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Abstract 1 

 2 

Ecological theory posits that temporal stability patterns in plant populations are associated with 3 

differences in species’ ecological strategies. However, empirical evidence is lacking about which 4 

traits, or trade-offs, underlie species stability, especially across different biomes. We compiled a 5 

worldwide collection of long-term permanent vegetation records (>7000 plots from 78 datasets) 6 

from a large range of habitats which we combined with existing trait databases. We tested whether 7 

the observed inter-annual variability in species abundance (coefficient of variation) was related to 8 

multiple individual traits. We found that populations with greater leaf dry matter content and seed 9 

mass were more stable over time. Despite the variability explained by these traits being relatively 10 

low, their effect was consistent across different datasets. Other traits played a significant, albeit 11 

weaker, role in species stability, and the inclusion of multivariate axes or phylogeny did not 12 

substantially modify nor improve predictions. These results provide empirical evidence and 13 

highlight the relevance of specific ecological trade-offs, i.e. in different resource use and dispersal 14 

strategies, for plant populations stability across multiple biomes. Further research is however 15 

necessary to integrate and evaluate the role of other specific traits, often not available in databases, 16 

and intraspecific trait variability in modulating species stability.  17 

 18 

 19 

Keywords: acquisitive; conservative; dispersal; worldwide database; long-term studies; resource 20 

use; temporal patterns; variability  21 

 22 

 23 

  24 



Introduction  25 

Identifying the drivers of temporal stability in plant populations and communities has consequences 26 

for maintenance of multiple ecosystem functions over time, including carbon sequestration, fodder 27 

resources for livestock, and nutrient cycling (Tilman & Downing, 1994; Hautier et al., 2015; Isbell et 28 

al., 2018). One of the main determinants of community stability is the cumulative temporal 29 

variability in the abundances of individual species’ populations (Thibaut & Connolly, 2013; Hallett et 30 

al., 2014; Májeková et al., 2014). Lower temporal variability in individual population abundances at 31 

a given site, and particularly for dominant species, generally increases overall community stability 32 

(Lepš et al., 1982, 2018; Pimm, 1984; McCann, 2000). Accordingly, assessing the drivers of temporal 33 

variability in populations is necessary to understand and forecast the potential consequences of 34 

increasingly common environmental perturbations (Easterling et al., 2000; Lloret et al., 2012).  35 

While empirical evidence is still scarce and ambiguous, theoretical predictions suggest that 36 

the drivers of temporal variability in single plant populations are related to different ecological 37 

characteristics of species (e.g., r/K life history strategies, MacArthur & Wilson, 1967). These 38 

differences can be described through functional traits that determine how plants respond to 39 

environmental factors, affect other trophic levels, and influence ecosystem properties (Lavorel & 40 

Garnier, 2002; Kattge et al., 2011; Garnier et al., 2016). Specifically, differences in functional traits 41 

among species result in varied responses to the environment that might lead to different patterns 42 

of demography, adaptation, and distribution, thus giving rise to different population fluctuations 43 

over time (e.g. Angert et al., 2009; Metz et al., 2010; Adler et al., 2013; Májeková et al., 2014).  44 

Assessing differences in functional traits between species, as well as the relationship of these 45 

differences to specific ecological patterns, has been a long-standing focus in plant ecology leading 46 

to a search for general trait trade-offs across taxa and ecosystems (e.g. Díaz et al., 2016). Trait trade-47 

offs are generally understood as a shift in the balance of resource allocation to maximize fitness 48 

within the constraints of finite resources (e.g. Grime’s C-S-R strategy scheme; Grime, 1977). Mostly, 49 

such trade-offs have been assessed within the context of community assembly theory and eco-50 

evolutionary models for niche differentiation (e.g. Villa-Martin et al., 2016; Falster et al., 2016; 51 

Mayfield et al., 2010). Ultimately, traits linked to specific axes of ecological differentiation are key 52 

to understanding major trade-offs in plant strategies, such as the trade-off between leaf maximum 53 

photosynthetic rate and leaf longevity, also known as the leaf economic spectrum (Wright et al., 54 

2004). 55 



At the same time, different specific trade-offs can also underlie differences in temporal 56 

variations in species’ abundances, both within and between community types. For example, species 57 

that are able to respond quickly to environmental variability, i.e. acquisitive resource-use strategy, 58 

fast-growing species that invest in organs for rapid resource acquisition and/or high dispersal ability, 59 

should sustain higher temporal variation in population size, and will be favoured in sites where 60 

disturbance and/or environmental instability determine a fluctuation in resources (MacArthur & 61 

