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Introduction
Non-Hodgkin’s lymphoma (NHL) is a common 
type of hematological malignant tumor, composed 
of multiple subtypes that originate from B lym-
phocytes, T lymphocytes, and natural killer (NK) 
cells. These entities are sub-divided into distinct 
categories based on the differentiation stage of the 
malignant cells and on the presence of specific 
genetic alterations, being diffuse large B-cell lym-
phoma (DLBCL), follicular lymphoma (FL), 
T-cell lymphoma (TCL), and NK-T-cell lym-
phoma (NKTCL) the most common subtypes.

Characteristics of B-NHL
At the origin of roughly 90% of the cases of lym-
phoma, B-NHLs comprise a heterogeneous 

group of lymphoid neoplasms originated from 
either mature or immature B cells, the diagnosis 
of which is based on morphological, immunophe-
notypic, and genetic features, and most of them 
being dictated by the cell of origin1 (see Figure 1). 
B-NHL subtypes range in their severity from 
well-controlled, indolent diseases, to extremely 
aggressive forms with urgent unmet medical 
needs that still require the development of novel 
therapeutic options.

The most common B-NHL subtype is DLBCL, 
which accounts for 25–35% of all cases. This 
aggressive disease is characterized by a hetero-
geneous molecular pathogenesis that can lead  
to different clinical characteristics.2 Despite  
high-throughput sequencing having recently 
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identified up to seven genetic subtypes,3–5 gene 
expression profiling (GEP)-mediated identification 
of germinal center B-cell (GCB), activated B-cell 
(ABC), and unclassifiable subgroup6 remains 
widely used in the clinical management of these 
patients. Patients with ABC-DLBCL or genetic 
alterations in MYC and BCL2 and/or BCL6, 
called double hit (DHLs) or triple hit lymphomas 
(THLs), have generally a poor survival 
prognosis.

The second most common B-NHL is FL, another 
germinal center (GC)-derived malignancy that 
accounts for 20% of all cases. FL is characterized 
by the t(14;18)(q32;q21) translocation that leads 
to the overexpression of the BCL2 anti-apoptotic 
gene.7 FL represents a paradigm of dependence 
on the microenvironment. Seminal microarray 
studies in lymph node (LN) biopsies from the 
Leukemia and Lymphoma Profiling Project 
(LLMPP) series established for the first time that 

FL prognosis was not given by the tumor cell per 
se but by the composition of non-malignant cells.8 
Although the clinical course is mostly indolent, 
about 20% of patients may relapse or progress to 
a transformed (more aggressive) form of FL 
(t-FL).

Burkitt lymphoma (BL) is a third GC-derived 
lymphoma, which represents 1–5% of all NHL, 
and which is characterized by the deregulation of 
MYC due to translocations such as t(8;14)
(q23;q32). Three subtypes have been described, 
namely endemic, sporadic, and immunodefi-
ciency-associated form, which is mostly found in 
patients infected with the human immunodefi-
ciency virus (HIV).9

Originated from mature B-cells of the mantle 
zone of the LN, mantle cell lymphoma (MCL) 
accounts for 3–10% of B-NHL, being the t(11;14)
(q13;q32) translocation and the expression of the 

Figure 1.  B- and T-cell lymphomagenesis.
(a) Emergence of the main subtypes of B-cell non-Hodgkin’s lymphoma (B-NHL). Naive B cells first participate in the 
formation of germinal centers (GCs) upon interacting with antigens. In the dark zone, centroblasts prolife and undergo 
somatic hypermutation (SMH), while in the light zone, centrocytes are sorted on B-cell receptor (BCR)-based affinity and 
undergo class switch recombination (CSR). GC cells are the normal counterparts of follicular lymphoma (FL), Burkitt’s 
lymphoma (BL), and diffuse large B-cell lymphoma (DLBCL) of GC subtype (GCB). DLBCL of the activated B-cell subtype 
(ABC) originates from post-GC cells, and multiple myeloma (MM) arises from differentiated plasma cells. Chronic 
lymphocytic leukemia (CLL) can originate from either naïve or differentiated memory B cells. Mantle cell (MCL) and marginal 
zone lymphoma (MZL) arise from B cells located in the mantle and marginal zone of lymphoid follicles, respectively. (b) 
Intrinsic or extrinsic factors may favor TCLs pathogenesis through immune evasion, alterations in T cell receptor (TCR) 
signaling pathways, activation of transcription factors and proto-oncogenes, that favor the emergence of different entities 
during T cell differentiation from the thymus to lymph nodes.
AITL, angioimmunoblastic T-cell Lymphoma; ALCL-ALK+, anaplastic large cell lymphoma, ALK-positive; EATL, 
enteropathy-associated T-cell lymphoma; ENKL, extranodal natural killer/T-cell lymphoma; FTCL, follicular T-cell 
lymphoma; HTCL, hepatosplenic γδ T-cell lymphoma; MEITL, monomorphic epitheliotropic intestinal T cell lymphoma; PTCL, 
peripheral T-cell lymphoma.
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cell cycle regulator cyclin D1 (CCND1), physio-
logically undetectable in normal B cells, the main 
characteristics of the disease. Supporting the 
notion that t(11;14) translocation is an epigenetic 
event, the Eμ and 3′ Cα cis IgH enhancer ele-
ments and the regions upstream of the CCND1 
gene are hypomethylated on the translocated 
allele, and histones surrounding the translocation 
have shown hyperacetylation.10 MCL is also char-
acterized by a high genomic instability with a high 
number of secondary genetic alterations involving 
cell cycle regulation, DNA damage response, cell 
death, nuclear factor kappa B (NF-κB), or epige-
netic modifiers, with a median number of six sec-
ondary events. ATM, CCND1, TP53, and RB1 
are among the most recurrently mutated genes.11 
MCL has poor prognosis due to diagnosis often 
at a disseminated stage and an aggressive clinical 
evolution.

Physiopathology of T-cell lymphoma
Contrasting with B-cell lymphoma, T-cell lym-
phomas (TCLs) are characterized by numerous 
T-cell subsets, functional plasticity of which 
depends on the microenvironment. As a result, 
appearance of features that do not fit with the 
cell originating the tumor is common,12–14 
thereby preventing tumor classification and a 
proper diagnosis of the disease and affecting 
the clinical management of the patients. 
Introduction of global GEP technologies are 
slowly improving our knowledge in the patho-
logical origin of TCLs, but there is still room for 
improvement.

