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H I G H L I G H T S

Using formaldehyde retrievals to probe isoprene trends and the role of drivers.
Combined effect of temperature and water availability modulate isoprene emissions.
Water availability sustains isoprene emissions over a dry region such as Australia.
Isoprene emissions increase under water stress across the Amazon Basin and Europe.
Mild/short water stress amplifies isoprene emissions while severe/long reduces them.
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A B S T R A C T

Isoprene, produced by plants in response to multiple drivers, affects climate and air quality when released into
the atmosphere. In turn, climate change may influence isoprene emissions through variations in occurrence
and intensity of types of stress that affect plant functions. We test the effects of multiple drivers (temper-
ature, precipitation, soil moisture, drought index, biomass, aerosols, burned fraction) on space retrievals of
formaldehyde (HCHO) column concentrations, as a proxy for isoprene emissions, at global and regional scales
over the period 2005–2016. We find declines in HCHO column concentrations over the study period across
Europe, the Amazon Basin, southern Africa, and southern Australia, and increases across India, China, and
mainland Southeast Asia. Temporal effects and the interactions among drivers are analyzed using generalized
linear mixed-effects models to explain trends in HCHO column concentrations. Results show that HCHO column
concentrations increase with temperature at the global scale and across the Amazon Basin and India–China
regions, even under low levels of precipitation, provided that sufficient soil moisture can maintain vegetation
functions and the associated isoprene emissions. Water availability sustains isoprene emissions in dry regions
such as Australia, where HCHO column concentrations are positively associated with mean precipitation, with
this relation intensifying at low levels of soil moisture. In contrast, isoprene emissions increase under water
stress across the Amazon Basin and Europe, where HCHO column concentrations are negatively associated with
levels of soil moisture and drought as calculated by the Standardized Precipitation–Evapotranspiration Index
(SPEI). This study confirms the key role of temperature in modulating global and regional isoprene emissions
and highlights contrasting regional effects of water stress on these emissions.
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1. Introduction

Plants produce and emit more than ten thousand types of bio-
genic volatile organic compounds (BVOCs) (Baldwin, 2010) in response
to biotic and abiotic triggers, such as attack by insects, herbivores
and pathogens, impacts of radiation, air temperature, nutrient and
water availability, carbon dioxide and ozone levels, and land use
change (Kesselmeier and Staudt, 1999; Peñuelas and Llusià, 2001; Ni-
inemets et al., 2004; Laothawornkitkul et al., 2009; Fernández-Martínez
et al., 2017). Isoprene, which accounts for about 50% of total global
BVOC emissions (Guenther et al., 2012), plays an important role in the
low troposphere and boundary layer chemistry, due to its abundance
and chemical reactivity. Once released into the atmosphere, isoprene
influences the levels of greenhouse gases and air pollutants, such as
methane, ozone, and aerosols, that subsequently affect climate and air
quality (Chameides et al., 1988; Atkinson and Arey, 2003; Pacifico
et al., 2009). Global warming and modified precipitation regimes are
expected to affect isoprene emissions (Peñuelas and Staudt, 2010)
through increases in the occurrence and intensity of severe thermal and
water stress that influence plant functions (Meleux et al., 2007; Langner
et al., 2012; Churkina et al., 2017); however, the magnitude and sign
of the effects of increases in temperature and water stress on isoprene
emissions are still poorly known.

While increases in temperature enhance isoprene emissions, effects
of water stress are more variable. For example, severe or long-term
water stress reduces BVOC emissions, whereas mild or short-term water
stress temporarily amplifies or maintains emissions to protect plants
against on-going stress (Niinemets, 2009; Peñuelas and Staudt, 2010).
A review of studies of BVOC emissions under water stress reported
decreases in emissions in 50% of cases, increases in 25%, and no
change in the remaining 25% (Peñuelas and Staudt, 2010), with such
variability being due to, at least partially, differences in experimental
protocol (e.g., intensity and timing of water stress, target biogenic
compounds, and plant species). Recent meta-analyses of observational
studies of isoprene emissions reported a 23% decrease when relative
soil water content drops to 55% (relative to 100% soil water content
in the control experiment) (Feng et al., 2019) and no intermediate
increase under mild or short-term water stress, in contrast to other
BVOCs such as monoterpenes and sesquiterpenes (Bonn et al., 2019).
These reviews rely on observational data from the field, in situ, and
laboratory experiments that are characterized by taxonomic and ge-
ographic biases. These biases lead to a lack of understanding of the
drivers of isoprene emissions, such as water availability, solar radiation,
plant biomass, and temperature, and their combined effects at large
spatio-temporal scales.

Trends in drivers of isoprene emissions have been recorded over
the last decades. At the global scale, land surface air temperature
has increased by 1.41 ◦C over the period 1880–2018, and over the
ast 20–30 years photosynthetic activity has risen by 22%–33%, al-
eit with some spatial variability (Jia et al., 2019). Other drivers of
VOC emissions show high levels of spatio-temporal variability, such
s precipitation and soil moisture (Dai, 2013; Hartmann et al., 2003),
requency and intensity of extreme weather events (heatwaves and
roughts) (Jia et al., 2019), and the switch in surface solar radiation
rom ‘‘global dimming’’ (1950–1980) to ‘‘global brightening’’ (after the
990s) (Hartmann et al., 2003) in response to changes in regional
erosol loads (Wild, 2009, 2012; Streets et al., 2009). These trends may
nfluence isoprene emissions and consequently affect air quality and
limate.

To probe trends in isoprene emissions and possible links with trends
n isoprene drivers, space retrievals of formaldehyde concentrations
rovide a powerful, globally homogeneous surrogate. Formaldehyde
s an intermediate by-product of the oxidation of volatile organic
ompounds (VOCs), where oxidation of methane by the hydroxyl rad-
cal represents the dominant source (60%) of HCHO, followed by
2

xidation of biogenic (30%), anthropogenic (7%) and pyrogenic (3%)
VOCs (Stavrakou et al., 2009). While methane contributes to the back-
ground HCHO abundances, major variations in boundary layer HCHO
are driven by isoprene, due to its high molar yield and rapid production
of HCHO. This contribution can reach up to 85% during the growing
season (Franco et al., 2016) at a spatial scale of ca. 10–100 km (Palmer
et al., 2003). Curci et al. (2010) showed that oxidation of monoter-
penes contributes very little to HCHO column concentrations across
Europe. Hence, estimates of biogenic monoterpene concentrations are
not inferred by inversion methods, because sources of isoprene and
monoterpenes often co-occur in forested regions and HCHO formation
from monoterpenes is small compared to that from isoprene. Thus,
retrieval of HCHO column concentrations from remote sensing UV/Vis
solar backscatter instruments provides a proxy for local emissions of
isoprene, but is not used for terpenes.

