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The PENGUIN approach to reconstruct
protein interactions at enhancer-promoter
regionsand its application toprostate cancer

Alexandros Armaos1,9, François Serra 2,8,9, Iker Núñez-Carpintero 2,
Ji-Heui Seo3, Sylvan C. Baca3, Stefano Gustincich 1, Alfonso Valencia 2,4,
Matthew L. Freedman 3,5, Davide Cirillo2 , Claudia Giambartolomei 1,6 &
Gian Gaetano Tartaglia 1,4,7

We introduce Promoter-Enhancer-Guided Interaction Networks (PENGUIN), a
method for studying protein-protein interaction (PPI) networks within
enhancer-promoter interactions. PENGUIN integrates H3K27ac-HiChIP data
with tissue-specific PPIs todefine enhancer-promoter PPI networks (EPINs).We
validated PENGUIN using cancer (LNCaP) and benign (LHSAR) prostate cell
lines. Our analysis detected EPIN clusters enriched with the architectural
protein CTCF, a regulator of enhancer-promoter interactions. CTCF presence
was coupled with the prevalence of prostate cancer (PrCa) single nucleotide
polymorphisms (SNPs) within the same EPIN clusters, suggesting functional
implications in PrCa. Within the EPINs displaying enrichments in both CTCF
and PrCa SNPs, we also show enrichment in oncogenes. We substantiated our
identified SNPs through CRISPR/Cas9 knockout and RNAi screens experi-
ments. Here we show that PENGUIN provides insights into the intricate inter-
play between enhancer-promoter interactions and PPI networks, which are
crucial for identifying key genes and potential intervention targets. A dedi-
cated server is available at https://penguin.life.bsc.es/.

Enhancer-promoter (E-P) interactions play a crucial role in orches-
trating gene expression and ensuring the proper regulation of cellular
processes. DNA-binding proteins (DBPs), including transcription fac-
tors (TFs), act as key players in this regulatory network by binding to
enhancers and bridging additional protein interactions between
enhancers and promoters. In this work we define Enhancers-Promoter
protein-protein Interaction Network (EPIN) as the local interactome
connecting a single promoter with all its interacting enhancers. EPIN
interactions are facilitated by various types of intermediate proteins,

such as co-activators (e.g., mediators), chromatin structural proteins
(e.g., cohesin), and noncoding RNA-binding proteins.

While protein-protein interactions (PPIs) have been extensively
studied1,2, the integration of chromatin architecture information, spe-
cifically through chromosome conformation capture (3C-like) techni-
ques, with PPI analysis is still in its early stages. Joint investigations of
chromatin loops and PPIs are crucial for prioritizing functional
interactions3. However, it is important to note that many of these
studies often lack the necessary biological context at various levels.
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As of today, the characterization of context specific intermediate
PPIs involved in disease pathways and their association with DBPs
remains largely unanswered4. Previous studies have highlighted the
significance of disrupted E-P loops in several human disorders5–7. In
cancer, enhancers are frequently subject to sequence and structural
variations, leading to the dysregulation of TFs and chromatin modi-
fiers, which contribute to oncogenesis8. Consequently, targeting these
enhancer-driven mechanisms holds great promise for therapeutic
interventions in cases such as Prostate Cancer (PrCa)9. In this context,
advanced techniques such as HiC and its derivative HiChIP10, in com-
bination with ChIP-seq, could enable the identification and character-
ization of specific chromatin interactions between enhancers and
promoters. In particular, H3K27ac-HiChIP has emerged as a powerful
tool designed to detect and amplify E-P interactions and has been
successfully employed to uncover susceptibility genes associated with
cancer, including PrCa11.

To characterize protein interactions that take place at the E-P
contacts, we developed the Promoter-ENhancer-GUided Interaction
Networks (PENGUIN) approach. For each promoter annotated in the
genome and covered by at least one HiChIP interaction, PENGUIN
builds an EPIN by integrating several sources of information: (1) high-
resolution chromatin interaction maps enriched for a marker of active
E-P activity (H3K27ac-HiChiP); (2) tissue-specific physical nuclear PPIs;
(3) high-quality curated binding motifs of protein-DNA interactions;
(4) tissue specific gene expression.

To prove the usefulness of our PENGUIN approach, we applied it
to uncover EPINs in a PrCA cell line, androgen-sensitive human pros-
tate adenocarcinoma cells (LNCaP), and validate our findings in com-
parison to a benignprostate epithelial cell line (LHSAR). PrCa is the 2nd
most common cancer inmen12. Its distinct hormone-dependent nature
is characterized by high expression and frequent genetic amplification
of AR. AR is a regulator of homeostasis and proteases transcription,
such as KLK3 encoding PSA (Prostate-Specific Antigen). AR gene is also
a principal therapeutically targeted oncogene in PrCa13. Increased
genetic instability resulting in chromosomal rearrangements and high
frequency ofmutations aredeemed indicative of PrCa aggressiveness14

for which there is need of ad hoc treatments15. Recurrent mutations in
FOXA1, involved in prostate organogenesis and regulator of AR tran-
scription, have been observed in several populations16,17. Hundreds of
PrCa-associated single nucleotide polymorphisms (SNPs) have been
identified by genome-wide association studies (GWAS), including
genomic regions within tumor suppressor genes and oncogenes, such
as MYC18. However, the functional relationship between most of these
SNPs and PrCa pathophysiology is unknown. This missing part of the
picture, together with the growing evidence of abnormal transcrip-
tional programs driven by genetic instability, led us to investigate the
role of chromatin architecture in PrCa. In particular, we focused on the
nuclear proteins potentially involved in transcriptional regulation
through the interaction of promoters and non-coding regulatory ele-
ments, enhancers.

By clustering together promoters with similar EPIN structures with
PENGUIN, we identified 273 promoters whose genes are enriched in
PrCa fine-mapped SNPs, known PrCa oncogenes, and ChIP-Seq-
validated binding sites of transcriptional repressor CTCF. The proteins
that populate such EPINs constitute putative PrCa-related factors, some
of which have not been previously described to be associated with PrCa
SNPs or oncogenes. Moreover, the EPINs detected by PENGUIN enable
the characterization of distinct molecular cascades enriched in PrCa
SNPs at E-P contacts. These represent potential molecular targets in
PrCa that cannot be identified through conventional analytical proce-
dures, such as E-P contacts andGWASoverlap. To explore our resultswe
made a dedicated server available at https://penguin.life.bsc.es/.

Our methodology, focusing at the specific EPIN resolution level,
reveals a relation between 3D genome conformation and disease
phenotype. This relation allows PENGUIN to propose new directions in

the molecular characterization of chromatin interactions as well as in
the definition of potential targets for molecular screening towards
disease treatment.

Results
The PENGUIN framework
PENGUIN leverages multiple sources of information to build EPINs by
grouping enhancers interacting with the same promoter Then, it
populates these EPINs with intermediate PPIs and finally clusters the
EPINs by structural similarity. The input datasets include (1) high-
resolution chromatin interaction maps that capture active promoter-
enhancer interactions, highlighting the dynamic nature of gene reg-
ulation; (2) tissue-specificphysical nuclearprotein-protein interactions
(PPIs), enabling the exploration of molecular associations within the
nucleus; (3) curated binding motifs of protein-DNA interactions, pro-
viding insights into the specific interactions betweenproteins andDNA
and (4) gene expression levels, identifying active elements with the
interaction networks (Fig. 1). Each EPIN consists of three distinct types
of nodes: promoter-bound nodes, encompassing proteins with DNA
binding motifs present in the promoter region; enhancer-bound
nodes, comprising proteins with DNA binding motifs in the enhancer
sequences; and intermediate nodes, representing proteins that inter-
actwith either the promoter-bound or enhancer-bound nodes but lack
direct DNA binding motifs on the promoter or enhancers. By inte-
grating diverse information, PENGUIN provides a holistic view of the
intricate molecular landscape within EPINs. This approach enables the
exploration of the interplay between DNA-binding proteins, enhan-
cers, and intermediate proteins, shedding light on the regulatory
mechanisms that shape gene expression and ultimately influence cel-
lular functions.

EPIN composition and properties
In this work, we used 24,547 E-P contacts (30,416 after refinement and
prioritization, Methods; Supplementary Fig. S1) identified using
H3K27ac-HiChIP data in LNCaP, 810 binding motifs from 639 DNA-
binding proteins, and 31,944 prostate-specific, experimentally vali-
dated, physical and nuclear PPIs (filtering out proteins from unex-
pressed genes, Methods; Supplementary Fig. S2) to construct 4,314
EPINs. Each EPIN is centered around one promoter thatwe found to be
contacted by a median of 4 enhancers, with a maximum of 93 enhan-
cers for the promoter of the gene CRNDE (Supplementary Data 1).
Altogether, the 4,314 EPINs contain a total of 8,215 interactions (edges)
among a total of 885 proteins (nodes) that are expressed in LNCaP. A
mean of 36% proteins found in these EPINs are encoded by differen-
tially expressed genes in LNCaP versus LHSAR (Methods and Supple-
mentary Data 1).

Overall, 751 out of the 885 proteins represent intermediate nodes,
with 127 of them acting both as intermediate and asDNA-bound nodes
in different EPINs (Supplementary Data 2). 261 unique DNA-binding
proteins have predicted binding sites in at least one of the anchors of
enhancers and promoters. Amean of 32.8 (s.d. 11.5) distinct DBPs were
identified per promoter anchor with SP1, EGR1, SP2 being the most
represented; and a mean of 24.8 (s.d. 7.69) were predicted per
enhancer anchor with SP1, IRF1 and TFAP2A being the most
represented.

A mean of 1.43 (normalized) promoters (0.88 s.d.) are shared
among enhancers, with a maximum of 15 promoters for the same
enhancer. To identify communalities and differences among the 4,314
EPINs inLNCaP,weperformed anunsupervised, hierarchical clustering
based on edge composition (Ward’s linkage method, Methods, Fig. 2).

Characterization of PrCa clusters identified by PENGUIN
As illustrated in Fig. 1, we proceeded to identify, through analysis of
annotations, the clusters that show the highest relevance to our dis-
ease of interest, PrCa.
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Since CTCF is a major actor in the formation and maintenance of
transcriptionally productive E-P interactions19,20, we searched for
enrichment in CTCF binding among PENGUIN clustering of EPINs. For
this analysis we used CTCF ChIP-seq peaks, from the same cell line
(LNCaP), from the ENCODE21 project instead of predictions based on
DNA-binding motifs (Methods). We found that the most significantly
enriched (p value < 0.001) interactionswithCTCFpeaks concentrate in
clusters 7 and 8, which we call CTCF+ (Fig. 2A: red branches corre-
sponding to significant enrichment in a two-sided Fisher’s exact test,
Methods). This suggests that the presence of CTCF in chromatin
interactions results in the formation of characteristic PPI networks
between the promoter and its enhancers. Note that this significant
enrichment starts when dividing the EPINs in 4 clusters and continues
in descendant clusters (dividing in 8 and 16 clusters, see Fig. 2C and
Supplementary Data 3).

Beside CTCF enrichment we observed a significant enrichment in
PrCa SNPs. This enrichment ismost visible in cluster 8 (Fig. 2B) that we

callGWAS+.We used the previously described 95% credible set of SNPs
(henceforth referred to as PrCa SNPs) across 137 PrCa-associated
regions fine-mapped from the largest publicly available GWAS sum-
mary statistics (N = 79,148 cases and61,106 controls22).The result of the
PrCa SNP enrichment is displayed in Fig. 2B in blue/red for all possible
partitions of our clustering (two-sided Fisher’s exact test, Methods). It
should be emphasized that our findings demonstrate consistent
results also when employing PrCa-associated SNPs from the GWAS
catalog, in which casewe also identified GWAS+ cluster as significantly
enriched (Methods, Supplementary Data 3).

Interestingly the observed PrCa SNPs enrichment in the GWAS+
cluster is exclusively due to SNPs in enhancers (Table 1). Our results
show that E-P interactions containing PrCa SNPs are clustered together
(red branches in Fig. 2B) indicating that they have similar character-
istics in the way their PPI networks are wired. We found that most
pairwise interactions (67.5%, or 5550 out of 8215 edges) are found in all
clusters but their final topologies are different.

Fig. 1 | General overview of the PENGUIN workflow and downstream analyses.
PENGUIN input consists of HiChIP data (in this work, H3K27ac in LNCaP or LHSAR
cell lines), tissue-specific nuclear protein-protein interactions, PPIs (in this work,
cancer and normal prostate PPIs from IID database), curated DNA-binding motifs
(in this work, motifs from JASPAR database), and gene expression profiles (in this
work, RNA-sequencing data in LNCaP or LHSAR cell line). PENGUIN output consists
of Enhancer-Promoter protein-protein Interaction Networks (EPINs). Downstream
analyses are designed to address specific questions related to prostate cancer
(PrCa), namely the identification of clusters of promoters based on EPIN similarity,

their enrichment in distinct annotations (CTCF binding from ChIP-seq peaks, PrCa-
associated SNPs, and PrCa oncogenes), and finally the formulation of mechanistic
hypothesis based on SNPs path analysis. In the inset, we report a schematic
representation of an enhancer-promoter protein-protein interaction network
(EPIN) reconstructed with PENGUIN for a given E-P contact detected by H3K27ac-
HiChIP. Promoter and enhancer DNA binding motifs found in HiChIP regions after
enhancer prioritization and the corresponding bound proteins are indicated in
orange; their physical interactions with other factors of the EPIN (in gray) are
represented as gray lines.
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GWAS+ cluster is also enriched in oncogenes. Indeed, among the
273 promoters in GWAS+ cluster, 11 belong to known oncogenes,
FOXA1, ZFHX3, CDKN1B, KDM6A, BRCA2, CDH1, CCND1, NKX3-1, BAG4,
MYC, GATA2 (Methods). It is important to emphasize that incorpor-
ating intermediate proteins into our reconstructed networks

significantly improves the enrichment of functional annotations
specifically related to PrCa. By incorporating these intermediate
proteins, we were able to increase the number of oncogenes related
to PrCa in the GWAS+ cluster from 6 to 11. This also led to a higher
level of statistical significance in the enrichment analysis, thereby
improving the specificity of our results (see Supplementary Data 4
for details).