Wilson, 1967; Westoby, 1998; de Bello et al. 2021). In contrast, species adapted to endure 62 

environmental variability, i.e. conservative resource-use strategy, slow-growing and long-lived 63 

species that invest in structural tissues and permanence, are thought to persist during unfavourable 64 

periods due to resources stored from previous, more favourable years (Reich, 2014), and will exhibit 65 

less temporal variability (MacArthur & Wilson, 1967; Grime, 2001). These species are expected to 66 

be favoured in more stable and predictable environments (Kraft et al., 2014).  67 

It remains unclear though whether the potential relationship between species’ traits and 68 

species’ stability would be detected across different biomes and through differences in single traits 69 

or combined axes of differentiation that incorporate multiple traits (Westoby, 1998; Laughlin, 2014; 70 

Díaz, et al. 2016). Several ecological strategy schemes, such as the classic r/K selection (MacArthur 71 

& Wilson, 1967) and C-S-R (Grime, 1977) theories, as well as the Leaf-Height-Seed scheme (´LHS´; 72 

Westoby, 1998), can theoretically help predict how functional trade-offs determine species’ 73 

temporal strategies and their fitness across different types of environments. The LHS scheme for 74 

instance, is based on three independent plant traits which should provide key proxies for 75 

independent trade-offs in plants (stress adaptation, competition, and response to disturbance 76 

respectively; Westoby, 1998). Interestingly, only a few empirical studies have linked differences in 77 

temporal strategies to functional traits within plant communities (Adler et al., 2006; Angert et al., 78 

2009; Metz et al., 2010; Májeková et al. 2014; Craven et al., 2018). For example, Májeková et al. 79 

(2014) empirically confirmed that herbaceous species with a more conservative resource-use 80 

strategy (i.e., those with higher leaf dry matter content – LDMC) have more stable populations over 81 

time. A similar relationship was found at the community level, where communities including a 82 

greater abundance of species with high LDMC were more stable (Polley et al., 2013; Chollet et al., 83 

2014). A recent global meta-analysis of sown grasslands, although based on short-term experiments, 84 

suggested that an increase in the abundance of rapidly growing species can destabilize community 85 

biomass over time (Craven et al., 2018). This is supported by empirical demonstrations that, in 86 

natural vegetation, community stability is predicted by the functional traits of the dominant species 87 



rather than by species diversity per se (Lepš et al., 1982). Further, only Májeková et al. (2014) tested 88 

whether trait-based predictions of population temporal variability were consistent across different 89 

management regimes, i.e. fertilization and competitor-removal treatments, generally finding minor 90 

differences and consistent predictions for LDMC. Ultimately, global empirical evidence of a general 91 

link between quantitative functional traits and the temporal variability of populations, and whether 92 

this link is maintained despite differences in community types and environmental conditions, is still 93 

missing (de Bello et al., 2021).  94 

Here, using an extended compilation of long-term, recurrently monitored vegetation plots, 95 

encompassing different habitat types around the World (https://lotvs.csic.es/; Sperandii et al., 96 

2022) we determine which plant traits better predict the temporal stability of plant populations. We 97 

expect that populations of species with more acquisitive and higher dispersal-ability traits will tend 98 

to be more variable over time, while those of species with more conservative trait values and lower 99 

dispersal ability will tend to be more stable over time. We also expect to find empirical evidence of 100 

the generality of these relationships.  101 

  102 

Materials and Methods  103 

Plots and population’s stability  104 

We used 78 datasets contained in the LOTVS collection of temporal vegetation data. These consist 105 

of a total of 7396 permanent plots of natural and semi-natural vegetation that have been 106 

consistently sampled for periods of between six and 99 years, depending on the dataset 107 

(supplementary material Table S2; Valencia et al. 2020a, Sperandii et al. 2022). These datasets were 108 

collected from study sites in different biomes that span the globe, in 18 different countries including 109 

Australia, China, Czech Republic, Estonia, France, Germany, Hungary, Kenya, Mongolia, Netherlands, 110 

New Zealand, Norway, Russia, South Africa, Spain, Switzerland, United Kingdom and USA. They differ 111 

in sampling method (e.g., abundance measured as above-ground biomass, visual species cover 112 

estimates, species individual frequencies), plot size, and study duration. The studies that generated 113 

the datasets sampled different types of vegetation (predominantly grasslands but also shrublands 114 

and forests) and covered a wide array of biomes, with mean annual precipitation spanning from 140 115 

mm to 2211 mm, highest temperature of the warmest month spanning from 11.3°C to 35.7°C, and 116 

lowest temperature of the coldest month spanning from -35.3°C to 7.7°C (supplementary material 117 