Studies have reported trends in formaldehyde column concentra-
tions and their drivers (De Smedt et al., 2010, 2015; Stavrakou et al.,
2018), e.g. for specific regions, such as the United States (Zhu et al.,
2017), and using model-derived isoprene emissions (Stavrakou et al.,
2014; Bauwens et al., 2016; Chen et al., 2018; Yáñez-Serrano et al.,
2020; Wang et al., 2021; Opacka et al., 2021). These studies high-
lighted the main role of temperature and radiation in driving trends
in HCHO concentrations and isoprene emissions. To explore the role
of water availability and by assuming that ∼ 70–90% of isoprene
production is directly linked to photosynthesis, Zheng et al. (2015)
analyzed the covariance in global HCHO column concentrations and
gross primary productivity (GPP) with meteorological drivers (surface
temperature, downward shortwave radiation, photosynthetically active
radiation, precipitation) to evaluate isoprene emissions produced by
the global Earth system model NASA ModelE2-YIBs (The Yale In-
teractive Terrestrial Biosphere model). The authors applied different
isoprene algorithms, some of which included soil moisture dependence.
When soil moisture dependence was accounted for, Zheng et al. (2015)
found a positive correlation between isoprene emissions and photo-
synthesis and a negative correlation between isoprene emissions and
HCHO variability, with the opposite occurring when soil moisture
dependence was neglected. Zheng et al. (2015) thus suggested the
important role of water availability on the intra-seasonal to interan-
nual timescales that needs to be further explored. However, among
different drivers, they could only consider precipitation from reanalyses
to describe water availability. Here we expand on previous analyses
by : (i) investigating the spatial and temporal variability of trends
in drivers and HCHO concentrations, (ii) accounting simultaneously
for multiple drivers (temperature, water availability, biomass, radia-
tion), and (iii) including diverse drivers that describe water availability
(i.e., precipitation, soil moisture, and a drought index).

Based on remotely-sensed HCHO column concentrations, we investi-
gate the relationship between global isoprene emissions and associated
global change drivers over the period 2005–2016. We use observations
of plant biomass to account for indirect effects of changes in GPP on
isoprene emissions (Unger et al., 2013; Zheng et al., 2015), and we
apply observations of the aerosol layer and burned fraction to account
for anthropogenic and pyrogenic sources of formaldehyde (Stavrakou
et al., 2018) and provide a proxy for diffuse radiation (Strada and
Unger, 2016; Unger et al., 2017). We ultimately aim to quantify trends
in remotely-sensed HCHO column concentrations and the effects of
environmental global change drivers, their spatial variability and their
interactions with HCHO column concentrations. In particular, we aim
to assess whether trends in HCHO concentrations are sensitive to vari-
ations in water availability, and whether the sign of this relationship
changes across different regions of the world.

2. Data and methodology

2.1. Observational data-sets

For the analysis period 2005–2016, we use global observation

datasets of HCHO column concentrations and environmental drivers,
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Table 1
Summary of observational data-sets used in the present study.

Dataset (version) Variable Units Spatial res. Period Reference

Ozone Monitoring Instrument (OMI-L3 vQA4ECV) Formaldehyde (HCHO) column concentrations 1015 molec cm−2 0.25◦ 2005–2017 De Smedt et al., 2018
Climatic Research Unit gridded Time Series (CRU-TS v4.03) Mean Surf. Air Temperature Celsius 0.50◦ 1901–2018 Univ. East Anglia CRU Harris et al., 2020

Mean Precipitation Rate mm month−1 0.50◦ 1901–2018 Univ. East Anglia CRU Harris et al., 2020
Global Land Evaporation Amsterdam Model (GLEAM v3.3b) Root-Zone Soil Moisture (RZSM) m3 m−3 0.50◦ 2003–2017 Martens et al., 2017
Standardized Precipitation–Evapotranspiration Index (SPEI v2.6) SPEI unitless 0.50◦ 1901–2018 Vicente-Serrano et al., 2010
Copernicus Global Land Service 1-km Version 2 Leaf Area Index (LAI) m2 m−2 0.50◦ 2005–2017 Verger et al., 2019
Moderate Resolution Imaging Spectroradiometer (MODIS) Terra
and Aqua monthly mean (C6.1-M3)

Aerosol Optical Depth (AOD) unitless 1.0◦ 2003–2019 Levy et al., 2013

Global Fire Emissions Database (GFED v4.1s) Burned Fraction (BF) fraction of grid cell 0.25◦ 2003–2016 Giglio et al., 2013
2

m
m
B
p
a
s
h

c
b
w
i
r
t

2

p
p
r
/
t
i
s
s
a
m
e

2

c
p
t
t
i
d
a
D
t
a
(
d
L
n
u
a
F
(

comprising surface air temperature, precipitation, root-zone soil mois-
ture, the Standardized Precipitation–Evapotranspiration Index (SPEI),
the Leaf Area Index (LAI) as an indicator of biomass and plant pro-
ductivity, the burned fraction (BF) as an indicator of fire activity and
pyrogenic sources of HCHO, and the aerosol optical depth (AOD) as a
proxy for radiation and pyrogenic sources of HCHO ( Table 1).

2.1.1. Formaldehyde column concentrations
We use gridded, Level 3 (L3), monthly mean retrievals of HCHO

tropospheric column concentrations provided by the Ozone Monitoring
Instrument (OMI) for the period 2005–2016 at a resolution of 0.25◦

http://www.qa4ecv.eu; De Smedt et al., 2015. The OMI instrument
s a nadir-viewing imaging spectrometer that measures solar radiation
ackscattered by the Earth’s atmosphere and surface in the UV–Vis
avelength range (270–−500 nm) (Levelt et al., 2006). It provides
ear daily global coverage (De Smedt et al., 2015) due to its Sun-
ynchronous polar orbit that crosses the Equator around 13:30 Local
ime (in ascending mode).

Retrieval of OMI HCHO tropospheric columns relies on an improved
ifferential optical absorption spectroscopy (DOAS) algorithm to derive
top-down constraint of HCHO (De Smedt et al., 2018). This technique
erives the column abundance of a trace gas using measurements of
lectromagnetic radiation in a given spectral interval, whereas a-priori
rofiles are obtained from a chemistry-transport model (Brasseur and
acob, 2017). Observations with cloud fractions > 40% are filtered
ut. While no explicit correction is applied for aerosols, the cloud
orrection accounts for a large proportion of the aerosol scattering
ffect (De Smedt et al., 2015). The OMI pixel random uncertainty
s of the order of 0.8 × 1016 molec cm−2 and the systematic error
emaining for monthly and regionally averaged columns is about 20%–
0% (Stavrakou et al., 2018). Further details on OMI HCHO retrievals
nd the DOAS algorithm are described in De Smedt et al. (2015,
018) and Stavrakou et al. (2018). Hereafter, OMI HCHO column
oncentrations are referred to as HCHO columns.

.1.2. Surface air temperature and precipitation
We use gridded monthly means (1901–2018) of global (except

ntarctica) surface air temperature and precipitation at a resolution
f 0.5◦ from the Climatic Research Unit gridded Time Series (CRU-TS
4.03, https://sites.uea.ac.uk/cru/data/; Harris et al., 2020).

