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Abstract. We consider a four-prototype Rossler system introduced by Otto Rösler
among others as prototypes of the simplest autonomous differential equations (in the
sense of minimal dimension, minimal number of parameters, minimal number of non-
linear terms) having chaotic behavior. We contribute towards the understanding of its
chaotic behavior by studying its integrability from different points of view. We show
that it is neither Darboux integrable, nor C1-integrable.

1. Introduction and statement of the main results

The question whether a differential system admits a first integral (see section 2 for
its precise definition) is of fundamental nature, first because the first integrals provide
conservation laws for the system that enables to lower its dimension (once restricted to
a precise value of it), and second because knowing a sufficient number of them allows
to determine its orbits (solving it), at least in an explicit functional form because to
compute the intersection of the different constant hypersurfaces defined by the first
integrals is in general difficult to do. The distinction between integrable and noninte-
grable systems has the qualitative implication of regular motion versus chaotic motion
and is an intrinsic property of the system, is not a matter of whether a system can be
integrated or not. However, the study of the existence or non-existence of first integrals
is in general a difficult problem.

In this paper we deal with the four-prototype Rossler system given by the following
non-linear differential system

(1) ẋ = −y − z, ẏ = x, ż = αy(1− y)− βz,

where α, β ∈ R. This system was proposed and studied by Otto Rössler among others
as prototypes of the simplest autonomous differential equations having chaotic behav-
ior. More precisely, in the Rössler prototypes the chaos is minimal mainly due to
three reasons: their nonlinearity terms are minimal because they consist in a unique
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quadratic term. In Rössler systems a chaotic attractor is generated with only one qua-
dratic monomial, in contrast with the Lorenz system in which it is generated by two
quadratic monomials. As in Lorenz system the phase-space of the Rössler systems
has the minimal dimension three. For these three reasons the Rössler prototypes are
paradigmatic problems to start with if one wants to understand the born/die of chaos
in dynamical systems. Therefore, these models have been intensively studied by several
authors (in the moment that this paper has been written there were more than 170
articles in MathSciNet related with these Rössler’s prototypes) mainly with numerical
studies on the presence of attractors, but not much studies are done regarding analyti-
cal proofs for the presence/absence of chaos. This is the main motivation for this paper
and we focus on the study of their regular behaviour by studying their integrability.

More precisely, there are chaotic systems as for instance the Lorenz system, that
for some values of the parameters exhibit chaos and for other values of the parameters
have first integrals (see [8]), or it is completely integrable (see [5]). The objective of this
paper is to see if the Rössler system here studied also present or not a similar behaviour
as the Lorenz system which can exhibit chaos and integrability for different values of
the parameters. The result will be that this Rössler system is more chaotic than the
Lorenz system in the sense that it is neiher Darboux integrable, nor C1 integrable for
any values of the parameters, except for the trivial value α = 0, but for this value the
Rössler system becomes a linear differential system.

The differential system (1) was introduced in [15] (see also [16]) where it is proved that
this system is chaotic with the presence of an strange attractor when the parameters take
the values close to α = β = 1/2. Moreover in [4, 13] the authors proved the existence
of periodic orbits and study their stability and instability. Similar results concerning
the existence/non-existence of first integrals for other Rössler systems are [6, 9]. More
precisely, in these two last papers the Rössler system studied was ẋ = −y−z, ẏ = x+ay
and ż = b−cz+xz, in [6] the authors studied the formal and the analytic integrability of
that system, while in [9] the authors studied its Darboux integrability. The definitions
and basic results on the Darboux theory of integrability are the same in the paper [11]
than in the present paper, but the proofs for studying the existence or non-existence of
Darboux first integrals are completely different in both papers.

Note that when α = 0 system (1) is linear and has the independent first integrals

H1 = z, H2 = x2 + y2 + 2yz

when β = 0, and the independent first integrals

H1 =

(
x− βz

1 + β2

)
cos

(
log z

β

)
−
(
y +

z

1 + β2

)
sin

(
log z

β

)
,

H2 =

(
y +

z

1 + β2

)
cos

(
log z

β

)
+

(
x− βz

1 + β2

)
sin

( log z
β

)
,

when β ̸= 0.

Since in both cases H1 and H2 are functionally independent system (1) when α = 0 is
completely integrable (see section 2 for the precise definitions). More precisely, with a
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(complex) linear combination of H1 and H2 we can build two independent Darbouxian
first integrals. So, from now on we will restrict our study when α ̸= 0. Since in this
case, as pointed out before it has been showed in [16] that the differential system (1)
defines a dynamical continuous system with presence of chaos, the existence or not of
first integrals as well as invariant algebraic surfaces is of great importance to contribute
towards its non-chaotic behavior. The main theorem of this paper is the following one.

See the definitions of invariant algebraic surface, exponential factors and Darboux
first integrals in section 2.