Mechanisms implicated in TCL development can 
be intrinsic and imply recurrent mutations lead-
ing to: (1) immune evasion, being the most clear 
example of the nucleophosmin-anaplastic lym-
phoma kinase (NPM-ALK) oncogene, expressed 
in ALK+ anaplastic large cell lymphoma (ALCL), 
which regulates the expression of the immuno-
suppressive protein programmed death-ligand 1 
(PD-L1);15 (2) alterations within T cell receptor 
(TCR) signaling pathway, such as mutations 
affecting the RhoA GTPase16 or gain-of-function 
mutations in regulators of T-cell activation and 
function such as phospholipase C gamma 1 
(PLCG1), phosphatidylinositol-3 kinase (PI3K) 
family, catenin beta-1 (CTNNB1), CD28, cas-
pase recruitment domain family member 11 

(CARD11), vav guanine nucleotide exchange fac-
tor 1 (VAV1), interferon regulatory factor 4 
(IRF4), mainly observed in peripheral T-cell lym-
phomas (PTCLs), including adult T-cell leuke-
mia/lymphoma (ATLL) and angioimmunoblastic 
T-cell lymphoma (AITL);14,17 (3) the implication 
of whole families of genes or signaling pathways, 
such as the PI3K-AKT-mTOR axis found to be 
constitutive activated during TCL pathogene-
sis,18,19 or the Janus kinase (JAK)-signal trans-
ducer and activator of transcription (STAT) 
pathway, in which mutations in kinases and tran-
scription activators such as STAT3 or STAT5B, 
JAK1, JAK3, or JAK5, may not directly induce 
the lymphoma, but rather confer clinical aggres-
siveness due to increased cytokine-dependent 
signaling and consequent promotion of cell 
growth, immune response, tumor metabolism, 
and cell death blockade;17,18,20,21 (4) alteration in 
transcription factors such as activator protein-1 
(AP-1), musculoaponeurotic fibrosarcoma 
(MAF) and basic leucine zipper ATF-like (BAF) 
transcription factor families, which are commonly 
involved in cutaneous T-cell lymphoma (CTCL) 
and CD30 + PTCL development, by activating 
the expression of the T-cell growth and survival 
genes, MYC and CD30, or driving the production 
of pro-tumoral cytokines;22,23 (5) PI3K-AKT-
mTOR-mediated deregulation or glutamine, 
nucleotides, and lipid metabolism, and conse-
quent enhancement of lymphoma cell 
growth;24,25 (6) altered mitochondrial functions, 
including a STAT3-mediated deregulation of 
mitochondrial respiration,26,27 and as recently 
described, a glyceraldehyde 3-phosphate dehy-
drogenase (GAPDH) overexpression-driven 
development of AITL-like disease;28 and (7) epi-
genetic deregulation, leading to the silencing of 
tumor-suppressor genes or the overexpression of 
several proto-oncogenes (see Figure 1).

Beside these intrinsic mechanisms, a number of 
extrinsic factors also favor TCLs pathogenesis, 
such as pro-inflammatory cytokines and 
chemokines, which build a microenvironment 
that promote and sustain the survival of the tumor 
cells, or oncogenic Epstein–Barr virus (EBV)- 
and T-cell lymphotropic virus type 1 (HTLV-1)-
derived viral factors that promote oncogenesis 
from indolent cutaneous lymphoproliferative dis-
eases to extremely aggressive TCLs such as 
ATLL.29,30
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Epigenetic deregulations in B- and T-cell 
lymphoma
A high level of alteration in chromatin state and a 
frequent deregulation of several epigenetic modu-
lators, are common hallmarks that have been 
highlighted in most B-NHL subtypes in early 
2000s.

Modification of DNA methylation patterns 
(either hypo- or hyper- DNA methylation status) 
have been associated for years to somatic muta-
tions in epigenetic regulators of DNA methyla-
tion and to a generally repressed conformation of 
the chromatin in B-NHL.31,32 Loss-of-function 
(LOF) mutations (truncation or frameshift muta-
tions) affecting the SET domain of the histone-
lysine N-methyltransferase 2D (MLL2/KMT2D) 
gene is the most frequently epigenetic alteration 
in DLBCL and FL, occurring, respectively, in 
about 30% and 90% of the cases, respectively. 
Inactivation of KMT2D leads to the expansion of 
GC-derived B cells, impedes class switch recom-
bination and cooperates with the deregulation of 
BCL2 to increase the incidence of tumors, in 
association with reduced H3K4 methylated 
levels.33–38

While LOF and/or deleterious mutations in the 
CREB binding protein (CREBBP) and E1A 
binding protein 300 (EP300) coding for two his-
tone acetyltransferases (HATs) were detected in 
about 40% of DLBCL and FL cases,35,39 these 
two entities also share the presence of point 
mutations in the myocyte enhancer binding fac-
tor 2B (MEF2B) gene codifying for a HAT 
recruiter (13% of GCB-DLBCL cases and 15% 
of FL patients).39 From one side, mutant 
CREBBP and EP300 proteins are deficient in 
acetylating BCL6 and p53 leading, respectively, 
to constitutive oncogenic properties and to 
decreased tumor suppressor activity, thus favor-
ing an increased tolerance for DNA damage 
mediated by impaired apoptosis triggering and 
cell cycle arrest.40 In parallel, MEF2B muta-
tions decrease the transcriptional activity of this 
factor, thereby lowering B-cell lymphoma 6 
(BCL6) expression levels and leading to 
decreased activity of the TGFB1 tumor suppres-
sor gene, encoding for transforming growth fac-
tor β, together with an increased expression of 
MYC. The global biological impact of these 
modifications consists in a reduced inhibition of 

chemotaxis and in the promotion of B-cell 
lymphomagenesis.41

In a lower extent, activating mutations of the 
enhancer of zeste homolog 2 (EZH2) histone 
methyltransferase (HMT) gene are specifically 
found in GC-derived NHL, such as GCB-
DLBCL (22% of the patients) and FL (7% of 
the patients)42,43 (see Figure 2). Expression of 
the EZH2Y641F mutant was associated with the 
reprogramming of the immunological niche, a 
process by which the supporting activity of T 
cells toward GC-B cell development becomes 
ensured by follicular dendritic cells (FDCs).44 
Finally, despite genes coding for histone dea-
cetylases (HDACs) remained unmutated in 
B-NHL patients, an overexpression of HDAC1, 
HDAC2, and HDAC6 with a consequent global 
decrease in the activity of the transcription 
machinery, has been reported in DLBCL 
cases.45 In particular, HDAC6 exerts a crucial 
role in the response to proteotoxic stress, as it 
orchestrates the acetylation-dependent stability 
of heat shock protein of 90 kD (HSP0) and the 
recruitment of misfolded protein cargo to dynein 
motors for their transport to intracellular 
aggresomes.46