.1.3. Root-zone soil moisture
Global (50◦ 𝑁 to 50◦ S) gridded monthly mean estimates of root-

one soil moisture (2003–2017) at 0.25◦ spatial resolution are derived
rom the Global Land Evaporation Amsterdam Model (GLEAM v3.3b,
ttps://www.gleam.eu/). This uses satellite observations of precipi-
ation and soil moisture assimilated from passive and active C- and
-band microwave sensors of the European Space Agency Climate
hange Initiative (Dorigo et al., 2017), plus static data for soil proper-
ies, rainfall climatology, and land cover (Martens et al., 2016, 2017).
n each grid cell, land cover types influence the number of soil layers
nd the depth of the root-zone. Hereafter, we refer to root-zone soil
oisture as soil moisture.
3

.1.4. The standardized precipitation-evapotranspiration index
The SPEI is a multiscalar, standardized drought index that defines

onthly anomalies in a climatic water balance over the preceding n
onths, based on the chosen time-scale (Vicente-Serrano et al., 2010;
eguería et al., 2014). A negative SPEI indicates dryness, while a
ositive SPEI indicates wetness. SPEI values (1901–2018) are gridded
cross the global land surface (except areas of desert and ice) to a
patial resolution of 0.5◦, and we use a 1-month time scale (SPEI-1 v2.6,
ttps://spei.csic.es/spei_database).

The SPEI is derived using monthly mean temperatures to first
alculate monthly potential evapotranspiration (PET). The difference
etween monthly mean precipitation and PET provides a measure of
ater balance (surplus or deficit), on which the computation of SPEI

s based. The measures of water balance are then aggregated and the
esulting cumulative probabilities of water balance are normalized, so
hat the SPEI has an average value of 0 and a standard deviation of 1.

.1.5. Leaf area index
We use the Copernicus Global Land Service 1 km version 2 LAI

roduct derived from SPOT/VEGETATION and PROBA-V data for the
eriod from 1999 to May 2014, and from May 2014 to June 2020,
espectively, at 1∕112◦ spatial resolution and 10-day frequency (https:
/land.copernicus.eu/global/products/lai). Neural networks are first
rained to retrieve LAI from daily synthesis top of canopy reflectances
n the red, near infrared and short wave infrared. Dedicated filtering,
moothing and gap filling techniques are then applied to ensure con-
istency and continuity of the LAI time course every 10 days using
lgorithms described by Verger et al. (2014, 2019) and quality assess-
ent criteria described by Sánchez and Camacho (2017) and Fuster

t al. (2020).

.1.6. Aerosol optical depth
Aerosol optical depth is a dimensionless measure of the integrated

olumnar aerosol load and, as a consequence, of atmospheric trans-
arency, where high AOD indicates low transparency. Since 2002,
he Moderate Resolution Imaging Spectroradiometer (MODIS) aboard
he Aqua and Terra satellites provides AOD at 550-nm wavelength,
ndicating where aerosols interfere with photosynthetically active ra-
iation, with different daytime overpass: Terra at 10:30 h and Aqua
t 13:30 h. We use the Quality Assured MODIS Collection 6.1 (C6.1)
ark Target Deep Blue Combined monthly mean product (L3) from

he NASA Goddard Space Flight Center and the Atmosphere Archive
nd Distribution System Distributed Active Archive Center (DAAC)
https://ladsweb.modaps.eosdis.nasa.gov/). This is a globally gridded
ataset at 1◦ resolution covering dark and bright surfaces (MODIS
3 C6.1 AOD) (Levy et al., 2010; Shi et al., 2014) and includes sig-
ificant adjustments compared with previous collections, such as an
pdated cloud mask to retrieve heavy smoke, an improved quality
ssurance, and a spatially refined aerosol type map (Levy et al., 2013).
or each month, we compute the arithmetic mean between the Terra
MOD08-M3) and Aqua (MYD08-M3) products.

http://www.qa4ecv.eu
https://sites.uea.ac.uk/cru/data/
https://www.gleam.eu/
https://spei.csic.es/spei_database
https://land.copernicus.eu/global/products/lai
https://land.copernicus.eu/global/products/lai
https://land.copernicus.eu/global/products/lai
https://ladsweb.modaps.eosdis.nasa.gov/
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2.1.7. Burned fraction
We use global monthly burned fractions at a spatial resolution of

0.25◦ (1995–2016) from the Global Fire Emissions Database (GFED4)
(https://www.globalfiredata.org/; Giglio et al., 2013), where, starting
from 2000, the GFED4 monthly burned fraction is derived from the
500-m direct broadcast burned area produced by MODIS Collection
5.1 (MCD64A1 product). We use GFED v4.1s data (Randerson et al.,
2012) that combines 1-km thermal anomalies observed outside the
burned area maps (active fires) with the 500-m MODIS burned area,
thus including small fires that are not detected by the standard GFED4
product.

2.2. Statistical analyses

To perform statistical analyses, we aggregate monthly values to
annual means and the data are firstly remapped onto a common 1◦

patial resolution grid using a distance-weighted remapping function,
nd then spatially aggregated to a resolution of 2◦ to reduce spatial
utocorrelation and computing requirements.

.2.1. Global and regional temporal trends of formaldehyde columns
To determine temporal changes in HCHO across the study period,

e calculate annual Theil–Sen’s slopes in OMI HCHO at each grid-
ell, using the Theil–Sen slope estimator in the mblm package (Komsta,
012) of the R statistical software (R. Core Team, 2017) that provides a
edian of all slopes between paired values. This method minimizes the

nfluence of outliers in the calculation of trends as it is more robust to
utliers than linear models fitted by ordinary least squares (Stokland
t al., 2003; Ohlson and Kim, 2015). We calculate percentage Theil–
en’s slopes with respect to a reference year (at 𝑝 < 0.01) by dividing
he Theil–Sen’s slopes over 2005–2016 period at each pixel by the 2005
CHO annual concentration (De Smedt et al., 2010).

.2.2. Drivers of formaldehyde columns
The temporal contributions and the effects of the interactions among

rivers on the trends in HCHO columns are analyzed using generalized
inear mixed-effects models (GLMMs). These models include a temporal
utocorrelation structure for lag 1 (AR1), which stands for temporal
utocorrelation with the previous year in our calculation. We apply a
andom intercept model with pixel (or grid-cell) as the random factor,
hus grouping all data belonging to the same pixel. In the model,
he OMI HCHO is the response variable and the predictors comprise
urface air temperature, precipitation, root-zone soil moisture, SPEI,
AI, AOD, burned fraction, and their first-order interactions at 𝑝 < 0.01
nd 𝑝 < 0.05 for global and regional scales, respectively. All model
esiduals meet the assumptions of normality and heteroscedasticity, and
he covariation between predictors do not indicate multicollinearity
i.e., variance inflation factor, VIF≪ 10). The fitting quality of the
erived models is assessed via the r.squaredGLMM package in R
hich provides both the marginal and conditional R2 coefficient of a

ixed GLMM.
Relationships between predictors and OMI HCHO columns related

o temporal variability. Variations in driver effects on trends in OMI
CHO are tested using the TempCont package in R (Fernández-
artínez et al., 2017; Fernández-Martínez et al., 2019), which uses
LMMs to disentangle the effect of one single predictor, while taking

nto account the variance (or correlation) shared with other predictors.
hen, TempCont calculates and compares temporal trends predicted
y the GLMM for the selected predictor when it is held constant and
hen it is allowed to vary. The difference between these temporal
redictions is the average temporal contribution of that predictor to
he trend in OMI HCHO, and the difference between all individual
emporal contributions and the observed trend represents unknown
ontributions. TempCont also calculates the average sensitivity of
4

he response variable to predictor changes by dividing the temporal
ontributions by the trends of the predictor variables. All errors are
alculated using the error-propagation method.

