequency of heat  
707 waves (Qiu et al., 2020), and insect-induced disturbance (Tai et al., 2019). Increases in  
708 building height during urbanization usually decreases the satellite-derived EVI due to  
709 the greater effect of shadows with higher buildings (Zhang et al., 2015). A higher  
710 frequency of heat waves and insect-induced disturbance can also interrupt vegetation  
711 metabolism, damage vegetation physiological function, and accordingly affect the  
712 observed EVI (Qiu et al., 2020; Tai et al., 2019). Vegetation greenness usually  
713 increases or remains relatively stable for pixels with a stable land-cover type (Zhu et  
714 al., 2016; Piao et al., 2020), so we inferred that the browning of the pixels with  
715 unchanged land-cover type (the Pix\_NE pixels, see **Materials and methods**) should be  
716 due more to these additional drivers, such as increases in building height. We did not  
717 discern the contributions from these additional drivers but incorporated them into the  
718 residual term in **Eq. (1)**, mostly because (1) the Pix\_NE pixels accounted for <5% of  
719 the total pixels and because (2) accurately quantifying the contributions of these  
720 additional drivers to the urban-rural gradient in greenness trends currently remains a  
721 great challenge and may even be impossible.

722

723 The urban-rural greenness trends were also closely associated with vegetation type.  
724 We acknowledge that differentiating between types of vegetation cover can help to  
725 interpret the urban-rural gradient in greenness trends in response to human activities

---

726 (e.g. field management) and global change (Piao et al., 2003). Differentiating between  
727 the types of urban vegetation across >1500 cities, however, is very difficult and even  
728 unfeasible for urban surfaces due to the very complex structure and composition of  
729 the vegetation. The vegetation types for rural fringes and rural backgrounds were  
730 mainly forest, grassland, and farmland: forests were mainly around the northeastern  
731 and southwestern cities, grassland was mainly around the northwestern cities, and  
732 farmland was mainly around the eastern cities on plains or in basins. These  
733 distributions indicated that standardizing the vegetation types in rural fringes and rural  
734 backgrounds was not plausible for all cities, because the type of rural vegetation  
735 differed greatly across the background climates. Our study therefore did not examine  
736 the impact of vegetation type on the quantification of contribution. Our study is  
737 consistent with previous studies of urban-rural contrasts in surface phenology (Zhao et  
738 al., 2016; Jia et al., 2018; Tian et al., 2020), for which vegetation type was usually not  
739 considered due to the great complexity of vegetation type and structure along the  
740 urban-rural gradient.

741

742 **Note 2: Estimation of percent vegetation cover**

743 The percent vegetation cover (PVC) required for differentiating between the  
744 contributions from the background and urban biogeochemical drivers was calculated  
745 using linear regression based on NDVI data (Purevdorj et al., 1998; Gao et al., 2020).  
746 The MODIS NDVI data during the growing season (April-October) were used, and  
747 the thresholds required for this method were set at 0.15 and 0.80, representing the  
748 scenarios of no vegetation and full vegetation coverage, respectively (Purevdorj et al.,  
749 1998). We acknowledge that uncertainties may occur for the selection of appropriate  
750 thresholds for different vegetation types. We nevertheless used a consistent standard

---

751 of threshold, because this analysis was based on the average PVC of the urban and  
752 rural surfaces and because we only used the ratio between the urban and rural PVCs.

753

754 **Note 3: Calculation of  $B_{\text{Pix\_GR}}$ ,  $U_{\text{Pix\_GR}}$ , and  $G_{\text{Pix\_GR}}$**

755  $B_{\text{Pix\_GR}}$  refers to the contribution of BBD to the EVI trend of the pixels with green  
756 recovery (i.e. the Pix\_GR pixels). The urbanization level was similar for the Pix\_GR  
757 and Pix\_LCU pixels in the same city category, so deducing that the contribution ratio  
758 between BBD and UBD for these two types of pixels in the same city category were  
759 also similar was rational (Supplementary Fig. 7b).  $B_{\text{Pix\_GR}}$  can therefore be calculated  
760 indirectly using (i) the EVI trend of the Pix\_LCU pixels in the same city category  
761 ( $EV{I_{\text{Pix\_LCU}}}$ ) and (ii) the proportion of the contribution of BBD to the EVI trend for the  
762 Pix\_GR pixels:

763 
$$B_{\text{Pix\_GR}} = EV{I_{\text{Pix\_LCU}}} \times \text{!Error!} \times \text{!Error!} \quad (\text{S1})$$

764 where  $EV{I_{\text{Pix\_LCU}}}$  represents the mean EVI trend of the Pix\_LCU pixels for a specific  
765 city category,  $B_{\text{Pix\_PE}}$  and  $U_{\text{Pix\_PE}}$  are obtainable using Eqs. (6) and (7),  $A_{\text{Pix\_GR}}$  represents  
766 the number of Pix\_GR pixels for the associated urban category, and  $A$  represents all  
767 pixels for this urban category.

