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Abstract. In this paper we classify the phase portraits in the
Poincaré disc of the Liénard equation ẍ + f(x)ẋ + g(x) = 0, with
either f(x) = 0 and g(x) is a quadratic or cubic polynomial, or
f(x) is a quadratic or cubic polynomial and g(x) = 0.

1. Introduction and main results

Consider the well-known Liénard equation

ẍ+ f(x)ẋ+ g(x) = 0,

where g is the restoring force and f denotes the friction coefficient
being f and g continuous functions and g(0) = 0, see for more details
the reference [3]. Here the dot denotes derivative with respect to the
time t.

Much attention has been paid to the Liénard equation with f(x) ̸= 0
and g(x) ̸= 0, thus when this paper is being written in MathSciNet
appears 903 papers when you look in Anywhere for “Liénard equation”
and “Liénard system”. Thus two recent papers on Liénard equations
are [4, 7].

In this paper we consider the Liénard equation with either f(x) = 0

and g(x) =
m∑
ℓ=0

bℓx
ℓ, or f(x) =

n∑
k=0

akx
k and g(x) = 0, where m,n ≥ 2

are integers and ak, bℓ are real with an, bm ̸= 0. Then the particular
Liénard equations that we will study are ẍ+g(x) = 0 and ẍ+f(x)ẋ = 0.

These Liénard equations can be written as the following two differ-
ential systems of first order

ẋ = y, ẏ = −g(x),(1)
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ẋ = y, ẏ = −f(x)y.(2)

Clearly the differential system (1) has the first integral

H1 = H1(x, y) =
y2

2
+

m∑

ℓ=0

bℓ
ℓ+ 1

xℓ+1.

Using the time-rescaling ds = ydt, the differential system (2) can be
written as

x′ = 1, y′ = −f(x),(3)

where the prime denotes derivative with respect to the new time s. Its
first integral is

H2 = H2(x, y) = y +
n∑

k=0

ak
k + 1

xk+1.

(a) (S1): b2 > 0 (b) (S2): b2 > 0 (c) (S3): b2 > 0

(d) (S1): b2 < 0 (e) (S2): b2 < 0 (f) (S3): b2 < 0

Figure 1. The phase portraits of the differential system
(1) with m = 2 in the Poincaré disc in the three cases
(Sk) for k = 1, 2, 3.

In the next two theorems we classify the phase portraits in the
Poincaré disc of the differential system (1) when m = 2 and m = 3.

Theorem 1. For m = 2 the phase portraits of the Liénard system (1)
in the Poincaré disc are given in Figure 1.
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Theorem 2. For m = 3 the phase portraits of the Liénard system (1)
in the Poincaré disc are given in Figure 2.

(a) (C1): b3 > 0 (b) (C2): b3 > 0 (c) (C3): b3 > 0 (d) (C4): b3 > 0

(e) (C5): b3 > 0 (f) (C1): b3 < 0 (g) (C2): b3 < 0 (h) (C3): b3 < 0

(i) (C4): b3 < 0 (j) (C5): b3 < 0

Figure 2. The phase portraits of the differential system
(1) withm = 3 in the Poincaré disc in the five cases (Ck)
for k = 1, . . . , 5.

In the two theorems we classify the phase portraits in the Poincaré
disc of the differential system (2) with n = 2 and n = 3.

Theorem 3. For n = 2 the phase portraits of the Liénard system (2)
in the Poincaré disc are given in Figure 3.

Theorem 4. For n = 3 the phase portraits of the Liénard system (2)
in the Poincaré disc are given in Figure 4.
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(a) (Q1): a2 > 0 (b) (Q2): a2 > 0 (c) (Q3): a2 > 0

(d) (Q1): a2 < 0 (e) (Q2): a2 < 0 (f) (Q3): a2 < 0

Figure 3. The phase portraits of the differential system
(2) with n = 2 in the Poincaré disc in the three cases
(Qk) for k = 1, 2, 3.

2. Proof of the main results

Proof of Theorem 1. It is clear that system (1) has the finite equilibria
(x0, 0) for each real root x0 of the polynomial g(x).