GLMMs account for first-order interactions between predictors,
herefore we apply the visreg package in R which simultaneously
isualizes the effects of spatial variability in two explanatory variables
n the spatial trends in OMI HCHO. Using statistically significant first-
rder interactions between predictors contributing to the final GLMMs,
e produce cross-sectional plots that illustrate a 1-D relationship
etween OMI HCHO and a single predictor (continuous term) by taking
ross sections at the 10th and 90th percentiles of another predictor
fixed term). Since GLMMs and interactions accounted in the models
o not always involve the same statistically significant predictors, we
ompare cross-sectional plots that involve the same or related (e.g., for
ater availability) predictors over different regions. We apply the
empCont method to investigate the effect of trends in predictors on
rends in temporal variability in OMI HCHO columns, while we show
he spatial relationships using partial residual plots provided by the
isreg R package.

. Results

.1. Global and regional trends in formaldehyde columns

Annual average HCHO columns for the study period (2005–2016)
re higher over the south-east United States, Central America, the
mazon Basin, central and southern Africa, India, south-east China,
outheast Asia, and northern Australia (8–14 × 1015 molec cm−2 yr−1)
han across southern Australia and Europe (4–10 × 1015 molec cm−2

r−1) (Fig. 1).
While there are no clear global trends in HCHO columns (median:

.0023 𝜎 yr−1, mean: −0.0015±0.0014 𝜎 yr−1; Fig. 2.a), there are regional
ecreases where HCHO columns are high (Fig. 2.b–c). For example,
ecreases in HCHO columns between 2005 and 2016 are detected over
entral Europe and southern Africa (absolute change: −2.0 to −1.0×1015

olec cm−2 yr−1; proportional change: −2 to −1% yr−1), central-west
nd north-west Amazon Basin (absolute change: −3.0 to 1.5 × 1015

olec cm−2 yr−1, respectively; proportional change: −2 to 2% yr−1);
nd southern Australia (absolute change: −2.5 to −1.0 × 1015 molec
m−2 yr−1, proportional change: −4 to −1% yr−1). In contrast, HCHO
olumns increase over India, China and the Southeast Asian mainland
absolute change: 1.0 to 2.5 × 1015 molec cm−2 yr−1; proportional
hange: 1 to 3% yr−1).

.1.1. Spatial relationship between formaldehyde and its drivers
At the global and some regional scales (Amazon, Australia, Europe,

nd India-China), cross sectional plots show that spatial variability
n HCHO columns positively correlates with the spatial variability in
emperature (Fig. 3); however, the effect of local average precipita-
ion and soil moisture modifies this relationship across regions. At
he global scale and across India-China, the positive relation between
CHO columns and temperature intensifies (steeper slope) in areas
ith low precipitation (Figs. 3a and 3b), while over the Amazon Basin

he relation changes direction, from positive to negative, where local
ean precipitation shifts from low to high (Fig. 3.c) and where local
ean soil moisture is low (Fig. 3.d). In contrast, at the global scale,

here is no dependence of HCHO columns on temperature where soil
oisture is low (Fig. 3e).

Water availability modulates HCHO columns globally and across
ome regions (Fig. 4). At the global scale, and over the Amazon Basin
nd India–China regions, the HCHO columns are negatively correlated
ith precipitation, with behaviors that differ based on soil moisture.
t the global scale this relation is stronger where mean soil moisture

s high (Fig. 4.a), while over the Amazon Basin region the HCHO–
recipitation correlation is more negative (i.e., steeper slope) at low
oil moisture levels (Fig. 4.b). Across India and China, the negative
elation between HCHO columns and precipitation under high levels

https://www.globalfiredata.org/
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Fig. 1. Spatial distribution of annual mean of formaldehyde column concentrations provided by the Ozone Monitoring Instrument (OMI) over 2005–2016 (horizontal res.: 2◦ ×2◦).
of soil moisture becomes positive when soil moisture is low (Fig. 4.c).
In contrast, across Australia there is a positive correlation between
HCHO columns and precipitation that increases under low levels of soil
moisture (Fig. 4.d).

Concentrations of HCHO are driven by the interaction between
water availability and plant biomass (Fig. 5). At the global scale, over
the Amazon Basin, India–China and Europe regions, low soil moisture
anomalies are associated with high HCHO columns where mean LAI
values are high (Figs. 5.a–d).

3.1.2. Temporal contribution of trends in drivers to trends in formaldehyde
columns

Based on GLMMs, the observed trends in HCHO columns show
declines at the global scale (−0.02 ± 0.01 × 1015 molec cm−2 decade−1)
and across the Amazon Basin (−0.38±0.05×1015 molec cm−2 decade−1),
Australia (−0.70±0.03×1015 molec cm−2 decade−1), and Europe (−0.24±
0.05 × 1015 molec cm−2 decade−1), and increments across the India-
China region (0.67 ± 0.03 × 1015 molec cm−2 decade−1) ( Table 2 and
Fig. 6). Over the Amazon Basin region, despite very few pixels show
statistically significant trends via the Theil Sen’s estimator (Fig. 2),
the region consistently presents a decrease in HCHO columns over
time via the GLMMs (Table 2). Trends in HCHO columns derived from
the GLMMs (Table 2) agree on sign, while differ in magnitude and
in statistical significance, with trends estimated via the Theil–Sen’s
estimator (Fig. 2) since the GLMM approach pools together many pixels
at the same time, thus providing an average slope over all pixels.

In term of drivers, there are positive temporal trends in temperature
anomalies at both global and regional scales and contrasting trends in
drivers of water availability, such as precipitation, soil moisture, and
SPEI (Table 2). Variabilities in annual precipitation, soil moisture, and
SPEI are similar across regions (Fig. S.1). We also find increases in LAI
at global and regional scales (Table 2), decreases in AOD across China
and increases in AOD across India (Fig. S.2), and a negative trend in
burned fraction in all regions, except for India-China (Table 2).

Impacts of drivers of HCHO columns vary between regions ( Ta-
ble 2). At the global scale and across the Amazon Basin and India-
China regions, positive trends in temperature yield increases in HCHO
columns, except over Australia where this relation is negative.

Trends in drivers related to water availability (precipitation, soil
moisture, and SPEI) have a different temporal contribution to trends in
HCHO columns (Fig. 6), with declining precipitation mostly associated
with declining HCHO columns, while increasing soil moisture and
negative trends in SPEI tend to enhance HCHO columns (Table 2).
5

However, there are regional differences in these effects. Across Europe,
a negative trend in SPEI (drier conditions) is associated with increases
in HCHO, while over the Amazon Basin it is the negative trend in soil
moisture that has a positive temporal contribution to trends in HCHO
columns; over these two regions, positive temporal contributions of
water stress counteract the overall observed negative trend in HCHO
(Figs. 6.b-d).

We find that LAI, AOD, and BF are associated with trends in HCHO,
albeit with different directions (Table 2). Temporal increases in LAI are
associated with reduced HCHO columns at the global scale and across
Australia, while the opposite occurs across India-China. In India-China
the negative trends in AOD are positively related with trends in HCHO,
while the opposite is found at the global scale and over the Amazon
Basin region and Europe, where decreases in AOD lead to decreases
in HCHO. Decreases in BF are associated with declining HCHO at the
global scale and across the Amazon Basin region and Europe, while
across India-China positive trends in BF are associated with increases
in HCHO, although these relationships are not statistically significant.

