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Abstract

We study three questions related to Machin’s type formulas. The first one gives all two terms Machin
formulas where both arctangent functions are evaluated 2-integers, that is values of the form b/2¢ for
some integers a and b. These formulas are computationally useful because multiplication or division
by a power of two is a very fast operation for most computers. The second one presents a method
for finding infinitely many formulas with N terms. In the particular case N = 2 the method is quite
useful. It recovers most known formulas, gives some new ones, and allows to prove, in an easy way, that
there are two terms Machin formulas with Lehmer measure as small as desired. Finally, we correct an
oversight from previous result and give all Machin’s type formulas with two terms involving arctangents
of powers of the golden section.
© 2023 The Author(s). Published by Elsevier B.V. on behalf of Royal Dutch Mathematical Society (KWG).
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In 1706, John Machin found the identity

1 1 T
4 arctan — — arctan — = —. (1)
5 239 4
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In conjunction with the arctan expansion

o (=D
arctan x = —~ 7y 2mAl <1, 2
x ; i1 x| @)
discovered by Gregory in 1671, Machin used (1) to compute 100 digits of .
In the mathematical literature there are many formulas similar to (1), that is, combinations
of arctan functions that, in some way, generate 7. Besides (1), the following are the most

classical formulas

arctan(1/2) + arctan(1/3) = /4, 3)
2 arctan(1/2) — arctan(1/7) = /4, )
2 arctan(1/3) 4 arctan(1/7) = 7 /4, )

that are usually known as Euler’s, Hermann’s and Hutton’s formulas, respectively (actually,
their attribution to these authors is not clear; for instance, [7] also attributes all of them to
Machin, see [23] for more historical details).

While many of these formulas have been used to effectively compute many digits of m,
other formulas do not have such practical interest, but they are interesting by themselves. For
instance, this is the case with the relation

F, F,_ T
" 4 arctan ==L = = (6)
n+1 Fn+2 4

where (F},), are the Fibonacci numbers (a simple geometric proof of this formula can be found
in [18]). Moreover, taking into account that when n — oo, F,,/F,—; — ¢ = (1 + «/5)/2, the
golden section, taking limits in (6) gives the identity

arctan

—1 3 _ T
arctan¢™! + arctang ™ = T @)

Many questions can be posed around this subject. A first natural one was: How many
formulas of the type

1 1 T
Xj arctan — + xp arctan — = —, 8)
ny nop 4
with rationals x; and integers m; > 2 there exist? Nowadays, after 1895 Stormer’s paper [20]
(see also [21]) it is known that only the four above identities (1), (3), (4) and (5) do exist.
How about if we allow identities of the type
" a + + ¢ an b/ (9)
Xparctan — + - - - 4 xy arctan — = —,
‘ by N by 4
with x; € Q, ax € Z, by € N* (and |a;/br| < 1 to guarantee the convergence of (2) with
X = ag/by), are there many other such formulas? Which of them gives a faster algorithm to
compute digits of 7?7 In 1938, D. H. Lehmer [15] gave the now so-called Lehmer measure

N 1

’ 10
= log,(1bk/ar]) (10)

that can be used as a hint of the computational efficiency of (9); without explaining the details
that motivate the definition, note that, if |a;/b| is small, the series (2) for arctan(ay/bi)
converges quickly, and less summands are necessary to compute it with a prescribed precision.
Thus, the smaller is the Lehmer measure, the faster is the corresponding algorithm to compute
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digits of . Many formulas of type (9) with their corresponding Lehmer measures can be found
in [10,15,24]. For instance, the Lehmer measure of (1) is 1.85113 and thus it is faster than (3),
(4) and (5), whose Lehmer measures are, respectively, 5.41783, 4.50522 and 3.2792; moreover,
both [10] and [24] give the same identity of type (9), with N = 6, and whose Lehmer measure
is 1.51244, the lowest at that time. Are there Machin-like formulas with Lehmer measure as
small as we want?

Nowadays, the use of this type of formulas to compute many digits of 7 is not so useful,
because faster types of algorithms are available (for instance, Chudnovsky algorithm [11],
which is based on Ramanujan’s m formulas; for more details on these types of algorithms
see [14]). Actually, more than 10" decimal digits of 7 are already known. Moreover, to
compute more digits of 7 does not have any practical interest, but the one of beating records.

In relation to (7), a different question can be asked: are there similar formulas with other
powers of ¢?

The aim of this paper is to answer some of the above questions. In Section 2, we analyze
the solutions of an equation similar to (8) but allowing arctan(2% /my) or arctan(my/2%) in
the place of arctan(1/m;). We prove that there are ten sporadic Machin-type formulas of this
type, together with two parametric families, see Theorem 1.

Let us comment why the interest of having 2% /my or my /2% instead of ay /by in general
(we assume here that ay, by, my are positive integers). Let us assume that we want to compute
many summands in (2), to get many digits of 7. If we have x = 1/my, every summand
requires to divide by 2m + 1 and by m% (two operations); if we have x = a; /by, a division by
2m + 1 and by b,% and a multiplication by a,f (three operations). Due to this reason, most of
the Machin-like formulas to compute 7 that have been used in the practice (or whose Lehmer
measure have been analyzed in the above mentioned papers [10,15,24]) are of the form 1/m;.
But, if we have 2% /my or my /2%, to multiply or to divide by 2% can be done with a shift
in the binary representation of the number, whose computational time is negligible compared
with a multiplication or a division, so this case can be considered as fast as the case with 1/m;.
Thus, perhaps a better way to estimate the computational efficiency of a formula like (9) would
be to take

N
Wi

logo(|bx/ax )

with some “weights” w; > 1 that may depend on a;, and b (as well as on the hardware and
the software), so it not totally clear how to compare such formulas.

In Section 3 we define some rational functions R;(n, x) (both the numerator and the
denominator being polynomials in the variable x depending on n and with integer coefficients),
j=0,1,2,3 and n € N, in such a way that, for any x € @, the combinations

k=1

xj arctan(R, (ny, x)) + - - - + xy arctan(R;, (ny, X)),

with x; = ri/ng and r; + --- 4+ ry = 0, always give a rational multiple of 7 (we ignore
the poles, namely the values of x that are roots of any denominator). We have used the name
“Machin’s formulas machine” to denominate this method, because it allows finding Machin’s
type formulas without any difficulty. In particular, taking N = 2, it allows us to find Machin’s
type formula with Lehmer measure as small as we want, see Theorem 3. As we will comment
at the end of Section 3.3 our Machin’s type formulas when N = 2 extend some of the results
of [4].
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Finally, in Section 4, we classify the formulas of the type

x1 arctan(¢®!) 4 x; arctan(¢*?) = %
with a; € Z\ {0} and x;, € Q\ {0}, showing that there are, essentially, sixteen of these identities.
In fact, this part is a correction of the previous paper [17] where some of these formulas were
missed due to an oversight in the proof.

2. Machin’s formulas with powers of two

The purpose of this section is to solve
xp arctan(zy) + x, arctan(zp) = % (11D

in rational numbers xy, X7, z1, 22, Where zx € (0, 1) for k = 1, 2 and z; = 2% /by, or by /2% for
some integers ay, by > 1. The case where a; < 0 for both k = 1,2 leads to z; = 1/my for
k =1, 2, and this has been treated [21]. We do not treat the case when z; = z, = z, since that
leads to arctan(z)/m € Q\ {0}, and the only corresponding value of z is 1. So, we assume that
Z1 < z2. In case a; < 0, we incorporate 27% into b;. Hence, we assume that a; > 0 and by is
odd unless a; = 0 in which case b; can be even.