768

769  $U_{\text{Pix\_GR}}$  refers to the influence of UBD on the EVI trend of the pixels with green  
770 recovery (i.e. the Pix\_GR pixels).  $U_{\text{Pix\_GR}}$  can similarly be indirectly estimated using  
771 (i) the EVI trend of the Pix\_LCU pixels in the same city category ( $EV{I_{\text{Pix\_LCU}}}$ ) and (ii)  
772 the proportion of the contribution of UBD to the EVI trend for the Pix\_GR pixels:

773 
$$U_{\text{Pix\_GR}} = EV{I_{\text{Pix\_LCU}}} \times \text{!Error!} \times \text{!Error!} \quad (\text{S2})$$

774

775  $G_{\text{Pix\_GR}}$  refers to the contribution of UGR to the EVI trend of the pixels with green

---

776 recovery (i.e. the Pix\_GR pixels). The contribution of UGR was the only difference in  
777 the controls of the trends of surface greenness between the pixels with green recovery  
778 (i.e. the Pix\_GR pixels) and the Pix\_LCU pixels for the same city category.

779 Calculating  $G_{\text{Pix\_GR}}$  using the difference of the EVI trends between the Pix\_GR and  
780 Pix\_LCU pixels was consequently feasible ([Supplementary Fig. 7b](#)), given by:

781 
$$G_{\text{Pix\_GR}} = (EVI_{\text{Pix\_GR}} - EVI_{\text{Pix\_LCU}}) \times \text{!Error!} \quad (\text{S3})$$

782 where  $EVI_{\text{Pix\_GR}}$  represents the mean EVI trend of the Pix\_GR pixels for a specific city  
783 category.

784

785 **Note 4: Calculation of percent contribution of each driver**

786 The percent contribution of each driver was calculated by ([Liu et al., 2019](#)):

787 
$$C_i = \text{!Error!} \times 100\% \quad (\text{S4})$$

788 where  $C_i$  represents the percent contribution of driver  $i$  to the EVI trend ( $i = B, U, E,$   
789  $G$ , or  $r$ ). We used the absolute instead of the original values to calculate the  
790 contributions to avoid the percent contribution of a single factor  $>100\%$  and to avoid a  
791 denominator equal to zero.