Here we use the notations of Chapter 5 of [1] for studying the Poincaré
compactification of the polynomial differential systems in the local
charts U1 and U2. First in the local chart U1 the differential system (1)
becomes

u̇ = −u2vm−1 −Gm(v), v̇ = −uvm,
and in the local chart U2 it is

u̇ = vm−1 + uΦm(u, v), v̇ = vΦm(u, v),

where

Gm(v) =
m∑

i=0

biv
m−i, Φm(u, v) =

m∑

i=0

biu
ivm−i.

Since bm ̸= 0 it follows that there are no infinite equilibrium points
in the local chart U1. Moreover the origin of the local chart U2 is an
equilibrium point. Note that u̇ = bmu

m+1 and v̇ = 0 on the u-axis.
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(a) (G1): a3 > 0 (b) (G2): a3 > 0 (c) (G3): a3 > 0 (d) (G4): a3 > 0

(e) (G5): a3 > 0 (f) (G1): a3 < 0 (g) (G2): a3 < 0 (h) (G3): a3 < 0

(i) (G4): a3 < 0 (j) (G5): a3 < 0

Figure 4. The phase portraits of the differential system
(2) with n = 3 in the Poincaré disc in the five cases (Gk)
for k = 1, · · · , 5.

Then there are four possibilities:

(P1) bm > 0, m = 2ℓ+ 1,

(P2) bm > 0, m = 2ℓ,

(P3) bm < 0, m = 2ℓ+ 1, and

(P4) bm < 0, m = 2ℓ.

We get the orbits on the u-axis in the (u, v)-coordinates, as shown in
Figure 5. We shall study the local phase portraits at the origin of the
local chart U2.

We first consider a general quadratic polynomial

g(x) = b2x
2 + b1x+ b0, b2 ̸= 0.
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(a) (P1) (b) (P2) (c) (P3) (d) (P4)

Figure 5. The orbits on the u-axis in the local chart
U1 for the differential system (1).

Then

H1 = H1(x, y) =
y2

2
+
b2
3
x3 +

b1
2
x2 + b0x.

By the Poincaré transformation x = u/v, y = 1/v, we change the first
integral to the following

H̃1 = H̃1(u, v) =
3v + 2b2u

3 + 3b1u
2v + 6b0uv

2

6v3
.

Let H̃1 = h varying h ∈ R. Then

U(x, y) = 6v3(H̃1(u, v)−h) = 3v+2b2u
3+3b1u

2v+6b0uv
2− 6hv3 = 0.

From U(0, 0) = 0 and ∂U/∂v|(0,0) = 3, by the Implicit Function Theo-
rem [2, Theorem 1.3.1] we obtain the solution of U(x, y) = 0 as follows

v(u) =− 2

3
b2u

3 +
2

3
b1b2u

5 − 2

9
(4b0b

2
2 + 3b21b2)u

7 +
2

27
(36b0b1b

2
2 + 9b31b2

− 8b32h)u
9 + o(u9).

Thus we have the invariant curves H̃1(u, v) = h at the origin of the
local chart U2. Drawing the orbits living on these invariant curves for
different values of h we obtain Figure 6.

(a) b2 > 0 (b) b2 < 0

Figure 6. The local phase portraits at the origin of the
local chart U2 for the differential system (1) when m = 2.
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Next we shall study the local phase portraits at the finite equilibrium
points when g(x) is a polynomial of degree 2. Consequently it can be
written as one of the following three forms

(S1) :g(x) = b2(x− r1)(x− r2), r1 < r2

(S2) :g(x) = b2(x− r0)
2,

(S3) :g(x) = b2(x
2 − 2ax+ a2 + b2).

For convenience we use the notations

ϕ(y) =
y2

2
, ψ(x) = b0x+

b1
2
x2 +

b2
3
x3.

Assume b2 > 0. Let r be a general real zero of g. Then there are three
possibilities: the zero r is either an inflection point, or a minimum,
or a maximum of the function ψ(x). We shall study the local phase
portraits at the equilibrium point (r, 0) for the differential system (1).