As we will see, a main tool in the proof of next theorem will be that all positive integer
solutions (x, y, a, n), n > 3, of the diophantine equations X2+1= 2y" and x2 420 = y", are
known, see [13,16].

Theorem 1. All solutions (x1, z1, X2, 22) of Eq. (11) in non-zero rational numbers x|, x, and

rational numbers z; < zp in (0, 1) of the form 2% /by or by /2% for k = 1,2 are the following
ten sporadic ones

1 1 1 1 2 33
_17 _745 =] _15 _72’ P _17 T10 A 4 ]
239 5 7 2 11 2 4
! 2 3 1 1 1 42 1 2 31
"11°773)7\37239°3°3)7 \2711'2°2)°
1 2 1 1 113 1 2
17 _72’ =] 17 _’27 5 ] 1’ A°A a4 ) 39 _725 71 )
41 5 7 3 224 7 11

together with the two parametric families

1 1 1 2" 1 ! 12a2_1 N*
72a2+1+1a ’2&2_'_1 k) 92a2+1_17 k] 202 k] a2€ .

Remark. Allowing a, = 0 in the first parametric family we get the solution ( , 3, ,
which also belongs to the second parametric family (for a; = 1). We cannot allow a, = 0 i
the second family because z, vanishes in this case.

L)
m

2.1. A reformulation

We write x; = ui/(w/dy), where uy, up, dy > 1 are integers with |u;|, |uz|, do, w > 1 and
ged(uy, up) = 1 and so
wmw CT
uy arctan(zy) + u, arctan(zp) = M = (12)
1376



A. Gasull, F. Luca and J.L. Varona Indagationes Mathematicae 34 (2023) 1373—1396

Formally, we write first x; = U;/w, x, = U,/w, with a common denominator w, then let
dy = ged(Uy, U), so uy = Uy/dy, uy = U /dy. We write w/(4dy) = c/d # 0 in reduced
terms. Applying tan, we get that tan(cr/d) € Q. In particular, this implies that e>“™/¢ ¢ Q[i],
so eXi7/d ig a root of unity of order at most 2. This implies that p(d) < 2,sod € {1, 2,3, 4, 6},
where ¢ is the Euler’s totient function. In fact, by using [7, Cor. 3], it can be seen that
d € {1, 2,4}, but we will not use this fact because this stronger restriction does not imply
substantial changes in our proof and in this way our argument is more self-contained. To fix
notations, we assume that a; < a, and we do not consider the case a; = a, = 0, since those
solutions have already been found in [21]. Thus, a; > 1.

2.2. Proof of Theorem 1

Assume for the sake of the argument that z; = 2/by, zo = 292/b,. The cases where
Zx = by /2% for one or both of k = 1, 2, can be reduced to the present one via the formula

1 b4
arctan (—) = 77 arctan(x),

X

arriving to an equation similar to (12) with a different value of c/d in the right-hand side. Up
to replacing (u;, up) by (—u;, —u,) if needed, we assume that #; > 1. Noting that 4 | 12, it
follows that 12/d € N. Next, we get

(1 + i2“1/b1)12'“(1 + izaz/b2)12uz — (1 _ i2a1/b1)12u1(1 _ i2a2/b2)12L‘2.
Thus,
(bl + i20|)12u1(b2 + izaz)lz\uz\ — (bl _ i2a1)12u|(b2 == i2a2)12|u2|’

where the sign in + on the left is sgn(uy) (and the sign in F on the right is — sgn(u»)).
Extracting 12th roots we get

(br 4129 (by £ i2)" = £ (by — i2)" (b F i2)"2,
where ¢ is a root of unity in Q[i]. Hence, ¢ € {£1, %i}.
2.2.1. The case a; > 1
Assume first that a; > 1. Then b 4+2%i and b; —2%!i are coprime in Z[i] since their norms

are b% +224 (odd) but the norm of their difference 2“1 is a power of 2 and the same is true
about by 4+ 2%2i and b, — 2°2i. It follows up to relabeling ¢ that

(b1 +2Ui)" = £ (by F220)",

where ¢ is unit in Z[i]. Thus, ¢ € {£1, £i}. If u; = |uy], then 1 = u; = |u;| (since they are
coprime) so by + 21 = ¢ (b, F 2%i), so we get by = by, a; = ap, S0 71 = Z», a case that we
do not consider. So, we assume that u; # |uz|. Then there exists y € Z[i] such that

by +2%i =gy" and by F22i = ",

where again ¢, {, are in {£1, i}. Assume next that {u, |us|} = {1, 2}. Swapping u; and |u;|
if needed and incorporating ¢; into y we get

bi+2% =y and b, F2%i = +5y°
Thus,
by F2%i = &(by + 290 = (b3 — 2% 427 bi), & € {£1, £i).
1377



A. Gasull, F. Luca and J.L. Varona Indagationes Mathematicae 34 (2023) 1373—1396

Since b, and b12—22“1 are both odd, we get that ¢, € {£1},29 = 24+1p and by = j:(b%—ZZ“' ).
The first equation leads to a, = a; +1, b; = 1, and now the second leads to b, = +(1% —2%),
s0 by = 2241 — 1. This leads to

1 201+1
2 arctan <—> — arctan (—) =0,
241 221 — 1

which follows from the well-known formula
2x
2 arctan(x) = arctan | ——— |,
1 —x2

for x € (—1,1), with x = 1/2%. When a; = 1 the above formula gives rise to the solution

(1,3, 3. 2). For a; > 1 this looks like (12) except that it has ¢/d = 0, which is not convenient
for us.
This was for a; > 1 and {u;, |uz|} = {1, 2}. Up to swapping u;, u, we next assume that

|up| > 3. Then
by +2%i = gyl
Taking norms we get
b? 221 = ylel,
The solutions of the equation
X242 =y,
with x odd and n > 3, have been found in [16]. They are
5242=3 112422=5, 72425 =3"%
Only the second one is convenient for us (the exponent of 2 must be even) giving b; = 11,
a; =1, up = £3. Thus, y = 14 2i and u; € {1, 2}. Hence, we must also have
by F 29 = 0o(1 £ 20)"? € {&(1 £ 2i), &(—3 £ 4i)).
Thus, we get ¢, € {£1}, (b, a) € {(1, 1), (3, 2)}.

2.2.2. The case a; =0

In case b; is even, the same arguments apply because b; + i and b; — i are coprime since
their norm is b% + 1 (odd) and the norm of their difference 2i is 4 which is a power of 2.
The previous arguments apply. We get (u1, u;) = (1, £1) and (by, a;) = (by, ap) which leads
z1 = zp which is not convenient. The case (uy, |uz]) = (1,2) does not lead to convenient
solutions since b, = 224 — | = 0, which is not possible. The case max{uy, |uz|} > 3, leads
again to x> + 2%¢ = y" where (x,a) = (bi,a;) for some k € {1,2}. This equation has
no solution with @ = 0, so we get (b, a2, u;) = (11, 1,3). Hence, |u;] € {1,2}, a; = 0,
y=1+4+2i,s0b1+i = Clyl’z e {¢i1(1 4 2i), £1(—3 + 4i)}, so the only possibility is b; = 2,
Uy = +1.