Table S2).   118 

https://lotvs.csic.es/


First, for each plot we quantified the inter-annual variability in the size of each species’ 119 

population using the coefficient of variation (CV) of abundance over time, i.e. the standard deviation 120 

of species abundance over mean species abundance (Májeková et al., 2014; de Bello et al., 2021). 121 

Since a fundamental differentiation between growing strategies corresponds to whether a species 122 

is woody or non-woody (Reich, 2014; Díaz et al., 2016) we focused the main analyses on non-woody 123 

species only. This meant, we excluded any species belonging to forest overstories (i.e. trees and 124 

shrubs), woody species’ seedlings, and any other species defined as woody when present in the 125 

plots. Moreover, based on the collected data available, in many plots we could not distinguish adult 126 

woody individuals from seedlings, with seedlings most likely being the cause of high variability in 127 

woody species’ CV values (see Fig. 2a). Nevertheless, we tested differences in CV values between 128 

woody and non-woody species in our data and we considered a possible influence of the presence 129 

of woody overstory on the CV values (see data analysis).  130 

To avoid using biased CV values for very sporadic species (increased CV), we also excluded 131 

those species that occurred in fewer than 30% of the sampling events across the time series for a 132 

given plot (Májeková et al., 2014). Further, to account for variability in CV values between and within 133 

the datasets, mostly due to differences in abiotic, biotic, and management conditions, we calculated 134 

the average CV value for each species in each dataset, standardizing and scaling these averages 135 

within each dataset (z-scores). This resulted in a total of 3,397 species per dataset CV values. To 136 

account for potential effects of temporal directional trends in vegetation affecting CV (Valencia et 137 

al., 2020b) we also computed a detrended version of CV (CVt3) which gave very similar results to 138 

the basic CV calculations (see supplementary material Fig. S1).   139 

  140 

Functional traits  141 

For all the species in our dataset, we collected trait information from the TRY global database (Kattge 142 

et al., 2020). We considered different functional traits representing different components of major 143 

plants’ growing strategies (Westoby 1998). Regarding categorical traits, we considered life span 144 

(annual and non-annual); life form; woodiness (woody and non-woody), and growth form. For 145 

continuous traits we analysed plant height, seed mass, specific stem density, LDMC, specific leaf 146 

area (SLA), leaf nitrogen content per unit mass, and leaf phosphorus content per unit mass (see 147 

Garnier et al., 2017 for trait name nomenclature and definitions). Beside considering the effects of 148 

these traits separately, we also evaluated the effect of both categorical traits and quantitative traits 149 

together (see supplementary material Fig. S4) and the effect of quantitative traits beyond 150 



categorical traits. Furthermore, considering phylogeny as a proxy of conserved functional traits, we 151 

considered the effect of potentially unmeasured traits (see supplementary material Fig. S5b).   152 

For each species, we averaged trait values across all standard measurements obtained from 153 

TRY, excluding those performed under explicit treatments, on juveniles, and outliers. The traits that 154 

were log-transformed (using natural logarithm) to achieve a normal distribution. For details on the 155 

traits used, their summary statistics, their correlations, and their coverage in each dataset, see 156 

supplementary material Table S3. To take into account multivariate trade-offs between species, we 157 

also considered axes of functional variation derived from multivariate analyses (Principal 158 

Coordinates Analysis, PCoA). The traits considered were weakly inter-correlated, with the two major 159 

axes of trait differentiation from PCoA, linked mainly to LDMC and seed mass (see supplementary 160 

material Table S1 for details). The taxonomic names follow the nomenclature of ‘The Plant List’ 161 

(www.theplantlist.org). Nomenclature was standardized using the R package ‘Taxonstand’ (Cayuela 162 

et al., 2017).  163 

  164 

Data analyses  165 

To quantify how the considered traits were linked to species CV, we used linear mixed effect models 166 

(‘lmer’ function in R package “lme4”, Bates et al., 2014). As a response variable, we used the mean 167 

CV for each species in each dataset, standardized as mentioned above. To analyse the effect of the 168 

continuous traits, we fitted a single model. As predictors, we included all the continuous traits listed 169 

above, scaled and centered. To account for the taxonomic and spatial structure of the data, we 170 

included both species identity and dataset identifier as random intercept factors in all of the models. 171 