(a) b2 > 0 (b) b2 < 0

(c) (d)

Figure 7. The local phase portraits at an inflection
point in the subfigures (a) and (b), at a minimum in
the subfigure (c), and at a maximum in the subfigure (d).
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When the zero r is an inflection point of ψ, i.e. ψ′(x)|x=r = ψ′′(x)|x=r =
0, we see that b1 = b0 = 0. Further we have that

H1 = H1(r, 0) = ψ(r) =
b2r

3

3
.

Consider the orbits contained in the curves H1 = b2r
3/3. We only

concentrate to the half plane y > 0 because of the symmetry. First we
do the change of variables x = u+ r and y = v, and get

H1(u, v) =
b2
3
u3 +

v2

2
= 0.(4)

Solving the equation when v > 0 we get

v = f(u) =

√
2b2
3
(−u)3/2

as u ≤ 0. Further we see

f ′(u) = −
√

−3b2u

2
.

It follows that f ′(u) = 0 at u = 0 and f ′(u) < 0 as u < 0. Thus we

see that the orbit Γ0 living on the curve y =
√
2b2/3(r − x)3/2 goes to

the equilibrium point (r, 0) tangent to the x-axis. For ε1, ε2 > 0, we
consider the orbits living on the curves H1 = b2r

3
0/3 + ε1 and H1 =

b2r
3
0/3 − ε2. Solving the former equation we consider the point (x, 0)

on the x-axis and get x = x+ > r. For the latter equation we similarly
get x = x− < r. Starting the points (x±, 0) we respectively get the
orbits Γ+ and Γ− because ẋ = y > 0 and ẏ = −ψ′(x) < 0. By the
symmetry we obtain the local phase portrait of Figure 7(a).

When b2 < 0 from the equation (4) we get

v = f(u) =

√
−2b2
3

u3/2

as u ≥ 0. Further we see

f ′(u) =

√
−3b2u

2
.

It follows that f ′(u) = 0 at u = 0 and f ′(u) > 0 as u > 0. As it is
discussed in the case b2 > 0 we obtain the local phase portrait Figure
7(b) because ẋ = y > 0 and ẏ = −ψ′(x) > 0.

When the zero r is a minimal point of ψ we consider the invariant
curves H1 = ψ(r) + ε for ε > 0. Solving the solutions on the x-axis
we get two zeros x± satisfying that x− < r < x+. Since ẋ = y > 0
and ẏ = −ψ′(x) > 0 in the interval (x−, r) but ẏ < 0 in the interval
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(r, x+) we get the periodic orbit Γ+ starting (x+, 0) or (x−, 0) by the
symmetry. Thus we obtain a continuum of periodic orbits near the
equilibrium point (r, 0), see Figure 7(c).

When the zero r is a maximal point of ψ we consider the orbits living
on the curve H1(x, y) = ψ(r). First we solve the equations ϕ(y) = ε
and ψ(x) = ψ(r)− ε for ε > 0, and get y =

√
2ε and x = x± satisfying

that x− < r < x+ in the half plane y ≥ 0. On the other hand we do
the change of variables x = u+ r and y = v, and get

b1
2
u2 + b2ru

2 +
b2
3
u3 +

v2

2
= 0.

In the neighbourhood of the point (r, 0) we have

v = ±
√

−b1 − 2b2ru+ o(|u|),
since ψ′′(r) = b1+2b2r < 0. Thus we obtain the orbits Γ− (respectively
Γ+) starting at (x−,

√
2ε) (respectively (x+,

√
2ε)) tangent to the line

y = −
√
−b1 − 2b2r(x − r) (respectively y =

√
−b1 − 2b2r(x − r)), be-

cause ẋ = y > 0 and ẏ = −ψ′(x) < 0 as x < r, and ẋ = y > 0 and
ẏ = −ψ′(x) > 0 as x > r. We obtain Figure 7(d) near the equilibrium
point (r, 0) by the symmetry.

(a) (S1): b2 > 0 (b) (S2): b2 > 0 (c) (S3): b2 > 0

(d) (S1): b2 < 0 (e) (S2): b2 < 0 (f) (S3): b2 < 0

Figure 8. The graph of ψ in (Sk) for k = 1, 2, 3.