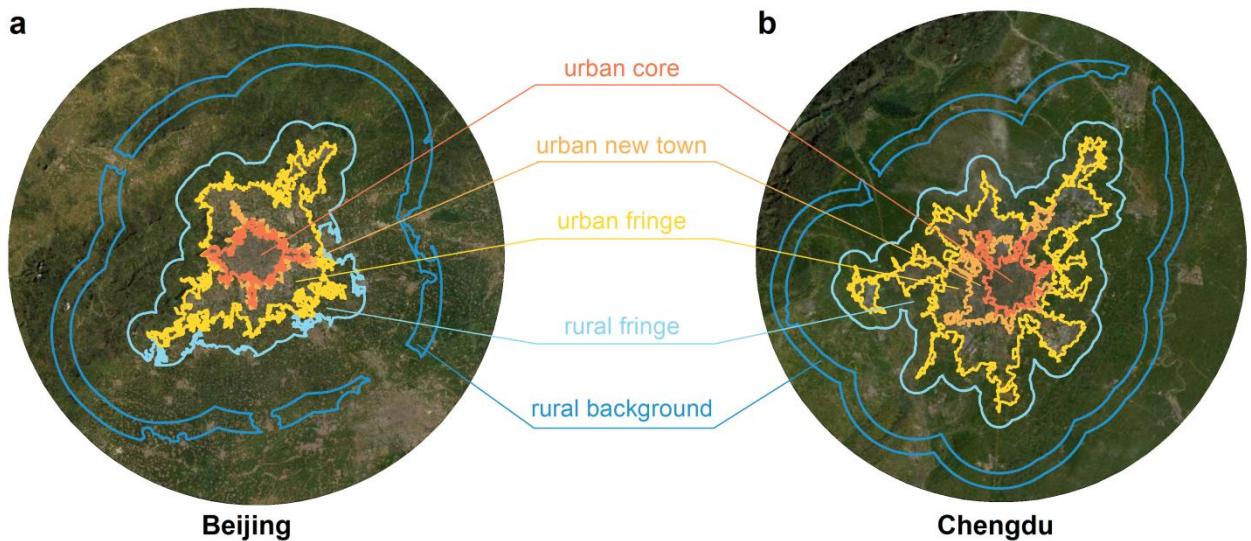
792

793

---

794 **B. Supplementary figures**

795



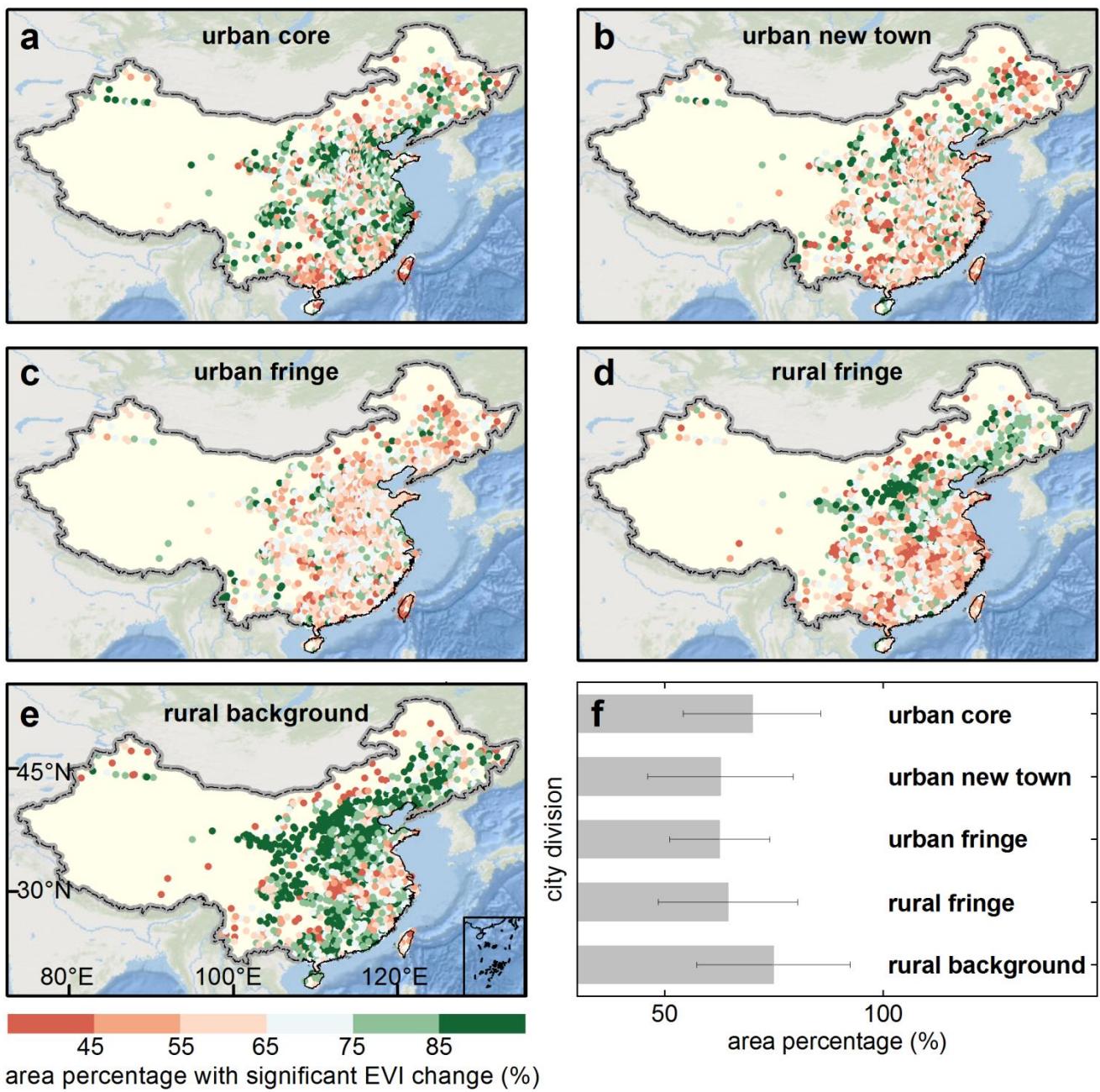
796

797 **Supplementary Figure 1. Schematic of the three urban and two rural categories for Beijing (a)**  
798 **and Chengdu (b) |** Urban cores are delineated by the urban boundaries in 1990, urban new towns  
799 include urbanized surfaces from 1990 to 2000, urban fringes include urbanized surfaces from 2000 to  
800 2018, rural fringes are buffer zones around urban fringes with a buffer distance of  $d$  that guarantees  
801 an area of rural fringes equivalent to that of the combination of the three urban categories, and rural  
802 backgrounds are delineated by another buffer zone with an area equivalent to the combination of the  
803 three urban categories and with a distance of  $5d$  from urban fringes for suppressing the impact of  
804 urbanization as much as possible (Du et al., 2019).