We visually checked the compliance of all of the models residuals with normality and 172 

homoscedasticity. To assess the goodness-of-fit of the full model, fixed (i.e. marginal) and total (i.e. 173 

conditional) R2 were calculated (Nakagawa & Schielzeth, 2013; Nakagawa et al., 2017). To define 174 

which among the continuous traits were more relevant for species stability, we compared the fixed 175 

R2 of different models, each differing in the subset of predictors that were included. These different 176 

models were fitted to different datasets because of the presence of missing values in the trait data. 177 

We used R2 as a unifying measure of goodness of fit, i.e. as a measure of how well the different 178 

models explain the variability in the different datasets. Using this approach, we selected the model 179 

that had the highest fixed R2. In the present work, we focused on significant terms in the reduced 180 

model. For completeness, we also compared AIC of full and reduced models by fitting them to the 181 

same subset of the data, i.e. we fitted the reduced model to the dataset of the full model. We found 182 



that the AIC was indeed lower when using a subset of the trait variables (AIC of the full model was 183 

1939.2, AIC of the reduced model using the same data frame was 1934.6). Separate models were 184 

fitted to clarify the influence of categorical traits on the stability of species, each using either 185 

woodiness, life span, life form, or growth form as predictors. In these models, we excluded the 186 

intercept, to better see the differences between the trait categories. In addition, analogous models 187 

were run also on the two components determining species’ CV separately, i.e. mean abundance and 188 

standard deviation of abundance in time, also standardizing these variables within each dataset 189 

(supplementary material Fig. S1). 190 

A series of analogous models were fitted using a different set of predictors, all shown in the 191 

supplementary material. To examine the influence of differentiation axes based on multiple traits, 192 

instead of using single separate traits, models were run using two multivariate PCoA axes that 193 

resulted from the combination of traits. We also fitted separate models using each single trait of 194 

those emerging as significant in the reduced multivariate model (See supplementary material Table 195 

S1). To explore the consistency of the stability-trait relationships across datasets, we also fitted 196 

models using each single trait and adding a random slope effect for the datasets (supplementary 197 

material Fig. S3). We also tested the interaction between the most influential categorical trait, 198 

namely life span, and the other continuous traits (see Fig. S4). Finally, a set of models was fitted to 199 

assess the possible effect of phylogenetic relatedness on the results found. Specifically, we tested 200 

to what extent considering phylogeny modified the effect of the considered traits and whether 201 

phylogeny, considered as a proxy of unmeasured traits, improved the main models emerging from 202 

the analyses of quantitative traits (see supplementary material Fig. S5 for all the details regarding 203 

these models).  204 

 205 

Results 206 

By focusing initially on continuous traits, we were able to detect two sets of key functional traits 207 

playing a consistent role in species’ population temporal stability: one linked exclusively to seed 208 

mass, and the other linked to the leaf economic spectrum, i.e. LDMC, SLA, and Leaf N content. Based 209 

on the reduced linear mixed effect model, these two sets of traits had the most influence on species 210 

CV among the continuous traits considered (Table 1; Figure 1).   211 

We found significant negative coefficients with species CV for LDMC and for seed mass (Table 212 

1; Fig. 1). These coefficients indicate that species with greater LDMC and greater seed mass were 213 

more stable (i.e. lower CV values; Fig. 1a). In contrast, we found positive coefficients for SLA and 214 



Leaf N content, although the effect was statistically significant only for SLA. For these traits, the 215 

larger the trait value, the higher the species CV and therefore the less stable the species populations 216 

(Fig. 1b,d). The effect of these traits was reasonably consistent across datasets (low deviation of the 217 

datasets’ random slope effect compared to the main effect slope for both the models using LDMC 218 

and seed mass; supplementary material Fig. S3). Since the variability explained by individual traits 219 

was relatively low (R2=0.07 for fixed effects in the reduced model using the quantitative traits, Table 220 

1) we assessed the role of combining quantitative traits into multivariate axes, categorical traits, or 221 

by considering phylogeny.  222 

Similar results to individual traits were found using either of the two first PCoA axes based 223 

on multiple traits (supplementary material Table S1), although with a slightly lower predictive power 224 

(R2 fixed was 0.05 compared to 0.07 in the reduced model that used individual traits). We also fitted 225 

models using the single PCoA axis and the single traits. In this case single trait models again explained 226 

more variability compared to the models with the single PCoA axis (PCoA Axis 1 model’s R2 fixed was 227 