Assume (S1) with b2 > 0, then

ψ(x) =
b2
3
x3 − b2(r1 + r2)

2
x2 + b2r1r2x.
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(a) b2 > 0 (b) b2 < 0

Figure 9. The local phase portraits at the equilibrium
points E11 and E12 for the differential system (1) with
g(x) = b2(x− r1)(x− r2).

Clearly the differential system (1) has exactly two equilibrium points
E11(r1, 0) and E12(r2, 0). Moreover, ψ reaches the maximal value at
x = r1 and reaches the minimal value at x = r2, see Figure 8(a). Thus
by subfigures (c) and (d) in Figure 7 we get the local phase portrait of
E11 and E12, as shown in Figure 9(a). Assume b2 < 0. Then ψ reaches
the minimal value at x = r1 and reaches the maximal value at x = r2,
see Figure 8(d). It follows that the local phase portrait of E11 and E12

is shown in Figure 9(b). Combining the orbits at infinity in Figure
5(b)(d) and Figure 6 we obtain the phase portraits of the differential
system (1) with a general quadratic polynomial g(x) in (S1), see Figure
1(a)(d).

Assume (S2) then

ψ(x) =
b2x(x

2 − 3r0x+ 3r20)

3
.

The differential system (1) has exactly one equilibrium point E21(r0, 0).
Because r0 is the inflection point of ψ displayed in Figure 8(b)(e) we see
the local phase portraits near E21 as subfigures (a) and (b) of Figure
7. Combining the orbits at infinity we obtain the phase portraits of
the differential system (1) with a general quadratic polynomial g(x) in
(S2), see Figure 1(b)(e).

Assume (S3) with b2 > 0. Clearly there is no equilibrium points
for the differential system (1). On the other hand we see that ẋ =
y > 0 and ẏ = −ψ′(x) < 0. By the orbits at infinity we obtain the
phase portrait of the differential system (1) with a general quadratic
polynomial g(x) in (S3), see Figure 1(c). Similarly when b2 < 0 we
obtain the phase portrait of the differential system (1) with a general
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quadratic polynomial g(x) in (S3), see Figure 1(f). This completes the
proof of the theorem. □

Proof of Theorem 2. From the subfigures (a) and (c) in Figure 5 we get
the orbits on the u-axis in the (u, v)-coordinates. On the other hand
the origin of the local chart U2 is an equilibrium point. So we shall
study the local phase portraits at the origin of the local chart U2.

Consider a generic cubic polynomial

g(x) = b3x
3 + b2x

2 + b1x+ b0, b3 ̸= 0.

Then the differential system (1) has a first integral H1 = H1(x, y) =
ϕ(y) + ψ(y) = h, where

ϕ(y) =
y2

2
, ψ(x) =

b3x
4

4
+
b2x

3

3
+
b1x

2

2
+ b0x.

By the Poincaré transformation x = u/v and y = 1/v it becomes

Ĥ1 = Ĥ1(u, v) =
12b0uv

3 + 6b1u
2v2 + 4b2u

3v + 3b3u
4 + 6v2

12v4
= h.

Varying h ∈ R we have the orbits living on the curves Ĥ1 = h near the
origin of the local chart U2. Let

V (u, v) = 12v4(Ĥ1 − h) =12b0uv
3 + 6b1u

2v2 + 4b2u
3v + 3b3u

4 + 6v2

− 12hv4 = 0.

By the Newton-Puiseux algorithm [5, 8] we solve V (u, v) = 0 as follows

v(u) =±
√
−b3u2√

2
− b2

3
u3 ± (9b1b3 + 2b22)

18
√
−2b3

u4 +
3b0b3 + 2b1b2

6
u5

± (4b42 + 324b33h− 648b0b2b
2
3 − 243b21b

2
3 − 108b1b

2
2b3)

648
√
2(−b3)3/2

u6 + o(u6).

Because ẋ = y and ẏ = −ψ′(x) we obtain the directions of those orbits,
see Figure 10. When b3 > 0 the local phase portrait at the origin of U2

is formed by two hyperbolic sectors separated by the line of the infinity.