TCLs present a similar mutation spectrum of 
epigenetic genes than B-cell lymphoma, which 
includes missense mutations, concomitantly to 
a general chemo-resistant phenotype.14,47 
Genetic alterations in DNA methylation genes 
affect Tet methylcytosine dioxygenase 2 (TET2), 
DNA methyl transferase 3 A (DNMT3A) and 
isocitrate dehydrogenase 2 (IDH2). These alter-
ations are mainly found in T follicular helper 
(Tfh) cell-derived PTCLs and constitute the 
hallmark of AITL, a disease where the three 
genes are affected simultaneously.48 TET2 and 
DNMT3A deregulations are also found in 
CTCL.47 Similar mutations of TET2 are found  
in the hematopoietic stem and progenitor  
cells (HSPCs) of some AITL patients. 
Notwithstanding, none of these mutations will 
lead to lymphoma appearance, but will rather 
favor a premalignant status characterized by a 
disrupted homeostasis within the hematopoietic 
stem/progenitor compartment, being the malig-
nant transformation achieved upon the acquisi-
tion of further defects in key genes such as 
RHOA, PLCG1, or NOTCH2.49
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Modifications in chromatin remodelers such as 
SET domain containing 2 (SETD2), INO80, 
involved in DNA repair and cell cycle regula-
tion, and AT-Rich Interaction Domain 1B 
(ARID1B), have been found in up to 62% of 
hepatosplenic γδ T-cell lymphoma (HTCL) 
patients.50 SETD2, which acts as a tumor sup-
pressor gene, was the most silenced gene in 
HTCL and is mutated in monomorphic epithe-
liotropic intestinal T-cell lymphoma (MEITL). 
Loss of SETD2 has been further associated with 
increased cell growth, altered expression of cell 
cycle genes, and compromised DNA damage 
response and repair.51 ARID2, ARID1B, 
SETD1B mutations are also found in PTCL-
NOS.52 ARID1A, ARID5B, and SMARCC1 
mutations are present in CTCL.53 Finally, 
ARID1A mutations have been detected in 
NKTCL.54 While ARID1A expression is suffi-
cient to suppress cellular proliferation and tumor 
growth in mouse models of cancers, in-frame 
mutations of this gene lead to the nuclear reten-
tion of this tumor suppressor, due to its increased 
degradation and incapacity to stimulate the 

expression of the cell cycle inhibitor gene, 
CDKN1A.55

Defects in histone methylation have been associ-
ated to mutations in KMT2C, KM2D, and 
KDM6A genes in PTCL-NOS.52 NKTC lym-
phoma harbors mutations in KMT2D, EZH2, 
and also in ASXL transcriptional regulator 3 
(ASXL3) genes, a phenomenon linked to altered 
histone deubiquitination.54 Histone acetylation 
genes such as EP300 and CREBBP are mutated 
in PTCL-NOS52 (see Figure 2). Deregulated 
expression and/or activity of these epigenetic writ-
ers, lead to genome-wide DNA and histone mod-
ification pattern alterations, modifying the 
chromatin structure, and thereby leading to can-
cer development.56

Importantly, HDACs have become a promising 
therapeutic targets (see below) in the context of 
some TCLs such as CTCL, through their role 
in the silencing of different BCL-2 proapoptotic 
family members and in the regulation of 
autophagy.57

Figure 2.  Alterations of chromatin states in B- and T-cell lymphoma.
(a) Loss-of-function mutations affecting epigenetic regulators such as the SET domain of the histone-lysine 
N-methyltransferase 2D (MLL2/KMT2D), CREB binding protein (CREBBP), and E1A binding protein 300 (EP300) genes, as 
well as activating mutations of the enhancer of zeste homolog 2 (EZH2) histone methyltransferase (HMT) gene and the 
overexpression of HDAC1/2/6 have been reported in B-cell lymphoma cases. (b) Genetic alterations in DNA methylation 
genes affect Tet methylcytosine dioxygenase 2 (TET2), DNA methyl transferase 3 A (DNMT3A) and isocitrate dehydrogenase 
2 (IDH2), as well as in chromatin remodelers such as SETD2, SETD1B, INO80, ARID1B, ARID2, ARID5B, SMARCC1 and histone 
acetylation genes such as EP300/CREBBP are found in T-cell lymphoma.
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Role of epigenetic drugs in B- and T-cell 
lymphoma

DNA methylation inhibitors
DNA methyltransferases (DNMTs) family 
includes three major members that have func-
tional methylation activities, namely DNMT1, 
which mediates maintenance methylation during 
cell division, and DNMT3A and DNMT3B, that 
regulate de novo DNA methylation.58,59 
Accumulating evidences have shown that 
DNMTs regulation of methylation have an 
important role in normal hematopoiesis.60,61 On 
the contrary, aberrant methylation is a key molec-
ular event on the development of hematological 
malignancies. Indeed, hypermethylation of 
CDKN2A/p16 is associated with aggressive forms 
of B-NHL, and can drive progression of T-cell 
malignancies.62,63 Considering that an altered 
methylation pattern is frequently observed in 
most types of cancers, including B- and T-cell 
lymphoma, the development of epigenetic drugs 
to restore methylation levels seems to be an inter-
esting strategy for the treatment of these 
diseases.64