Overall, our statistical models reproduce the observed inter-annual
variability in HCHO columns as well as the sign of the regional tempo-
ral trends. In general, based on the estimated conditional 𝑅2 of the fixed
models, the GLMMs explain > 90% of the global variation in HCHO
columns, 70%–80% of which is explained by our predictors (marginal
R2), with the remaining 20%–30% related to variability among pixels.
Over the Amazon Basin, Europe and India–China regions, the GLMMs
explain at least 33% of the variation in HCHO columns, while over
Australia the GLMMs present substantial unknown contributions, sug-
gesting that the results should be interpreted with caution over this
region (Fig. 6).

4. Discussion

4.1. Regional trends in formaldehyde columns

The magnitudes and directions of regional annual trends in HCHO
columns identified by our analysis based on the Theil–Sen’s estimator
are similar to those described by De Smedt et al. (2010), based on
HCHO retrieved by GOME/ERS-2 and SCIAMACHY/ENVISAT (1997–
2009). The authors reported annual increases in HCHO over China
(0.8 ± 0.2 × 1014 molec cm−2 yr−1; 3 ± 0.8% yr−1) and maximum over
Beijing–Tianjin–Hebei (4±1.4% yr−1) and northern China (between 6.4±
2.8% yr−1 and 9.7±4.1% yr−1), with homogeneous increases across India
(1.1±0.2×1014 molec cm−2 yr−1; 1.6±0.4 yr−1). De Smedt et al. (2010)
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Fig. 2. Spatial distribution of Theil–Sen’s slopes of HCHO annual column concentrations calculated over 2005–2016: (a) distribution of standardized slopes (units: 𝜎 yr−1)), (b)
absolute slopes (units: 1015 molec cm−2 yr−1), and (c) percentage slopes (units: % yr−1). At each pixel, percentage slopes are calculated by dividing Theil–Sen’s slopes over
2005–2016 by the corresponding HCHO annual columns for 2005 (reference year). Hatched regions indicated areas where Theil–Sen’s slopes are significant at the 90% confidence
level (𝑝-value < 0.1). Black boxes highlight areas selected for regional analysis: Amazon [25◦S–0◦; 35◦–80◦W]; Australia [10◦–43◦S; 110◦–155◦E]; Europe [35◦–52◦N; 10◦W–25◦E];
and India–China [5◦–42.5◦N; 68◦–130◦ E].
attributed these positive trends to regional increases in anthropogenic
emissions from combustion of fossil fuels and other industrial processes.
Emissions of anthropogenic VOCs dominate across India and China,
while emissions of biogenic VOCs are located over northern India and
southern China, and pyrogenic VOCs are produced by agricultural fires
in the North China Plain Stavrakou et al. (2016). Based on temperature-
corrected OMI HCHO data over 2005–2019 in Asia, Bauwens et al.
(2022) reported significant trends over large cities, either positive
(due to the absence or limited efforts to regulate anthropogenic VOC
precursors of HCHO) or negative (due to the implementation of efficient
abatement measures). Recent studies of the effects of land cover have
linked increases in isoprene emissions and HCHO columns to afforesta-
tion in India, north-east and southern China (Chen et al., 2018; Wang
et al., 2021) and areas with high levels of vegetation cover across
northeast, central, and southern China (Wang et al., 2021). Exploration
of trends in the OMI HCHO columns (November 2004 to August 2014)
by De Smedt et al. (2015) showed increases across India and China and
decreases across North America and Europe, due to emission controls,
and across South America, particularly over the Brazilian state of
6

Rondônia, due to a decline in deforestation rates between 2005 and
2010.

Our analysis shows trends in HCHO columns over the contiguous
United States and southern Canada (Fig. 2) similar to those reported
by Zhu et al. (2017) for the periods 2005–2009 to 2010–2014, includ-
ing decreases across the south-eastern United States (due to decreases
in anthropogenic VOC emissions) and increases elsewhere (probably
related to regional afforestation).

The observed trends in HCHO columns across most regions match
those in OMI-based isoprene emissions reported in the literature, in-
cluding Bauwens et al. (2016) who found declines between 2005 and
2013 across the Amazon Basin (−2.1% yr−1), U.S. (−3.7% yr−1) and
western Europe (−3.9% yr−1), and Yáñez-Serrano et al. (2020) who
found decreases across the Amazon Basin of −1.36% yr−1 over 2005–
2014. As opposed to our results, however, Bauwens et al. (2016)
reported decreases in HCHO columns over south China (−0.7% yr−1),
which resulted in a negative trend in the OMI-derived isoprene fluxes
(−1.6% yr−1), likely attributed to the crop expansion and the declining
solar radiation in this region (Yue et al., 2015).
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Fig. 3. Cross sectional plots depict the effect of the spatial variability in surface air temperature (X-axis) on the spatial variability in HCHO columns (Y-axis) under high (i.e., above
the 90th percentile) or low (i.e., below the 10th percentile) local mean precipitation (units: mm month-1), or root-zone soil moisture (units: m3 m−3), where the interaction between
temperature (continuous term) and precipitation/soil moisture (constant term) is active in the Generalized Linear Mixed-effects models. The bold line displays the regression line;
shaded areas represent the confidence interval; colored ticks at the top and the bottom of each plot display partial residuals of each regression model (positive residuals at the
top, negative residuals at the bottom).
Fig. 4. Cross sectional plots depict the effect of the spatial variability in precipitation (X-axis) on the spatial variability of HCHO columns (Y-axis) under high (i.e., above the
90th percentile) or low (i.e., below the 10th percentile) local mean root-zone soil moisture (units: m3 m−3), where the interaction between precipitation (continuous term) and
root zone soil moisture (constant term) is active in the Generalized Linear Mixed-effects models. The bold line displays the regression line; shaded areas represent the confidence
interval; colored ticks at the top and the bottom of each plot display partial residuals of each regression model (positive residuals at the top, negative residuals at the bottom).
4.2. Trends in drivers of formaldehyde columns

Our analysis shows large temporal variations in HCHO columns and
associated drivers (Fig. S.1). At the global scale, and as previously
observed for isoprene emissions (Stavrakou et al., 2014; Opacka et al.,
2021 and references therein), maxima and minima in HCHO columns
correlate with El Niño (2004/2005, 2009/2010 and 2014/2016) and
La Niña (2007–2009) episodes, respectively.
7

Across the Amazon Basin, precipitation, soil moisture, and SPEI
related to drought conditions in 2005, 2010, and 2015 (Aragão et al.,
2018) are associated with peaks in HCHO columns (Stavrakou et al.,
2015; Morfopoulos et al., 2022). Across Australia, increases in tem-
perature during the heatwaves of the summers of 2008–2009 and
2012–2013 and shifts in precipitation, soil moisture, and SPEI from
the ‘‘Millennium Drought/Big Dry’’ period of 1995–2009 to the ‘‘Big
Wet’’ period of 2010–2012 (Taschetto et al., 2016) do not show a
clear impact on HCHO columns. Across Europe, the dry summer of
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Fig. 5. Cross sectional plots depict the effect of the spatial variability in water availability (X-axis; root-zone soil moisture/precipitation) on the spatial variability of HCHO
(Y-axis) under high (i.e., above the 90th percentile) or low (i.e., below the 10th percentile) Leaf Area Index (units: m2 m−2), where the interaction between root-zone soil
moisture/precipitation (continuous term) and LAI (constant term) is active in the Generalized Linear Mixed-effects models. The bold line displays the regression line; shaded areas
represent the confidence interval; colored ticks at the top and the bottom of each plot display partial residuals of each regression model (positive residuals at the top, negative
residuals at the bottom).
2015 (Orth et al., 2016) leads to a peak in HCHO columns. Across India-
China, the ‘‘cold period’’ between 2008 and 2012, which Stavrakou
et al. (2014) related to a decrease in isoprene emissions, does not affect
HCHO in our study.