Next we shall study the local phase portraits at the finite equilibrium
points when g(x) is a polynomial of degree 3. First it can be written
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Figure 10. The local phase portrait of the origin of the
local chart U2 for the differential system (1) when b3 < 0.

as one of the following five polynomials

(C1) : g(x) = b3(x− r1)(x− r2)(x− r3), r1 < r2 < r3

(C2) : g(x) = b3(x− r1)
2(x− r2), r1 < r2

(C3) : g(x) = b3(x− r1)(x− r2)
2, r1 < r2

(C4) : g(x) = b3(x− r1)
3, and

(C5) : g(x) = b3(x− r1)(x
2 − 2αx+ α2 + β2).

Correspondingly we have the first integralsH1(x, y) = H1(x,−y). Then
the phase portraits of the differential system (1) are symmetric with
respect to the x-axis.

Assume (C1) then

ψ(x) =
b3x(3x

3−4(r1 + r2 + r3)x
2 + 6(r1r2 + r1r3 + r2r3)x− 12r1r2r3)

12
.

Clearly the differential system (1) has exactly three equilibrium points
E11(r1, 0), E21(r2, 0) and E31(r3, 0). When b3 > 0 note that ψ reaches
a minimal value at r1 or r3, and reaches a maximal value at r2, see
Figure 11(a). As it is surveyed for subfigures (c) and (d) in Figure 7, we
obtain the local phase portrait at E11(r1, 0), E21(r2, 0) and E31(r3, 0),
see Figure 12(a). Considering any h > ψ(r2) we have two zeros on the
x-axis and get a periodic orbit. When b3 < 0 we have that ψ reaches
a maximal value at r1 or r3, and reaches a minimal value at r2, see
Figure 11(f). We similarly obtain the local phase portrait at E11, E12

and E13, see Figure 12(b).

Assume (C2) then there are two equilibrium points E21(r1, 0) and
E22(r2, 0). On the other hand

ψ(x) =
b3x(3x

3 − 4(2r1 + r2)x
2 + 6r1(r1 + 2r2)x− 12r21r2)

12
.
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(a) (C1): b3 > 0 (b) (C2): b3 > 0 (c) (C3): b3 > 0 (d) (C4): b3 > 0

(e) (C5): b3 > 0 (f) (C1): b3 < 0 (g) (C2): b3 < 0 (h) (C3): b3 < 0

(i) (C4): b3 < 0 (j) (C5): b3 < 0

Figure 11. The graph of ψ in (Ck) for k = 1, · · · , 5.

(a) b3 > 0 (b) b3 < 0

Figure 12. The local phase portraits at the equilibrium
points E1i, i = 1, 2, 3, for the differential system (1) in (C1).

and its graph is shown in subfigures (b) and (g) of Figure 11. As it is
done for subfigures (a), (b), (c) and (d) of Figure 7, we obtain the local
phase portraits at E21 and E22, see Figure 13.

Assume (C3) then

ψ(x) =
b3x(3x

3 − 4(r1 + 2r2)x
2 + 6r2(2r1 + r2)x− 12r1r

2
2)

12
,
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(a) b3 > 0 (b) b3 < 0

Figure 13. The local phase portraits at the equilibrium
points E1i, i = 1, 2, for the differential system (1) in (C2).

(a) b3 > 0 (b) b3 < 0

Figure 14. The local phase portraits at the equilibrium
points E1i, i = 1, 2, 3 for the differential system (1) in (C3).

and its graph is shown in subfigures (c) and (h) of Figure 11. Similar
to case (C2) we obtain the local phase portraits near E21 and E22, see
Figure 14.

Assume (C4) then

ψ(x) =
y2

2
+
b3(r1 − x)4

4
.

The differential system (1) has exactly one equilibrium point E41(r1, 0).
Note that ψ reaches a minimal value at x = r1, which is displayed in the
subfigure (d) of Figure 11. Then there is a continuum of periodic orbits
near E41 when b3 > 0, see Figure 15(a). When b3 < 0 because ψ reaches
a maximal value at x = r1 shown in Figure 11(i) we see the trend of
orbits near E41. On the other hand we have H1 = ϕ(y) + ψ(x) = 0 by
taking x = r1 and y = 0. Thus solving the equation H1 = 0 we have

y = f(x) =

√
−b3
2

(r1 − x)2.
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(a) b3 > 0 (b) b3 < 0

Figure 15. The local phase portraits at the equilibrium
point E41 for the differential system (1) in (C4).

which is a parabolic curve at E41. Then we obtain the local phase
portrait at E41, see Figure 15(b).