In the 1970s, the nucleoside analogs 5-azacyti-
dine and 5-aza-20-deoxycytidine (or decitabine) 
appeared in the clinic as a chemotherapeutic 
option against acute leukemia. Mechanistically, 
these cytidine analogs are incorporated into 
DNA, promoting an irreversible blockage of 
DNMT1, which consequently leads to global 
demethylation.65–67 Although azacytidine and 
decitabine were considered as promising 

chemotherapeutic agents, the early clinical trials 
showed a disappointing response and a pro-
nounced toxicity in myelodysplastic syndrome 
(MDS) and acute myeloid leukemia (AML) 
patients.68–70 Subsequently, in vitro data indi-
cated that low doses of azacytidine can induce a 
decrease in DNA methylation level, supporting 
its use as an epigenetic drug.71 Given the 
remarkable improvement of the overall survival 
(OS), and more generally the excellent clinical 
response of MDS patients to this agent, azacyti-
dine became in 2004 the first drug approved by 
Food and Drug Administration (FDA) for this 
indication.72,73 In B-NHL patients, only two 
phase I studies using decitabine as a single 
agent have been completed so far.74,75 However, 
until now, the use of DNMT inhibitors 
(DNMTis) as monotherapy yielded disap-
pointing results in lymphoid malignancies.76 
Currently, azacytidine and decitabine are being 
evaluated mostly in combination with other 
drugs in approximately 95 active clinical trials 
involving B- and T-cell lymphoma patients. In 
this review, we will present clinical data from 
completed or terminated clinical trials (see 
Table 1).

Azacytidine was evaluated, in a phase II clinical 
study (NCT01998035), in combination with the 
HDAC inhibitor (HDACi) romidepsin. This 
combination was safe and demonstrated to be an 
effective regimen for treatment-naïve patients 
and R/R PTCL cases. The reported overall 
response (ORR) and complete response (CR) 
rates were 61% and 48%, respectively, therefore 
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supporting the use of oral azacytidine and 
romidepsin in both first-line and R/R settings, 
including as a bridging therapy.83,84 The mecha-
nism of action underlying this combinatorial 
activity might be related to the enhanced expres-
sion of several cancer-testis antigens involved in 
the promotion of tumor immunogenicity.130 The 
combination of azacytidine with avelumab (anti-
PD-L1 antibody) and utomilumab (4-1BB/
CD137 agonist) was evaluated in R/R DLBCL 
patients. However, due to insufficient clinical 
activity, the study was prematurely discontinued.85

High levels of cytidine deaminase (CDA) were 
reported to decrease the half-life of decitabine and 
azacytidine.131,132 Based on this observation, the 
effect of tetrahydrouridine (THU), a CDA inhibi-
tor, was evaluated in relapsed B- and T-cell malig-
nancies (NCT02846935, see Table 1). The overall 
results indicated a significant reduction in tumor 
burden, together with subjective improvements in 
symptoms in 57% of the patients; however, these 
effects were lost upon treatment interruptions con-
sequent to neutropenia.77 Decitabine was also 
evaluated in treatment-naïve DLBCL patients 
prior to receiving R-CHOP. The results from this 
clinical trial (NCT02951728) indicated that 86% 
of the patients responded to the treatment, with 
74% CR and 11% PR.133

Besides the above-described FDA-approved DNA 
methylation inhibitors, over the last decades several 
new DNMTis have been developed, showing prom-
ising results in pre-clinical models of hematological 
disorders. Among them it is worth to highlight the 
thioguanine [2-amino-1,7-dihydro-6H-purine-
6-thione (6-tG)] that was FDA-approved for the 
treatment of AML patients.134 Thioguanine is cur-
rently included in the NHL-BFM90 protocol.135 
The main findings reported by the large European 
network applying this protocol for the management 
of childhood and adolescent NHL, indicated that 
the 5-year event-free survival (EFS) was in the range 
82–90% (NCT00275106 and NCT00004228, 
respectively, see Table 1), while 5-year OS was in 
the range 87–96%.136

HDAC inhibitors
As commented above, HDACs play a crucial role 
in the control of cell proliferation and growth, 
and angiogenesis. Accordingly, their overregula-
tion promotes the occurrence of cancer, making 
the use of HDACis an efficient anticancer 

approach as these agents can trigger apoptosis, 
cell cycle arrest or even regulate the immune sys-
tem.57,137,138 Among the growing list of clinical tri-
als exploring the possible therapeutic application 
of HDACi (see Table 1), the most successful 
ones are depicted below.

Vorinostat is a hydroxamic acid presenting inhibi-
tory activity against classes I and II HDACs.139 It 
has been used successfully in monotherapy in dif-
ferent subtypes of B-NHL, including FL and 
MCL,106,140 and has been approved in 2006 by 
FDA to treat R/R CTCL.141 This agent has also 
been tested with success in combination with 
multiple drugs such as the anti-CD20 monoclo-
nal antibody rituximab, cladribine, fludarabine 
phosphate, cyclophosphamide, niacinamide, 
prednisone, or etoposide, for the treatment of 
indolent or aggressive B-NHL, including relapsed 
cases, in R/R CLL cases and in previously 
untreated T-NHL.99,107,108,142–145

Mocetinostat, a selective HDAC class I and IV 
inhibitor developed by Methylgene has also been 
approved for R/R CTCL,146 while its therapeutic 
effect in the context of R/R Hodgkin’s lymphoma 
(HL) managed to control the disease evolution in 
half of the treated patients.97

Belinostat is a sulfonamide-hydroxamic acid act-
ing as a pan-HDACi147 developed by TopoTarget. 
While its use has been approved for the treatment 
of R/R PTCL, it also demonstrated remarkable 
activity when assessed in CTCL patients.87,89,148 
Conversely, this agent exhibited poor activity as 
monotherapy in B-cell lymphoma patients. 
Interestingly, when combined to CHOP chemo-
therapeutic regimen as a first-line treatment for 
PTCL patient, it achieved a significant CR rate.149

Chidamide is a selective HDAC class I inhibi-
tor150 currently approved by the China Food and 
Drug Administration (CFDA) as a treatment for 
R/R PTCL, alone or in combination with CHOP 
regimen. A new clinical trial involving refractory 
extranodal NKTCL patients, and the results of 
which will be released in 2023, has already shown 
promising results.151 Its applicability to the man-
agement of AITL is also under evaluation. Several 
clinical trials aiming at evaluating chidamide as a 
therapeutic strategy for B-NHL treatment alone 
or in combination with R-GDP, DICE, R-CHOP 
have been registered and are in recruiting 
processes.
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Ricolinostat, a selective HDAC6 inhibitor,152 
exerted a synergic antitumor effect in combina-
tion with the BTK inhibitor ibrutinib, the alkylat-
ing agent bendamustine, the ALK inhibitor 
crizotinib and the proteasome inhibitor carfil-
zomib, in preclinical models of DLBCL and 
MCL, but possible translation into human sub-
jects is still under evaluation.57 In a clinical study 
including patients with R/R B/T-lymphomas, this 
agent harbored lower toxicity compared with 
other pan-HDACis and achieved the stabilization 
of half of the patients, although in the absence of 
CR or partial response (PR).145

Fimepinostat, which dually targets HDAC and 
PI3K, has been tested in combination with rituxi-
mab in relapsed DLBCL and MYC-altered 
DLBCL patients.98,153 Response to treatment was 
achieved most notably in MYC-altered DLBCL 
(64% versus 37% in non-MYC-altered).