805

806

807

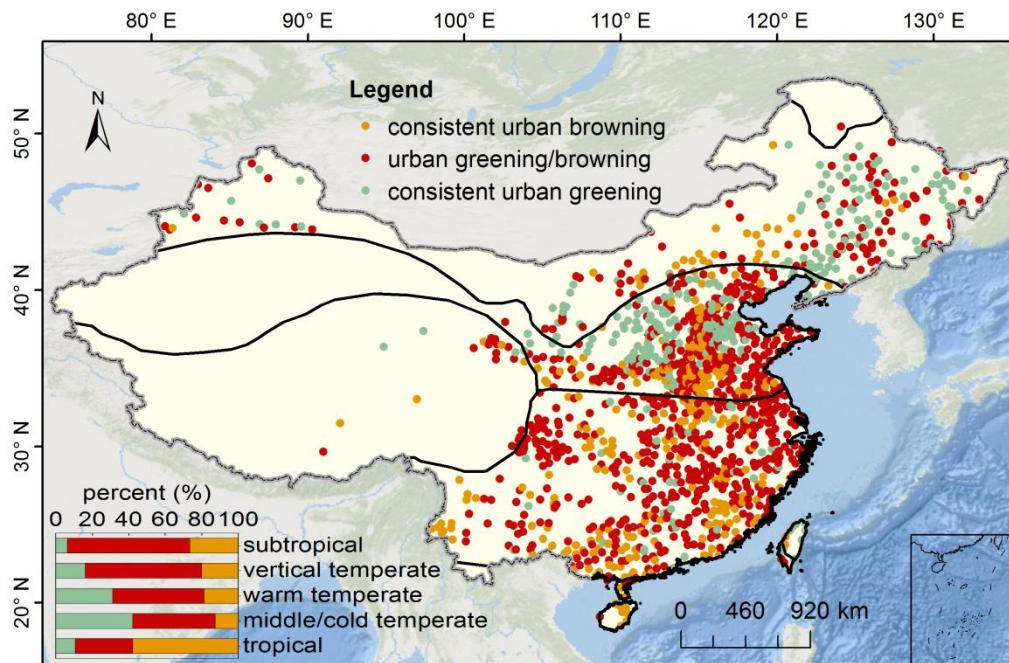


808

809 **Supplementary Figure 2. Percentage of areas with significant EVI changes ( $P < 0.05$ ) in the five**  
810 **city categories across 1560 Chinese cities** | Area percentages in urban cores (a), urban new towns  
811 (b), urban fringes (c), rural fringes (d), and rural backgrounds (e), and the means and standard  
812 deviations in area percentage for the five city categories (f).