0.040 vs 0.050 when using LDMC; PCoA Axis 2 model’s R2 fixed was 0.003 vs 0.005 when using seed 228 

mass; supplementary material Table. S1). Although we realize that these models are fitted to subsets 229 

of the database having different species numbers and datasets, R2, as a generic measure of goodness 230 

of fit, gives us an indication that the models using functional traits perform better than the ones 231 

using aggregated axes of functional differentiation. Moreover, using R2 to compare models with 232 

PCoA axes and the single traits is not problematic because the models have the same number of 233 

degrees of freedom. Finally, when the two components determining species’ CV were analysed 234 

separately, i.e. species’ mean abundance and standard deviation of abundance over time, the model 235 

predicting mean abundance was stronger than the model using standard deviation of abundance 236 

over time (with significant results and a higher R2 fixed; see supplementary material Fig. S2) although 237 

LDMC predicted significantly both mean abundance and its standard deviation.  238 

Categorical traits provided some improved predictions compared of using continuous traits, 239 

both influencing CV alone (Table 2) and in combination with quantitative traits (Fig. S4). Herbaceous 240 

species with longer life span (i.e. perennial and biennial) tended to have a lower CV (fixed R2=0.04; 241 

Table 2). Adding life span to the models with quantitative traits, however, did improve predictions 242 

only slightly (fixed R2 increased to 0.10). Most importantly the interaction between life span and the 243 

quantitative traits considered was not significant, indicating that, for example, LDMC was a good 244 

predictor of stability for both non-annual and annual species. Woody species, trees and shrubs also 245 

had low CV scores (although with very low fixed R2= 7.04e-07). Finally, after accounting for 246 



phylogeny (i.e. adding phylogenetic eigenvectors to ‘correct’ CV values) there was no evidence for 247 

an overall improvement in model explanatory power (fixed R2 was 0.01) nor did this substantially 248 

modify the results (see supplementary material, Fig. S5). At the same time, the phylogenetic signal 249 

not accounted for by the considered traits (decoupled phylogenetic information; de Bello et al. 2017; 250 

Fig. S5), used here as a proxy of unmeasured traits, did not change the original explained variability 251 

(fixed R2 stayed at 0.07).  252 

  253 

Discussion   254 

By analysing a large worldwide compilation of permanent vegetation plot records, we confirmed 255 

the generality and consistency of theoretical predictions relating key functional traits to plant 256 

population stability over time. We specifically found that the species with greater LDMC and a larger 257 

seed mass were the most stable over time. Ultimately, these results suggest that common functional 258 

trade-offs related to resource use and dispersal consistently influence herbaceous plant population 259 

stability across different biomes worldwide. While the results clearly demonstrates that simple plant 260 

traits can help, consistently, in predicting the stability of individual species, and ultimately of plant 261 

communities, the variability explained by these traits was relatively low, despite accounting for 262 

other key traits like life span or using phylogeny as a proxy of unmeasured traits. Further research 263 

is therefore necessary to integrate and evaluate the role of intraspecific trait variability and other 264 

potentially relevant traits, generally not available in trait databases, in modulating species stability. 265 

We identified two likely functional trade-offs that influence species stability. Specifically, 266 

differences associated with the leaf economic spectrum (in our case linked to LDMC, SLA and N 267 

content values) define trade-offs in terms of slow-fast resource acquisition (Wright et al., 2004; Díaz 268 

et al., 2016). Differences in seed mass values represent the competition-colonization (seedling 269 

establishment) trade-off (Turnbull et al., 1999) related to the species’ dispersal and establishment 270 

strategy. Moreover, when analysing multivariate functional differentiation in herbaceous species, 271 

these sets of traits were the ones most strongly associated with the two first principal axes 272 

(supplementary material Table S1), further confirming the importance of these two functional 273 

differentiation axes. These findings are broadly consistent with Diaz et al. (2016), who found that 274 

the main differentiation between species was related to size-related (whole plant and seed) and leaf 275 

traits.  276 

Ultimately, the individual functional traits related to the populations’ temporal patterns are 277 

intrinsically linked to how the species adapt to patterns of resource availability and disturbance, 278 



both if we analyse the effect of single traits or multi-trait effects (PCoA axes). At the same time, it is 279 

interesting to notice that, in our case, combined trait information in the form of plant spectra (i.e. 280 

via the PCoA axes) lost some ecological explanatory power compared to specific trait effects. If, on 281 

one hand, such multi-trait trade-offs are essential to distinguish the major axis of differentiation 282 

among organisms (Diaz et al. 2016), on the other, the independent effect of individual traits might 283 