We also compared our findings to a simpler approach that relies
solely on the overlap between genomic regions of E-P contacts and
known oncogene promoters. This information is summarized in Sup-
plementary Data 1, which also includes overlaps between E-P contacts
andCTCFpeaks, aswell as PrCa-related SNPs locatedwithin enhancers.
Using this simpler overlap approach, only 30 promoters were identi-
fied that overlapboth PrCa SNPs andCTCF peaks. Among these, just 12
were part of the GWAS+ cluster, and only 3 were promoters of known
oncogenes. Notably, only one of these oncogenes, ZMYM3, is not
already present in the GWAS+ cluster.

Table 1 | Enrichment of PrCa SNPs in cluster 8 (GWAS+) when
considering SNPs overlapping enhancers, promoters, either
or both

PrCa SNPs overlaps Odds Ratio (OR) p-value

Only enhancers 11.329 1.80E−12

Only promoters 1.139 0.6

Either enhancers or promoter 8.551 2.68E−11

Both enhancers and promoter 0 1

See also Supplementary Data 3A.

Fig. 2 | Clustering of the promoters originating the PENGUIN
reconstructed EPINs. Clustering is based on edge composition of the EPINs. Leaf
radius is proportional to network size. Color code (two-sided Fisher’s exact test):
red, enriched; blue, depleted; The figure is generated using ETE372.A Enrichment of
PrCa SNPs in enhancers. We identified one PrCa SNP enriched cluster (GWAS+;
cluster 8), and multiple PrCa SNP depleted (GWAS-; clusters 1, 2) and neutral
(GWAS= ; clusters 3, 4, 5, 6, 7) clusters. B Enrichment of CTCF ChIP-seq binding
sites. We identified multiple CTCF enriched (CTCF+; clusters 3, 7, 8), depleted
(CTCF-; clusters 1, 2, 6) and neutral (CTCF=; clusters 4, 5) clusters. C Clustering
analysis on LNCaP (Top) and LHSAR (bottom) reconstructed EPINs. Pie-charts

represent clustering results for a distinct total number of clusters used to partition
the hierarchical clustering tree (4, 8, 16). Numbered pie-slices represent the dif-
ferent clusters and their color gradients encode the significance of enrichment
(shades of red), depletion (shades of blue) or neutral (gray) of the overlap with
distinct annotations (ChIP-Seq CTCF peaks, predicted CTCF binding sites by FIMO,
PrCa-associated SNPs from fine-mapping and GWAS). Clusters significantly enri-
ched with previously known oncogenes are annotated with black arcs. All enrich-
ments have been estimated using two-sided Fisher’s exact test. Source data are
provided as a Source Data file and Supplementary Data 3B.
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We further analyzed properties of GWAS+ cluster. This cluster is
enriched in the Hippo signaling pathway (KEGG:04390) (Bonferroni-
corrected p-value = 1.56e−3), WNT Signaling Pathway (KEGG:04310)
(Bonferroni-corrected p-value = 9.57e−3) and Pathways in cancer
(KEGG:05200) with genes such as BCL2L1, MYC, FOS (Bonferroni-cor-
rected p-value = 0.047) (Methods, Supplementary Data 5). Interest-
ingly GWAS+ cluster, or any other cluster, did not significantly stand
out in terms of overall expression level (Supplementary Fig. S2) or,
notably, in terms of fraction of differentially expressed genes (Sup-
plementary Fig. S2).

We identified the protein interactions that are enriched in each
cluster and estimated the significance of overrepresentation of each
edge in a cluster compared to all others (Methods). GWAS+ cluster
exhibits the lowest number of promoters and distinctive network
characteristics (Supplementary Data 3A, Supplementary Fig. S3).
Nonetheless, per promoter, it displays the largest number of edges
(p-value < 1e−16) and intermediate nodes (p-value < 1e−16), in line with
its greater number of enhancers per promoter (p-value < 1e−16), see
Supplementary Fig. S4.

We also assessed whether PENGUIN clustering was influenced by
super-enhancer-like regions sharing target promoters in given clusters.
Although the distribution of enhancers per hotspots is similar among
our 8 clusters (Supplementary Fig. S4), GWAS+ cluster has fewer single
enhancers (enhancer atmore than 15 kb fromany other enhancer). The
average number of promoters targeted by each hotspot for all our
3,752 defined enhancer hotspots was 1.83 promoters targeted per
hotspot. When measured considering only the promoters in given
EPIN clusters, the values were: 1.29 for cluster 1, 1.28 for cluster 2, 1.25
for cluster 3, 1.24 for cluster 4, 1.22 for cluster 5, 1.21 for cluster 6, 1.34
for cluster 7 and 1.27 for cluster 8. In this case, values were very similar
between EPIN clusters.

We note that the EPINs of GWAS+ cluster have the lowest values of
node-level centrality measures, namely betweenness and degree
(Supplementary Fig. S3). The degree of a nodemeasures the amount of
connections it has, while the betweenness centrality measures the
amounts of shortest paths that pass through it. Low values of
betweenness and degree indicate a lower amount of connections
among different nodes of the network. Betweenness and degree are
significantly different across clusters (Kruskall–Wallis test p-value < 1e
−16), but not with respect to the ensemble of all EPINs, which indicates
that, despite the high number of shared pairwise interactions (67.5% of
edges), the wiring of the cluster-specific EPINs are distinctive.

Finally, to explore the potential connection between our cluster-
ing approach and the presence of trans-eQTLs, we used the trans-
eQTLs reported from the largest eQTL study available (large-scale
meta-analysis in up to 31,684 blood samples from 37 eQTLGen Con-
sortium cohorts in Whole Blood23,) and defined a region an ‘eQTL
hotspot’ when associated to more than 3 genes (Methods). We
observed an enrichment of eQTL hotspots across all clusters (Sup-
plementary Fig. S5, empirical p-value < 0.0001), but not specifically for
cluster GWAS+ (Supplementary Fig. S5F).

In conclusion, PENGUIN enabled the identification of a cluster of
E-P contacts whose EPINs are uniquely enriched in ChIP-seq CTCF
peaks, PrCa SNPs and number of oncogenes (Fig. 2 and Table 2). Most
importantly, the CTCF and GWAS enrichment, coupled with the
highest number of oncogenes, becomes evident when the dataset is
partitioned into 8 clusters.

Assessment of PENGUIN specificity
To explore the cell and disease-specificity of our results, we applied
PENGUIN on LHSAR, a benign prostate epithelial cell line. We per-
formed H3K27Ac HiChIP experimental data and applied the PPI clus-
tering procedure to explore functional relationships within the
clusters. We then proceeded to apply PENGUIN to identify clusters of
EPINs based on their edges (Methods). As the selection of an exact

number of clusters in a given tree could be considered an important
variable inour analysis,we examined various cluster numbers (4, 8, 16).
We investigated the presenceof cluster enrichment inGWASandCTCF
(Supplementary Data 3B). Our analysis did not reveal any cluster
enrichment in GWAS and CTCF within the benign prostate control
LHSAR. Moreover, we did not observe a significant increase in the
number of identified oncogenes in LHSAR (Fig. 2B). These results lead
us to conclude that PENGUIN, along with the integration of inter-
mediate PPI networks, significantly enhances the identification of
candidate PrCa-related SNPs affecting key elements in chromatin
architecture.

Despite the high similarity in PPIs between LHSAR and LNCaP cells
(Jaccard index of 0.85), their clustering based onH3K27AcHiChIP data
revealed distinct EPINs (Fig. 2B). This finding highlights the sensitivity
of our method in capturing subtle differences within EPINs. To further
validate this, we conducted additional statistical analyses on PPIs
across different cancer cell types. By examining the overlap between
PPI networks, we discovered significant variations that were highly
specific to each cell type (Supplementary Fig. S6). This observation not
only reinforces the reliability of the differences found in LHSAR and
LNCaP cells but also suggests that our results can be expected in other
cellular contexts provided the required H3K27ac-HiChIP information,
which is currently unavailable in most cases.

To further investigate the significance of intermediate PPI net-
works, we conducted clustering analysis exclusively based on HiChIP
interactions. Specifically, we utilized the list of enhancer IDs, denoted
by their genomic coordinates, within each EPIN (Supplementary
Fig. S7). Our findings unequivocally demonstrate that the exclusion
of intermediate PPI networks substantially diminishes the number
of identified oncogenes. This outcome strongly suggests that
the information conveyed by the PPI network plays a crucial role in
the classification of EPINs and their correlation with phenotypic
traits.

Involvement of E-P protein interactomes in tumor-related
functional processes
We next analyzed the functional enrichment of the set of 885 proteins
composing the universe of nodes used in the EPINs of LNCaP. 43 out of
these 885 proteins are encoded by one of the 122 known PrCa onco-
genes (32 intermediates, 7 DBPs among which MGA, ETV4, ETV1,
GATA2, ETV3, ERF, NKX3-1, and 4 of both types among which TP53,
MYC, FOXA1, AR; see Methods and Supplementary Data 2). In total, 11
out of 885 have been targeted by PrCa-specific drugs (source: Drug-
Bank; protein targets: ESR2, ESRRA, AR, PARP1, NFKB2, NFKB1, NCOA2,
NCOA1, AKT1, TOP2A, TOP2B; drugs: Estramustine, Genistein, Fluta-
mide, Nilutamide, Bicalutamide, Enzalutamide, Olaparib, Custirsen,
Amonafide); and 190 out of 885 are targets of non-prostate drugs
indicating the possibility of re-purposing.

Considering the genes encoding for 477 out of 751 intermediate
proteins with annotations for KEGG pathways retrieved using
g:Profiler24, 41 were annotated in the prostate cancer pathway
(KEGG:05215) (adjusted p-value = 3.62E−24), which annotates a total
of 97 genes (Methods and Supplementary Data 7). We next studied
specific protein enrichments in the nodes of the EPINs of each iden-
tified cluster (Supplementary Data 8). Although intermediates are
ubiquitous and generally shared among all clusters, we could identify
22 significantly specific proteins enriched in the GWAS+ cluster
(Methods). Functional enrichment analysis of these 22 proteins
revealed significant relationships with tumorigenic processes (Sup-
plementary Data 9). KEGG Prostate cancer pathway (KEGG:05215)
appears to be highly enriched (adjusted p-value = 1.27e−2) together
with other pathways related to tumors such as Colorectal cancer
(KEGG:05210, adjusted p-value = 3.20e−5) Pancreatic cancer
(KEGG:05212, adjusted p-value = 9.54e−4) and Breast cancer
(KEGG:05224, adjusted p-value = 7.06e−4). KEGG pathway
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KEGG:04919 (Thyroid hormone signaling pathway) is an additional
highly enriched pathway (adjusted p-value = 2.57e−4). Thyroid
hormones have been previously described as modulators of
prostate cancer risk25–28. Pathway KEGG:05200 (called Pathways in
cancer) appears as the fourth most enriched KEGG concept (adjusted
p-value = 3.63e−4). Other classical tumorigenic pathways, such asWnt
signaling pathway (KEGG:04310, adjusted p-value = 1.27e−2) and TGF-
beta signaling pathway (KEGG:04350, adjusted p-value = 8.21e−4)
appear to be enriched. In this regard, recent studies analyzed the
involvement of Wnt signaling in the proliferation of prostate cancer
cells29,30, as well as the involvement and TGF-beta signaling31,32.

Furthermore, we examined the functional enrichment of sig-
nificantly central proteins across all other clusters. This analysis was
conducted to facilitate functional comparisons across different
clusters (Methods ‘Functional gene set enrichment analysis’). This
analysis revealed no enrichments for clusters 1, 2, 4, 5, and 6 (cluster
5 does not have significantly central proteins). This observation can
be attributed to the higher number of central proteins in these
clusters (365 in cluster 1, 283 in cluster 2, and 318 in cluster 6)
compared to the other clusters (3 in cluster 3, 7 in cluster 7, and 22 in
cluster 8). Despite having a similar number of significantly central
proteins to cluster 8 (30 proteins), cluster 4 does not show any
enrichment.

Moreover, of the clusters presenting enrichments (i.e., clusters 3
and 7), only cluster 7 presents enrichments related to those observed
in cluster 8 (for example, KEGG prostate cancer pathway is enriched,

adjusted p-value = 2.041e−2; Supplementary Fig. S8). As commented,
cluster 7 presents only 7 significantly central intermediate proteins
(CREBBP, CTNNB1, GSK3B, KAT5, MAPK1, PIN1, SMAD2), out of which,
6 overlap with those significantly central in cluster 8 (only PIN1 is
absent).