813

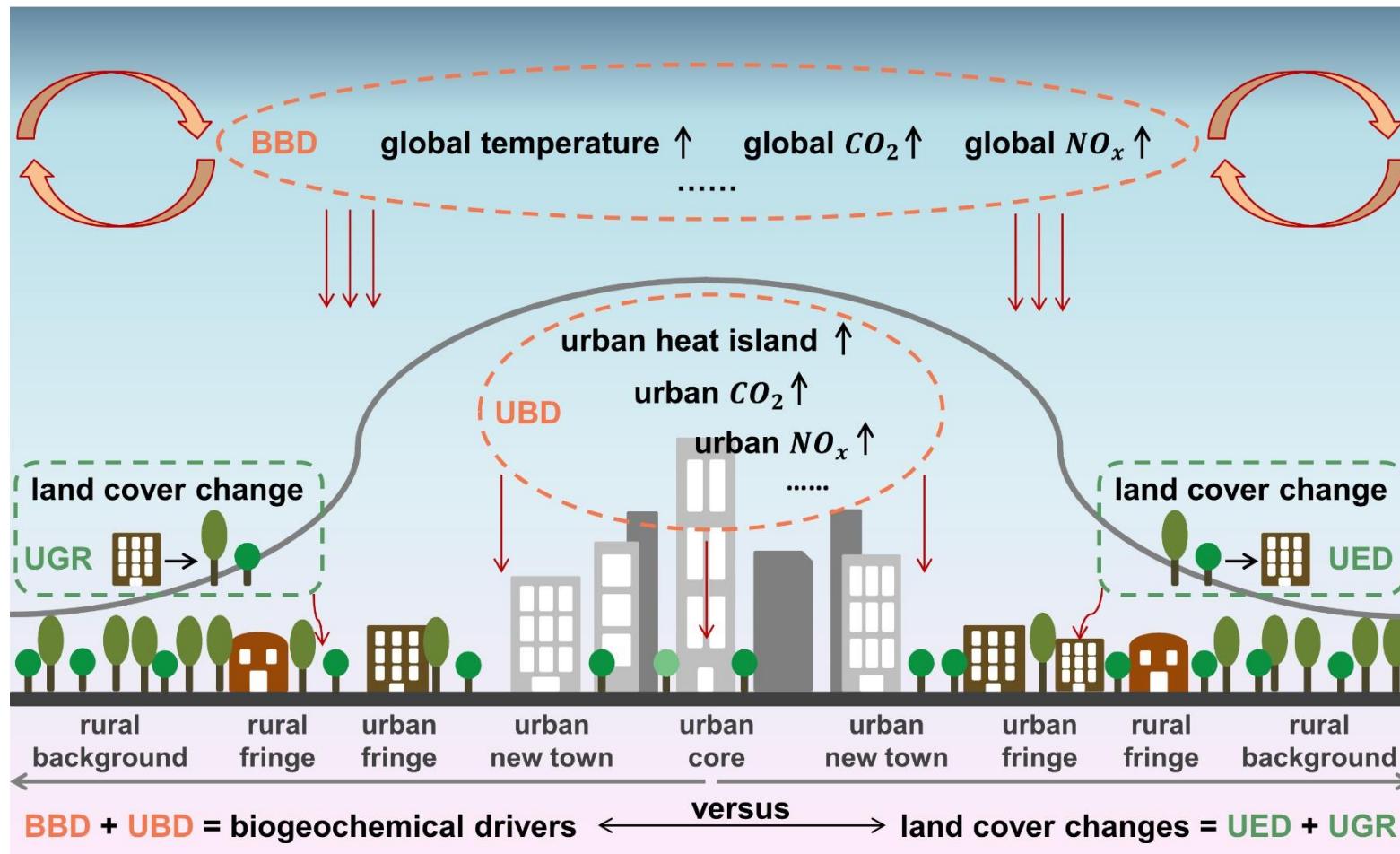
814



815

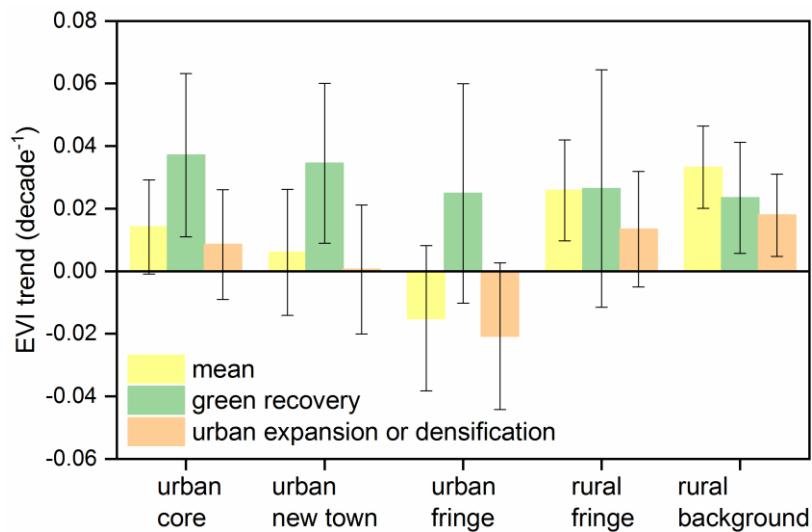
816 **Supplementary Figure 3. Consistency (or heterogeneity) of greenness trends for the three**  
 817 **urban categories, urban cores, urban new towns, and urban fringes, and the associated**  
 818 **proportions in the climatic zones** | Orange indicates that all three urban categories have browning,  
 819 red indicates that both browning and greening occurs for the three urban categories, and green  
 820 indicates that all three urban categories have greening.