be even more relevant ecologically. This suggests that, for predicting species stability, using specific 284 

functional traits could be more effective than using axes of functional variation based on multiple 285 

traits. By using axes of functional variation, the traits’ individual effects could be blurred or could be 286 

missed because both additive and non-additive effects of individual traits (Pistón et al., 2019) are 287 

ecologically more relevant than combined multi-trait effects.  288 

Leaf traits relate to species adaptations to resource availability. Higher LDMC values, as well 289 

as smaller SLA and N content values, correspond to a slow return on investments in nutrients, lower 290 

potential relative growth rate, and longer leaf and whole-plant life span (Wright et al., 2004; Garnier 291 

et al., 2016). This implies higher potential of buffered population growth. In fact, slow-growing and 292 

long-lived species, for example with higher values of LDMC, could have an advantage in 293 

unfavourable years due to resources stored from previous, more favourable years, thus maintaining 294 

buffered population growth and consequently more stable populations (Májeková et al., 2014; 295 

Reich, 2014). Different leaf traits, although broadly linked, capture slightly different aspects of leaf 296 

function (Garnier et al., 2016). It follows that they would be differently linked to species growth 297 

strategies and their temporal dynamics. Our results show that, although SLA and Leaf N do have an 298 

influence, it seems to be secondary (i.e. they have a weaker effect, Table 1, Fig. 1) when compared 299 

to LDMC, which is consistently and strongly related to species temporal variability. One explanation 300 

is that LDMC is better related to growth rate, compared to the other leaf traits (e.g. Kazakou et al., 301 

2006). Another explanation could be that LDMC is probably a trait whose measurement is less likely 302 

to be influenced by measurement precision/protocols and therefore it might show less intraspecific 303 

variability due to data measurements. At the same time LDMC was also the trait selected, over SLA 304 

and Leaf N, in Majekova et al. (2014), where leaf trait measurements from a single location and 305 

single working group were more comparable. Possibly LDMC reflects, to a greater extent, a stronger 306 

trade-off in growth and defence, and ultimately plant productivity (which is likely linked to the 307 

denominator of CV), while SLA and Leaf N are possibly linked to trade-offs more tightly linked to 308 

photosynthetic strategies (Smart et al., 2017). Alternatively, LDMC can be also interpreted as a 309 

better indicator of response to water stress, which might be an underlying cause of interannual 310 



variability (see Majeková et al., 2021). More locally based research is certainly required to define 311 

the relative effects of different traits associated to the leaf economic spectrum on population 312 

temporal dynamics.  313 

Similarly, seed mass consistently appears to have an influence on species temporal variability 314 

(Table 1, Fig. 1). This trait relates to the species’ adaptations to disturbance patterns and 315 

colonization. Larger seed mass means greater resources stored to help the young seedling establish 316 

and survive in the face of stress with the cost of short-distance dispersal, while smaller seeds (also 317 

in combination with seed shape) are typically related to greater longevity in seed banks and dispersal 318 

over longer distances (Thompson et al., 1993; Turnbull et al., 1999; Moles & Westoby, 2006). 319 

Therefore, species germinating from seeds with a larger mass are more likely to survive during 320 

adverse years and so their populations are more stable in a given site compared to species with 321 

smaller seeds, which will tend to maintain their populations through permanence in seed banks, 322 

which enables proper germination timing (Venable & Brown, 1988; Metz et al., 2010). In addition, 323 

species with greater seed mass might be favoured in communities where gaps are scarce, which are 324 

usually dominated by perennial species (with higher LDMC values) and are more stable. Large seeds 325 

will tend to remain closer to the mother plant than small seeds, thus increasing the stabilizing effects 326 

on populations. Small seeded species still maintain buffered population growth (Pake & Venable, 327 

1995), yet their above-ground abundance will be more variable over time, because they usually 328 

germinate only in favourable years. This explanation is particularly supported, for example, for 329 

short-lived plants (annuals and biennial species together, Table S3), which tend to be less stable 330 

over time (Fig. 2b) and are generally associated with the small-seed strategy at a global scale 331 