SNPs path analysis in the E-P protein interactomes
Next, we sought to perform an analysis of the SNPs found along the
paths within each EPIN (Methods). In this analysis, a path in a network
is a sequence of edges joining a sequence of nodes connecting the
promoter and the enhancers of an EPIN (Fig. 3A). We distinguish
between two possible scenarios based on the location of the SNPs
within the paths: (1) PrCa SNPs fall in the DNA binding motifs found in
enhancers, indicating a possible dysregulation of TFs binding and
activity (Fig. 3B); (2) PrCa SNPs in the genomic regions of the genes
that encode for the intermediate nodes of the EPINs, indicating a
possible alteration of the PPIs (Fig. 3C). The first analysis aims to
identify the location of enhancers that could be targeted by genetic
perturbation techniques such as CRISPR/Cas9. The second analysis
aims to identify the proteins that are potentially affected bymutations
so as to enhance our understanding of prostate cancer biology.
Overall, we characterized all PrCa SNPs falling within any path that
connects enhancers to a promoter (rs4962419 was found in both
scenarios analyzed). In the following, we discuss the two scenarios and
report on the MYC, CASC11 and GATA2 promoters as illustrative
examples.

Table 2 | Enrichment of PrCaSNPs, CTCFChIP-seqbinding sites (“CTCF” in the header), and other PrCa annotations (oncogene
promoters and PrCa SNPs from GWAS Catalog) across the eight clusters identified by PENGUIN

Cluster Number
of genes

CTCF OR P-value PrCa
SNPs

OR P-value Number of oncogene
promoters

OR P-value
CTCF CTCF PrCa

SNPs
PrCa SNPs oncogenes oncogenes

1 825 − 0.617 1.91E-09 − 0.28 2.46E-02 8 1.17 0.67

2 399 − 0.613 9.65E-06 − 0 2.00E-02 5 1.54 0.38

3 544 + 1.348 1.35E-03 = 0.8 8.27E-01 2 0.39 0.31

4 491 = 1.084 4.09E-01 = 0.51 3.60E-01 4 0.94 1

5 465 = 0.841 9.12E-02 = 0.75 8.14E-01 1 0.23 0.17

6 641 − 0.664 4.24E-06 = 0.38 1.03E-01 1 0.16 0.03

7 676 + 1.655 2.12E-09 = 1.42 3.18E-01 5 0.84 1

8 273 + 3.287 3.64E-20 + 11.33 1.80E-12 11 6.48 1.04E-05

Cluster 8 is enriched in CTCF binding, PrCa SNPs, and oncogenes. Symbols code: + enriched, − depleted, = neutral. OR and P-value: two-sided Fisher’s exact test Odds Ratio and P-value. See also
Supplementary Data 3B.

Fig. 3 | Schematic representation of different types of network paths found in
the EPINs reconstructed by PENGUIN. In general, a network path is defined by an
intermediate protein (gray circle), encoded by a gene (dark red line; GeneA), that
interacts with DBPs (orange circles) with binding motifs (orange lines) on the
enhancer (green line) and the promoter (red line) of another gene (dark red line;

GeneB) (A). If a PrCa SNP (asterisk) falls in the enhancer binding motif, the inter-
action between the DBP and the enhancer may be disrupted and possibly its
interactions (B). If a PrCa SNP (asterisk) falls in the gene that encodes for the
intermediate protein, the gene product could be affected and possibly its inter-
actions (C). Colors are consistent with Fig. 1.
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Network paths with PrCa SNPs in enhancer binding motifs
We sought to detect SNPs located in the DNA binding motifs found in
the enhancers of the EPINs. Based on previous evidence33,34, our
hypothesis is that SNPs in enhancers could disrupt the binding of
proteins such as TFs having an impact on their interactome.

In Supplementary Data 10, we list the 36 PrCa SNPs falling within
60 DBP motifs in enhancer regions linking 34 different promoters
whose EPINs include 5184 edges. Among these, we identified 17 PrCa
SNPs falling within 16 EPINs (1894 edges) belonging to the GWAS+
cluster that had at least one PrCa SNP in their enhancers. Several of
these EPINs have promoters of differentially expressed genes (such as
DLL1, STOMand SEC11C in theGEPIA tumor/normaldataset; ID2, RPS27,
SEC11C, CASZ1, CRTC2, C5 and STOM in the LNCaP/LHSAR dataset; see
Methods, Differential Gene Expression).

To establish the biological significance of the identified SNPs, we
leveraged data from previous pooled genome-wide CRISPR/Cas9
knockout and RNAi screens conducted in prostate cancer LNCaP cells,
available in the DepMap database (https://depmap.org/, DepMap ID:
ACH-000977). These screens provide essentiality scores, which
quantify the relevance of specific gene networks to the proliferation of
LNCaP cells. In our analysis, we retrieved essentiality scores for genes
in prostate tissue fromDepMapand compared threedistinct gene sets:
(1) the genes (EPIN promoters) prioritized in Supplementary Data 10,
(2) all genes (EPINpromoters) included inour analysis, and (3) all genes
available in the DepMap database. Remarkably, we observed sig-
nificant differences in the essentiality scores (Z-scores) among these
sets, with lower Z-scores indicating a higher degree of gene essentiality
(Fig. 4A). This analysis aligns with the RNAi findings, demonstrating a
significant decrease in essential scores for genes containing the SNPs
listed in Supplementary Data 10 (Fig. 4B). Furthermore, the GSEA
analysis unveiled anoteworthy enrichment (p-value = 0.0017) for these
EPIN promoters that harbor intermediate nodes with SNPs at their
genomic location (as indicated in the supplementary Supplementary
Data 10) (Fig. 4C). Among the topessential genes, theCRISPR/Cas9and
RNAi screens prioritize the following ones: GATA2-AS1, CASZ1, MYC,
KRT8, GTPBP4-AS1, MFN2, CTBP2, and ID2.

In order to assess the usability of PENGUIN in the absence of
HiChIP data, we compared our results with Activity-By-Contact (ABC)

scores35. We overlapped the fine-mapped GWAS SNPs with the
enhancers reported in ABC. 17 out of the 36 SNP-gene links reported in
Supplementary Data 10 overlap an enhancer linked to the same pro-
moter in the ABC score. Three SNP-gene links have high support from
the ABC model (ABC score ≥0.022), rs55958994-KRT8/KRT18 and
rs143499963-DLL1/FAM120B and rs10818488-C5, while rs10090154-
MYC/CASC11 have low support (0.0284). Overall these results show a
partial overlap when using HiChIP experiments in the PENGUIN
approach as opposed to the computational predictions of enhancer-
promoter functional contacts to explain the association between SNPs
and disease.

Additionally, we used the SNP-Gene-Disease linking strategy cS2G
from Gazal and colleagues36, to identify 8 SNP-Gene-Disease links with
4 genes (CTBP2, MYC, ID2, KRT18) that were also considered in Sup-
plementary Data 10, which could represent links with support from
multiple epigenetic information across different cell lines.

Finally, at the level of intermediate proteins, we also found some
encoded by genes reported to be differentially expressed. We
observed that the mean proportion of intermediates that are differ-
entially expressed is on average 40% (Supplementary Fig. S4). We
tested whether promoters belonging to the GWAS+ cluster were sig-
nificantly enriched for intermediate protein encoding for differentially
expressed genes (Methods). Among the 16 EPINs belonging to the
GWAS+ cluster that had at least one PrCa SNP in their enhancers, 11
contain expression data to study potential direct effects of the SNPs. In
this subset we found 4 EPINs differentially expressed in promoters (3
also differentially expressed in intermediates: CASZ1, ID2, SEC11C), and
4 EPINs only differentially expressed in intermediates: MIIP, MRPL14,
MYC, TMEM63B (Supplementary Data 1). The differential expression of
intermediates makes it easier to identify interesting and potentially
novel cases. For instance, MYC is not differentially expressed but it has
differentially expressed intermediates.

Network paths with PrCa SNPs in the genes coding for
EPIN nodes
In this analysis, we identify EPINs with PrCa SNPs falling within genes
that encode either for intermediate or anchor bound nodes (Supple-
mentary Data 11), indicating a potential alteration of PPIs involved in

Fig. 4 | Validation of SNPs prioritized by PENGUIN. CRISPR/Cas9 knockout and
RNAi screens provide Z-scores to quantify the relevance of a specific gene network
to proliferation of LNCaP cells. A CRISPR/Cas9 knockout analysis indicates that
intermediate SNPs prioritized byPENGUIN (red) occur in genes essential for LNCaP.
Genes with the strongest effect are labeled. B RNAi analysis shows milder but
significantly consistent results with CRISPR/Cas9 knockout. A, B The boxes show
the interquartile range (IQR), the central line represents the median, the whiskers
add 1.5 times the IQR to the 75 percentile (box upper limit) and subtract 1.5 times

the IQR from the 25 percentile (box lower limit). Significance calculated with two-
sided Mann–Whitney test. C Gene Set Enrichment Analysis (GSEA) indicates that
SNPs prioritized by PENGUIN occur in the most essential genes identified by
CRISPR/Cas9 knockouts.DGSEA indicates that SNPs prioritized by PENGUIN occur
in the most essential ones based on the RNAi screen. for C and D, the statistical
significance of the enrichment of a gene set within the ranked gene list is reported.
C, D Significance is calculated using a two-sided hypergeometric test. Source data
are provided as a Source Data file and Supplementary Data 10.
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E-P contacts. We found that the GWAS+ cluster has the highest pro-
portion of PrCa SNPs in these nodes compared to all other clusters
(mean= 53.2, SE = 18.0, p-value ≤0.01, Supplementary Data 12). The
EPINs of STK40 and GATA2 promoters in GWAS+ cluster display the
highest fraction of EPIN nodes with PrCa SNPs in their corresponding
genes encoding them (Supplementary Data 1).

We used the SNP paths to link 172 PrCa SNPs falling within the
gene bodies of 26 genes of which 7 are known oncogenes (MAP2K1,
CHD3, AR, SETDB1, ATM, CDKN1B, USP28). We identify edges that are
most enriched in our GWAS+ cluster which could be pointing to
essential links between the gene encoding for the node and containing
a PrCa predisposing SNP at a particular EPIN. For example, we
identify the link between MDM4 containing SNP rs35946963 (PrCa
p-value 1e−24) and TP5337 and between KDM2A containing SNP
rs12790261 (PrCa p-value 1e−7) and BCL638 and ARNT continuing SNP
rs139885151 (PrCa p-value 3e−13) and HIF1A39.

We integrated information from pQTL associations between the
172 PrCa SNPs and protein levels (Methods). Two intermediate pro-
teins (CREB3L4,MAP2K1)were associatedwith PrCa SNPs fallingwithin
the gene encoding for them (p-value of association with proteins were
7.75e−86 for CREB3L4 and 2.40e−5 forMAP2K1). We identified 3 out of
26 promoter EPINs (TRIM26, MEIS1, POU2F2) with suggestive evidence
(p-value < 1e−5) of association between the PrCa SNP with the
PENGUIN-linked promoter EPIN, pointing to the cancer promoting
mechanistic action of these variants: gene with SNPs in POU2F2 linked
to the EPIN promoter of gene PHGDH (SNP with lowest p-value
rs113631324 = 3.80e−8); gene with SNPs in TRIM26 and EPIN promoter
of gene RRM2 (SNP with lowest p-value rs2517606 = 2.69e−7); gene
with SNPs inMEIS1 and EPIN promoter of gene STOM (SNP with lowest
p-value rs116172829 = 8.19e−6).

We note that, unlike SNPs in enhancers, whose effect can be
directly assessed by CRISPR/Cas9 or RNAi assays, the impact of SNPs
on intermediate nodes is more complicated to estimate due to their
shared involvement in multiple gene networks. In fact, it is worth
mentioning that among the 885 proteins identified by PENGUIN,
751 serve as intermediate nodes (section PENGUIN identifies PrCa
clusters of protein interactions based on chromatin contacts). This
overlapping functionality further complicates the prediction of SNP
effects on these intermediate nodes.

Examples: SNPs path analysis of MYC, CASC11 and GATA2
promoters
FromHiChIP data, theMYC promoter (chr8:128747814-128748813) is in
contact with 73 enhancer regions among which one holds the SNP
rs10090154 (p-value of association with PrCa = 1.4e−188). This SNP is
located in the binding motif of the transcription factor FOXA1 on the
MYC EPIN enhancer. The integration of PrCa SNPs information high-
lights paths in the EPIN of MYC that are particularly compelling in the
context of the disease (red line in Fig. 5; Supplementary Fig. S9). The
promoter region of MYC binds 8 proteins TFAP2C, KLF5, RBPJ, SP1,
ZBTB14, ATF6, ZBTB7A, PRDM1 and contains 17 protein interactors
(dots in Fig. 4) that might be affected by the possible disruption of its
binding motif, namely, HMGA1, RCC1, TFAP4, NFIC, PBX1, HOXB9,
NFIX, NACC1, RARA, PIAS1, RPA2, H2AFY, RECQL, SATB2, CREB1, AR.
The gene encoding for FOXA1 is differentially expressed, along with
others of its interactors (Supplementary Data 10; Methods). Interest-
ingly, 24 PrCa SNPs fall within the genomic region of AR (marked by an
asterisk next to the gene name), all with p-values of association with
PrCa below 1e-11 (Supplementary Data 11). AR is targeted by several
drugs used in the treatment of prostatic neoplasms, such as

Fig. 5 | Reconstructed protein interactions betweenMYC promoter and its
enhancers. DBPs with binding motifs on the promoter region are aligned on the
left, while those with binding motifs on the enhancers are aligned on the right. In
the middle, proteins that connect DBPs through a shortest path. Each dot repre-
sents a protein. Color, size and shape codes are explained in the Tutorial section of
the PENGUIN web service at https://penguin.life.bsc.es/. In this figure, only the

edges of network paths with PrCa SNPs in enhancer binding motif are represented
(orange lines). Such PrCa SNPs are indicated beside the name of the enhancer-
bound DBP (e.g. FOXA1-rs10090154); PrCa SNPs in intermediate proteins are indi-
cated with an asterisk (e.g. AR); the proteins found to be enriched in the GWAS+
cluster are highlighted in bold (e.g. PIAS1); druggable proteins from DrugBank are
indicated as triangles.
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apalutamide, bicalutamide, diethylstilbestrol, enzalutamide, fluta-
mide, and nilutamide (triangle in the Fig. 4A, source: DrugBank).
Notably,mutations in FOXA1 enhancers were previously shown to alter
TF bindings in primary prostate tumors34. And, also in line with our
observations, FOXA1 enhancer region has been previously reported to
be coupled to MYC40 and has been shown to have a strong binding
of AR41.