Theorem 1. The following statements hold for system (1) with α ̸= 0:

(i) It has no invariant algebraic surfaces.
(ii) The unique exponential factors are of the form F = eα0+α1x+α2y with α0, α1, α2 ∈

C.
(iii) It has no Darboux first integrals.

Note that (see section 2) the non-existence of Darboux first integrals prevent the
existence of either polynomial first integrals, or rational first integrals.

So the rest of the paper is as follows: we have section 2 where the notions needed for
proving Theorem 1 are provided. In section 3 we give the proof of Theorem 1. Finally
in section 4 we provide some comments about the C1 first integrability of system (1).

2. Preliminary results

Let U ⊂ R3 be an open subset. We say that the C1 non-constant function H : U → R
is a C1-first integral of system (1) if H(x(t), y(t), z(t)) is constant for all values of t for
which the solution (x(t), y(t), z(t)) is defined on U . When H is a polynomial we say
that H is a polynomial first integral, when it is a rational function we say that it is
a rational first integral, and when it is a Darboux function (see below) we say that it
is a Darboux first integral. We will say that system (1) is completely integrable if it
admits two functionally independent first integrals. Since each level surface of a first
integral is invariant under the flow induced by the system, it is clear that if this system
is completely integrable then the intersection of its two first integrals determines an
invariant curve, which is formed by the orbits of the system.

Let h : C3 → C be a nonconstant polynomial. We say that h(x, y, z) = 0 is an
invariant algebraic surface of system (1) if it satisfies

(2) −(y + z)
∂h

∂x
+ x

∂h

∂y
+ (αy(1− y)− βz)

∂h

∂z
= Kh

for some polynomial K ∈ C[x, y, z] called the cofactor of the invariant algebraic surface
h = 0. Note that K has degree at most one and that an invariant algebraic surface
with zero cofactor determines a polynomial first integral. For more information on the
invariant algebraic surfaces see [2, 11, 12].
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On the other hand we say that a nonconstant function F = eg/h where g, h ∈ C[x, y, z]
are coprime polynomials it is an exponential factor of system (1) if it satisfies

−(y + z)
∂F

∂x
+ x

∂F

∂y
+ (αy(1− y)− βz)

∂F

∂z
= LF

for some polynomial L ∈ C[x, y, z] of the degree at most one, called the cofactor of the
exponential factor F . For a geometric and algebraic meaning of the exponential factor
we refer the reader to [1]. It is well-known that h = 0 (whenever it is non-constant)
is an invariant algebraic surface of the system (for a proof see for instance [1]). In the
case in which h is constant then eg can be an exponential factor which comes from
the multiplicity of the infinity. For more information on exponential factors see again
[2, 10, 11, 12].

A first integral of the form

G = fλ1
1 · · · fλk

k [exp[g1/h1]]
µ1 · · · [exp[gs/hs]]

µs

where fj = 0 are invariant algebraic surfaces, exp[gj/hj] are exponential factors, and
the constants λ1, · · · , λk, µ1, · · ·µs ∈ C is called a Darboux first integral. For more
information on Darboux first integrals see again [2].

3. Proof of Theorem 1

3.1. Proof of statement (i). We change the variable z by the new variable u taking
u = z − βx. Then the differential system (1) becomes

(3) ẋ = −βx− y − u, ẏ = x, u̇ = (α + β)y − αy2.

Since the differential system (3) is of degree two if it has an invariant surface F =
F (x, y, u) = 0 it must satisfy

(4) −(βx+ y + u)
∂F

∂x
+ x

∂F

∂y
+ ((α + β)y − αy2)

∂F

∂u
= (k0 + k1x+ k2y + k3u)F

Assume that the polynomial F has degree n. We denote by Fk the homogeneous part
of the polynomial F of degree k. From (4) we obtain that Fn must satisfy

−αy2
∂Fn

∂u
= (k1x+ k2y + k3u)Fn.

Solving this partial differential equation we have that

Fn = f(x, y)e
−(k1x+2k2y+k3u)u

2αy2 .

Since Fn must be a homogeneous polynomial of degree n it follows that k1 = k2 = k3 =
0. Then

Fn =
n∑

j=0

ajx
n−jyj.
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From (4) the homogeneous terms of degree n satisfy
n∑

j=0

(n− j)ajx
n−j−1yj + x

n∑

j=0

jajx
n−jyj−1 + k0

n∑

j=0

ajx
n−jyj.

Solving this partial differential equations we get that

Fn−1 = − u2

2α

n∑

j=0

(n− j)ajx
n−j−1yj−2 +O(u),

where O(u) is a polynomial in the variable u of degree at most one. Since Fn−1 must
be a homogeneous polynomial of degree n− 1 we have that a0 = a1 = 0.

Now we shall prove by induction over k that assuming a0 = a1 = . . . = a2k−1 = 0 and

Fn−k =
(−1)ku2k

αk
∏k

ℓ=1 2ℓ

n∑

j=2k

ajx
n−j−kyj−2k

k−1∏

ℓ=0

(n− j − ℓ) +O(u2k−1),

then a2k = a2k+1 = 0 and

Fn−k−1 =
(−1)k+1u2k+2

αk+1
∏k+1

ℓ=1 2ℓ

n∑

j=2k+2

ajx
n−j−k−1yj−2k−2

k∏

ℓ=0

(n− j − ℓ) +O(u2k+1).