Although the combined effects of a short time record (2005–2016)
and natural variability on the computed trends may lead to mismatches
with long-term climate trends, our analyses reveal statistically sig-
nificant temporal patterns in drivers of HCHO columns ( Table 2)
which support previously reported findings. Among them we find: (i)
increases in temperature and LAI (Jia et al., 2019), (ii) decreases in
AOD indicating a ‘‘global brightening’’ period (Wild, 2012; Hartmann
et al., 2003); (iii) decreases in BF (Jia et al., 2019); (iv) large spatial
variability in drivers related to water availability (precipitation, soil
moisture and SPEI) (Hartmann et al., 2003). We find annual decreases
in water availability indicators across the Amazon Basin region (see
predicted trends for the region in precipitation, RZSM and SPEI in
Table 2) in agreement with a regional decline in rainfall (Aragão et al.,
2018) and reduced vegetation greenness (Hilker et al., 2014) reported
in the literature. Across Europe, among water availability indicators,
only SPEI shows a negative predicted trend ( Table 2) that indicates
increased aridity, which characterized the region since 1950 (Dai,
2013; Hartmann et al., 2003; Vicente-Serrano et al., 2014; Spinoni
et al., 2015).

4.3. Sensitivity and temporal contribution of drivers on formaldehyde
columns

Trends in temperature, LAI, and AOD are important drivers of
trends in HCHO columns ( Table 2). Stavrakou et al. (2014) showed
that increasing temperatures led to increment in model-based iso-
prene emissions across Asia during the period 1979–2012, while at
the global scale Zheng et al. (2015) demonstrated a strong positive
correlation across seasons (i.e., spring, summer, autumn) over the
period 2005–2011. Similarly, we find a positive relationship between
spatial variabilities in HCHO columns and in temperature (Fig. 3)
and a positive sensitivity across years in HCHO columns to temper-
ature over most regions, except across Australia ( Table 2). Based
on the analysis of spatial relationships, water availability influences
8

the HCHO-temperature correlation. For example, over the Amazon
Basin, different explanatory variables used to take cross sections of the
HCHO-temperature relationship (i.e., precipitation and soil moisture)
lead to different correlations (Fig. 3.c vs. Fig. 3.d). Although variables
measuring water availability are related, it is important to consider that
cross-sectional plots show the relationship of the explanatory variable
vs the response variable when the variance of all the other predictors
have already been taken into account. So, the interaction temperature–
soil moisture has to be understood as once we have removed the effect
of precipitation-temperature from the data. In addition, when focusing
on HCHO as a proxy of isoprene emissions, there could be a delay
between the effect of precipitation and soil moisture on vegetation
functioning, with precipitation affecting vegetation processes in the
short term, while soil moisture in the long term. Also, precipitation has
different consequences than soil moisture (e.g., when it rains, direct
radiation decreases while diffuse radiation increases, which may alter
some metabolic processes etc.). Compare to other regions, across Aus-
tralia precipitation and soil moisture play a more important role than
temperature (Fig. 4). These results indicate that raising temperatures
across Australia, which are often tied to dry conditions, may limit
isoprene emissions, as also shown by previous studies (Müller et al.,
2008; Sindelarova et al., 2014; Stavrakou et al., 2015; Bauwens et al.,
2016; Emmerson et al., 2019).

At the global scale, we find that positive trends in LAI have a neg-
ative temporal contribution on the trends in HCHO columns ( Table 2
and Fig. 6), partly in agreement with Opacka et al. (2021) and Chen
et al. (2018), who assessed effects of land cover change on global
isoprene emissions derived from the BVOC emission model MEGAN2.1
(Model of Emissions of Gases and Aerosols from Nature, Guenther et al.,
2012). Opacka et al. (2021) derived isoprene emissions using three
different inventories of land cover distribution and reported that land
cover change induced a slight negative trend over the period 2001–
2016 (between 0.04 and 0.33% yr−1), whereas a positive increase in
global isoprene emissions (+0.94% yr−1) was driven by temperature
and solar radiation changes. They further estimated that trends in
LAI contributed a small increase (+0.06% yr−1) to global isoprene
emissions. Over 2000–2015, Chen et al. (2018) estimated that land
cover change drove a 1.5% decrease in global isoprene emissions, due
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Fig. 6. Temporal contribution of predictors on HCHO columns (units: 1015 molec cm−2 decade−1) over 2005–2016 at the (a) global scale, and over the selected regions: (b)
Amazon, (c) Australia, (d) Europe, and (e) India-China (see Fig. 2). Predictors: surface air temperature, precipitation, the Standardized Precipitation-Evapotranspiration Index
(SPEI), root-zone soil moisture (RZSM), Leaf Area Index (LAI), Aerosol Optical Depth (AOD) and burned fraction (BF). The difference between all individual temporal contributions
and the observed trend represents unknown contributions to the temporal variation in HCHO columns. Error bars indicate standard errors. Significance levels: (*) 𝑝-value < 0.1;
(**) 𝑝-value < 0.05; (***) 𝑝-value < 0.01; (****) 𝑝-value < 0.001. See Table 2 for related statistics.
to a combined increase in needle-leaf trees and a decrease in broad-leaf
trees and non-tree plants.

At the regional scale, we find that increments in LAI lead to in-
creases in HCHO columns across India-China ( Table 2), supporting
estimates by Chen et al. (2018) and Wang et al. (2021) who linked
positive trends in HCHO to afforestation programme in the region.
Over the other regions, we find that increases in LAI lead to temporal
decreases in HCHO columns. Chen et al. (2018) and Yáñez-Serrano
et al. (2020) also reported declines in isoprene emissions over Australia
and across the Amazon Basin; however, they attributed these decreases
in isoprene emissions to reduction in vegetation cover due to wildfires
and deforestation. Moreover, (Chen et al., 2018) documented isoprene
emission increases across Europe attributed to afforestation.
9

Overall, our statistical models support some of the findings reported
by Chen et al. (2018), that temporal increases in LAI lead to decreases
in HCHO columns at the global scale and to increases in HCHO columns
across India-China, with conflicting results for Australia, the Amazon
Basin and Europe. These latter differences may be due to discrepancies
in temporal trends in LAI and land cover change that exist between
available inventories (Opacka et al., 2021) and to the use of different
sources to investigate trends in isoprene emissions. For example, Chen
et al. (2018) estimated isoprene emissions with MEGAN2.1, while we
used HCHO retrievals. Across Australia and the Amazon Basin, the
used LAI product does not seem to capture deforestation which may
be partially driving a negative trend in OMI HCHO columns over
these regions. Across Europe, afforestation from 1850 onward mainly
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by the Generalized Linear Mixed-Effects Model (GLMM) over
spiration Index (SPEI), Leaf Area Index (LAI), Aerosol Optical

when one variable is fixed (robust temporal contributions in
n temporal contribution is the difference between the HCHO

rd error and significancy are provided.
HCHO Obs. Trend Unknown temp. contribution