We report two additional examples, the EPINs for the promoters
of CASC11 (Supplementary Fig. S10A) and GATA2 (Supplementary Fig.
S10B). The EPIN of CASC11 promoter is also affected by variant
rs10090154, the same well known variant associated with risk of
developing prostate carcinoma that we introduced with MYC EPIN42,43

(Supplementary Data 10). Interestingly, CASC11 is known to enhance
prostate cancer aggressiveness and is regulated by C-MYC44, while
being close to theMYC gene on chromosome 8. The promoter binds 6
proteins: TFAP2C, SP3, SP1, PKNOX1, NR2C2 and KLF5. Potentially
affected protein interactors of the EPIN include: HMGA1, PIAS1, AR,
RARA, and PBX1. GATA2 is an interesting case given its essentiality
score from DepMap (Z-score = −7.01). Its EPIN presents up to 11 inter-
mediates affected by PrCa related SNPs, namely TCF4, CTBP2, AR,
ARNT, TCF7L2, CDKN2A, NEDD9, ANKRD17, MEIS1, MDM4 and CHD3.
The role of GATA2 as mediator of AR signaling in AR-dependent
prostate cancer, as well as its role as a potential target for treatment
development45 has been previously described, as silencing of the gene
is known to affect other relevant genes such as C-MYC and AURKA.
Proteins bound to the promoter region include: ZBTB7A, ZBTB33,
TCF3, SF1, NR2C2, KLF3, EGR1, E2F1 and CREB1, but most importantly,
the EPIN presents AR bound to the enhancer region, which, as we
pointed out with MYC EPIN, is the target of several PrCa treatments.

Discussion
Here we introduced the PENGUIN approach that operates on the
premise that the EPINnetwork structure connecting apromoter and its
enhancers can serve as a distinctive signature associated with specific
functional profiles and diseases. Our assumption is grounded in earlier
research that has demonstrated the correlation between 3D loop
topology and chromatin state or gene expression46. We propose
PENGUIN as a molecular approach to study variations in structural
characteristics of chromatin loops, establishing a direct link to disease-
related phenomena. By integrating the PPI network information, the
method offers valuable insights into the underlying mechanisms
driving these distinctive features and their relevance to disease
progression.

Previous computational approaches have linked enhancers to
gene35. In this work, PENGUIN uses information on enhancer-promoter
interactions using the HiCHIP experiment. There are other ways that
this link could be identified. For example, Activity-By-Contact (ABC), a
computational prediction method linking an enhancer region to its
supposed target gene35, could be used instead of HiCHIP observations.
We leave this for future explorations. As we note from Results, as well
as forHiChIP interactions, PENGUIN is able to complete and extend the
information given by solely using enhancer-promoter interactions. In a
recent study, Dey et al.47 demonstrated the benefits of employing
strategies that capture both distal and proximal gene regulation in
prioritizing autoimmune-disease related genes. Similarly to our find-
ings, the authors found that incorporating enhancer-gene links
(including the ABC score from Fulco et al.35), and PPI networks are
important to link SNPs-to-gene47.

Other previous computation approaches had the goal of linking
SNP-Gene-Disease (cS2G from Gazal and colleagues36) by combining
information across different cell lines. Additionally, previous studies
have incorporated PPI networks with GWAS hits to enhance their
analysis48. Alternative methods have amalgamated information from
3D chromatin interactions and GWAS SNPs to establish connections
between intergenic SNPs and gene regulation in cancer contexts3,49,50.

These approaches have contributed to unraveling the relationship
between genetic variations, chromatin organization, and disease. In
contrast, our method takes a unique approach by being completely
agnostic to the presence of SNPs. It combines information from PPI
networks andenhancer-promoter interactions in a cell-specific context
derived from H3K27ac-HiChIP data within a unified framework. This
integrative approach allows us to leverage both the protein interaction
landscape and the regulatory interactions between enhancers and
promoters, leading to a comprehensive understanding of the mole-
cular mechanisms underlying disease.

By utilizing PPI networks, we were able to reveal a distinct set of
genes associated with PrCa that would have remained undiscovered
using other methods. Notably, the intermediate nodes within this PPI
network possess intrinsic properties that can be leveraged for the
classification and characterization of E-P chromatin loops. Thus, our
study demonstrates the capability of PENGUIN to group genes based
on their involvement in PrCa, even in the absence of any prior infor-
mation. This breakthrough opens up an uncharted avenue towards
comprehending and identifying unsuspected biological markers in
disease. In particular, the genes identified within the cluster exhibiting
the highest enrichment in SNPs associated with PrCa (the GWAS+
cluster) can be considered promising candidate oncogenes or poten-
tial partners of oncogenes. It is conceivable that these genesmay share
“onco-enhancers,” which are enhancers contributing to tumorigenic
activity. For instance, PENGUIN can be used to identify trans-acting
factors (e.g., interaction cascades of TFs and chromatin regulators)
that could be targeted by drugs, or cis-acting factors (e.g., DBPs with
binding motifs in regulatory elements) whose DNA binding affinity
could be modified through knock-outs via CRISPR for therapeutic
intervention. Moreover, unlike traditional TF enrichment analysis
which detects general enrichments of particular proteins, PENGUIN
can help identify the specific protein cascade potentially disrupted at
enhancer loci for the disease under study. Overall, our findings high-
light the potential of PENGUIN in unveiling previously unknown gene
networks and provide valuable insights into the identification and
characterization of biomarkers in various diseases, including PrCa.

To validate our findings, we have used cell-line specific datasets,
androgen-sensitive human prostate adenocarcinoma cells (LNCaP) or a
normal prostate epithelial cell-line (LHSAR). Each of the sources of
information could be directly or indirectly related to the specific cell-
lines used in this study: (1) H3K27ac-HiChiP in LNCaP and in LHSAR, (2)
prostate-specific PPIs and (3) DNA binding motifs extracted from pub-
licly available datasets but filtered by our cell-type specific interacting
1 kb promoter-enhancer regions and (4) gene expression on cell-line for
filtering PPI networks. The comparison of the results in cancer cell-line
(LNCaP) to the results in a benign cell line (LHSAR) support our PrCa
cell-specific findings. In LHSAR we found a significant association
between the obtained clusters and the presence of CTCF, pointing
towards the correct classification of EPINs into biologically relevant
categories. Strikingly, this same clustering in the benign LHSAR cell-line
did not reveal any association to PrCA, neither at the level of PrCa-SNPs,
nor at the level of specific oncogenes. Future analyses could explore the
use of clustering E-P loops with PENGUIN using other methods and
sources for each of these layers. For example, we have used as input
enhancer-promoter loops cell-specific H3K27Ac HiChIP experiments
(strict callingof loops andprioritization), tomaximizeour truepositives
in the input data. The input for the PENGUIN clustering approach can
also be constituted by enhancer-promoter links measured from other
experimental methods aside from HiChIP or even using computational
methods. We leave this for subsequent analyses.

In this work, we use a targeted approach and use the information
on association of SNPs from fine mapping as an annotation to our
clusters. Specifically, we identify potential SNP paths from defined
PrCa associated regions. SNP paths link genes in a network through a
path that either starts from TF binding sites in enhancers or passes
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through proteins from the intermediate EPIN network thatwould have
SNP in their gene bodies. This approach adds a new dimension in the
contextualization of GWAS-associated SNPs using the EPIN
looping realm.

It is important tomention our primary objective was to shed light
on specific links that couldbedisruptedbyPrCa-predisposing variants,
such as CTCF bindings that connect promoters to their enhancers, or
intermediate structural proteins that play a role in the E-P network.
Further investigation is required to gain a comprehensive under-
standing of the biology andmechanisms underlying these crucial links.
For this purpose, and to facilitate the exploration of SNP pathways
associated with prostate cancer, we developed a user-friendly web
interfaceaccessible athttps://penguin.life.bsc.es/. Thisplatformserves
as a tool for convenient investigation into the pathways influenced by
SNPs in the context of prostate cancer. It is also intriguing to observe
that, while PENGUIN successfully identifies clusters of EPINs sig-
nificantly associated with PrCA, the gene expression analysis did not
reveal any significant trends. At first glance, this observation may
appear contradictory to our definitions of EPIN clusters and the core
concept of EPIN itself. However, considering the evidence presented
by our analysis, we believe that PENGUIN enables the detection of
cancer associations with heightened sensitivity compared to tradi-
tional differential expression analyses. The ability of PENGUIN to
capture intricate associations between EPINs and cancer surpasses the
limitations of relying solely on gene expression changes, offering a
more comprehensive understanding of the underlying molecular
mechanisms involved in cancer development and progression.

Our analysis comes with some caveats to keep in mind. Firstly, we
relied on data from the HiChIP technique for capturing enhancer-
promoter (E-P) interactions, protein-DNA interactions from FIMO, and
tissue-specific protein-protein interactions from the integrated inter-
actions database (IID). The comprehensiveness of these datasets is
inherently limited by the scope and constraints of the underlying
databases and methodologies employed. Furthermore, our approach
focuses on networks involving proteins with known edges, resulting in
a consideration of only those proteins. Additionally, for the purpose of
visualization, wehave condensed the number of reportedproteins and
have presented only one intermediate protein (expanded one edge
away). Moreover, it is worth mentioning that our study focuses on E-P
interactions within a stable environment (LNCaP cells), representing a
snapshot in time.While this field is still undergoing active research and
further exploration, existing literature suggests that E-P interactions
can exhibit minimal and quantitatively small changes in these condi-
tions. Thus, while interpreting our findings, it is essential to consider
the limitations of the utilized databases and methodologies, the spe-
cific protein selection, the condensed visualization approach, and the
stable cellular context in which the E-P interactions were examined.

In conclusion, the PENGUIN approach employed in this study to
investigate PrCa in LNCaP cells has the potential to be applied to the
study of other human diseases, given the availability of similar data.
This approach can be extended to explore different scenarios, such as
different cell types or combinations of GWAS data, offering a pro-
mising avenue for future investigations. For instance, utilizing E-P
dataset from another prostate cancer cell line would allow the identi-
ficationof target genes regulated by enhancers fromdiverse cell types.

These target genes can be prioritized using a genome-wide collection
of disease-specific risk SNPs. The networks generated by PENGUIN
provide a molecular understanding of the associations involved in
cancer-related chromatin dynamics, making them well-suited for
training advancedmachine learningmodels like graphneural networks
(GNNs). We propose potential intermediates in PrCa that engage in E-P
networks within cancer cells and present opportunities for therapeutic
intervention. High-throughput functional studies could validate the
impact of genetic perturbations on thousands of enhancers simulta-
neously. As shown in our analysis, leveraging CRISPR-Cas9 technology
would enable precise editing of specific genomic regions, facilitating
targeted investigations and further elucidating the functional con-
sequences of these genetic perturbations.

Methods
Experimental methods
HICHIP. Trypsinized 10 million cells were fixed with 1% formaldehyde
at room temperature for 10min and quenched. Sample was lysed in
HiChIP lysis buffer and digested with MboI (NEB) for 4 h. After 1 h of
biotin incorporation with biotin dATP, the sample was ligated with T4
DNA ligase for 4 h and chipped with H3K27ac antibody (DiAGenode,
C1541019) after chromatin. Reverse-crossed IP sample was pulled
down with streptavidin C1 beads (Life Technologies) treated with
Transposase (Illumina) and was amplified with reasonable cycle num-
bers based on the qPCR with 5-cycle pre-amplified library. Library was
sequenced with 150-base pair end reads on the Illumina platform
HiSeq® 2500 (Novogene).

ChIP. 10 million cells were fixed with 1% formaldehyde at room tem-
perature for 10min and quenched. Cells were collected in lysis buffer
(1%NP-40, 0.5% sodiumdeoxycholate, 0.1% SDS andprotease inhibitor
[#11873580001, Roche] in PBS).43 Chromatin was sonicated to
300–800bp with Covaris E220 sonicator (140PIP, 5% duty cycle, 200
cycle burst). H3K27ac antibody (C15410196, Diagenode, 1:600 ratio)
was incubated with 40μL of Dynabeads protein A/G (Invitrogen) for at
least 6 h before immunoprecipitation with the sonicated chromatin
overnight. Chromatin was washed with LiCl wash buffer (100mM Tris
[pH7.5], 500mMLiCl, 1%NP-40, 1% sodiumdeoxycholate) six times for
10min each time. Eluted sample DNA was prepared as the sequencing
libraries with the ThruPLEX-FD Prep Kit (Rubicon Genomics). Libraries
were sequenced with 150-base pair end reads on the Illumina platform
HiSeq® 2500 at Novogene.

RNA seq. RNA from 5 million cells was extracted using the miRNeasy
Micro Kit (#217084, Qiagen) coupled with on-column DNAse I treat-
ment (#79254, Qiagen). RNA sample concentration and its trace were
evaluated using a Bioanalyzer RNA6000Nanokit (#5067-1511, Agilent)
to submit them toNovogeneRNAseqdeptwhichpreppedRNA library.
The library was for RNA seq sequenced to a target depth of 40M reads
on an Illumina platformHiSeq® 2500 with pair-end 150 bp reads. Read
alignment, quality control and data analyses were performed using
VIPER 57.