Finally suppose that a; = 0, b; is odd. In this case in

(by + )1 (by £ 220)"12! = (by — i)™ (by F 220)12),

we have that by + i has norm b% +1=2 (mod 8). Thus, 1 +1i | by +i and (by +i)/(1 +1i) is
an integer in Z[i] of odd norm. Thus,

b .\ 4up b —i 4uy
LED) T 2mipteal = (20) by 2,
1+ 1—i
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Now the integer (b +i)/(1 4 i) is coprime to (b —i)/(1 —i) (since they have odd norms and
2 is linear combination of the above two integers with coefficients in Z[i]), so we get that

b .\ 4up
( 1+z) = ¢ (by F 2%20)"],

1+
for some unit ¢ in Z[i]. Thus, there is y € Z[i] and two units ¢;, ¢ such that
b .
11:-1 =gy"l and b, F2%i =y, (13)
i

If u; = |uy|, then u; = |uy| = 1. In this case we get
bi+i=c(+i)by F22) = £(by £ 22 +i(by F29)), ¢ € [+, +i}.
We study the four possibilities. If { = 1, we then get
by +i = £(by £29 + i(by F 27)).
This gives
by = (b, £2%), 1= =%(by F2%),
which correspond to the systems
by=0by+2%, |by=by—=2%,  |bi=—(by+2?), |b=—(by—27),
: 1 =by — 2%, { 1 = by + 2%, { 1 =—(b, —2%), 1 = —(b, +2%).

Only the first system gives the acceptable solution by, = 2% + 1, by = by + 2% = 20+! 4]

yielding the first parametric family together with the solution with a, = 0, which is (1, %, 1, %)
and which is also a member of the second parametric family. The other three systems do not
give acceptable solutions since one (or both) of by, b, are negative. Assume next that ¢ = =i.

We obtain
by = F(by F29), 1 = £(by £29),
which correspond to the systems
{bl = —by +2°, {bl = —by — 2%, {bl = by — 2%, {bl = by + 2%,
1 =by + 2%, 1 =by — 2%, 1 =—by, — 2%, 1 =—by +2%,

where only the last one gives the acceptable solution by = 2% — 1, by = by +2%2 = 2%+ _1,
This yields the second parametric family, after using arctan(x) = w /2 — arctan(1/x) for x > 0.
Again the other three systems do not give convenient solutions since one or both of by, b, are

negative.
Assume next that u; # |uz|. If (4, luz|) € {(2, 1), (1, 2)}, then we get equations
by +i 2
= and b, £2%] = ,
T4 14 2 i =0y
or
b1 +i )
by £2%i = d = .
2 1=y an T4 Qiy

In the first case, we get

by +1i
141

2 ’
by £2i = ¢ < ) = %(b% —142bi)  (with ¢ = —i0),
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which gives b, = by, 20+l — bf — 1. The only solution of the last equation above is a, = 2,
by = b, = 3. This leads to the useless formula

1 3
2arctan | — ) —arctan| — | = 0.
(5) - 3)

In the second case, we get

by +i=c(1+i)by F220) = ¢(1 +i)(b3 — 222 F 292 byi)
= ¢(b3 — 222 £ 292 py 4 (b3 — 222 1 292F 1 Dy)i),

When ¢ = £1, we find

by — 222 £ 29t p, = by, by — 222 F 22ty = |,
or

by — 222 £ 29 py = —p, b3 =222 322V p, = 1,
The first case gives rise to the system
(by +20)? — 22+ —

(by T 22)> = 22+ | 1,

This is solvable in integers only when a, = 1. In this case, we find

(by +2)* — 8 = by, (by —2)* —8 = by,
(b —2)* =09, (by +2)* =09,

so from (b, — 2)? = 9, we have the only acceptable solution b, = 5, therefore by = 41, while
from (b + 2)> = 9, we have the only acceptable solution b, = 1, but this leads to by = —7,
which is not acceptable. On the other hand the second case corresponds to

(b2 + 2a2)2 _ 22a2+1 — —b],
(b2 ¥ 2a2)2 — 2202+1 _ 1’

which is solvable in integers only when a, = 0. In this case we find

(by + 1" =2 = —by, (b — 1y =2 =—by,
(by— 1)’ =1, by +17 =1,
so from (b, — 1)? = 1, we have the only acceptable solution b, = 2, so by = —7, which is

not acceptable, while from (b, + 1)> = 1 we do not have acceptable solutions. Finally, when
¢ = =%i, we find

by — 222 F 2t py = —py, by — 222 £ 292V, = |,
or

by =222 F 22 by = by, by — 222 £ 297 by = 1.
The first case gives rise to the system

(by F22)* = 2227 = —by,
(b2 :l: 2(12)2 — 2202+1 + 1’
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which is solvable in integers only when a, = 1. Accordingly, we find
(b2 =2 =8 = by, (b2 +2)* —8 = —by,
(b2 +27 =9, (b =27 =9,
so from (b, + 2)?> = 9 we have the only acceptable solution b, = 1, therefore b; = 7, while

from (b, — 2)> = 9 we have the only acceptable solution b, = 5 but this leads to by = —41,
which is not acceptable. On the other hand the second case corresponds to

(by +20)? — 220+ —
(by T 22)> = 22+ _ |,
which is solvable in integers only when a, = 0. In this case, we find
(by+1)* =2 =by, (by = 1)’ =2 =by,
(by =1 =1, { (by+ 1 =1,

so from (b, — 1) = 1 we have the only acceptable solution b, = 2, therefore b; = 7, while
from (b, + 1)> = 1, we do not have acceptable solutions. Resuming this discussion, we find

(a2, b1, b2) € {(0,7,2),(1,7,1), (1,41, 5)}.
The first two instances lead to the same sporadic solution (—1, % 2,1) as 2% /by = 1/7 and
29 /b, € {1/2,2}, namely the second one in the list from the statement of the theorem, while
the third instance leads to the seventh sporadic solution ( 1, ﬁ, 2, %) from the statement of the
theorem.
Finally, assume that max{u, |u,|} > 3. In this case taking norms in (13) we get
b?+1=2y"" and b3+ 2% =yl
If |up| > 3, then we saw before that b, = 11, a, = 1 are the only possibilities and then y = 5.
If this is so and u; € {1, 2}, we get b% +1e{2-5 2- 52}, so by € {3, 7}. Finally, if u; > 3,
then we get the equation
bt +1=2y",

for some n > 3, and the only solutions are (b, y, n) € {(1, 1, n), (239, 13, 4)} (see [13]). The
first one gives no solution for b% 4 22 — y‘”z‘ = 1. The second one gives u; = 4, by = 239.
If also |up| > 3, then up, = £3, b, = 11, a, = 1, otherwise u, € {*1, £2}, and
by £2%i = (3 £2i)"? € {¢(3 £ 2i), (5 £ 120)},

and the only convenient one is u; € {£1}, b, = 3, a, = 1. Collecting all the intermediary
values, we get the theorem modulo checking for the solutions to (12) which come from values
of the parameters (u;, us, ay, by, as, bp, c¢/d) in the ranges |u;| < 4, ar € {0, 1,2} for both
k=1,2,d € {1,2,3,4,6},0 < |c|] <24 and b, € {1,2,3,5,7,11,41,239} for k = 1, 2.
Both Mathematica and Maple codes returned the ten listed sporadic solutions.