821

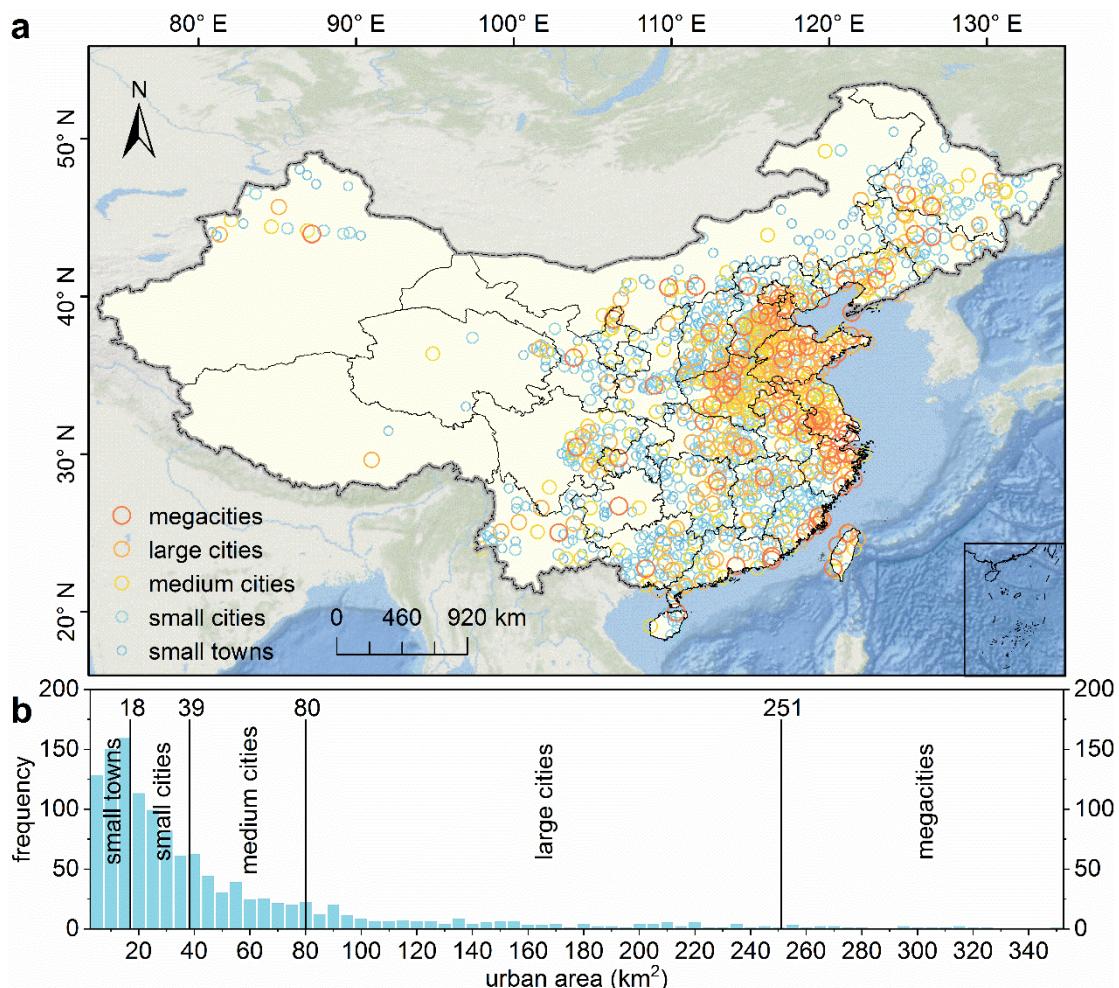


822

823 **Supplementary Figure 4.** Conceptual diagram of the impacts of the background biogegeochemical driver (BBD), the urban biogegeochemical  
 824 driver (UBD), urban expansion (UED), and green recovery (UGR) on EVI trends | Biogegeochemical drivers include BBD and UBD, and  
 825 drivers of land-cover changes include UED and UGR.