Conformation capture and E-P interactions
We used Hi-C followed by chromatin immunoprecipitation (HiChIP)
targeting H3K27Ac in LNCaP cells (androgen-sensitive prostatic carci-
noma cell line) across 5 biological replicates including 1 billion reads as
previously described11 (Table 3). As a comparison, we also performed
H3K27Ac HiChIP on LHSAR (Prostate epithelial cells overexpressing
androgen receptor), across three replicates including 309 million
reads. HiChIP, an efficient protein-mediated chromatin-conformation
assay, was performed following the procedure described10. The align-
ment, processing and loop calling from raw fastq files (paired-end
data) was performed as previously described11. Briefly, HiC-Pro51 was
used to map the HiCHiP trimmed reads and extract unique

Table 3 | Genomic datasets used in the work

LNCaP LHSAR

HiChIP H3K27ac 5 replicates (ref. 11) 3 replicates (this study)

RNA-seq 2 replicates (Ref. 71) 2 replicates (ref. 71)

ChIP-seq H3K27ac 1 replicate (Ref. 11) 2 replicates (this study)

ChIP-seq CTCF 2 replicates (Ref. 22) 2 replicatesa (ref. 22)
aNot from LHSAR but from human epithelial cells of the prostate.
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interactions; FitHiChIP52 was used to identify significant interactions
with a predefined set of peaks from H3K27ac ChIP-seq in LNCaP to
refine accurate anchor ranges. We used q-value < 0.01 and a 5 kb
resolution and considered only interactions between 5 kb and 3Mb as
previously described11. In this analysis, we restricted to a stringent
global background estimation to reduce as much as possible the
number of false-positive interactions. The corresponding FitHiChIP
specifications used were “IntType=3” (the peak-to-all) for the fore-
ground, meaning at least one anchor to be in the H3K27 peak, and
“UseP2PBackgrnd = 1” (the peak-to-peak (stringent)) for the global
background estimation of expected counts and contact probabilities
for each genomic distance for learning the background and spline
fitting. We identified 49,565 significant interactions (FitHiChIP, FDR <
0.01) for LNCaP, and 12,053 for LHSAR.

We categorized interactions by overlapping anchors with tran-
scription start sites (TSS) and enhancers identified by H3K27ac ChIP-
seq as previously described11. Briefly, we first extended anchors by 5 kb
on either side; we defined promoter regions around the TSS (+/−500
bases)53 using RefSeq hg19; we defined enhancer regions using regions
fromH3K27acChipSeq in the samecell. Specifically, thesewere 49,638
and 53,561 enhancer regions, respectively from H3K27ac LNCaP in
regular media (union of narrow and broad peaks) and from H3K27ac
LHSAR. We note that the enhancer anchors at this stage of the analysis
are of length 15 kb, due to 5 kb resolution of the HiChIP data analysis
and additional 5 kb padding added to anchors on either side. We
labeled the promoters and enhancer regions that overlap either right
or left anchors, and considered E-P if only one anchor overlaps a
promoter and the other an enhancer region. For LNCaP, out of the
49,565 significant interactions, we considered 18,151 E-P interactions.
For LHSAR, out of the 12,052 significant interactions, we considered
5435 E-P interactions. It is important to emphasize that our study relies
solely on enhancers defined by our own HiChIP experiments, rather
than relying on annotated enhancers or external definitions from
ENCODE. We further prioritized E-P interactions to 1 kb regions and
discarded from enhancers the 1 kb bins with fewer HiChIP interactions
with the promoter (see E-P HiChIP prioritization section). We obtain
30,416 and 4,497 E-P interactions of 1 kb each for LNCaP and LHSAR
respectively. The 15 kb original E-P interactions dataset contained a
mean of 1.6 (1.3 s.d.) promoter anchors per enhancer anchor (after
prioritization of enhancer anchor to 1 kb region, mean of 1.4 (0.9 s.d.)
promoters per enhancer). There were 11,127 (17,683 prioritized 1 kb
regions) enhancer anchors in total; 7341 (12,385 prioritized 1 kb
regions) enhancer anchors are contactedbyonepromoter anchorwith
a maximum of 21 promoter anchors (15 using prioritized enhancer
regions) sharing the same enhancer.

E-P HiChIP prioritization
In order to reduce experimental artifacts in the context of our EPINs,
we developed a specific prioritizationmethod. This prioritization start
by normalizing the data assuming, as most used capture-C normal-
izations (ICE54, Vanilla, or KR55) that all biases (e.g. GC content, number
of restriction sites, mappability, or in the case of HiChIP, immuno-
precipitation bias) can be corrected together. For this normalization
step, we assume that there is a specific bias per any 1 kb genomic loci
(βx for loci x; see Supplementary Fig. S1A, B). This bias causes the
difference between a theoretical expected number of interactions (EXY
between loci X and Y) and the observed number of interactions (OXY

between loci X and Y). In this representation we can define a system of
9 equations involving three 1 kb loci in the promoter (exactly fromTSS
−1 kb to TSS + 2 kb) and fifteen 1 kb loci on the enhancer side. This
system of equations is then solved using Sequential Quadratic Pro-
gramming (SQP)56. The procedure is repeated in an overlapping win-
dowmanner along the 15 kb of the enhancer, always against the target
1 kb of the promoter and its two 1 kb neighboring loci. Before the
normalization step, we observed a different interaction pattern for

interactions below 10 kb (Supplementary Fig. S1C) due, in part, to the
contiguity of restriction-enzyme fragments or chromatin persistence
length. As these interactions may also be a source of bias in the con-
struction of a PPI network, we removed them from our study. We
applied the normalization to the remaining interactions and observed
a better correlation between genomic distance and interaction count
(Supplementary Fig. S1D).

In order to compare with standard normalization procedure we
applied the ICE normalization54 to our dataset (using TADbit57 1 kb
resolution; filtering binswith less than 100 di-tags − 75%of the genome
lost even using a threshold 10 times below the recommended55).
Because of the sparsity of the genomic matrix the normalization did
not fully converge (ICEwas not able to completely balance the average
di-tag counts per bin54).Nextweapplied the followingnormalization to
our loops dataset, with few modification in order to rescue as much
signal as possible: 1- in the promoter site, as our definition of promoter
is exact (TSS to TSS + 1 kb), we corrected using the average of the two
bins spanning over this 1 kb region 2- on the enhancer site, as most of
the 1 kb lociwere excludedby the normalizationfilterwealso averaged
the ICE bias over the whole region. Evenwith thesemodifications, only
half the original datawas recovered. However, the correlationbetween
genomic distance and number of interactions was significantly
improved with respect to raw data. Overall, the correlation value
observed with ICE was similar to the one measured for our normal-
ization (Supplementary Fig. S1E). We believe however that, for this
dataset and for our methodology, our normalization procedure
represents an improvement as it considers the exact promoter regions
(not partially overlapping 1 kb bins) and minimizes the loss of
promoter-enhancer data.

The normalized profile of interactions was finally used to prior-
itize most interacting 1 kb loci on the 15 kb enhancer (Supplementary
Fig. S1F). The selected 1 kb regions are referred to as prioritized
enhancer regions.

DNA binding motifs
DNA binding motifs were retrieved from JASPAR (Fornes et al. 2019),
an open-access database of curated, non-redundant binding profiles of
DBPs (a.k.a. motifs) stored as position frequency matrices (PFMs). To
detect the binding motifs, we used FIMO from the MEME-suite soft-
ware (https://meme-suite.org/meme/), with p-value ≤ 1e−4 and
q-value ≤ 5e−2 cutoffs. JASPAR contains 810DNAbindingmotifs of 640
proteins that overlap the E-P contacts identified with HiChIP.

Gene expression data
We assayed RNA sequencing (RNA-seq) in the cell line LNCaP and
LHSAR for two replicates using the VIPER pipeline as previously
described11, and fragments per kilobase of transcript per million
mapped reads (FPKM) values were calculated for 20,114 RefSEQ genes.
Genes with expression levels above the threshold of 0.003 in both
replicates were considered in the entire analysis (Supplementary Fig.
S2). Depending on the dataset, this expression lower-bound may be
modified in different use cases, for instance based on specific insights
or based on a differential analysis between conditions. In this work, we
used FPKM instead of more direct measures as we set our threshold
very low anddidnotwant to enrich our datasetwith very long, virtually
unexpressed, transcripts.

Protein-protein interaction network
We obtained protein-protein interactions (PPIs) from the Integrated
Interactions Database (IID)58. To better contextualize the interactome
information, we combined the annotations of the PPIs from IID data-
base with the LNCaP gene expression data. As for the IID annotations,
we applied the following selection criteria. First, we selected interac-
tions annotated as “experimental” in the “evidence type” field and
identified by at least two independent biological assays reported in the
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“methods” field. Then, we filtered only for interactions in the prostate
or in prostate cancer cells and between nuclear proteins. Finally, we
retain proteins whose gene expression levels were FPKM>0.003 in
both replicates (this cut-off removes ~30%of the genes). In total, 14,221
proteins from a pool of 20,111 human protein coding genes meet the
gene expression criteria. The combination of the above filtering cri-
teria (gene expression, using only nuclear, prostate cancer or prostate
and experimentally by 2 methods) resulted in an unweighted network
of 31,944 prostate-specific nuclear PPIs among 4295 proteins58.

Similarly, for the comparison with the LHSAR cell line we recon-
structed the PPI interaction networks with PPIs from the same data-
base (IID) having the following annotation criteria: “experimental” in
the “evidence type” field and identified by at least two independent
biological assays reported in the “methods” field. Then, we filtered only
for interactions in the prostate cells and between nuclear proteins.
Finally, we retain PPIs between proteinswhose LHSAR gene expression
levels were FPKM>0.003 in both replicates. In total 29,316 PPIs
representing 4363 proteins were used for the EPIN reconstruction in
the LHSAR cell line. Jaccard Index between the two resulting PPIs
between LNCaP and LHSAR is 0.852.

The PENGUIN pipeline
We set up graph-based approach, called Promoter-ENhancer-GUided
Interaction Networks (PENGUIN), to reconstruct individual networks
of protein interactions thatmight occur betweenonepromoter (P) and
its contacting enhancers (E), that we call E-P protein-protein Interac-
tion Networks (EPINs). To reconstruct the EPINs, PENGUIN integrates
information about chromatin contacts, protein-DNA binding, and
protein-protein interactions (PPIs). For the case under study in this
work (prostate cancer, PrCa), chromatin contacts information comes
from H3K27Ac HiChIP of LNCaP cells (4314 promoters and 5789
enhancer regions; see “Conformation capture and E-P interactions”),
protein-DNA binding information55,56 comes from the JASPAR database
(810 DNA binding motifs of 640 proteins; see Methods, “DNA binding
motifs”), and PPIs information comes from the IID database (31,944
prostate-specific nuclear PPIs among 4295 proteins; see Methods,
“Protein-protein interaction network”) further filtered using LNCaP
RNA-seq data (see Methods, “Gene expression data”).

The reconstruction of EPINs follows these steps: for each E-P
contact, (1) DNA binding motifs are detected in the corresponding
sequences of promoter and enhancer regions; (2) a subnetwork of PPIs
is selected containing all promoter-bound proteins, all enhancer-
bound proteins, and all their intermediate interactors, with a max-
imum of 1 intermediate node between enhancer and promoter bound
DNA binding proteins; (3) intermediate interactors are discarded if
they only connect promoter-bound proteins or enhancer-bound pro-
teins. Using the provided PrCa information, PENGUIN reconstructed
4314 EPINs consisting of a total of 9141 PPIs among 885 proteins of
which 751 are intermediate proteins linking promoter-bound and
enhancer-bound proteins.

Node centrality measures
In several analyses we employed two measures of node centrality,
namely betweenness and degree. Betweenness is a measure of cen-
trality in a graph based on shortest paths. For every pair of nodes in a
connected graph, there exists at least one shortest path between the
vertices such that either the number of edges that the path passes
through isminimized. The degree of a node in a network is the number
of connections it has to other nodes; the degree distribution is the
probability distribution of these degrees over the whole network.

Clustering EPINs
We defined EPIN clusters by taking into account their edge content.
Each edge consists of an individual pairwise PPI as defined previously.
We collected the full universe of edges using all existent edges

between all promoter EPINs (the union graph). Then we computed the
distance between EPINsby counting the number edges sharedover the
total number of edges in our predefined universe of edges. Finally, we
performed clustering using this distance matrix from all possible
combinations of EPIN pairs. The clustering was performed using
Ward’s linkage method. Each leaf in the obtained cluster represents a
promoter EPIN. In order to assess the robustness of this result we
applied the SigClust2 MonteCarlo procedure59 on our clustering with
the following parameters: n_min = 150, alpha =0.05. We found that the
first eight partitions of our hierarchical clustering were very robust
with the following Normalized p-values (2-means cluster index): 0, 0,
8e−69, 6e−272, 7e−77, 1e−70, 2e−106 and 2e−77 for clusters 1 to 8
respectively (according to the labeling in Fig. 2).