Romidepsin is a depsipeptide from bacterial ori-
gin able to inhibit Class I HDACs.154 While its 
use has been approved for R/R CTCL and 
PTCL,114,155–158 it also showed additive effect 
when combined with other agents employed for 
the treatment of PTCL, FL, or R/R T-cell lym-
phomas, such as the nucleoside analog gemcit-
abine, 5-azacitidine or the aurora kinase inhibitor 
alisertib.159–161

Panobinostat, a hidroxamic acid with therapeutic 
activity as pan-HDAC inhibitory, has been evalu-
ated up to phase III clinical trials in R/R HL 
patients. Unfortunately, it failed to achieve the 
therapeutic effect expected from previous 
phases.162 Similarly, phase II clinical trials involv-
ing R/R DLBCL patients demonstrated a modest 
activity of the drug.163 In T-cell lymphoma and 
HL, some degree of clinical response was observed 
when associating this agent with the mTOR 
inhibitor everolimus.93 Further drug assessment 
in HL, but not in CTCL patients, employing 
panobinostat in combination with ICE, also 
showed initial positive response.164,165 
Panobinostat was also administered to R/R HL 
patients in combination with the immunomodu-
latory drug lenalidomide, showing good toler-
ances but low therapeutic activity.166 Finally, this 
HDACi has been tested in combination with 
bortezomib for the treatment of R/R TCL, pro-
viding a good response rate, but also producing 
serious adverse effects (AEs) in almost half of the 
cases.167

Entinostat is a HDAC I and III inhibitor, thera-
peutic effect of which has been tested in R/R HL. 
Different dosages were tested, achieving an ORR 
of 12%, and a mean tumor size reduction of 
58%.116

Abexinostat, a pan-HDAC inhibitor, has been 
tested in a subset of R/R NHL and CLL patients. 
A phase II trial demonstrated that it can be suc-
cessfully considered for the treatment of FL, 
TCL, and DLBCL,95 with ORRs in the 56–31% 
range (see Table 1).

Valproic acid, an organic weak acid previously 
used as anticonvulsant, also exhibits HDAC inhi-
bition properties. Several clinical trials aimed at 
evaluating its effect in lymphoma patients have 
been carried out, showing that it significantly 
improved the efficacy of the R-CHOP chemo-
immunotherapy as a first-line treatment for 
DLBCL, as shown by a reduced rate of relapsed 
disease and a 96.8% OS at 2 years.94

HMT inhibitors
Currently, the development of HMT inhibitors is 
mainly focused on EZH2 targeting. This gene 
encodes an HMT that forms the catalytic subunit 
of the polycomb repressive complex 2, which 
mediates gene silencing via the addition of methyl 
groups to H3K27. EZH2 overexpression has been 
correlated with poor prognosis in several tumor 
types including hematological malignancies.168–171 
Moreover, it has been shown that the gain-of-
function mutation at Y641 residue of EZH2, 
leads to its enzymatic activity converting mono- 
or di-methylated H3K27 to the tri-methylated 
state, promoting the repression of cell differentia-
tion and the downregulation of tumor suppressor 
genes.172 Interestingly, these gain-of-function 
EZH2 mutations has been frequently associated 
with the presence of BCL2 rearrangement in 
both FL (28%) and GCB-DLBCL groups 
(33%), and it has been shown to be a crucial reg-
ulator of MYC-associated lymphomagenesis in B 
cells.173–175 Thus, EZH2 activity is currently a 
potential therapeutic strategy to treat B-NHL.

In this context, several selective EZH2 inhibitors 
have been developed in the last decade, for the 
treatment of hematological patients. Among these 
molecules, GSK126 demonstrated an improved 
inhibitory capacity toward mutant EZH2 in pre-
clinical studies.176,177 However, its clinical 
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evaluation in R/R patients, including cases with 
DLBCL, transformed tFL, MM, and other 
NHL, (NCT02082977) was stopped prema-
turely due to insufficient therapeutic activity.124 
Another small molecule called CPI-1205, which 
showed promising activity in xenograft mouse 
models and in human B-NHL cell lines,178 is cur-
rently being evaluated in a phase I trial involving 
DLBCL patients (NCT02395601). At this time, 
no data have been released regarding the efficacy 
and the safety of this agent in these heavily pre-
treated patients. Antitumoral effects of EZH2 
inhibitors have been also reported in TCL cell 
lines.179 The use of EZH1/2 inhibitor, valemeto-
stat, has been evaluated in clinical trial including 
B- and T-NHL subtypes (NCT02732275). The 
observed ORR was 53% in a phase I trial involv-
ing 15 patients, being the cases with TCL by far 
the best responders (80% ORR).180

Tazemetostat, a potent and selective EZH2 inhibi-
tor, first demonstrated encouraging preclinical 
activity, in both in vitro and in vivo models (includ-
ing xenografts) of EZH2-mutant NHL.181 An ini-
tial phase I study showed that tazemetostat, as 
single agent, was safe and exerted notable antitu-
mor activity (OR = 38%) in patients with refrac-
tory B-NHL.182 Based on pharmacodynamic and 
toxicity profiling, a phase II study including 
EZH2mut and EZH2wt R/R FL patients was carried 
out. Surprisingly, an ORR of 69% was observed 
among EZH2mut patients, and 35% in EZH2wt 
cohort.123 Based on these data, FDA granted 
accelerated approval of this agent for R/R-FL 
patients with EZH2mut. Similarly, two independ-
ent cohorts of R/R DLBCL and FL patients cor-
roborated that tazemetostat was effective in R/R 
EZH2mut FL patients.118,119 Tazemetostat was 
also evaluated in combination with the anti-PD-
L1 antibody atezolizumab in R/R DLBCL patients 
(NCT02220842). However, this combination did 
not provide additional efficacy.120 Thus, further 
clinical trials are needed to establish new drug 
combinations based on HMT inhibitors to improve 
the OS of the patients.