75 ± 0.0067*** −0.0221 ± 0.0112** −0.0437 ± 0.0210**
04 ± 0.0002**
692 ± 218.1180**

03 ± 0.0534 −0.3783 ± 0.0540**** −0.2101 ± 0.1531*
05 ± 0.0001****
226 ± 1167.581

4 ± 0.0186 −0.6962 ± 0.0328**** −0.4897 ± 0.0597**
01 ± 0.0003
567 ± 2659.9080

55 ± 0.0197 −0.2419 ± 0.0467**** −0.1300 ± 0.0726*
01 ± 0.0001****
933 ± 2313.611

0 ± 0.0217 0.6730 ± 0.0293**** 0.4286 ± 0.0635***
2 ± 0.0001****
728 ± 1183.0830
Table 2
Trends in predictor anomalies, their temporal contribution to trends in HCHO concentrations and sensitivity of HCHO columns to trends in predictor anomalies as computed
the globe and over four selected regions (Fig. 2). Predictors: surface air temperature, precipitation, root-zone soil moisture (RZSM), the Standardized Precipitation-Evapotran
Depth (AOD) and burned fraction (BF). Temporal contribution is the difference between the temporal prediction for the full GLMM and the temporal prediction of the GLMM
bold). Sensitivity of the response variable to a predictor change corresponds to the ratio between the temporal contribution and the trend of the selected predictor. Unknow
observed trend and the addition of all temporal contributions. All numbers are multiplied by 10 and expressed in units of 1015 molec cm−2 decade−1. For all terms, standa

Region Temp. Precip. RZSM SPEI LAI AOD BF

Globe Temporal contribution 0.0522 ± 0.0065**** −0.0098 ± 0.0072* 0.0122 ± 0.0066** 0.0099 ± 0.0067* −0.0121 ± 0.0070* −0.0132 ± 0.0061** −0.01
Predictor trend 0.2374 ± 0.0065**** −1.6874 ± 0.2251**** 0.0008 ± 0.0003*** −0.0228 ± 0.0378 0.2170 ± 0.0046**** −0.0034 ± 0.0006**** −0.00
Sensitivity 2.1986 ± 0.2802**** 0.0581 ± 0.0433* 156.6172 ± 103.8078* −4.3440 ± 7.7874 −0.5558 ± 0.3226* 39.4701 ± 19.4620** 394.8

Amazon Temporal contribution 0.1643 ± 0.0556*** −0.0451 ± 0.0584 0.1106 ± 0.0538** 0.0576 ± 0.0554 −0.0050 ± 0.0570 −0.4302 ± 0.0443**** −0.02
(25◦S–0; 35◦–80◦W) Predictor trend 0.3746 ± 0.0133**** −10.5183 ± 1.0114**** −0.0112 ± 0.0009**** −0.2370 ± 0.0259**** 0.2292 ± 0.0263**** −0.0367 ± 0.0023**** −0.00

Sensitivity 4.3858 ± 1.4928*** 0.0429 ± 0.0556 −99.1357 ± 48.9780** −2.4290 ± 2.3546 −0.2202 ± 2.4857 117.1870 ± 14.1122**** 442.5

Australia Temporal contribution −0.0488 ± 0.0198** −0.0044 ± 0.0191 −0.0066 ± 0.0191 −0.0025 ± 0.0193 −0.1141 ± 0.0174**** −0.0305 ± 0.0188* 0.000
(10◦–43◦S; 110◦–155◦E) Predictor trend 0.2255 ± 0.0297**** 1.7375 ± 0.6354*** 0.0084 ± 0.0011**** 0.0601 ± 0.0253** 0.2988 ± 0.0178**** −0.0004 ± 0.0006 −0.00

Sensitivity −2.1650 ± 0.9218** −0.0252 ± 0.1101 −7.8241 ± 22.6058 −0.4209 ± 3.2099 −3.8185 ± 0.6243**** 766.2625 ± 1296.6930 −60.8

Europe Temporal contribution −0.0251 ± 0.0214 −0.0168 ± 0.0232 −0.0027 ± 0.0211 0.0594 ± 0.0209*** −0.0191 ± 0.0204 −0.0920 ± 0.0204**** −0.01
(35◦–52◦N; 10◦W–25◦E) Predicted trend 0.5294 ± 0.0304**** 1.4099 ± 0.7741** 0.0036 ± 0.0014*** −0.0861 ± 0.0256*** 0.2412 ± 0.0151**** −0.0229 ± 0.0010**** −0.00

Sensitivity −0.4748 ± 0.4043 −0.1195 ± 0.1773 −7.5126 ± 56.5669 −6.8994 ± 3.1754** −0.7936 ± 0.8470 40.1689 ± 9.0492**** 1790.

India-China Temporal contribution 0.1033 ± 0.0205**** −0.0009 ± 0.0217 −0.0088 ± 0.0205 0.0167 ± 0.0228 0.0647 ± 0.0216*** 0.0644 ± 0.0202*** 0.005
(5◦–42.5◦N; 68◦–130◦E) Predictor trend 0.1219 ± 0.0185**** −0.3974 ± 0.7427 0.0065 ± 0.0008**** 0.0760 ± 0.0152**** 0.3040 ± 0.0128**** −0.0079 ± 0.0025*** 0.000

Sensitivity 8.4772 ± 2.1172**** 0.0216 ± 0.5466 −13.5197 ± 31.6842 2.1833 ± 3.0328 3.1277 ± 0.7157*** −81.6750 ± 36.7535** 273.6

*Significance level: 𝑝-value < 0.1.

**Significance level: 𝑝-value < 0.05.

***Significance level: 𝑝-value < 0.01.

****Significance level: 𝑝-value < 0.001.
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converted broad-leaved forests into needle-leaved forests, with an in-
crease in needle-leaved (+633000 km2) at the expense of broadleaved
forests (−436000 km2) (Bürgi and Schuler, 2003). Since needle-leaved
rees mainly emit monoterpenes while broadleaf trees mainly emit
soprene, this conversion in tree species may have led to an increase
n monoterpenes emissions, which are not sensed by HCHO retrievals,
long with a decrease in isoprene emissions, thus potentially explaining
ur results.

The type of vegetation cover also influences the spatial relation-
hip between HCHO columns and water availability, with high HCHO
olumns occurring under dry conditions where high LAI dominates
Fig. 5). Most likely, tall vegetation can sustain water stress longer than
hort vegetation and maintain the secondary metabolism to produce
soprene emissions.

We find that negative trends in AOD lead to decreases in HCHO in
ll regions, except for India-China ( Table 2). This behavior might be re-
ated to the correlation between AOD and anthropogenic non-methane
OC (NMVOC) emissions in many regions. Our result is therefore
onsistent with the positive/negative trends in HCHO associated to
ncreasing/decreasing trends in anthropogenic emissions (De Smedt
t al., 2010, 2015; Zhu et al., 2017). On the other hand, however, the
ecrease in AOD leads to higher solar radiation (regional brightening),
hich should result in increased HCHO columns, as we find across

ndia-China, where the reduction in AOD leads to enhanced HCHO
olumns. Across China, a modeling study using the NASA ModelE2-
IBs global Earth system model showed that anthropogenic aerosols
rive decreases in isoprene emissions due to aerosol-induced reductions
n direct radiation (Strada and Unger, 2016). However, given that
adiation can contribute to the formation or destruction of HCHO, the
ssessment of the relationship between HCHO and radiation (of which
OD is a proxy) is problematic (e.g. Zheng et al., 2015).