Identifying enriched functional annotations in EPIN clusters
We performed two-sided Fisher’s exact tests on every single branch of
the dendrogram representing the obtained hierarchical clustering. We
evaluated the enrichment of any feature (CTCF binding sites by ChIP-
seq, PrCa SNPs from curated GWAS, PrCa oncogenes) in the leaves
under a branchof interest compared to those in the rest of the tree. For
the enrichment in CTCF binding, we usedCTCF peaks fromanexternal
dataset but in the same cell line (see CTCF ChiP-Seq peaks). We con-
sidered anEPIN to beCTCF-positive (CTCF+), if a CTCFpeakwas found
in a 10 kb region around its promoter and around 10 kb of at least one
of its enhancer regions.

For the GWAS feature, we require the presence/overlap of a PrCa-
associated SNP (see Genome-wide association data) in at least one of
the enhancers of an EPIN. Two-sided Fisher’s exact tests were used to
calculate the odds ratio (OR) and enrichment p-values for presence of
PrCa annotations within the identified clusters.

Druggability information
We extracted information for target druggability from DrugBank60.
The use of each drug was obtained from the Therapeutic Target
Database61. We annotated each protein node that is a target of drugs
that are assigned as Approved or under Clinical Trials (Phase 1, 2, 3) or
Investigable for Prostate Cancer, as PrCa druggable.

CTCF ChiP-Seq peaks
CTCFChIP-seq peaks for LNCaPcell linewere retrieved fromENCODE21

project (https://www.encodeproject.org/) for the same Genome
assembly, hg19 (GEO references: GSM2827202 and GSM2827203).
Overlaps of the CTCF binding sites with enhancer and promoter
anchors allowed a 10 kb gapbetween them. SinceCTCFChiP-seqpeaks
for LHSAR cell line were not available in ENCODE, we retrieved from
ChIP Atlas (https://chip-atlas.org/) two distinct sets (GEO references:
GSM2825573 and GSM2825574) of CTCF peaks (of same Genome
assembly hg19) for prostate epithelial cells at a q-value of 1e−10
(Table 3). We used these two sets independently and in concatenation
when comparing the clustering results between LNCaP and LHSAR.
These narrow peaks were mapped on the enhancer regions using the
python package PyRanges (see “E-P contacts” section). For both cases,
LNCaP and LHSAR, the narrow peaks were considered as the CTCF
binding sites.

PrCa SNPs
To explore enrichment of SNPs associated to PrCa across the identified
clusters, and to identify the SNP paths, we used the previously repor-
ted 95% credible set11 from fine-mapping 137 previously-associated
PrCa regions using a Bayesian statisticalmethodPAINTOR62 employing
the largest PrCa genome-wide association studies (GWAS) (N = 79,148
cases and 61,106 controls)63. This set was composed of 5412 distinct
SNPs (rsid). We will refer to these as PrCa SNPs. Note that this set also
includes SNPs that do not reach genome-wide-filters of p-value sig-
nificance. We illustrate the location of the associated PrCa regions and
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number of PrCa SNPs in Supplementary Fig. S11. We did not find a
significant correlation between the number of PrCa SNPs in the regions
and the number of PrCa SNPs we prioritized in this work (Pearson
r = 0.2, p-value = 0.06 and Pearson r = 0.1, p-value = 0.3 for Supple-
mentary data 10 and 11, respectively). We mapped the SNP location to
prioritized enhancer regions anchor locations with a window of 10 kb.
518 out of 5,412 overlap our prioritized enhancer regions; 18 of them
overlap our promoter regions. In total 218 prioritized enhancers and 14
promoters overlap a PrCa SNP.

Annotations of PENGUIN prioritized signals using ABC and
cS2G scores
The Activity-By-Contact (ABC) model is a computational tool
designed to associate an enhancer region with its potential target
gene35. In this study, we compared the enhancer-promoter associa-
tions derived from H3K27ac-HiChIP in PENGUIN against the predic-
tions made by the ABC method. Although a comprehensive
comparison between the two was not feasible, we evaluated the ABC
scores for enhancer-promoter links that were integrated into PEN-
GUIN against those that were excluded. We obtained ABC scores for
candidate element-gene pairs in the LNCaP cell line from https://osf.
io/uhnb4/ (file LNCAP.AllPredictions.txt). Notably, one enhancer can
map to multiple genes. Among 14,682 “TargetGene” entries linked to
151,071 genome regions and 8,640,476 enhancer-promoter links,
9567 matched PENGUIN links, while 190,175 did not. The matched
ABC links had a higher mean ABC score (0.0156 vs. 0.0039 for all). To
assess support from ABC scores for our final SNP-gene links in Sup-
plementary Data 10, we overlapped fine-mapped GWAS SNPs with
ABC-reported enhancers. Seventeen of the 36 SNP-gene links over-
lapped enhancers linked to the same promoter in ABC. Three SNP-
gene links had strong ABC support (ABC score ≥0.022): rs55958994-
KRT8/KRT18, rs143499963-DLL1/FAM120B, and rs10818488-C5, while
rs10090154-MYC/CASC11 had lower support (0.0284). This suggests
potential new insights from the PENGUIN approach in linking SNPs to
diseases.

We also used cS2G fromGazal et al. to complement our SNP-Gene-
Disease linking results36. cS2G utilizes epigenetic data fromvarious cell
lines to link SNPs to diseases.We obtained the data linking 236 SNPs to
prostate cancer (168 genes) from the NHGRI-EBI GWAS catalog
(gwas_catalog_cS2G). cS2G identified 8 SNP-Gene-Disease links,
including 4 genes (CTBP2, MYC, ID2, KRT18) matching those in our
Supplementary Data 10. For these genes, at least one SNP in cS2G was
in linkage disequilibrium (R2 >0.6) with a SNP in our PENGUIN analy-
sis. However, the remaining 67 SNP-Gene links in Supplementary
Data 10 did not match cS2G’s SNP-Gene links to prostate cancer.
Conversely, 48 genes prioritized by cS2G were not in PENGUIN’s
Supplementary Data 10. This discrepancymay be due to differences in
GWAS data (27/70 SNPs linked in cS2G were not in our fine-mapped
dataset). It is important to note that cS2G’s scope differs significantly
from PENGUIN. cS2G aims to link SNPs to diseases using diverse epi-
genetic data from various cell lines, while PENGUIN focuses on iden-
tifying cell and disease-specific enhancer-promoter CTCF-mediated
pathways

SNP paths (PrCa SNPs in enhancer binding motifs)
Apath in a network is a sequence of edges joining a sequence of nodes.
We detected PrCa SNPs located in the DNA binding motifs in the
enhancers, and identified the corresponding SNP paths (linked edges
and nodes) for each EPIN promoter. For SNP paths analyses and the
web-browser, we used all PrCa SNPs in the 95%credible set. Therewere
36 PrCa SNPs falling in enhancer binding motifs across clusters 3, 4, 5,
6, 7, 8. To report the most interesting cases in the Tables and Results,
we used the subset of those passing genome-wide significance of
p-value for PrCa association <5e−8. There were 15 PrCa SNPs falling in
enhancer binding motifs across clusters 3, 5, 6, 7, 8.

SNP paths (PrCa SNPs in intermediate proteins)
We detected PrCa SNPs falling within genes that encode for inter-
mediate nodes, and identified the corresponding SNP paths (linked
edges and nodes) for each EPIN promoter. For SNP paths analyses and
the web-browser, we used all PrCa SNPs in the 95% credible set.

PrCa enrichment using GWAS Catalog and comparison with
other diseases
This analysis had two aims: 1) explore whether we could replicate our
finding and identify theGWASenriched cluster using adifferent source
for the PrCa associated SNPs using SNPs extracted from the GWAS
catalog instead of fine-mapped SNPs; 2) to compare the GWAS signal
for different diseases. We estimated enrichment of SNPs overlapping
the enhancers in eachof the identified clusters by exploring theNHGRI
GWAS Catalog associations64. First, we retrieved GWAS data and fil-
tered the traits according to their “umlsSemanticTypeName” as
defined in DisGeNet database65 to one of the following: “Mental or
Behavioral Dysfunction”, “Neoplastic Process”, “Disease or Syndrome”,
“Congenital Abnormality; Disease or Syndrome”, “Disease or Syn-
drome; Congenital Abnormality”, “Disease or Syndrome; Anatomical
Abnormality”. We considered only traits with at least 10 genome-wide-
significant SNPs (unadjusted p-value < 5e−8). We mapped the SNP
location to prioritized enhancer anchor locations with a window of
10 kb. 104 diseases had SNPs overlaps and 17 of them have more than
10 SNP overlapping (Supplementary Data 5). For each cluster, we tes-
ted enrichment of disease-associated SNPs using Fisher tests and
considered significant p-value < 0.01 and OR> 1.

Trans-eQTL hotspots
We retrieved trans-eQTLs reported in the largestmeta-analysis with up
to 31,684 blood samples from 37 eQTLGen Consortium cohorts in
whole blood in23. We grouped enhancers by collapsingwhen theywere
separated by less than 20 kb, thereby creating ‘enhancer clusters’. To
qualify as a trans-eQTL hotspot, the enhancer clusters had to contain a
SNP associated with at least 3 different genes. We quantified the nor-
malized mutual information (NMI) between the hotspot-related
enhancer clusters and our 8 EPIN clusters. In order to infer deviation
from expected by chance and estimate an empirical p-value, we ran-
domized 10 thousand times the association between each enhancer
and its corresponding EPIN cluster and computed the NMI between
each randomized EPIN clustering and the observed hotspot-related
enhancer clustering. Additionally, we checked if a given cluster was
significantly enriched in trans-eQTL hotspots. For this purpose we
applied a Fisher test to our pool of enhancers comparing the two
contingencies, inside/outside a given cluster, and inside/outside a
trans-eQTL hotspot.

Super-enhancer-like regions
We defined enhancer hotspots as groups of enhancers separated by
less than 15 kb, and identified 3752 enhancer hotspots using bedtools
cluster.

Oncogenes Gene list
We used a previously identified list of 122 Genes (“PrCa_GeneList_U-
sed.csv”) known tobe somaticallymutated in PrCaoncogenesis (37out
of 4314 promoters considered). As previously described11, the 122
oncogenes are a set of prostate cancer–genes curated from three
large-scale PrCa studies that show evidence of somatically acquired
mutations, at both localized and advanced prostate cancer, knownand
recurrently altered in localized prostate cancer and metastatic pros-
tate cancer.

Enriched edges within each cluster
Two-sided Fisher’s exact testswereused to compute odds ratios andp-
values of the edges and nodes in the eight different clusters.
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Specifically, each edge or node was tested for presence/absence in a
cluster compared to all others. Therefore, one edge or node can be
enriched in one or more than one cluster, it cannot be enriched in all
clusters.

Significantly central intermediate nodes within each cluster
We computed protein importance for each cluster in terms of two
network centrality measures: betweenness and degree. For each pro-
tein we obtain both betweenness and degree specificity ratios in order
to equitably quantify internal protein centrality differences between
the clusters. For each of the found clusters we independently esti-
mated the specificity of the observed protein centrality measures
(“Betweenness” and “Degree”). For a given protein (Pi) in a particular
cluster (Cj), we define the specificity (S) as the ratio of the mean cen-
trality (C) of Pi within the fraction of n networks belonging to Cj to the
mean centrality of Pi within the fraction ofm networks not belonging
to Cj, NCj

SðPi,CjÞ=
1
n

Pn
j = 1 CðPi,CjÞ

1
m

Pm
j = 1 CðPi,NCjÞ

We assessed the significance of protein specificity for each cluster
based on random cluster subsamplings. Specifically, we performed
1000 randomnetwork samplings to produce randomnetwork clusters
containing the same amount of networks as the original cluster of
interest (i.e. if the original cluster contains 100 networks, the random
clusters generated will contain 100 random networks out of the 4314
clustered networks). Within each of those 1000 random clusters, we
computed the corresponding protein specificity, with the p-value
representing the probability of finding the protein specificity to be
higher or equal to the value computed for the original cluster of
interest.

We also performed Fisher’s tests to assess enrichment for the
presence of the node in the cluster (two-sided Fisher’s exact test
p-value <0.01). EP300 was excluded from the enrichment test as
the presence of that node was not significantly enriched
(two-sidedFisher’s exact testp-value <0.01). 22proteins (SMAD2,KAT5,
NCOR2, MAPK8, SMAD4, CREBBP, CTNNB1, PGR, HDAC3, HDAC2,
GSK3B,UBA52, UBE2I, JUND, PIAS1, XRCC5,CDK6, XRCC6,MAPK1, FOS,
HIF1A and MAPK3) were found to be significantly specific for both
betweenness and degree ratios (p-value <0.01 for both centrality mea-
sures and over-represented in this cluster using Fisher’s tests) and used
as input for the functional gene set enrichment analysis presented as
Supplementary Data 9). We provide the full results of the centrality
significance analysis for each cluster in github: [https://github.com/bsc-
life/penguin_software/tree/main/Protein_Significance_analysis].

Functional gene set enrichment analysis
Functional enrichment analysis was performed using the g:GOST
module from g:Profiler, a web tool to perform simultaneous gene set
enrichment analysis acrossmultiple biomedical databases24. We query
the web service using the R implementation available from gprofiler2
package. g:GOST performs cumulative hypergeometric tests of an
input geneset against preprocessed database-specific gene sets.

The code for this analysis is available as a Jupyter Notebook that
can be accessed in github [https://github.com/bsc-life/penguin_
software/tree/main/gProfiler_GSEA/Supplementary_Tables_5_7_9_and_
Significantly_Central_Protein_Enrichment_Analysis.ipynb].