Although the clinical development of HMT 
inhibitors is centered on the targeting of EZH2 
in B-NHL patients, other indirect strategies 
have shown encouraging results in preclinical 
models of the disease. Among these approaches, 
the carbocyclic adenosine analog 3-deazane-
planocin A (DZNep), is an inhibitor of 

S-adenosylhomocysteine hydrolase (AdoHcyase), 
that triggers intracellular accumulation of 5-aden-
osylhomocystein, followed by the blockade of sev-
eral methyltransferases, including EZH2. Despite 
a strong apoptogenic effect in different preclini-
cal cancer models, DZNep antitumor effect was 
not restricted to EZH2-mutated cases and may 
involve EZH2-independent targets, therefore, 
hinting as potential undesired effects in 
patients.183 Blockade of the transfer of a methyl 
group from S-adenosyl methionine (SAM) to a 
lysine or arginine residue can also be achieved 
upon exposure to 2-chloro-2′-deoxyadenosine 
(2-CdA, cladribine), a drug that inactivates 
S-adenosyl-L-homocysteine hydrolase (SAH), 
thereby impairing the capacity of genomic DNA 
(gDNA) to accept methyl groups. Although clad-
ribine was shown to efficiently reduce the level of 
methylated cytosines in myeloid cells,184 its clini-
cal activity as single agent in lymphoid malignan-
cies, including CLL, MCL, hairy cell leukemia, 
and marginal zone lymphoma (MZL), was ini-
tially associated to its capacity, as a purine analog, 
to selectively target and suppress lymphocyte 
growth.185 However, in MCL, induction therapy 
associating a purine analog to rituximab and 
cyclophosphamide demonstrated a lower response 
rate than standard R-CHOP regimen,186 con-
trasting with the impressive 97% ORR observed 
in patients receiving a cladribine-containing 
immuno-epigenetic combo.142 Therefore, it is 
highly plausible that, at least in MCL patients, 
the remarkable clinical activity of cladribine is 
derived from its epigenetic modulatory 
properties.

Bromodomain inhibitors
Bromodomain-containing family of proteins 
comprise 46 members, including nuclear pro-
teins with HAT or HMT activity, chromatin 
remodelers, helicases, transcription co-activa-
tors, and mediators or scaffold proteins. 
Undoubtedly most of the scientific attention was 
focused on BRD2, BRD3, and BRD4.187 
Interestingly, these proteins have a bromodo-
main and extra-terminal motif (BET) domain, 
which is responsible for protein–protein interac-
tions,187,188 that acts as DNA enhancers for 
oncogene regulation.189 BET bromodomains are 
important regulators of several players with a 
central role in several cancers, including hema-
tological malignancies, such as MYC, cell cycle 
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regulators, and NF-κB-related genes.190 Thus, 
in early 2000s, the development of BET inhibi-
tors (BETi) rapidly gained a growing attention 
as a promising anticancer strategy.

The first BETi to enter into clinical develop-
ment was birabresib. The data from the initial 
dose-escalation, open-label, phase I trial 
(NCT01713582) indicated that, when used as 
monotherapy, birabresib achieved a 47% CR 
rate in 17 R/R DLBCL patients, while durable 
OR was reported for only 18% of them.125 A 
dose exploration study of this drug, involving 
DLBCL and AML patients (NCT02698189), 
was closed prematurely due to a lack of 
efficacy.

Others BETis, INCB054329 and INCB057643, 
were evaluated as monotherapy in a small cohort 
of patients with hematologic malignancies 
(NCT02431260 and NCT02711137, respec-
tively). In both cases, the clinical trial was termi-
nated due to a lack of responses and notable 
toxicity.127

CPI-0610 is another BETi, which was evaluated 
in B-NHL patients, reaching a modest 7% OR 
rate (NCT01949883). Mechanistically, the anal-
ysis of BET target genes demonstrated a dose-
dependent decrease (2–8 h post-dose) in 
interleukin-8 (IL8) and C-C motif chemokine recep-
tor 1 (CCR1) transcript levels.128

FT-1101, is a small molecule that presents a 
potent anti-proliferative activity in vitro, which 
was subsequently confirmed in B-NHL patients 
in a phase I clinical trial (NCT02543879). 
Although this agent showed an acceptable 
safety profile, a modest clinical activity was 
observed.129

Given the strong synergy between BET and 
BCL-2 inhibitors in vitro,191 a phase Ib trial 
evaluated the effects of RO6870810 combined 
to the BCL2 antagonist, venetoclax, with or 
without rituximab in R/R DLBCL patients. 
ORR was 38.5%, including 20.5% CR and 
17.9% PR. A stable disease (SD) was observed 
in 15.4% of the patients, whereas 30.8% main-
tained a progressive disease (PD). Although the 
triple combination resulted in higher response 
rates when compared with single agents, authors 

concluded to a lack of synergistic effect of this 
combinatorial approach.126

Future perspectives: paving the way for 
precision medicine with epidrugs in B- 
and T-cell lymphoma and implementing 
bioinformatics approaches to identify 
new epigenetic targets in hematological 
cancers

Personalized epigenome targeting in NHL
The identification of recurrent mutations in NHL 
provides a rationale to introduce epigenetic drugs 
for the design of selective and personalized thera-
pies for these patients. Supported by promising 
results obtained in preclinical and clinical trials, 
the notion that epigenetic alterations can be used 
for lymphoma diagnosis and as valuable clinical 
biomarkers of response to therapy, represents a 
game changer for the clinical management of 
these patients.