(Westoby, 1998).   332 

It is important to consider that the same traits that predicted species variability, using CV, 333 

also predicted the components of CV, i.e. species means and standard deviation (SD). Clearly the SD 334 

in species fluctuation is inherently increasing with species means, following the so-called Taylor’s 335 

power law (Lepš, 2004). This leads to the use of CV in the study of stability, as a more “scaled” 336 

measure of species variability. At the same time, when the CV is negatively correlated to species 337 

mean abundance, as in our case (r=-0.46, which corresponds to the case of a slope in the Taylor’s 338 

power law being lower than 2), it implies that more dominant species tend to fluctuate 339 

comparatively less than subordinate species. This is an important observation because this scenario 340 

implies that the same type of species that are dominant and likely with greater abundance, e.g. with 341 

high LDMC (Smart et al., 2017), are also the more stable ones. Since dominant species were key 342 



drivers of the stability of the communities considered in our study (Valencia et al., 2020a) the results 343 

of the present study indicate that the same traits that determine species dominance also determine 344 

species stability, which is a key message for any attempt to predict both community structure and 345 

its potential to buffer environmental fluctuations (de Bello et al., 2021).   346 

Despite relatively low R2 values, our models found consistent evidence of the relationship 347 

between continuous traits related to leaf and seed economics and species temporal stability across 348 

different biomes (Fig. S4). While we did consider other traits that affected the stability of species, 349 

these did not substantially improve the predictive power of models. In particular, adding life span in 350 

interaction with the continuous traits analysed in our models did not dramatically improve their 351 

performance (see supplementary material Fig. S4). Beyond the obvious effect of life span on species 352 

temporal stability, the results in Fig. S4 indicate that although the seed mass effect seems to be 353 

obscured or encompassed by the life span trait, our original results linked to traits on the leaf 354 

economic spectrum were still relevant for species stability. Further, adding “unmeasured” traits 355 

(using phylogeny as a proxy of unmeasured conserved traits, see supplementary material Fig. S5b) 356 

did not substantially change the original explained variability. Results showed that some effect from 357 

additional traits could be detected, supporting the need for research to identify other important 358 

traits that could be related to species stability, for example those linked to vegetative propagation 359 

and reproduction, like those specifically related seed dispersal and seed dormancy traits. 360 

Importantly, the results where phylogeny was considered were otherwise completely consistent 361 

with the original results. This is a first indication that additional (not considered here) quantitative 362 

traits might not tremendously increase the explanatory power of the models in a qualitatively 363 

important way. As such, further tests using other potentially relevant trait, or traits measured 364 

directly in the biomes and locations under study, are surely needed to expand the findings of the 365 

present study. Very often traits available in database represent only a small portion of traits actually 366 

determining species fitness and the values obtained for those available (generally an average value) 367 

might not represent the phenotypic expression in the specific study site under observation. Indeed, 368 

one missing factor that could explain the observed variability in species CV could be intraspecific 369 

variability in both trait values and species CV, as indicated also by the higher R2 values when 370 

considering the random effects species and dataset. Because of these effects, the present study was 371 

not necessarily focussed on maximizing the explained variability but in detecting the most consistent 372 

patterns across different biomes, which were detected in the effects of LDMC and seed mass, and 373 



opening a new field of research focussed on the search of the best traits, and their combinations, in 374 

predicting species stability.   375 

An important point to acknowledge is that the compilation of datasets used here is biased 376 

towards more temperate biomes, with a predominance of grasslands and open shrublands. This is 377 

an artefact of historic sampling bias and dictates available ecological datasets to study interannual 378 

ecological stability. Such sampling bias is typically a widespread problem for analyses integrating 379 

diverse datasets, where available information can be affected by regional research preferences and 380 

funding opportunities for research. These issues are particularly pronounced in long term 381 

experiments, where the presence of vegetation with woody species, and particularly tree species, 382 

can cause confounding factors in the analyses of temporal dynamics. We dealt with this by using 383 

datasets as a random factor and focusing on herbaceous vegetation only, which resulted in patterns 384 

apparently consistent across different vegetation types, i.e. also in vegetation with woody species 385 

(Fig. S4).  386 

Finally, our results show worldwide evidence that species with more conservative leaf 387 

economics and greater seed mass are generally more stable, i.e. less variable over time, and 388 

therefore confirm theoretical assumptions and are consistent with previous localized empirical 389 

evidence on the interdependence between these traits, their relative trade-offs, and population 390 

temporal stability (e.g. MacArthur & Wilson, 1967; Májeková et al., 2014). In addition, our results 391 

show the global validity of these trade-offs, found across a variety of abiotic and biotic conditions. 392 

Overall, our findings contribute to a better understanding of the drivers of plant population 393 

temporal stability, which has important implications for the conservation of ecosystem functions 394 

over time across the world.   395 
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Tables and Figures 560 