We set alternative backgrounds for the gene set enrichment
analysis, depending on the analysis. For the analysis presented as
Supplementary Data 5, where we run the web service to test func-
tional enrichment of the genes associated to the promoter networks
from cluster 8, the background is set to the 4314 genes associated
with the clustered EPINs. For the analysis presented as Supplemen-
tary Data 7, where we test for general functional enrichment of all

different proteins forming the EPINs, we run the web service con-
sidering only annotated genes for the statistical domain scope.
Finally, for the analysis presented as Supplementary Data 9, wherewe
test the functional enrichment of the significantly central (p-value <
0.01 for both degree and betweenness centrality) proteins of net-
works from GWAS+ cluster, the background is formed by the very
limited set of 751 unique intermediate proteins forming the EPINs.
We additionally provide, within the very same Jupyter Notebook,
comparative dot plots presenting the functional enrichment analysis
of significantly central proteins of each cluster under Supplementary
Data 9 setting.

Reported adjusted p-values correspond to Benjamini-Hochberg
correction for multiple testing, with adjusted p-values ≤0.05 con-
sidered to be significant. Gene set enrichment analysis results are
provided for KEGG pathways, Reactome, Gene Ontology, Wikipath-
ways, TRANSFAC, miRTarBase, Human Protein Atlas, CORUM and
Human Phenotype Ontology. For the enrichment analysis of sig-
nificantly specific proteins of the GWAS+ cluster, we provided as input
the 22 previously described proteins. For the enrichment analysis of
the GWAS+ cluster, we provided as input all genes associated with the
EPIN promoters in cluster GWAS+.

Differential gene expression
We integrated data from EPIN promoters with differential gene
expression (DE) from two sources. DE analysis on prostate cancer
tumor versus normal was downloaded from GEPIA: http://gepia2.
cancer-pku.cn/#degenes, which use the TCGA and GTEx projects
databases to compare gene expression between tumor and normal
tissues under Limma, both under and over expressed. We used the
default thresholds of log2FC of 1 and qvalue cut-off of 0.01. These data
covered 84 out of 885 genes encoding for intermediates in PENGUIN
and 413 out of 4314 promoter EPINs. DE analysis of RNA-Seq on LHSAR
(an immortalized prostate epithelial line overexpressing androgen
receptor) versus LNCaP was performed as previously described.
Briefly, RNA-seq data were processed using the VIPER pipeline66. Reads
were aligned to the hg19 human genome built with STAR. FPKM values
were calculated with Cufflinks for 20,114 RefSEQ genes included in the
VIPER repository. Differential expression analysis was performed with
the DESeq2 R package67. 15,650 genes with DE data covered 884 of the
885 genes encoding for intermediates in PENGUIN and 3286 genes out
of 4314 promoter EPINs.

We annotated whether the EPIN promoters themselves and the
genes encoding the intermediate proteins in our data were DE using
either of the two databases. We considered as DE those genes pas-
sing |log2 fold change|>1 and adjusted p-value ≤ 0.01. For the
LNCAP/LHSAR dataset, we could compute a Fisher test of enrich-
ment of differentially expressed genes encoding for intermediate
proteins within each EPIN promoter versus within the SNP paths (we
could not compute this for the GEPIA since we did not have the full
dataset of covered genes). The genes that were not passing these
filters were considered non-DE and the genes not covered by the
two datasets were excluded from the enrichment analysis described
next. For each EPIN we calculated the fraction of DE intermediates
within the SNP paths and we estimated the enrichment of those
compared to the fraction of DE intermediates in the full EPIN
network.

To find the enrichment of DE genes in SNP paths (PrCa SNPs in
intermediate proteins) compared to those in the entire EPIN, we
computed as enrichment the ratio of Fraction1 / Fraction2, where:

Fraction1 = (number of DE intermediates within SNP paths)/
(number of covered intermediates within SNP paths), and

Fraction2 = (number of DE intermediates the EPIN)/(number of
covered intermediates in the EPIN).

We report the EPIN genes passing enrichment
(“enrichment_DE_deseq_SNP.bs.DBP.path”) > 1.
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pQTL look-up
We downloaded summary statistics with genome-wide association
between SNPs and 4907 proteins reported in the deCODE study68 and
annotated with pQTL association the SNPs we identified falling either
in enhancer binding sites or in node genomic locations. The deCODE
pQTL summary statistics data contained information on 4907 proteins
and 186 (201 PrCa SNPs out of the 213 PrCa SNPs we looked up were in
the data and 186 also matched by alleles). 808 out of the 4314 genes
promoters (“EPIN_promoters”) and 278 out of the 885 gene inter-
mediates (in total 997 out of 4918 genes promoters and coding for
intermediates in our networks) have information on associations with
their respective coded proteins covered by the pQTL deCODE data.

Gene dependency and gene effect metrics
Gene Effect and Gene Dependency metrics were downloaded from the
DepMapportal (https://depmap.org/portal/).We used both the RNAi69

and CRISPR70 datasets.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
RefSeq hg19 from UCSC Genome Browser is available at the following
URL: http://genome.ucsc.edu/cgi-bin/hgTables?hgsid=694977049_
xUU5i1QkIJ50dj5miBt9wkAYuxN3&clade=mammal&org=&db=hg19&
hgta_group=genes&hgta_track=knownGene&hgta_table=knownGene&
hgta_regionType=genome&position=&hgta_outputType=selected
Fields&hgta_outFileName=knownGene.gtf. All EPINs and related sta-
tistics canbe downloaded through the PENGUINweb service at https://
penguin.life.bsc.es/. All the raw listed in Table 3, as well as the corre-
sponding processed and metadata for LHSAR and LNCaP related to
H3K27ac (HiChIP) and RNAseq have been deposited in GEO
(GSE235245). The data can also be downloaded from our github
repository (https://github.com/bsc-life/penguin_software/tree/main/
data). CTCF ChIP-Seq data used in this work comes from ENCODE21

with references GSM2827202, GSM2827203 for LNCaP and
GSM2825573, GSM2825574 for the human epithelial cells or prostate
that we use to infer CTCF-bindings in LHSAR GSM2825573,
GSM2825574. All the datasets used in this manuscript are: HiChIP
H3K27ac (5 replicates for LNCaP and 3 replicates for LHSAR), RNA-seq
(2 replicates for LNCaP and 2 replicates for LHSAR), ChIP-seq H3K27ac
(1 replicate for LNCaP and 2 replicates for LHSAR), ChIP-seq CTCF (2
replicates for LNCaP and 2 replicates for LHSAR). CRISPR/Cas9
knockout and RNAi screens conducted in prostate cancer LNCaP cells
were downloaded from the DepMap database (https://depmap.org/,
DepMap ID: ACH-000977). Source data are provided with this paper.

Code availability
Source code of the related to the PENGUIN protocol is available at
github: https://doi.org/10.5281/zenodo.10036678. Source code of the
related to the PENGUIN web service is available at github: https://doi.
org/10.5281/zenodo.10036730. R (v.4.2.0) and Python were exten-
sively used to analyze data and create plots. biomart / ensembl from
biomaRt package Ensembl hg19 data for overlaps of SNPs with
intermediates.

References
1. Zhang, K., Li, N., Ainsworth, R. I. & Wang, W. Systematic identifica-

tion of protein combinations mediating chromatin looping. Nat.
Commun. 7, 12249 (2016).

2. Wang, R. et al. Hierarchical cooperation of transcription factors
from integration analysis of DNA sequences, ChIP-Seq and ChIA-
PET data. BMC Genomics 20, 296 (2019).

3. Liu, N. et al. Seeing the forest through the trees: prioritising
potentially functional interactions fromHi-C.EpigeneticsChromatin
14, 41 (2021).

4. Deng, W. & Blobel, G. A. Manipulating nuclear architecture. Curr.
Opin. Genet. Dev. 25, 1–7 (2014).

5. Dekker, J. & Misteli, T. Long-Range Chromatin Interactions. Cold
Spring Harb. Perspect. Biol. 7, a019356 (2015).

6. Norton, H. K. & Phillips-Cremins, J. E. Crossed wires: 3D genome
misfolding in human disease. J. Cell Biol. 216, 3441–3452 (2017).

7. Krumm, A. & Duan, Z. Understanding the 3D genome: emerging
impacts on human disease. Semin. Cell Dev. Biol. 90, 62–77 (2019).

8. Sur, I. & Taipale, J. The role of enhancers in cancer.Nat. Rev. Cancer
16, 483–493 (2016).

9. Chen, X., Ma, Q., Shang, Z. & Niu, Y. Super-enhancer in prostate
cancer: transcriptional disorders and therapeutic targets. NPJ Pre-
cis Oncol. 4, 31 (2020).

10. Mumbach, M. R. et al. HiChIP: efficient and sensitive analysis of
protein-directed genome architecture. Nat. Methods 13, 919–922
(2016).

11. Giambartolomei, C. et al. H3K27ac HiChIP in prostate cell lines
identifies risk genes for prostate cancer susceptibility. Am. J. Hum.
Genet. 108, 2284–2300 (2021).

12. Rebello, R. J. et al. Prostate cancer.Nat. Rev. Dis. Primers 7, 9 (2021).
13. Tan, M. H. E., Li, J., Xu, H. E., Melcher, K. & Yong, E.-L. Androgen

receptor: structure, role in prostate cancer and drug discovery.
Acta Pharmacol. Sin. 36, 3–23 (2015).

14. Cancer Genome Atlas Research Network. The molecular taxonomy
of primary prostate cancer. Cell 163, 1011–1025 (2015).

15. de Bono, J. et al. Olaparib for metastatic castration-resistant pros-
tate cancer. N. Engl. J. Med. 382, 2091–2102 (2020).

16. Adams, E. J. et al. FOXA1 mutations alter pioneering activity, dif-
ferentiation and prostate cancer phenotypes. Nature 571,
408–412 (2019).

17. Parolia, A. et al. Distinct structural classes of activating FOXA1
alterations in advancedprostate cancer.Nature571, 413–418 (2019).

18. Ahmadiyeh, N. et al. 8q24 prostate, breast, and colon cancer risk
loci show tissue-specific long-range interaction withMYC. Proc.
Natl. Acad. Sci. USA. 107, 9742–9746 (2010).

19. Zuin, J. et al. Cohesin and CTCF differentially affect chromatin
architecture and gene expression in human cells. Proc. Natl. Acad.
Sci. USA. 111, 996–1001 (2014).

20. Pugacheva, E. M. et al. CTCF mediates chromatin looping via
N-terminal domain-dependent cohesin retention. Proc. Natl. Acad.
Sci. USA. 117, 2020–2031 (2020).

21. ENCODE Project Consortium. An integrated encyclopedia of DNA
elements in the human genome. Nature 489, 57–74 (2012).

22. Schumacher, F. R. et al. Author Correction: association analyses of
more than 140,000 men identify 63 new prostate cancer suscept-
ibility loci. Nat. Genet. 51, 363 (2019).

23. Võsa, U. et al. Large-scale cis- and trans-eQTL analyses identify
thousands of genetic loci and polygenic scores that regulate blood
gene expression. Nat. Genet. 53, 1300–1310 (2021).

24. Raudvere, U. et al. g:Profiler: aweb server for functional enrichment
analysis and conversions of gene lists (2019 update). Nucleic Acids
Res. 47, W191–W198 (2019).

25. Mondul, A. M. et al. Circulating thyroxine, thyroid-stimulating hor-
mone, and hypothyroid status and the risk of prostate cancer. PLoS
One 7, e47730 (2012).

26. Hsieh, M.-L. & Juang, H.-H. Cell growth effects of triiodothyronine
and expression of thyroid hormone receptor in prostate carcinoma
cells. J. Androl. 26, 422–428 (2005).

27. Lehrer, S., Diamond, E. J., Stone, N. N. & Stock, R. G. Serum thyroid-
stimulating hormone is elevated in men with Gleason 8 prostate
cancer. BJU Int 96, 328–329 (2005).

Article https://doi.org/10.1038/s41467-023-43767-1

Nature Communications |         (2023) 14:8084 15

https://depmap.org/portal/
http://genome.ucsc.edu/cgi-bin/hgTables?hgsid=694977049_xUU5i1QkIJ50dj5miBt9wkAYuxN3&clade=mammal&org=&db=hg19&hgta_group=genes&hgta_track=knownGene&hgta_table=knownGene&hgta_regionType=genome&position=&hgta_outputType=selectedFields&hgta_outFileName=knownGene.gtf
http://genome.ucsc.edu/cgi-bin/hgTables?hgsid=694977049_xUU5i1QkIJ50dj5miBt9wkAYuxN3&clade=mammal&org=&db=hg19&hgta_group=genes&hgta_track=knownGene&hgta_table=knownGene&hgta_regionType=genome&position=&hgta_outputType=selectedFields&hgta_outFileName=knownGene.gtf
http://genome.ucsc.edu/cgi-bin/hgTables?hgsid=694977049_xUU5i1QkIJ50dj5miBt9wkAYuxN3&clade=mammal&org=&db=hg19&hgta_group=genes&hgta_track=knownGene&hgta_table=knownGene&hgta_regionType=genome&position=&hgta_outputType=selectedFields&hgta_outFileName=knownGene.gtf
http://genome.ucsc.edu/cgi-bin/hgTables?hgsid=694977049_xUU5i1QkIJ50dj5miBt9wkAYuxN3&clade=mammal&org=&db=hg19&hgta_group=genes&hgta_track=knownGene&hgta_table=knownGene&hgta_regionType=genome&position=&hgta_outputType=selectedFields&hgta_outFileName=knownGene.gtf
http://genome.ucsc.edu/cgi-bin/hgTables?hgsid=694977049_xUU5i1QkIJ50dj5miBt9wkAYuxN3&clade=mammal&org=&db=hg19&hgta_group=genes&hgta_track=knownGene&hgta_table=knownGene&hgta_regionType=genome&position=&hgta_outputType=selectedFields&hgta_outFileName=knownGene.gtf
https://penguin.life.bsc.es/
https://penguin.life.bsc.es/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE235245
https://github.com/bsc-life/penguin_software/tree/main/data
https://github.com/bsc-life/penguin_software/tree/main/data
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2827202
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2827203
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2825573
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2825574
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2825573
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSM2825574
https://depmap.org/
https://doi.org/10.5281/zenodo.10036678
https://doi.org/10.5281/zenodo.10036730
https://doi.org/10.5281/zenodo.10036730


28. Hellevik, A. I. et al. Thyroid function and cancer risk: a prospective
population study. Cancer Epidemiol. Biomarkers Prev 18, 570–574
(2009).