3. The Machin’s formulas machine
An easy way to prove well-known formulas as arctan(x) + arctan(1/x) = sgn(x)m/2 or
/2, if x > 1,
1 2x .
arctan(x) — —arctan [ —— ) = {0, if |x] < 1,
2 1 —x2 )
—mr/2, ifx <—1,
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or many others, is to use derivatives. For instance, we can check that the derivative of

arctan( 2 ) coincides with -~ arctan(x) = —5 except for a multiplicative constant, so a
1—x2 dx

1+x2
suitable linear combination of arctan(x) and arctan( 13’; 2) gives a function whose derivative is
zero, therefore it is piecewise constant (namely it is constant except at the discontinuity points).

More generally, we can find relations of the form

arctan(x) + C arctan( f(x)) = constant

if we have functions f(x) such that

4 aret = 14
aarcan(f(x))—l_i_xz, (14)

for some constant r. Furthermore, it is easy to check that

© arctan( () = ——, L arctan(p) = —
— arctan(f(x)) = ——, —arctan(g(x)) = ——
dx 1+x2" dx § 1+ x2 (s
d rs )
- Ix arctan(g(f(x))) = Tr 2
so the composition of functions satisfying (14) provides new examples.
For differentiable functions, (14) is equivalent to solve the differential equation
4
k
A ' (16)
1+ f(x)?  1+x2
The solutions of this equation are
f(x) = tan(k arctan(x) + ¢), (17

with f(0) = tan(c) and ¢ € (—n/2, w/2). For our interest concerning Machin-like formulas,
we want to have functions which are rational; that is, are ratios of polynomials with coefficients
in Z.
Moreover, if we fix ¢ and denote the solution of (16) by f, the use of
tana + tanb
tana +b) = ———
1 — (tana)(tan b)

gives
fi+1(x) = tan((k arctan(x) 4 ¢) + arctan(x))
. tan(k arctan(x) + ¢) + tan(arctan(x)) . fir(x) +x (18)
"~ 1 — tan(k arctan(x) + ¢) tan(arctan(x)) 1 — x fr(x)’

From this relation, if fj(x) is a rational function for a certain c, every function f;(x) will be
rational. But f;(x) = (tan(c) + x)/(1 — x tan(c)), so we want that tan(c) € Q (or we start with
fo(x) such that fy(x) = tanc, and we arrive at the same condition).

So, we take ¢ € wQ. This is not compulsory, but it is suitable for our purposes. It is well
known that tan(c) € Q if and only if tan(c) = 0 or £1. Because tan is (—m/2, 7 /2)-periodic,
we can restrict to one of the cases: ¢ =0, ¢c =n/4, c = /2 and ¢ = —7 /4 (or ¢ = 37/4,
that will be more convenient notationwise).

The recurrence relation (18) is nice and could be more widely studied, but here we are only
interested in more explicit formulas.
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3.1. The functions R;(n, x)

Let us recall De Moivre’s formula
cos(nf) + i sin(nf) = (cos(9) + i sin(0))".

Using the binomial expansion and equaling imaginary and real parts we get

L(n—1)/2]
sinnd) = ) (= Dr(z +1) cos" 21 (@) sin™*'(6)

r=0

[(n—1)/2] n
— n 0 -1 t 2r+1 2} ,
cos()§< )<2r+1)a“ ®)

[n/2] ln/2]
cos(nf) = Z_(;(—l)’ (;) s (@) sin¥ (8) = cos™(0) X(;( 1)’( )tan”(@)
And, by dividing these expressions,

Zun l)m( 1)’(2&1) tan>*'(9)

ZL”/N( l)r( )tan2’(9)

For 6 = arctan(x), this becomes
ZL(” 1)/2J( l)r( n )x2r+l
ZL"/ZJ( 1)r( )x2r

so this is an example of (17) with ¢ = 0; namely a rational function.
By convenience, let us denote

L(n—=1)/2]

ln/2]
2r 41 _ v )2
numer, (x) = E (=1 (2 N l)x , denom,(x) = ;:0( 1) (2r>x

with numery = 0 and denomo = 1. Then, for ¢ = 0 in (17), we have

tan(nd) =

tan(n arctan x) =

numer, (x)
Ron,x)=——=, n=0,1,2,.... (19)
denom,,(x)
The above functions satisfy % arctan(Ro(n, x)) = n/(1 + x2). The first few of these functions

are

—2x x3—3x

Ro(0,x) =0, Ro(l,x)=x, Ro(2,x)= PR Ro(3,x) = EPoe
—4x3 + 4x x> —10x3 + 5x
Ro4,x)= —, Ry, T S
oG = g ROY=ESa e

For the other values of ¢, we take ¢ = jm /4 with j = 1,2, 3, and denote the corresponding
solutions of (17) by Ri(n, x), Ry(n, x) and Ri(n, x), respectively.
For ¢ = /2 =27 /4 it is clear that
sin(nf + 7 /2) —cos(nf)
cos(nf +m/2)  sin(nd)
1383
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so, for ¢ = /2, we have

—d n -1
Ry, x) = enom,, (x)

= , n=12.... (20
numer, (x) Ro(n, x)

The above functions satisfy again % arctan(R,(n, x)) = n/(1 + x2).
For ¢ = /4,

cos(nf) + sin(nd)

cos(nf) — sin(nd)’

so, for ¢ = /4, we have

tan(n6 + w/4) =

Ri(n. x) = denom,, (x) + numer, (x)

, n=0,1,2,.... 21
denom,,(x) — numer,(x)

The above functions satisfy again % arctan(R; (n, x)) = n/(1+x?). For instance, R;(0, x) =1,

R )_—x—l R )_x2—2x—1 R )_—x3—3x2+3x+1
= ! ’x_x2+2x71’ 1= x3—3x243x+1"
Xt —d4xd —6x? +ax+ 1 —x> = 5x* 4+ 10x3 4+ 10x% = 5x — 1

, Ri(5,x)= .
x4 +4x3 —6x2 —4x +1 15,3 x5 —5x% —10x3 4+ 10x2 4 5x — 1
Finally, for ¢ = 37 /4,

Ri(4,x) =

sin(nf) — cos(nd)

tan(n6 + 37 /4) = tan(n6 — 7w /4) = sin(nf) + cos(nb)’

so, for ¢ = 37 /4, we have the functions

Ry(n. x) = numer,(x) — denom,,(x) _ —1

= , n=0,1,2,.... (22)

numer,(x) + denom,(x)  Ri(n, x)

Once more, they satisfy % arctan(R3(n, x)) = n/(1 + x?).
Actually, another way to define the functions R;(n, x), j =0,1,2,3, n € N, is to take

R;(n, x) = tan(nd + jm/4), X =tand; (23)

this definition is valid in a small range of x (to ensure that both the functions tan and arctan are
invertible). Then the previous arguments show that these functions are rational functions, and,
moreover, we have found their explicit expressions. Of course, once that we have a rational
function defined in a small interval, we can extend it to the entire C.

3.2. Some properties of the functions R;(n, x)

Here we present some of the algebraic properties of the functions R;(n, x). Actually, some
of these properties are not related to the Machine-like formulas, but they are interesting by
themselves.

Let us first note that, because the function tan is odd, we could instead use the functions
—R;(n,x) for our purposes; actually, we could use R;(—n,x) to denote them, because
arctan(—R;(n, x)) = —n/(1 + x2), a formula which holds by looking at (14). This would
allow to index the functions R;(n, x) over n € Z, but this fact does not have any practical
contribution to finding additional Machin-like formulas.