Assume (C5) then

ψ(x) =
b3x(3x

3 − 4(2a+ r1)x
2 + 6(a2 + b2 + 2ar1)x− 12(a2 + b2)r1)

12

whose graph is shown in subfigure (e) of Figure 11 when b3 > 0 and in
subfigure (j) of Figure 11 when b3 < 0. The differential system (1) has
exactly one equilibrium point E51(r1, 0). Similar to the subfigure (c) of
Figure 7 we get a continuum of periodic orbits near E51 when b3 > 0.
When b3 < 0 we obtain the local phase portrait near E51 as done in
Figure 7(d).

In summary whenm = 3 we obtain the phase portraits of the Liénard
system (1) in the Poincaré disc by combining the orbits at infinity in
Figure 10, see Figure 2 □

Proof of Theorem 3. The differential system (2) has the straight line
y = 0 filled up with finite equilibrium points. As it was mentioned in
(3), we see that system (2) is orbitally equivalent to system (3). We
shall study the orbits at infinity for the differential system (2) using
the Poincaré compactification.

First in the local chart U1 the differential system (2) becomes

u̇ = −u2vn − uFn(v), v̇ = −uvn+1,

and in the local chart U2 it becomes

u̇ = vn + uΨn(u, v), v̇ = vΨn(u, v),
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where

Fn(v) =
n∑

i=0

aiv
n−i, Ψn(u, v) =

n∑

i=0

aiu
ivn−i.

It follows that the u-axis are filled up with equilibrium points in the
local chart U1 and the origin of the local chart U2 is an equilibrium
point.

On the other hand for the differential system (2) with a general
quadratic polynomial f(x) = a2x

2 + a1x+ a0, a2 ̸= 0, we obtain a first
integral

H2 = H2(x, y) = y +
a2
3
x3 +

a1
2
x2 + a0x.

By the Poincaré transformation x = 1/v, y = u/v the first integral
becomes

Ĥ2 = Ĥ2(u, v) =
6a0v

2 + 3a1v + 2a2 + 6uv2

6v3
,

and by the Poincaré transformation x = u/v, y = 1/v it becomes

H̃2 = H̃2(u, v) =
6v2 + 2a2u

3 + 3a1u
2v + 6a0uv

2

6v3
.

Considering Ĥ2 = h, where h ∈ R, we see that

W (u, v) = 6v3(Ĥ2 − h) = 6a0v
2 + 3a1v + 2a2 − 6hv3 + 6uv2 = 0.

Since a2 ̸= 0 we have W (u, 0) = a2 ̸= 0, which follows that at each
one of these equilibrium points on the u-axis there are two hyperbolic
sectors separated by the u-axis.

Let H̃2 = h varying h ∈ R. Then

U1(x, y) = 6v3(H̃2(u, v)−h) = 6v2+2a2u
3+3a1u

2v+6a0uv
2−6hv3 = 0.

By the Newton-Puiseux algorithm [5, 8] we solve two explicit solutions
of U1(x, y) = 0 as follows

v(u) =−
√−a2√

3
u3/2 − a1

4
u2 +

(a0
√−a2
2
√
3

+

√
3a21

√−a2
32a2

)
u5/2

+
(a0a1

4
− a2h

6

)
u3 + o(u3) for x > 0,

v(u) =

√
a2√
3
(−u)3/2 − a1

4
u2 −

(a0
√
a2

2
√
3

+

√
3a21

√
a2

32a2

)
(−u)5/2

+
(a0a1

4
− a2h

6

)
u3 + o(u3) for x < 0.
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Thus we obtain the invariant curves H̃2(u, v) = h at the origin of the
local chart U2. Drawing these invariant curves for different values of h
we obtain the local phase portraits at the origin of the local chart U2

as Figure 6.

In what follows we discuss the orbits living on the invariant curves
H2 = h for the differential system (3). Similarly we consider a general
quadratic polynomial in the three cases

(Q1) : f(x) = a2(x− r1)(x− r2), r1 < r2

(Q2) : f(x) = a2(x− r0)
2,

(Q3) : f(x) = a2(x
2 − 2ax+ a2 + b2).