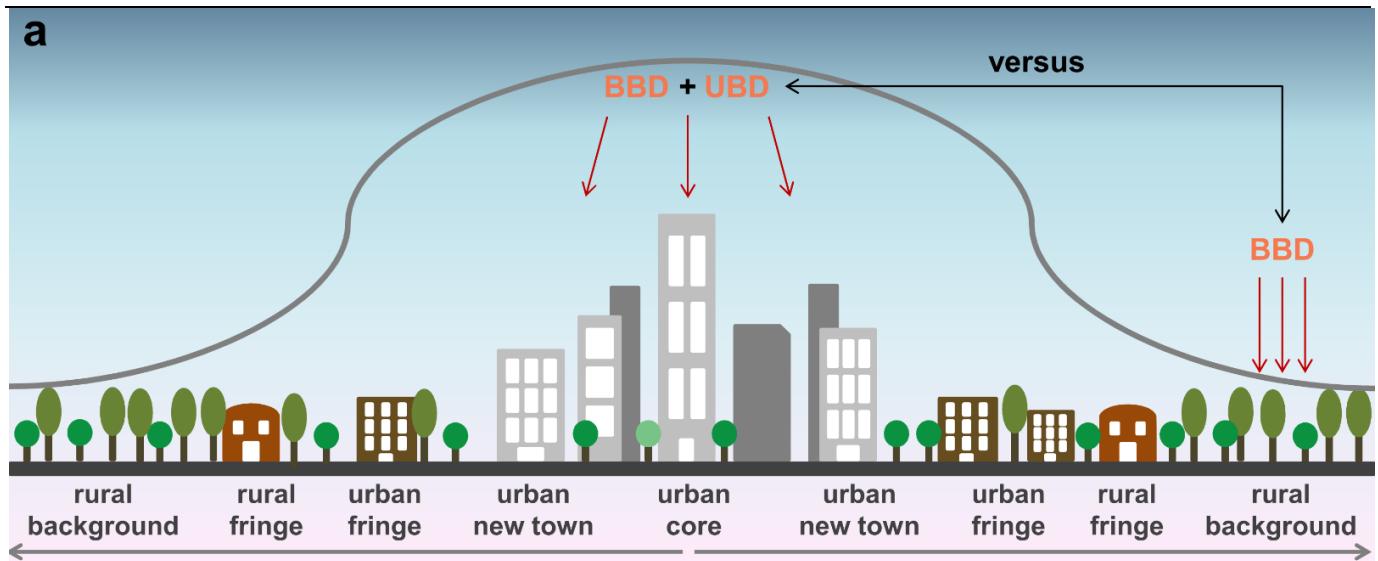
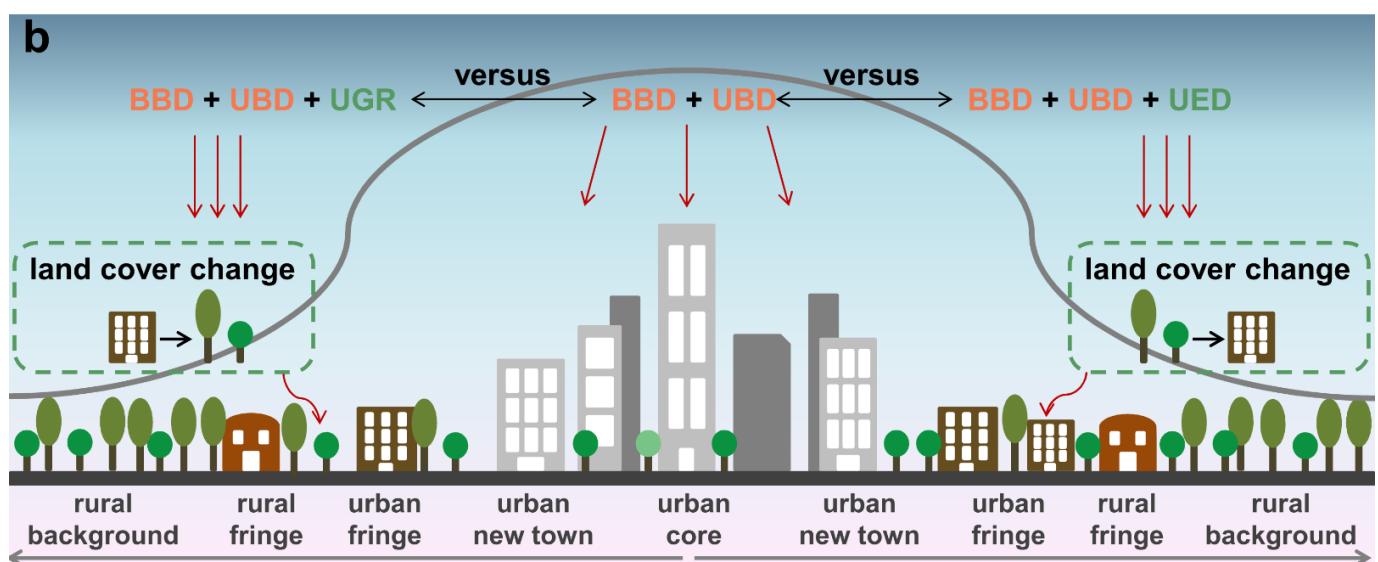
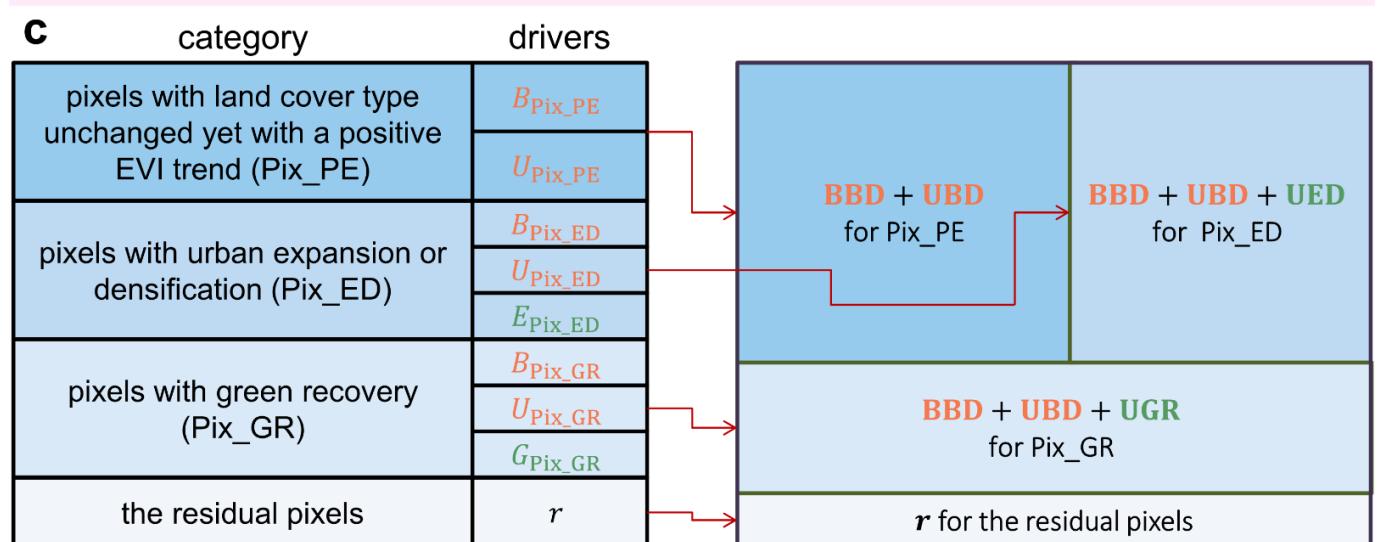
828 **Supplementary Figure 5. Means and standard deviations of the EVI trends for**  
 829 **all pixels, the pixels with green recovery, and the pixels with urban expansion or**  
 830 **densification for each city category.**



833

834 **Supplementary Figure 6. Spatial (a) and frequency (b) distribution of city size of**  
 835 **the 1560 cities at the county level or above in China |** These cities are divided into  
 836 five categories based on city size: small towns (accounting for 33.3% of all cities),  
 837 small cities (26.7%), medium-sized cities (20.0%), large cities (13.3%), and  
 838 megacities (6.7%).