 561 

Table 1. Effects of continuous traits on species variability (CV), models comparison. Model’s 562 

summary for both the full model and the reduced model, which test the influence of continuous 563 

traits on the species variability (coefficient of variance in time, CV). The full model contains all the 564 

predictors while the reduced model contains only a subset of the initial predictors. Estimates and 565 

relative standard errors (in brackets) are shown. R2 (fixed): variation explained by fixed factors; R2 566 

(total): variation explained by both fixed and random factors. P-values calculated using 567 

Satterthwaite approximation for degrees of freedom. ***p-value<=0.001; **p-value<=0.01; *p-568 

value<=0.05.  569 

  570 

  571 

   

(Intercept)  

Full model  Reduced model  

-0.10  -0.03 

   (0.06) (0.04) 

Plant height  

   

-0.01 

(0.09)    
 

Leaf N content  0.03  0.06 

   (0.08)    (0.04) 

Leaf P content  

   

0.04 

(0.07)    
 

Seed mass  -0.12  -0.08 * 

   (0.08)    (0.04) 

SLA  0.02  0.09 * 

   (0.09)    (0.04) 

LDMC  -0.23 **  -0.21 *** 

   (0.07)    (0.04) 

SSD  

   

N  

0.06 

(0.06)    
 

676  1630  
Species  93  395  
Datasets  67  77  
R2 (fixed)  0.05  0.07  
R2 (total)  0.13  0.18  

  572 

  573 



Table 2. Effects of categorical traits on species variability (CV), models comparison. Model’s 574 

summary for the models testing the influence of categorical traits on the species variability 575 

(coefficient of variance in time, CV). Estimates and relative standard errors (in brackets) are shown. 576 

R2 (fixed): variation explained by fixed factors; R2 (total): variation explained by both fixed and 577 

random factors. P-values calculated using Satterthwaite approximation for degrees of freedom. 578 

***p-value<=0.001; **p-value<=0.01; *p-value<=0.05. Ch: Chamaephyte, Cr: Cryptophyte, H: 579 

Hemicryptophyte, P: Phanerophyte, T: Therophyte 580 

  581 

  Woodyness Life span Life form Growth form 

non-woody 0.03 
   

  (0.02) 
   

woody 0.03 
   

  (0.05) 
   

annual 
 

0.49 *** 
  

  
 

(0.05) 
  

not-annual 
 

-0.06 * 
  

  
 

(0.02) 
  

Ch 
  

-0.03 
 

  
  

(0.08) 
 

Cr 
  

-0.09 
 

  
  

(0.09) 
 

H 
  

-0.06 
 

  
  

(0.04) 
 

P 
  

0.18 
 

  
  

(0.10) 
 

T 
  

0.55 *** 
 

  
  

(0.05) 
 

fern 
   

-0.27 

  
   

(0.16) 

graminoid 
   

-0.13 *** 

  
   

(0.04) 

herb 
   

0.12 *** 

  
   

(0.03) 

herb/shrub 
   

-0.21 

  
   

(0.11) 

shrub 
   

-0.01 

  
   

(0.06) 

shrub/tree 
   

-0.03 

  
   

(0.13) 

tree 
   

0.30 * 

  
   

(0.13) 

N 3869 3869 2492 3849 

Species 1794 1794 990 1779 

Datasets 78 78 73 78 

R2 (fixed) 7.04e-07     0.04        0.06        0.02        

R2 (total) 0.23     0.23        0.14         0.22         
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 584 

 585 

 586 
Figure 1. Effects of continuous traits on species variability (CV). Regression plots of the 587 

reduced model showing the effects of leaf dry matter content (LDMC, a), specific leaf area 588 

(SLA, b), seed mass (c), and leaf N (d) content on the CV of species. 589 

  590 



 591 

 592 

 593 

Figure 2. Effect of categorical traits on species variability (CV). Here we show results of the models 594 

fitted using single categorical traits as predictors for the mean species CV at dataset level (i.e. 595 

analogous models as the reduced model in the main text): woodiness (a); life span (b); life form: Ch 596 

Chamaephyte, Cr Cryptophyte, H Hemicryptophyte, P Phanerophyte, T Therophyte (c); growth form 597 

(d). Estimates and respective confidence intervals (95% by the thin line and 68% by the thick line) 598 

are shown in red, which correspond to the summary statistics of each category. Intercept was 599 

excluded from the model to better understand the differences across trait categories. The subpanels 600 

represent, on the left side, the closeup of the estimates, on the right side, the violin plot for the data 601 

used in each model. 602 