1384



A. Gasull, F. Luca and J.L. Varona Indagationes Mathematicae 34 (2023) 1373—1396

When handling Machin-like formulas, it is more interesting to observe that the relation
between R;(n, 1/x) and R;(n, x), depends on whether 7 is even or odd:

Ro(2n, 1/x) = —Ro(2n,x), Ron+1,1/x)=1/Re@n+1,x), n=0,1,2,...,

Ri2n,1/x)=1/Ri(2n,x), Ri2n+1,1/x)=—-R;(2n+1,x), n=0,1,2,....
(24)

The proofs of these properties are straightforward, so we do not include them. In relation to
R;(n, —x), some symmetry properties also hold:

Ro(n, —x) = —Rp(n, x), Ri(n,—x)=1/Ri(n, x), n=012,.... (25)

Both for (24) and for (25), the corresponding properties for R, and Rz can be easily established
from the properties of Ry and R; using (20) and (22), respectively.

According to (15), the composition of the functions R;(n, x) generates new functions that
are useful in relation to the Machin-like formulas. However, we can see that these functions
are not really new. Let us start analyzing a particular case.

Let us first observe that, if the “internal” function in the composition is Rj, we have

R;(nm, x) = tan(nm arctan(x) + 7 j /4) = tan(n arctan(tan(m arctan(x))) + 7 j/4)
= tan(n arctan(Ro(m, x)) + 7 j/4) = R;(n, Ry(m, x)), j=0,1,2,3;

this argument is correct in a small enough interval of x’s (to guarantee that arctan o tan = Id),
and then by analytic continuation we can ensure that

Rj(nm,x) = R;(n, Ro(m, x)), x eC, j=0,1,2,3. (26)

For each j, this formula allows to compute R;(n, x) as composition of successive Ro(p;, x)
with a final R;(p;, x), where the p; are the prime factors of n. In particular, it is enough to know
R;(p, x) for primes p in order to generate (or to compute) all the R;(n, x) by composition.

With full generality, it is not difficult to check that the composition of functions R; behaves
as follows:

R;(n, Ri(m, x)) = Rinyjmoda(nm, x).

Let us note that the relation Ry(n, Ry(m, x)) = Ro(nm, x) of the functions Ry coincides
with the property T,,(T,,(x)) = T, (x) satisfied by the Chebyshev polynomials of the first kind
T,(x) := cos(n arccos(x)), x € [—1, 1]. These were used in [5,12] in relation to the Mobius
inversion formula. Finally, let us also mention that, although with a different notation, the
functions Ry(n, x) have been already defined in [6] (in particular, their rational expressions are
given), but they have not been used to obtain Machin-like identities. As we will comment a
little later, the functions R3(n, x) have been already introduced in [4] with a different approach.

3.3. Machin-like formulas associated to R;(n, x)

Once we have defined the functions R;(n, x) and studied their properties, we can state the
main result of this section.
Before doing that, let us observe the following:

(a) At x = 0 or x = =00, the value of the function arctan(R;(n, x)) (perhaps in the sense of
a limit) is always a rational multiple of 7.
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(b) The functions arctan(R;(n, x)) are not defined at the roots of the denominator of R;(n, x).
However, and because arctan(oo) — arctan(—o00) = 7, it is clear that, at every x that is a
root of the denominator of R;(n, x), the jump arctan(R;(n, x*)) — arctan(R;(n, x 7)) is a
multiple of .

Let us now take any function of the form

N N
Tk .
F(x) = — arctan(R; th =0 27
(x) E P arctan(Rj, (ng, x))  wi E r, =0, (27)
k=1 k=1
defined in R except at the roots of the denominators. Since % arctan(R(n, x)) =n/(1 + x?),
it is clear that
N e n
’ k k
F'(x)= E ——— =0,
@ o e L+

so the function F(x) is piecewise constant (the continuity and the differentiability disappear
only at the roots of the denominators). Thus, as a consequence of (27), (a) and (b), we have
the following result.

Theorem 2. Let Ro(n, x), Ri(n,x), Ry(n,x) and R3(n, x) be the rational functions with
integer coefficients defined in (19), (21), (20) and (22), respectively, withn =0, 1,2, ..., and
letry, k =1,2,..., N, be integers such that Z,]{VZI ry = 0. Then, for any x € Q we have the
Machin-like formula

N

143 r

Z — arctan(R, (ny, x)) = -, (28)

1 Ny N
with r/s € Q (notice that, as the Rj(n, x) are rational functions with integer coefficients, the
functions arctan that appear in (28) are evaluated at rational values).

Let us make some comments on this result. First observe that »/s is constant on intervals of
the variable x, but the constant changes when any of the R;(n, x) involved in (28) has a root
at the denominator. Figs. 1, 2 and 3 show, in a graphical way, three examples of the theorem
(they are simple examples, without any special interest). Observe that, with the notation of
Theorem 2, the coefficients of arctan in Fig. 1 should be written as 1—32 and ’le, respectively,
to get 7| + r, = 0; and the same in Fig. 2 with 3% and =,

Actually, it can happen that F(x) in (27) (or the left-hand-side sum in (28)) is the constant
zero function in some of those intervals, and then r/s = 0 in that interval; but, of course, this
is not the usual situation. For instance, this happens around x = —1 in the case of Fig. I.

An important point is that, if we want to use (28) to evaluate m using the Taylor
expansion (2), we need that the R, (ny, x) satisfy |R;, (ng, x)| < 1. Let us now recall that

-1 -1
Ro(n,x) = — d R;(n,x) = ——. 29
2 ) Ro(n, x) o om0 Ry(n, x) 29
Moreover, the function arctan satisfies arctan(—1/¢) = — arctan(1/¢) and
1
arctan (;) = sgn(t)% — arctan(z). (30)

Thus, if we use instead R; with the notation 0’ = 2, 1’ = 3,2 = 0 and 3’ = 1, in the
case of (28) with a |Rj, (ni, x)| > 1 we can replace arctan(R; (n;, x)) by the corresponding
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Fig. 1. The function %(4 arctan(R3(3, x)) — 3 arctan(Ro(4, x))), for x € (=5, 5).

Fig. 2. The function 2 (7arctan(R3(13, x)) — 13 arctan(Ro(7, x))), for x € (=5, 5).

bs

FLe

Fig. 3. The function 2 (75 arctan(R3(13, x)) —  arctan(Ro(7, x)) + § arctan(R; (8, x))), for x € (=5, 5).
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arctan(R it (ng, x)), that will satisfy |R it (ng, x)| < 1, so we can use the Taylor expansion. (This
cannot be done if Rj, (n, x) = %1, but to evaluate our expression in those x is of no interest
because arctan(d=1) = £ /4, so the corresponding summand arctan(Rj, (14, x)) can be removed
from the formula.)

The use of (30) in the above mentioned procedure that replaces R;, by R it modifies the
identity (28) to a new identity of the same kind with all the |R;(n, x)| < 1. In this process,
and since arctan(—1/¢) = — arctan(1/t), the corresponding 7 in the condition Z,ﬂvzl rr, =0 on
the coefficients becomes —ry. But, at the same time, the value of /s changes; in particular, it
can become to be 0 and in this case we get a useless Machin-like identity.