Several preclinical studies have already shown 
that a genetic or epigenetic alteration could be 
specifically targeted by a particular drug. As 
described in the section ‘HMT inhibitors’, EZH2 
inhibitors have demonstrated enhanced preclini-
cal and clinical activity against EZH2-mutated 
B-NHL. Preclinical studies evaluating the safety 
and efficacy of a new class of LSD1 inhibitors 
showed that this class of agents had a very potent 
activity against proliferation of MLL-rearranged 
leukemia cells, with EC50 values in the nanomo-
lar range. These cell-permeable molecules were 
found to significantly increase the levels of 
H3K4me2 in MLL-rearranged leukemic cells, to 
significantly reduce tumor burden, and to expand 
the life expectancy of leukemic mice, demonstrat-
ing the potential of this class of compounds to 
become clinically useful for MLL-rearranged 
leukemia.192

In a different context, HDAC3 inhibition using 
the novel molecule BRD3308 led to the upreg-
ulation of the cell cycle inhibitor, p21, result-
ing in cell cycle blockade and in proliferation 
arrest exclusively in CBP/p300-mutated 
DLBCL cells, characterized by the presence of 
BCL6–HDAC3 complexes that repress the 
transcription of the p21-encoding gene, 
CDKN1A.193
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Despite these significant advances in the design of 
personalized treatments that could target a spe-
cific epigenetic alteration by means of one or sev-
eral epidrugs, until recently efforts were still to be 
made to elaborate the best treatment approach 
for a determined patient with altered epigenome. 
The implementation of massive sequencing in 
early 2000s, followed by the standardization of 
big data processing, responded partly to these 
crucial needs.

In silico epigenetic profiling: basic concepts
Bioinformatics tools have enabled the interpreta-
tion of complex and dynamic phenomena, such 
as epigenetics, as well as the development of 
large-scale (big data), highly selective (e.g. single 
cell chip), and high-throughput modern molecu-
lar biology techniques.194 These latter are aimed 
at facilitating the prediction of epigenetic events 
such as DNA methylation, chromatin conforma-
tion changes, histone modifications and non-cod-
ing RNA activity, and their relationship with 
other sources of biological information (e.g. phe-
notype, transcriptomic, and proteomic), with the 
final objective to improve the diagnosis and prog-
nosis of different diseases,195 and the design of 
effective and safe epidrugs,196 and breeding strat-
egies.197 Epigenomic data, defined as the set of 
variations in certain genes, regions, or in the 
whole genome,198 can be evaluated by methods 
that vary according to (1) the analytical platform 
used for data collection (e.g. array, sequencing, 
immunoprecipitation)199–201, (2) the stage of anal-
ysis (e.g. preprocessing of raw data, statistical 
comparison, variable selection, functional analy-
sis, and drug-target structural analysis),202 or (3) 
the objective of the study (e.g. multiomics, single 
cell, drug repurposing).203–205

Epigenetics-based drug therapy is primarily 
aimed at reversing aberrant gene expression that 
may be found in the development and progres-
sion of lymphoma and understanding the poten-
tial to affect multiple cellular processes. These 
bioinformatics targets can be found by directly 
affecting regulatory regions of genes, such as in 
the methylome or DNA methylation information 
sets, or by altering histone proteins and related 
structures.206 The methylome can be profiled 
experimentally by bisulfite sequencing, while the 
main technique for identifying histone alteration 
profiles is immunoprecipitation of these proteins.

Computational validation of epigenetic 
alterations in B- and T-cell lymphoma
The first stages of bioinformatics analysis of epi-
genetic data are data acquisition, quality control, 
and preprocessing. At these levels, the character-
istics of the bioinformatics methods depend on 
the particularities of the experimental techniques. 
Chromatin immunoprecipitation (ChIP), fol-
lowed by DNA identification by microarray 
(ChIP-on-chip) or sequencing (ChIP-seq), and 
mass spectrometry (MS) are the most common 
experimental approaches to profile histone post-
translational modifications. ChIP-on-chip data 
require the normalization of hybridized fragment 
intensities, followed by the selection of represent-
ative peaks, and the merging of overlapping over-
represented regions.207 Many packages have been 
developed for this purpose such as Ringo,208 
Tilescope,209 HMMTiling,210 among others. 
ChIP-seq analyses require mapping short histone-
associated DNA fragments to reference genomes. 
This step constitutes a challenge in both ChIP-
on-chip and ChIP-seq. This so-called peak call-
ing step needs more attention and quality control 
to avoid false overrepresentation and to map 
sequences that are actually in contact with our 
protein of interest (e.g. histones). Several open 
source (e.g. Bowtie, BLAT, or EpiChip)211–213 or 
proprietary (e.g. Broad Institute sequencing plat-
form)214 programs or packages have been devel-
oped for reference alignment. In addition, 
packages such as SAMtools can be used for 
removal of duplicate reads due to amplification 
artifacts, to finally perform peak calling using 
some of the available approaches that best fit the 
experimental design.215 In this sense, Peakzilla 
uses predefined cutoff values,216 while MACS 
uses Poisson model to analyze the distribution of 
reads,217 and JAMM retrieves information from 
biological replicates to determine the amplitude 
of enriched sites.218 There are several studies 
using the ChIP technique to confirm whether 
alterations in chromatin structure and expression 
of certain genes are restored after epidrug 
treatment.219–221

MS has been used to determine the altered struc-
ture of proteins of interest, although there are 
limitations in recognizing the large number of 
ions inherent to histones or other cellular pro-
teins. Different algorithms have been developed 
depending on the integrity of the quantified pro-
tein (total, peptides or amino acids), THRASH 
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being one of the most versioned although it still 
depends on the structural reference database.222 
These MS methods have recently been used to 
accurately target EZH2 and HDAC in 
lymphoma.223

The methylome encompasses information on 
DNA methylation at the genomic level, a well-
studied phenomenon for which there are analyti-
cal methods based on bisulfite modification 
followed by sequencing200 or microarray224 analy-
sis, and enrichment methods such as methylated 
DNA immunoprecipitation (MeDIP) or methyl-
binding domain proteins (MethylCap) followed 
by DNA sequencing.225,226 Bisulfite sequencing is 
based on the quantification of cytosines sequenced 
as thymines, after interaction with bisulfites that 
do not affect methylated bases. The bioinformat-
ics algorithms used in the data generated by this 
technique have, as their main objective, the cor-
rect alignment to a reference genome and the cal-
culation of the rate of cytosines and thymines that 
represent the methylation level of the genome 
studied. In addition to the previously mentioned 
methods for ChIP-seq, there are specific 
approaches that consider cytosine mismatches 
implemented, such as RRBSMAP227 or 
Segemehl,228 among others, that consider a three-
base alignment (T, G, and A) such as MethylCoder 
or BRAT-nova.229,230 With the sequences already 
aligned, it is possible to quantify the frequency of 
cytosines and thymines in certain regions of the 
genomes using probabilistic algorithms such as 
Bis-SNP and MethylExtract.231,232