In the case that a2 > 2 in (Q1) we see H2 = H2(x, y) = y + ψ1(x),
where

ψ1(x) =
a2
6
x
(
2x2 − 3(r1 + r2)x+ 6r1r2

)
.

Then we have the graph of ψ1, which is displayed in Figure 8(a). On
the other hand we obtain the invariant curves y = −ψ1(x) + h. Note
that x′ = 1 and y′ = −ψ′

1(x) = −a2(x − r1)(x − r2). Choosing h =
ψ1(r1), ψ1(r∗) and ψ1(r2), where r1 < r∗ < r2, we get three invariant
curves, which also are three orbits, see Figure 16. Bringing back to the
differential system (2) we obtain the phase portrait, see subfigure (a)
in Figure 3.

In a similar way we have subfigure (d) of Figure 3 for the case that
a2 < 0 in (Q1) and obtain the phase portraits for the differential
system (2) in (Q2) and (Q3), see the remain subfigures (b), (c), (e)
and (f) in Figure 3. □

(a) a2 > 0 (b) a2 < 0

Figure 16. The local phase portraits for the differential
system (3) in (Q1).
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Proof of Theorem 4. We have known that all points on the u-axis are
equilibrium point in the local chart U1 and the origin of the local chart
U2 is also an equilibrium point. Now we study the local phase portraits
at each these equilibrium points.

Consider a generic cubic polynomial f(x) = a3x
3 + a2x

2 + a1x +
a0, a3 ̸= 0. Then the differential system (3) has a first integral H2 =
H2(x, y) = y + ψ1(y) = h, where

ψ1(x) =
a3x

4

4
+
a2x

3

3
+
a1x

2

2
+ a0x.

By the Poincaré transformation x = 1/v and y = u/v, the first integral
becomes

Ĥ∗
2 = Ĥ∗

2 (u, v) =
12a0v

3 + 6a1v
2 + 4a2v + 3a3 + 12uv3

12v4
,

and by the Poincaré transformation x = u/v and y = 1/v it becomes

H̃∗
2 = H̃∗

2 (u, v) =
12a0uv

3 + 6a1u
2v2 + 4a2u

3v + 3a3u
4 + 12v3

12v4
.

As it is done in the case that f is a quadratic polynomial, we have that
there are two hyperbolic sectors at each one of these equilibrium point
on the u-axis because a3 ̸= 0.

In order to clarify how the orbits connect to the origin of the local
chart U2, we vary h ∈ R to get the orbits living on the curves H̃∗

2 = h.
Let

V1(u, v) = 12v4(H̃∗
2 − h)

= 12a0uv
3 + 6a1u

2v2 + 4a2u
3v + 3a3u

4 + 12v3 − 12hv4 = 0.

From the equation we obtain a explicit solution in a form of rational
series

v(u)=− a
1/3
3
3
√
4
u4/3+

3
√
4a2

9a
1/3
3

u5/3− a1
6
u2 +

729a0a
2
3+162a1a2a3−16a32

2187 3
√
4a

5/3
3

u7/3

− 5832a0a2a
2
3 + 2187a21a

2
3 − 648a1a

2
2a3 + 64a42 − 6561a33h

39366 3
√
2a

7/3
3

u8/3

+ o(u8/3).

Since ẋ = y and ẏ = −ψ′
1(x) we obtain the directions of those orbits,

see Figure 10.
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For the local phase portraits at those equilibrium point we can easily
obtain the phase portraits in the following five cases

(G1) : f(x) = a3(x− r1)(x− r2)(x− r3), r1 < r2 < r3

(G2) : f(x) = a3(x− r1)
2(x− r2), r1 < r2

(G3) : f(x) = a3(x− r1)(x− r2)
2, r1 < r2

(G4) : f(x) = a3(x− r1)
3,

(G5) : f(x) = a3(x− r1)(x
2 − 2αx+ α2 + β2).

The invariant curves y = −ψ1(x) + h are the orbits of the differential
system (3) as displayed in Figure 11. Going back to the differential
system (2), we obtain the phase portraits of Figure 4. □
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