Finally, we want to comment that Theorem 2 extends some of the results of [4], where the
authors prove that, for a positive integer n,

1
n arctan <—> + arctan (R3(n, x)) = Cn,
X s
with r/s € Q. Recall that Ry(1, x) = —1/x and then this equality can also be written as
—% arctan (Ry(1, x)) + n arctan (R3(n, x)) = C]T,
n s

that is of the form (28). In that paper, the rational functions Rz(n, x) are obtained in a very
different way. They are given via a recurrent relation between polynomials that are a particular
case of the so called Rédei polynomials, see [19].

3.4. Some examples

With the notation of the R;(n, x), the ten sporadic cases of Theorem 1 (in particular, this
includes the four classical examples by Machin, Euler, Hermann and Hutton mentioned in the
introduction) can be obtained, in the same order as in the theorem, as follows:

4 arctan(Ry(1, x)) — arctan(R3(4, x)) = & /4, with x = 1/5,

2 arctan(R(1, x)) — arctan(R3(2, x)) = /4, with x =1/2,

—% arctan(Ry(2, x)) 4+ arctan(R3(3, x)) = 7 /4, with x =3,

— arctan(Ry(3, x)) + 3 arctan(R3(1, x)) = w /4, with x = 2,

% arctan(Ry(1, x)) — % arctan(R(4, x)) = /4, with x =2/3,
3 arctan(Ro(3, x)) — 3 arctan(Ry(1, x)) = /4,  with x =2,
2 arctan(Ro(1, x)) — arctan(R3(2, x)) = /4, with x = 2/5,
2 arctan(R(1, x)) — arctan(R3(2, x)) = /4, with x = 1/3,
—% arctan(Ry(2, x)) 4 arctan(R3(1, x)) = 7 /4, with x =3,
2 arctan(Ry(3, x)) — 3arctan(R (2, x)) = w/4, with x =2,

while the two parametric families correspond to

1 1

arctan (R() (1, 20+1—_|_1>> — arctan (R3 <], m))
1 1

arctan (Ro <1, m)) — arctan <R3 (1, m)) =

for a € N*,

Al &9

’
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It is not difficult to identify many other two-term well-known Machin-like formulas by
means of our notation. Let us give some examples, with their corresponding Lehmer measures,
denoted by p. The combination 5 arctan(R;(2, x)) — 2 arctan(Ry(5, x)) for x = 3 gives the
formula

1 3 T
5 arct = 2 arct — | =—, ~ 1.88727. 31
arc an(7>+ arctan (79> 1 " 31
The combination 22 arctan(R,(17, x)) — 17 arctan(R3(22, x)) for x = 1/2 gives
24478 685601 b4
22 arctan + 17arctan | ——— | = —, w ~ 1.14343. (32)
873121 69049993 4

Finally, 22 arctan(Ry(1, x)) — arctan(R3(22, x)) for x = 1/28 gives

1 1744507 482 180328 366 854 565 127 T
22 arctan | — ) + arctan = —,
2 98 646395734210062276 153190241239 4

n~0.901429.

Of course, each of the Machin’s formulas appearing in this paper can be checked by direct
multiplication of its associated Gaussian integers. For instance, (31) and (32) hold because
(74 i)Y°(79 + 3i)? = 235191 + i) and

(873 121 + 24 478i)**(69 049993 + 685601:)'7 = 285%74(1 4 /).

It seems to us that our formulas are likely to reproduce most of the known Machin’s type
formulas with two terms, as well as to obtain new ones with N = 2, but are not enough in
general to include all formulas with N > 2, like for instance the ones appearing in [14]. In
any case, two term formulas have been also shown to be useful as starting points to produce
formulas with more terms, see for instance the procedures developed in [3,8,22,24].

Although the first main aim of our paper was to produce Machin-like identities with
arbitrarily small Lehmer measure, with the help of Theorem 2, it is not difficult to look for
examples satisfying this property. It is enough to take N = 2 and to use a suitable strategy,
with the help of any computer algebra system.

We want to get two functions R;(n, x) and R;(m, x) whose absolute values are “small” at
the same x, to guarantee that the corresponding series (2) converges quickly (that is, “few”
summands of the series are necessary to get a good precision). This is what happens with the
Machin-like identities having small Lehmer measure. With the aid of a computer, we can look
for these x with different strategies:

e Searching numerically for minima of each function of type R;(n, x)> + R;(m, x)* (or
similar, since, for example, we can put different weights or exponents on the two
summands), and imposing that the value of the resulting function is small enough.

e By numerically identifying intervals in which, simultaneously, —& < R;(n,x) < ¢ and
—& < Ri(m, x) < ¢, for ¢ > 0 fixed beforehand.

In both cases, in order to obtain “nice” expressions, it is of interest to take x rational with a
numerator and denominator that are not too large. This can be achieved by taking convergents
of continued fractions of numbers that we have obtained with the previous strategies.

A couple of new Machin-Like identities have been obtained with the above strategy (with
their corresponding Lehmer measure (). Using R;(n, x) with big values of n it is easier to find
examples with small Lehmer measure, but then we end up with fractions a;/b; where both a;
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and by have many digits. In this case, we denote f; to indicate an irreducible fraction with r
digits in the numerator and s digits in the denominator.

e The relation 33 arctan(Ry(1, x)) — arctan(R3(33, x)) with x = 1/42 gives
33 arctan(1/42) — arctan(fssf) =m/4, wn~ 0.880916.

e The relation 48 arctan(Ry(1, x)) — arctan(R3(48, x)) with x = 9/550 gives
48 arctan(9/550) — arctan(f,3) = 7 /4, p ~ 0.765513.

To evaluate R;(n, x) for very big values of n (say, for instance, n > 100), it is not a good
idea to use their rational expressions given in (19), (20), (21) and (22). For instance when n is
odd, both the numerator and the denominator are polynomials with n 41 non-zero monomials,
see (21). From a computational point of view, it is better to proceed as follows. In practice,
we have used these methods in some of the examples that appear in the next section.

Because Ry(n, x) = tan(nf) with x = tan6 we have

sin(nf) Im((cos 6 + i sin9)")
cos(nb) Re((cos® +isind)")

Ro(n, x) = tan(nf) =

Dividing both the numerator and the denominator by cos”(6) we get

Im((cos@ + i sin 9)”) _ Im((l + i tan 9)”) _ Im((l + ix)”)
Re((cos@ +isinfy')  Re((1+itand)r)  Re((l1+ix)")’

Ro(n, x) =

If x € Q is fixed, we can evaluate (1 + ix)" via successive squaring (this is particularly easy
if n is a power of 2). Thus, (1 4 ix)" is a number in Q[i], and using it we obtain Ry(n, x).
In the same way, using R;(n, x) = tan(nf + m/4) with x = tan6, we have
sin(nf + w/4)  cos(nf) + sin(nd)
cos(nf + 7t/4) _ cos(nf) — sin(nd)
Re((cos 0 +isin0)") + Im((cos 6 + i sin0)")
- Re((cos 0 +isin0)") — Im((cos 6 + i sinf)")
Re((1+itan6)") +Im((1 +itan6)")  Re((1 +ix)") + Im((1 + ix)")
T Re((1+itan6)) —Im((1 +itan6))  Re((1+ix)") — Im((1 +ix)")’

Rl(l’l, X) =

and again we can evaluate (1 + ix)" by means of successive squaring. Using (29), we get the
corresponding expressions for R,(n, x) and R3(n, x).