Different databases have compiled and organized 
the data of epigenetic modifications and the infor-
mation related to each deposited project. These 
platforms provide information for planning future 
projects and facilitate meta-analyses that may 
lead to new conclusions not seen in individual 
studies.233 Databases such as NCBI epigenomics 
and ENCODE collect data from several large-
scale projects.234,235 MethDB and Methbank, 
among others, provide data exclusively on DNA 
methylation, while ChromatinDB and HHMD 
contain information on histone post-translational 
modifications for different species.236–239

The epigenetic alterations evaluated in previous 
steps can be used to define a differential profile 
that can be related to other types of omics data, 
especially gene expression data that are directly 
affected by such phenomena. As an example, the 

relationship between differential gene expression 
and binding analysis was used to point out the 
reversion of CREBBP mutations by HDAC3 
selective inhibitors.193 Programs such as dif-
fReps240 allow the detection of differential sites in 
ChIP-seq data where differences in the transcrip-
tomic profile generated in those same regions are 
expected to be seen. Although it is often difficult 
to determine this association due to the variability 
of peak callers, some studies have shown its 
importance in, for example, defining genes and 
pathways associated with doxorubicin resist-
ance.241 Some studies have successfully used data 
on DNA sequence variations (e.g. in the differen-
tiation of MCL subtypes),242 protein or metabo-
lite abundance, and clinical information.243 This 
approach was also used to determine the associa-
tion between metabolic and sensitivity to 
HDACis,244 and to establish the relevance of 
phosphoproteomics data, gene expression and 
protein–protein interaction for the deciphering of 
a novel mechanism of regulation of KMT2D.245 
These types of associations could allow the recon-
struction of multilevel regulatory networks.246 
The methods used to analyze this integration can 
vary greatly depending on the type of data used, 
between probabilistic models,247 machine learn-
ing248 (i.e. a model of protein-compound interac-
tion with epigenetic targets using different 
machine learning methods),249 coexpression net-
works250 (i.e. differential coexpression and regu-
lation networks to propose therapeutic factor for 
adult T-cell LL),251 based on dimensionality 
reduction and clusterization,252 integrated as net-
works based on quantitative relationships or 
described in previous literature, among others. 
Finally, we can use the structural information of 
the proteins responsible for modulating epige-
netic marks in nucleosomes and their activity in 
the covalent bonds that generate these modifica-
tions. These data may help in the discovery of 
new epidrugs and epiprobes.253 The main com-
puter-aided drug design (CADD) methods in this 
area include druggability prediction,254 virtual 
screening,255 pharmacophore modeling,256 and 
molecular dynamics simulations.257

Conclusion and future perspectives
In the last decade, the advances in high-through-
put sequencing technologies have provided multi-
tude of information on the role of both genomic 
and epigenomic deregulations in malignant trans-
formation and in the physiopathology of B and T 
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lymphoid neoplasms. Besides helping the charac-
terization of some lymphoma subtypes consid-
ered so far unclassifiable, the identification of 
recurrent mutations affecting epigenetic enzymes 
with crucial functions in the determination of B 
and T cell fate, fostered the development and 
evaluation of several epigenetic drugs, which rap-
idly showed high degree of efficacy, first in pre-
clinical settings, and further in clinical trials 
essentially in relapsed NHL patients. Single 
agents and combination therapies involving 
HDAC inhibition or DNMT blockade have 
shown remarkable activity in specific subsets of 
B-cell and T-cell lymphoma, which remained 
unresponsive to or relapsed after chemo-immu-
notherapeutic regimens. However, beside general 
inhibitors of acetylation and demethylase, specific 
epigenetic drugs, including class-specific HDACi, 
EZH2 inhibitors or BET antagonists are showing 
significant clinical activity and have already been 
broadly implemented in the clinical management 
of determined subtypes of NHL patients. In com-
bination therapy, some of these agents have dem-
onstrated their ability to facilitate the response of 
B-NHL patients to anti-CD20 treatment. Among 
them, vorinostat was able to improve the out-
comes of R/R FL, MCL, and MZL patients when 
associated to rituximab;258 however, this effect 
seemed barely additive and the combined use of 
additional chemotherapeutic combo such as ICE 
or CHOP may be a prerequisite to achieve syner-
gistic antitumor activity (NCT00601718, 
NCT00972478). Other HDACis such as panobi-
nostat, fimepinostat, belinostat, or valproic acid 
either failed to exhibit such combinatorial activity 
with rituximab-based regimens or were associated 
with important AEs that limited their clinical 
development.94,153,259 Within the family of meth-
ylation modulators, cladribine also exhibits com-
binatorial activity with rituximab, as MCL 
patients receiving this combination presented a 
superior CR rate than the group of patients 
treated with cladribine alone (52% versus 42%, 
respectively).260 In previously untreated patients, 
the observed responses were even higher when 
vorinostat was added to this doublet (97% ORR 
and 80% CR).142 Importantly, these last studies 
showed a plateau in PFS and OS as well as a pro-
longed PFS, implying potential curative potential 
for cladribine–rituximab based regimens. In the 
case of EZH2 inhibitors, the first results of the 
phase Ib Epi-R-CHOP study combining tazeme-
tostat to rituximab-CHOP suggested that this 
combo, although generally well tolerated, does 

not appear to substantially improve rituximab-
CHOP toxicity and efficacy profiles.261 Thus, in 
determined but limited conditions, epidrug ther-
apy may significantly improve the outcome of 
NHL patients receiving anti-CD20-based 
regimens.

Despite these outstanding advances, further field 
of development include the identification of ad 
hoc biomarkers that may facilitate patient selec-
tion for their inclusion in clinical trials, and the 
design of rationally based combination regimens, 
may help reaching the final aim of establishing 
selective and personalized therapies for this sub-
group of patients. One of the latest and most 
promising approach, which will help selecting the 
most relevant targeted therapies in the near 
future, is the multiomic characterization of each 
patient sample. However, the considerable vol-
ume of information provided by the latest tech-
nologies, including single-cell proteogenomics, 
requires a rigorous and reproducible analytical 
workflow that is nowadays within our reach, 
thanks to the recent improvements in bioinfor-
matic data analysis. These approaches will allow 
us to be closer to the complete mapping of B- and 
T-cell lymphoma and, therefore, will empower 
the design of optimal therapeutic scheme, includ-
ing new epigenetic drug combinations.
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