839

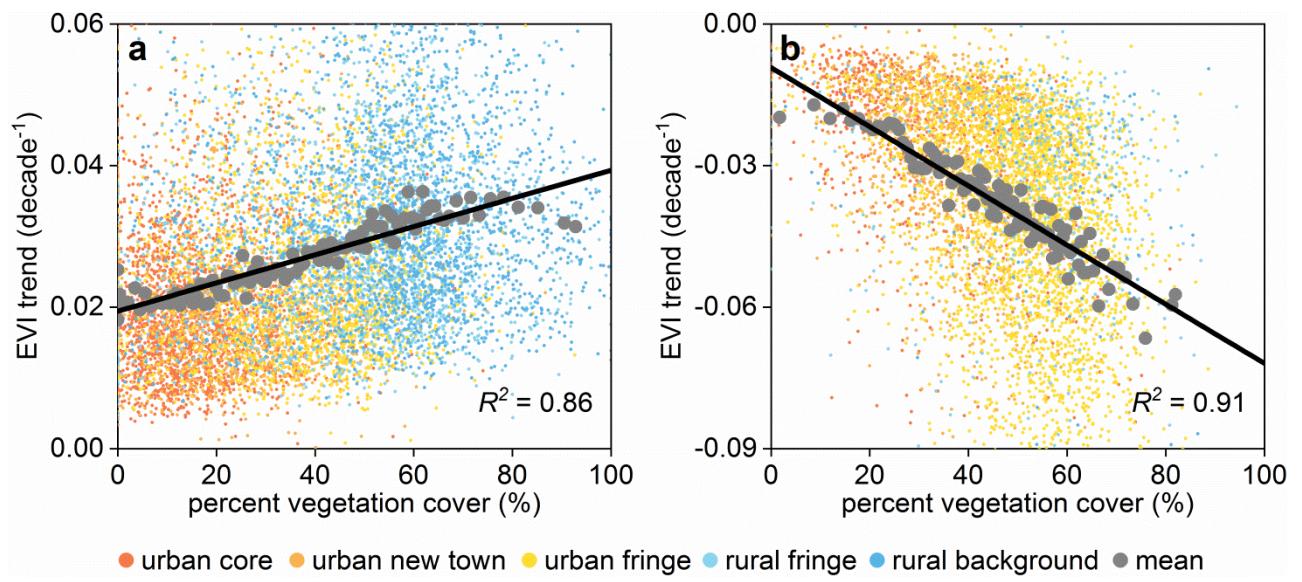


840

841 **Supplementary Figure 7. Schematic for differentiating between the contribution of each driver for**  
 842 **each city category|** Comparison of the impacts of the background biogeochemical driver (BBD) and the  
 843 urban biogeochemical driver (UBD) on the urban-rural gradient of EVI trends (a), comparison of the

---

844 impacts of BBD, UBD, urban expansion or densification (UED), and urban green recovery (UGR) on the  
845 urban-rural gradient of EVI trends for areas with and without changes in land-cover type (**b**), and impacts  
846 (or contributions) of these four drivers on the EVI trend over different categories of pixels (**c**).  
847  
848



849 ● urban core ● urban new town ● urban fringe ● rural fringe ● rural background ● mean

## 850 **Supplementary Figure 8. Relationship between percent vegetation cover (PVC)**

851 and EVI trend | The relationships between PVC and the EVI trends in regions with

852 positive EVI trends (**a**) and regions with negative EVI trends (**b**).

853

854

855

---

856 **C. Supplementary references**

857 Du, J. et al. Effects of rapid urbanization on vegetation cover in the metropolises of  
858 China over the last four decades. *Ecol. Indic.* **107**, 105458 (2019).

859 Gao, L. et al. Remote sensing algorithms for estimation of fractional vegetation cover  
860 using pure vegetation index values: A review. *ISPRS J. Photogramm.* **159**, 364–  
861 377 (2020).

862 Liu, X. et al. Global urban expansion offsets climate-driven increases in terrestrial net  
863 primary productivity. *Nat. Commun.* **10**, 1–8 (2019).

864 Piao, S. et al. Interannual variations of monthly and seasonal normalized difference  
865 vegetation index (NDVI) in China from 1982 to 1999. *J. Geophys. Res. Atmos.*  
866 **108**, D14 (2003).

867 Piao, S. et al. Characteristics, drivers and feedbacks of global greening. *Nat. Rev.*  
868 *Earth Environ.* **1**, 1–14 (2020).

869 Purevdorj, T. S. et al. Relationships between percent vegetation cover and vegetation  
870 indices. *Int. J. Remote Sens.* **19**, 3519–3535 (1998).

871 Qiu, B. et al. Responses of Australian dryland vegetation to the 2019 heat wave at a  
872 subdaily scale. *Geophys. Res. Lett.* **47**, e2019GL086569 (2020).

873 Tai, X. et al. Plant hydraulic stress explained tree mortality and tree size explained  
874 beetle attack in a mixed conifer forest. *J. Geophys. Res. Biogeo.* **124**, 3555–3568  
875 (2019).

876 Zhang, L. et al. An analysis of shadow effects on spectral vegetation indexes using a  
877 ground-based imaging spectrometer. *IEEE Geosci. Remote S.* **12**, 2188–2192  
878 (2015).

879 Zhao, S. et al. Prevalent vegetation growth enhancement in urban environment. *Proc.*  
880 *Natl. Acad. Sci. USA* **113**, 6313–6318 (2016).

---

881 Zhu, Z. et al. Greening of the Earth and its drivers. *Nat. Clim. Change* **6**, 791–795  
882 (2016).  
883