In the particular case of n = 2™, there is another clever way to evaluate R;(2", x): using (26)
we can write R;(2™, x) as a composition of successive Ry(2, x) with a final R;(2, x); i.e.,

R;2", x) = R;2, R2" "2, x))

(to avoid confusion with multiplicative powers, we use f°" to denote the composition of the
function f with itself n times). In the above, we have m rational functions (with numerators
and denominators of degree 1 or 2) that are easy to evaluate. Computer experiments show that,
for n = 2™, this method is faster than the previous procedure based on computing (1 + ix)"
via successive squaring.
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3.5. Machin-like identities with small Lehmer measure

With the help of the functions R;(n, x), we can prove that there exist two-term Machin-like
identities with Lehmer measure as small as we want. To do this, we use standard properties of
the continued fractions. The formulas with Lehmer measure as small as desired can be given
explicitly.

For a real number x, let us denote its continued fraction by x = [cy, c1, ¢2, 3, ...], and let

Pr/qr = [co, c1, €2, ..., ], with k =0, 1,2, ..., be its convergents. It is well known that
1
xo P L (33)
qdk qx

Theorem 3. For every ¢ > 0 there exist positive integers n, by, by, and another integer a,

with 0 < |ay| < by, such that the Machin-like identity
1 ar T
narctan — — arctan — = — (34)
by b, 4

has Lehmer measure (10) less than .

Proof. Let py/qi be the convergents of the continued fraction of 7. By (33),

1
Eo(2).
9k dx
SO
b4 1 (1)
— - —l=0(=].
dpr  dqx q;

Taking £ = 1/(4qy), the alternating series (2) easily gives

wn(5) =m0 () =am o)
arctan | — = — — = — — .
4qy 4qy ai 4py ai

Multiplying by n = p;, we obtain

narctan®) = pe (——+0 (<)) =Z+0(L). (35)
4py a; 4 ar

Note that the derivative of g(x) = narctan(x) — arctan(R3(n, x)) is 0, so g is piecewise
constant. Because g(0) = n arctan(0) — arctan(R3(n, 0)) = 0 — arctan(—1) = /4, there exists
an interval Z around O where the value the function is 77 /4 and on Z,

n arctan(x) — arctan(R3(n, x)) = % (36)

It suffices to show that & = 1/(4q;) belongs to Z, which we do below.
By definition, see (23), the formula

3 T
R3(n, x) = tan n@—i—T = tan (n@ — Z), X =tand,

is valid on an interval for the variable 6 on which tan is a bijective function. That is, for
—m/2 <nb —mn/4 <m/2, or —mw/4 < nb < 37 /4. Because tan@ ~ 6 for small 6, this is the
case when —7/5 < nx < 37 /5 and 6 is close to zero. Under this condition, we have
b4 b4 T
n arctan(x) — arctan(R3(n, x)) = nf — arctan (tan (n@ — Z)) =nb — (n@ — Z) = T
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as desired. Since certainly, £ = 1/(4qy) satisfies —n/5 < né = py/(4qr) < 3m/5, because
Pr/qr are the convergents of .

Once proved that & = 1/(4qy) satisfies (36), it follows from (35) and (36) that |R3(n, &)| =
ol /q,f). We then have the Machin-like formula (34) with by = 1/§ = 4q; and a,/b, =
R3(n, &).

Finally,

1 1 1 * 1
e ~olie) o)
log,((1/8) ~ log;o(1/|R3(n, §)I) log,o gk k
so taking k big enough, the thesis follows. The step (%) can be justified as follows: the
recurrence relation

Gk = Axqk—1 + qr—2 = Gk—1 + gk

(with a; > 1 being the partial quotients of the continued fraction) gives that ¢ > Fj, where
F,, is the mth Fibonacci number. Consequently, g¢; > ¢*~2 with ¢ the golden section, so
logl() qk > k . D

Corollary 4. For every ¢ > 0 and every N > 2 there exists a Machin-like identity

N N
Z T arctan (ZE) = % with Hi”k # 0,
K=1 "k k k=1

which has Lehmer measure (10) less than ¢.

Proof. Given one of the two terms formulas obtained in Theorem 3, with arbitrarily small
Lehmer measure, any of its arctangent terms can be split into two new ones by using the well
known identity

arctan(x) = 2 arctan(2x) — arctan(4x3 + 3x),

which once more can be easily proved by derivation. By applying this procedure N —2 times we
arrive to the desired result. As we have already commented, other ways to split one arctangent
term into several ones are developed in [3,8,22,24]. [

Note that the above proof is constructive, and we can use the procedure given in the proof
to explicitly state Machin-like formulas, see Table 1. We used the successive squaring method
explained in the previous section to compute the values a,/b, that appear in that table.

To conclude this section, let us see another way to obtain two-term Machin-like identities
with small Lehmer measure. As shown in the proof of Theorem 3, the function g(x) =
n arctan(x) — arctan(R3(n, x)) is piecewise constant and its value is 77 /4 in an interval around O.

Then, for fixed n big enough, we can take x € Q near }l% by using a convergent of the
continued fraction of %%, and thus we have a;/b; = x and ay/b, = Ri(n, x). In this way,
and because x and Ri(n, x) are small numbers, the Lehmer measure of the corresponding
Machin-like formula will be small (but the integers a, and b, have a lot of digits).

We can do this with n = 2" and then use (26) with j = 3 to compute a,/b, = R3(2", x).
This method is very fast. For m < 30 and using three convergents for every Zim 7> we have found
the corresponding Machin-line formulas, and computed their Lehmer measures. We summarize
a collection of these formulas in Table 2.

The Machin-like formulas corresponding to the first convergents of 23 (i.e., a;/b; = 1/40)
and 2% (i.e., a; /b, = 1/85445659) have been previously found in [1,2] by a different method.
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Table 1

N?:::lfm like identities n arctan(1/b;)—arctan(az/b2) = 7, with the notation of the proof of Theorem 3. The notation
f{ is used to indicate an irreducible fraction with r dlglts in the numerator and s digits in the denominator.

k Pi/qk ai /by ax/by Lehmer measure
1 22/7 1/28 f3 ~0.0000176845 0.901 429

2 333/106 1/424 31~ 0.000022261 1 0.59555

3 355/113 1/452 forl ~1.21473-107° 0.545675

4 103993/33 102 1/132408 S8 ~ 1.59405 - 10710 0.297 306

5 104 348/33215 1/132860 8% ~ —6.80756 - 10711 0.293 54

6 208341/66317 1/265268 f129966 ~ 343096 - 107! 0.279937

7 312689/99 532 1/398 128 FLRIS ~ 563418 - 10712 0.267 466

8 833719/265 381 1/1061524 FRO80 ~ 2411210712 0.252025

9 1146 408/364 913 1/1459652 T966733 ~ —2.79808 - 10713 0.241887

10 4272943/1360 120 1/5440480 FR 80082 ~ 1.09862 - 10713 0.22563

11 5419351/1725033 1/6900 132 eIy ~ —3.75733 - 10717 0.207 106

12 80143857/25510582 /102042328 fSH1850535 ~ 1.699 14 - 1071 0.188275

13 165707 065/52 746 197 1/210984788  flE038I200 ~ 35139710717 0.180906

14 245850922/78256779 1313027116 7588646642 ~ 222166 - 10717 0.177756

15 411557987/131002976 1/524011904 i ~ 3887531071 0.172125

4. Machin’s formulas with powers of the golden section

Recall that ¢ = (1++/5)/2 denotes the golden section. There are some linear combinations
of arctangents of powers of the golden section which evaluate to a rational multiple of = such
as

1 3 1 1 6 2 5
= 3 arctan(¢”) + 3 arctan(¢) = 3 arctan(¢”) + 3 arctan(¢”),

FNGIE QN

1 5 3 3 1 s. . 3
=3 arctan(¢’) + 7 arctan(¢p”) = -5 arctan(¢’) + 2 arctan(¢).