29. Ma, F. et al. Autocrine canonicalWnt signaling primes noncanonical
signaling through ROR1 in metastatic castration-resistant prostate
cancer. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-21-
1807 (2022).

30. Wei, X. et al. Paracrine Wnt signaling is necessary for prostate epi-
thelial proliferation. Prostate 82, 517–530 (2022).

31. Natani, S. et al. Activation of TGF-β - SMAD2 signaling by IL-6 drives
neuroendocrine differentiation of prostate cancer through
p38MAPK. Cell. Signal. 91, 110240 (2022).

32. Xi, X. et al. High expression of small nucleolar RNA host gene 3
predicts poor prognosis and promotes bone metastasis in prostate
cancer by activating transforming growth factor-beta signaling.
Bioengineered 13, 1895–1907 (2022).

33. Speedy, H. E. et al. Insight into genetic predisposition to chronic
lymphocytic leukemia from integrative epigenomics. Nat. Com-
mun. 10, 3615 (2019).

34. Zhou, S. et al. Noncoding mutations target cis-regulatory elements
of the FOXA1 plexus in prostate cancer. Nat. Commun. 11,
441 (2020).

35. Fulco, C. P. et al. Activity-by-contact model of enhancer-promoter
regulation from thousands of CRISPR perturbations.Nat. Genet. 51,
1664–1669 (2019).

36. Gazal, S. et al. Combining SNP-to-gene linking strategies to identify
disease genes and assess disease omnigenicity. Nat. Genet. 54,
827–836 (2022).

37. Mejía-Hernández, J. O. et al. TargetingMDM4 as a novel therapeutic
approach inprostate cancer independent of p53 status.Cancers 14,
3947 (2022).

38. Liu, L., Liu, J. & Lin, Q. Histone demethylase KDM2A: biological
functions and clinical values (Review). Exp. Ther. Med. 22,
723 (2021).

39. Mandl, M. & Depping, R. ARNT is a potential direct HIF-1 target gene
in human Hep3B hepatocellular carcinoma cells.Cancer Cell Int 17,
77 (2017).

40. Sur, I., Tuupanen, S., Whitington, T., Aaltonen, L. A. & Taipale, J.
Lessons from functional analysis of genome-wide association stu-
dies. Cancer Res. 73, 4180–4184 (2013).

41. Jia, L. et al. Functional enhancers at the gene-poor 8q24 cancer-
linked locus. PLoS Genet 5, e1000597 (2009).

42. Conti, D. V. et al. Trans-ancestry genome-wide association meta-
analysis of prostate cancer identifies new susceptibility loci and
informs genetic risk prediction. Nat. Genet. 53, 65–75 (2021).

43. Cheng, I. et al. 8q24 and prostate cancer: association with
advanced disease and meta-analysis. Eur. J. Hum. Genet. 16,
496–505 (2008).

44. Capik,O. et al. CASC11 promotes aggressiveness of prostate cancer
cells through miR-145/IGF1R axis. Prostate Cancer Prostatic Dis 24,
891–902 (2021).

45. Rodriguez-Bravo, V. et al. The role of GATA2 in lethal prostate
cancer aggressiveness. Nat. Rev. Urol. 14, 38–48 (2017).

46. Galan, S., Serra, F. & Marti-Renom, M. A. Identification of chromatin
loops from Hi-C interaction matrices by CTCF-CTCF topology
classification. NAR Genom Bioinform. 4, lqac021 (2022).

47. Dey, K. K. et al. SNP-to-gene linking strategies reveal contributions
of enhancer-related and candidate master-regulator genes to
autoimmune disease. Cell Genom 2, 100145 (2022).

48. Ratnakumar, A., Weinhold, N., Mar, J. C. & Riaz, N. Protein-Protein
interactions uncover candidate ‘core genes’ within omnigenic dis-
ease networks. PLoS Genet 16, e1008903 (2020).

49. Javierre, B. M. et al. Lineage-specific genome architecture links
enhancers and non-coding disease variants to target gene pro-
moters. Cell 167, 1369–1384.e19 (2016).

50. López deMaturana, E. et al. Amultilayered post-GWAS assessment
on genetic susceptibility to pancreatic cancer. Genome Med. 13,
15 (2021).

51. Servant, N. et al. HiC-Pro: an optimized andflexible pipeline forHi-C
data processing. Genome Biol 16, 259 (2015).

52. Bhattacharyya, S., Chandra, V., Vijayanand, P. & Ay, F. Identification
of significant chromatin contacts from HiChIP data by FitHiChIP.
Nat. Commun. 10, 4221 (2019).

53. Vitezic, M. et al. CAGE-defined promoter regions of the genes
implicated in Rett Syndrome. BMC Genomics 15, 1177 (2014).

54. Imakaev, M. et al. Iterative correction of Hi-C data reveals hallmarks
of chromosome organization. Nat. Methods 9, 999–1003 (2012).

55. Rao, S. S. P. et al. A 3D map of the human genome at kilobase
resolution reveals principles of chromatin looping. Cell 159,
1665–1680 (2014).

56. Virtanen, P. et al. Author Correction: SciPy 1.0: fundamental algo-
rithms for scientific computing in Python. Nat. Methods 17,
352 (2020).

57. Serra, F. et al. Automatic analysis and 3D-modelling of Hi-C data
using TADbit reveals structural features of the fly chromatin colors.
PLoS Comput. Biol. 13, e1005665 (2017).

58. Kotlyar, M., Pastrello, C., Sheahan, N. & Jurisica, I. Integrated inter-
actions database: tissue-specific view of the human and model
organism interactomes. Nucleic Acids Res. 44, D536–D541 (2016).

59. Kimes, P. K., Liu, Y., Neil Hayes, D. & Marron, J. S. Statistical sig-
nificance for hierarchical clustering. Biometrics 73, 811–821 (2017).

60. Wishart, D. S. et al. DrugBank 5.0: a major update to the DrugBank
database for 2018. Nucleic Acids Res. 46, D1074–D1082 (2018).

61. Zhou, Y. et al. Therapeutic target database update 2022: facilitating
drug discovery with enriched comparative data of targeted agents.
Nucleic Acids Res. 50, D1398–D1407 (2022).

62. Kichaev, G. et al. Integrating functional data to prioritize causal
variants in statistical fine-mapping studies. PLoS Genet 10,
e1004722 (2014).

63. Schumacher, F. R. et al. Association analyses ofmore than 140,000
men identify 63 new prostate cancer susceptibility loci.Nat. Genet.
50, 928–936 (2018).

64. Buniello, A. et al. The NHGRI-EBI GWAS Catalog of published
genome-wide association studies, targeted arrays and summary
statistics 2019. Nucleic Acids Res. 47, D1005–D1012 (2019).

65. Piñero, J. et al. The DisGeNET knowledge platform for disease
genomics: 2019 update.Nucleic Acids Res. 48, D845–D855 (2020).

66. Cornwell, M. et al. VIPER: Visualization Pipeline for RNA-seq, a
Snakemake workflow for efficient and complete RNA-seq analysis.
BMC Bioinformatics 19, 135 (2018).

67. Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold
change and dispersion for RNA-seq data with DESeq2.Genome Biol
15, 550 (2014).

68. Ferkingstad, E. et al. Large-scale integration of the plasma pro-
teome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).

69. Tsherniak, A. et al. Defining a cancer dependency map. Cell 170,
564–576.e16 (2017).

70. Meyers, R.M. et al. Computational correctionof copynumber effect
improves specificity of CRISPR-Cas9 essentiality screens in cancer
cells. Nat. Genet. 49, 1779–1784 (2017).

71. Baca, S. C. et al. Reprogramming of the FOXA1 cistrome in
treatment-emergent neuroendocrine prostate cancer. Nat. Com-
mun. 12, 1979 (2021).

72. Huerta-Cepas, J., Serra, F. & Bork, P. ETE 3: reconstruction, analysis,
and visualization of phylogenomic data. Mol. Biol. Evol. 33,
1635–1638 (2016).

Acknowledgements
The authors are grateful to José María Fernández González (Barcelona
SupercomputingCenter) for the crucial guidancewith thePENGUINweb

Article https://doi.org/10.1038/s41467-023-43767-1

Nature Communications |         (2023) 14:8084 16

https://doi.org/10.1158/0008-5472.CAN-21-1807
https://doi.org/10.1158/0008-5472.CAN-21-1807


server. They also thank the Biola Javierre’s lab at the Josep Carreras
Leukaemia Research Institute for the support, the ‘RNA initiative’ at IIT and
all the members of Tartaglia’s lab at CRG, Sapienza and IIT. The research
leading to these results has been supported by the European Research
Council [RIBOMYLOME_309545 and ASTRA_855923], the H2020 pro-
jects [IASIS_727658 and INFORE_825080], and the projectONCOLOGICS
(ERA Net Grant 779282, ERAPERMED2020- 036; and Departament de
Salut-Generalitat de Catalunya support, SLD040/20/000001). CG has
received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agree-
ment No 754490 – MINDED project. I.N.C. was supported by a grant for
pre-doctoral contracts for the training of doctors (Project ID: SEV-2015-
628 0493-18-2) (Grant ID: PRE2018-083662) from the SpanishMinistry for
Science, Innovation and Universities. M.L.F. is supported by the National
Institute of Health (R01CA262577, R01CA251555), theClaudia AdamsBarr
Program for Innovative Cancer Research, the Dana-Farber Cancer Insti-
tute Presidential Initiatives Fund, the H.L. Snyder Medical Research
Foundation, the Cutler Family Fund for Prevention and Early Detection,
the Donahue Family Fund, W81XWH-21-1-0339 and W81XWH-22-1-0951
(DoD) and the Movember PCF Challenge Award. S.C.B. is supported by
W81XWH-21-1-0358 (DoD), the Damon Runyon Cancer Research Foun-
dation, and a gift from Debbie and Bob First.

Author contributions
M.L.F. and J.H.S. designed the experiments and J.H.S. performed the
experiments. A.A. and C.G. processed the data. A.A., C.G., D.C., F.S. and
I.N.C. analyzed the data. A.A., F.S., C.G., D.C. and G.G.T. designed the
research. C.G., D.C. and G.G.T. supervised the project and wrote the
paper. S.C.B. contributed to the analyses of gene expression. A.V. and
S.G. supervised the research. All authors provided feedback on the
manuscript. D.C., C.G. andG.G.T. contributed equally to this work as co-
last and co-correspondence authors. A.A. and F.S. contributed equally
to the work as co-first authors.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains
supplementary material available at
https://doi.org/10.1038/s41467-023-43767-1.

Correspondence and requests for materials should be addressed to
Davide Cirillo, Claudia Giambartolomei or Gian Gaetano Tartaglia.

Peer review information Nature Communications thanks Sourya Bhat-
tacharyya, James Breen, Zhiqun Shang and the other, anonymous,
reviewer(s) for their contribution to the peer review of this work. A peer
review file is available.

Reprints and permissions information is available at
http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jur-
isdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons license, and indicate if
changes were made. The images or other third party material in this
article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons license and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2023

Article https://doi.org/10.1038/s41467-023-43767-1

Nature Communications |         (2023) 14:8084 17

https://doi.org/10.1038/s41467-023-43767-1
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	The PENGUIN approach to reconstruct protein interactions at enhancer-promoter regions and its application to prostate�cancer
	Results
	The PENGUIN framework
	EPIN composition and properties
	Characterization of PrCa clusters identified by PENGUIN
	Assessment of PENGUIN specificity
	Involvement of E-P protein interactomes in tumor-related functional processes
	SNPs path analysis in the E-P protein interactomes
	Network paths with PrCa SNPs in enhancer binding�motifs
	Network paths with PrCa SNPs in the genes coding for EPIN�nodes
	Examples: SNPs path analysis of MYC, CASC11 and GATA2 promoters

	Discussion
	Methods
	Experimental methods
	HICHIP
	ChIP
	RNA�seq
	Conformation capture and E-P interactions
	E-P HiChIP prioritization
	DNA binding�motifs
	Gene expression�data
	Protein-protein interaction network
	The PENGUIN pipeline
	Node centrality measures
	Clustering�EPINs
	Identifying enriched functional annotations in EPIN clusters
	Druggability information
	CTCF ChiP-Seq�peaks
	PrCa�SNPs
	Annotations of PENGUIN prioritized signals using ABC and cS2G�scores
	SNP paths (PrCa SNPs in enhancer binding motifs)
	SNP paths (PrCa SNPs in intermediate proteins)
	PrCa enrichment using GWAS Catalog and comparison with other diseases
	Trans-eQTL hotspots
	Super-enhancer-like regions
	Oncogenes Gene�list
	Enriched edges within each cluster
	Significantly central intermediate nodes within each cluster
	Functional gene set enrichment analysis
	Differential gene expression
	pQTL look-up
	Gene dependency and gene effect metrics
	Reporting summary

	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