Cross sectional plots indicate a negative spatial correlation between
CHO columns and precipitation, except for Australia (Fig. 4). Al-

hough wet deposition does not affect HCHO columns, previous studies
ound a negative correlation with precipitation over the tropics in
he boreal autumn (Zheng et al., 2015) and over highly polluted
egions (Báez et al., 1993). It is also possible that high precipitation
revents biomass burning, thus reducing pyrogenic sources of HCHO,
nd reduces temperatures and resulting HCHO columns over temperate
reas, where precipitation and temperatures tend to be negatively
orrelated (Trenberth and Shea, 2005).

Across the Amazon Basin region and Europe, declining HCHO
olumns over time are negatively correlated with drying trends in soil
oisture and SPEI, respectively ( Table 2), indicating that biogenic

missions may increase under water stress conditions. Over the Amazon
asin region, the spatial relationship between HCHO columns and
ater availability also suggests that dry conditions favor high HCHO

olumns, and this effect is stronger in regions with low soil moisture
Fig. 4.(b). This result agrees with Fig. 6.b and Table 2) indicating,
ased on temporal relationships, that a negative temporal trend in
oil moisture has a positive effect on HCHO columns. For Europe and
specially the Mediterranean region, this result agrees with findings
rom an experiment performed at the O3HP site (Oak Observatory
t the Observatoire de Haute Provence) in southern France in 2012–
013 (Genard-Zielinski et al., 2014, 2015, 2018), which focused on the
ffects of simulated drought on a single Mediterranean species (Quercus
ubescens). Under natural drought, the drought-adapted species Q.
ubescens limited evapotranspiration and maintained or amplified iso-
rene emissions to protect plant membranes, while, under amplified
rought, isoprene emissions exponentially decreased with soil water
ontent. Our statistical models detected effects of natural drought on
soprene emissions only via SPEI, likely because this indicator depends
n temperature and precipitation, which are extremely high and low,
espectively, during drought conditions (Vicente-Serrano et al., 2010).
his finding may explain the role of SPEI in our statistical models
or reproducing the 2015 peak in European HCHO columns under
11

eatwave conditions (Fig. S.3).
5. Conclusions

Using space retrievals of HCHO column concentrations as a sur-
rogate for isoprene emissions, we investigated the relationship be-
tween isoprene emissions and drivers of global change at large spatio-
temporal scales over the period 2005–2016. We found regional tempo-
ral trends in HCHO columns, and specifically decreases across Europe,
Amazon, southern Africa, and southern Australia, and increases across
India-China, supporting findings from previous studies (De Smedt et al.,
2010, 2015). Analysis of these trends revealed temporal variations in
impacts of single and combined drivers (temperature, precipitation, soil
moisture, drought index, biomass, aerosols, and burned fraction) on
HCHO columns across the study period, at global and regional scales.
In general, HCHO columns are positively related with temperature at
the global scale and across the Amazon Basin and India-China regions,
with HCHO columns increasing with temperature even under low
precipitation, provided that the levels of soil moisture are sufficient to
sustain vegetation function and isoprene emissions. The role of water
availability and water stress in HCHO columns varies regionally. Water
availability sustains isoprene emissions in dry regions such as Australia,
where HCHO columns are negatively associated with temperature and
positively associated with precipitation. In contrast, HCHO columns are
negatively sensitive to trends in soil moisture levels across the Amazon
and SPEI over Europe (drier conditions lead to greater columns of
HCHO).

We chose a statistical approach that (a) simultaneously assesses the
contribution of different drivers of global change on trends in HCHO
columns; and (b) explicitly accounts for the role of water availability
using multiple predictors related to this driver (i.e., precipitation, soil
moisture and drought index). Using this approach, our results: (1)
suggest the importance of water availability in sustaining the positive
relation between isoprene emissions and temperature, (2) confirm the
contrasting effects of water stress on isoprene emissions, with regions
where drier conditions enhance isoprene emissions (i.e., Europe and the
Amazon Basin) and others where water availability sustains isoprene
emissions under hot conditions (i.e., Australia). These different behav-
iors appear to support the thesis of Peñuelas and Staudt (2010) that
mild/short-term water stress amplifies or maintains isoprene emissions,
while severe/long water stress reduces isoprene emissions. In addition,
these findings suggest that the effect of water stress on isoprene emis-
sions differs from one region to another. Using OMI HCHO columns
over the South-Eastern United States, Wang et al. (2022) found that
HCHO is 6% higher during mild drought and 23% during severe
droughts. These results support future developments in biogenic emis-
sion models to implement algorithms able to reproduce both regimes
(mild/short water stress, increasing emissions; severe/long water stress,
decreasing emissions) and different vegetation/region sensitivity to
water stress. Recently, Wang et al. (2021) tested a parameterization
which increases isoprene emissions under mild water stress via changes
in leaf temperature. When applied over China, this parameterization
increases isoprene emissions up to 30%. However, at the global scale
the impacts of water stress on isoprene emissions remain unclear, and
across some regions (i.e., Australia) the unknown contributions of the
applied statistical models remain large, suggesting that the models do
not entirely reproduce the observed trend in HCHO columns. Further
analysis is required using longer satellite time series, attempting to
separate the contribution to formaldehyde columns from isoprene and
terpenes, which show a different behavior under water stress (Peñuelas
and Staudt, 2010; Bonn et al., 2019), trying to account for different
NOx regimes to better estimate ‘‘background HCHO formation’’ (Wolfe
et al., 2016), and including predictors of NMVOC to filter out the con-
tribution from anthropogenic sources to HCHO columns. Wolfe et al.
(2016) report that a decrease of NOx emissions by a factor of 2 would
lead to reduced HCHO columns by about 30%. Long-term records of
satellite OMI NO2 column data could be included as an additional

predictor in our modeling framework in future work. Moreover, to filter
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out the contribution from anthropogenic sources to HCHO columns,
we could include predictors of non-methane VOC sources, e.g. global
anthropogenic NMVOC emission inventories from e.g. the Coperni-
cus Atmosphere Monitoring Service (CAMS-GLOB-ANT, Granier et al.,
2019; Elguindi et al., 2020) or the Community Emissions Data System
(CEDS; Hoesly et al., 2019). Note, however, that the estimated trends
in bottom-up inventories have large uncertainties, especially in regions
undergoing fast population and/or policy changes and where accurate
information is either absent or limited (Bauwens et al., 2022). In the fu-
ture, the availability of high resolution HCHO columns (De Smedt et al.,
2021) and next-generation machine learning isoprene retrievals (Wells
et al., 2022), together with longer time-series of soil moisture data
from different datasets (e.g., the NASA Soil Moisture Active Passive
instrument and the European Space Agency Soil Moisture and Ocean
Salinity mission) will provide new opportunities to improve our under-
standing of the role of water availability in the isoprene production and
emission.
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