The first three of them appear for instance in [9,17]. The last one, although can be easily
obtained from the first three, does not appear in the above papers. They are all of the form

% = g arctan(¢*) + b arctan(¢®), 37)

for positive integers k > ¢ with some rational numbers a, b. Via the formula arctan(x) +
arctan(1/x) = 7 /2 valid for all positive real numbers x, each one of the above formulas gives
rise to three additional formulas of the same kind with different (a, b), replacing (k, £) by
(£, ££). Via the above identity, we see that formula (37) holds as well with a = b = 1/2,
whenever k + £ = 0. So, eliminating such trivial solutions, we see that Eq. (37) holds in
kK, €Z, || > €],k +£€ #0 and a, b € Q for the following quadruples:

(1,1 g 3,1),  (1,1,-3,-1), (—1 L=3,1), (1,-1,3,-1),
( 6 2) (17 29 _65 _2) ) ( _6 2) (15 _25 67 _2) )
(3,2,5,3),  (1,3,-5,-3), (?1 g -5,3), (1,-3,5,-3),
g %75’ ., (F35-5-1), G351, (G550
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Table 2

Machin-like formulas 2" arctan(a; /b;) — arctan(az /b2) = %, corresponding to 2" arctan(x) — arctan(R3 (2", x)) = %,
with x one of the first convergents of the continued fraction of 71/2"*2. The notation fI is used to indicate an
irreducible fraction with r digits in the numerator and s digits in the denominator.

m ai /by ar /by Lehmer measure
23 1/40 20~ 0.014436 1.16751
= 1/41 15 ~ —0.005065 11 1.0557

= 3/122 85~ 0.001328 54 0.969 041
26 1/81 4~ 0.004 68519 0.953294
= 2/163 fi38 ~ —0.000 161 494 0.786 967
= 39/3178 220 ~ —0.000 037964 2 0.749 474
27 1/162 f78 ~0.00471529 0.88242
= 1/163 261 ~ —0.000 131942 0.709 799
= 39/6356 182 ~ —8.39746- 1076 0.649 066
28 1/325 803 ~ 0.002291 66 0.776917
= 1/326 1S40 ~ —0.000 124553 0.654 001
= 19/6 193 o2 ~2.24663 1076 0.574947
2° 1/651 fi36! ~ 0.00108355 0.69267
= 1/652 18~ —0.000 122706 0.611015
= 9/5867 FLE8 ~ 0.000011 1404 0.557238
210 1/1303 3033 ~ 0.000480 424 0.622385
= 1/1304 f3 187 ~ 0.000 122244 0.576 572
= 4/5215 5303 ~ 0.000028336 5 0.540901
220 1/1335088 Sl ~ 2522871077 0.314 81
= 2/2670177 STIT ~ —4.18498 - 1078 0.298 784
= 7/9345619 R ~ 1.6974 - 10710 0.265 604
22 1/2670176 FRETES ~ 2522871077 0.307 163
= 1/2670177 fi3 8T ~ —4.18497 - 1078 0.291137
= 7/18691238 D202~ 1.69851 - 10710 0.25796
2% 1/21361414 fiB o tee ~ 3.16846 - 1078 0.269781
= 1/21361415 2045356 ~ —5.08256 - 1077 0.257 003
= 7/149 529 904 FTLON ~ 1.69887 - 10710 0.238788
2% 1/42722829 o ~ 1.3301 - 1078 0.258016
= 1/42722 830 Y ~ —5.08256 - 1079 0.251621
= 3/128 168489 1R WIA ~ 1.0453 1077 0.242399
2% 1/85445659 R IS5807 ~ 4.10922 - 1077 0.245319
= 2/170891319 S s ~ —4.86669 - 10710 0.233456

(continued on next page)

Eq. (37) in positive integers «, £ was treated in [17]. The main result in [17] claims to have
found all solutions of Eq. (37) in integers k, £ with x +£ # 0. However, [17] missed the last row
of solutions indicated above corresponding to («, £) = (5, 1) and its variants with (£5, £1). In
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Table 2 (continued).

m ai /by az /by Lehmer measure
= 9/769010935 fi36223936 ~ 2.3986 - 101071 0.220238
2% 1/683 565275 [ 02329250 ~ 6.62304 - 10710 0.222134
= 1/683 565276 ITIS L3638 ~ —4.86669 - 10710 0.220568
= 2/1367130551 FrloTo0631 ~ 8.78178 - 107! 0.212628
2% 1/1367 130551 oI 387025 ~ 878178 - 10711 0.208 898
= 6/8202783307 Fio8i5 034813 ~ —7.92992 - 1012 0.199 544
= 7/9569913 858 FIOTISOI8 8] 5,748 33 . 10712 0.198 424

this section, we fill in the oversight from [17] and show that there are no other solutions up to
signs except for the above four.

Writing as in [17], a = u/w, b = v/w with coprime integers u, v, w and w > 1, Eq. (37)
leads to

(L +i¢)" (1 +igH" = (1 —ig)*" (1 —igpH™ (38)

(formula (4) in [17]). The norm of the element 1 + i¢* in the biquadratic field K = Q(, NG
is SFK2 or Li according to whether « is odd or even, where F,, L, are the kxth Fibonacci and
Lucas companion of the Fibonacci numbers, respectively. Since the above number is never a
power of 2 for any positive integer «, it follows that for every odd prime factor p of the above
number, there is a prime ideal 7 in Ok dividing p such that 7 divides 1 4 i¢*. Note that 7
does not divide 1 — i¢*, since otherwise 7 divides (1 + i¢*) + (1 — i¢*) = 2, which is false
since 7 divides the odd prime p. The same argument applies to 1 4+ i¢p¢. Using the Primitive
Divisor Theorem for Fibonacci and Lucas numbers, it is argued in [17] that k < 12, so one
is left with finding all pairs of positive integers (k, £) in the range 1 < £ < « < 12. Then
in [17] (see formula (5)) it is said that 7 divides 1 + i¢* and 1 — i¢¢ and it is shown that,
under this assumption, (x, £) = (6, 2), (5, 3), (5, 1). Looking at formula (4) in [17] (or formula
(38)) however, the assumption that 7 divides 1 + i¢* and 1 — i¢¢ implies that # and v have
the same sign. In fact the solutions from [17] have a and b with the same sign. Thus, the
oversight comes from not having treated the case when u and v have opposite signs in [17].
In this case, & divides 1 4+ i¢* and 1 + i¢£. This is the case missed in [17]. At any rate, all
examples must satisfy that the set of odd prime factors of the two numbers

Nijo(1 +i¢*) and  Ngsg(l +i¢")

must be the same. One calculates all such numbers for 1 < £ < « < 12 and gets the four
solutions (k, £) = (3, 1), (5, 1), (5, 3), (6, 2) and no others.
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