Now from (4) the homogeneous terms of degree n− k satisfy

(5) −αy2
∂Fn−k−1

∂u
= (βx+ y + u)

∂Fn−k

∂x
+ x

∂Fn−k

∂y
+ (α + β)y

∂Fn−k

∂u
+ k0Fn−k.

By induction assumption we note that

(βx+ y)
∂Fn−k

∂x
+ x

∂Fn−k

∂y
+ (α + β)y

∂Fn−k

∂u
+ k0Fn−k = O(u2k),

and that

u
∂Fn−k

∂x
=

(−1)ku2k+1

αk
∏k

ℓ=1 2ℓ

n∑

j=2k

(n− j − k)ajx
n−j−k−1yj−2k

k−1∏

ℓ=0

(n− j − ℓ) +O(u2k).

From (5) we must solve the differeential equation

−αy2
∂Fn−k−1

∂u
=

(−1)ku2k+1

αk
∏k

ℓ=1 2ℓ

n∑

j=2k

ajx
n−j−k−1yj−2k

k∏

ℓ=0

(n− j − ℓ) +O(u2k).

Its solutions is solution is

Fn−k−1 =
(−1)k+1u2k+2

αk+1
∏k+1

ℓ=1 2ℓ

n∑

j=2k

ajx
n−j−k−1yj−2k−2

k∏

ℓ=0

(n− j − ℓ) +O(u2k+1).

Since Fn−k−1 must be a homogeneous polynomial of degree n − k − 1, it follows that
a2k = a2k+1 = 0. So the induction process is proved. Hence we obtain that a0 = a1 =
. . . = an = 0, consequently Fn = 0, a contradiction with the fact that there is an
invariant surface F = 0 of degree n.
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3.2. Proof of statement (ii). In view of statement (i) of Theorem 1, any exponential
factor of system (1) is of the form eg with g ∈ C[x, y, z]. If g is constant then statement
(ii) holds. Assume that g is not constant. Clearly F = eα0+α1x+α2y with α0, α1, α2 ∈ C
is an exponential factor with cofactor −α1(y + z) + α2x. Taking into account that
computing the cofactor of an exponential factor is a logarithmic derivation and so an
additive morphism, and that eα0+α1x+α2y is an exponential factor, any other exponential
factor F1 = eg with g a polynomial in C[x, y, z] different from F can be taken with
cofactor of the form K = β0 + β1z with β0, β1 ∈ C and so it satisfies

(6) −(y + z)
∂g

∂x
+ x

∂g

∂y
+ (αy(1− y)− βz)

∂g

∂z
= β0 + β1z.

We will see that there are no exponential factors of such form F1.

We consider two different cases.

Case 1: β ̸= −α. In this case system (1) has two finite singular points which are

p1 = (0, 0, 0) and p2 =
(
0,

α + β

α
,−α + β

α

)
.

Evaluating (6) on p1 we get that β0 = 0 and evaluating (6) on p2 we get that β1 = 0.
Therefore it follows from (6) that g is either a constant or a polynomial first integral.
Since none of the two are possible, we reach to a contradiction.

Case 2: β = −α. In this case the unique finite singular point of system (1) is the origin.
Evaluating (6) on x = y = z = 0 we get that β0 = 0. On the other hand, evaluating it
on x = 0, y = −z we obtain

−αz2
∂g

∂z

∣∣
x=0,y=−z

= β1z,

which yields that β1 = 0. Therefore it follows from (6) that g is either a constant or a
polynomial first integral. Since none of the two are possible, we reach to a contradiction,
and the proof of statement (ii) of Theorem 1 is complete.

3.3. Proof of statement (iii). Using the definition of Darboux first integral provided
in section 2 it follows from statements (i) and (ii) that the unique Darboux first integrals
can be of the form

G = eα0+α1x+α2y with cofactor − α1(y + z) + α2x.

Since such a cofactor must be zero we get that α2 = α1 = 0, but then G is a constant
which is not possible. In short there are no Darboux first integrals and the proof of the
theorem is completed.

4. Comments about the C1-integrability of system (1)

In this section we study the non-existence of the global C1 first integrals using the
fact that the birth of convenient isolated periodic orbits can be regarded as an obstacle
to C1-integrability, see below for details.
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The main result concerning the C1-integrability of system (1).

Theorem 2. The following hold for the differential system (1).

(a) Assume α(α + 2β) > 0. Consider the new parameters (a, b) defined as follows
α = εa and β = −ε(b + a/(1 + ε2b2)). Then there exists ε0 > 0 such that
for all ε ∈ (0, ε0) there exists a periodic solution γε of system (1) tending to
{z = −1/2}∩{x2+(y+z)2 = −(a+2b)/(2a)} as ε → 0 which is asymptotically
stable when a + b < 0 and unstable when a + b > 0. Moreover, system (1)
has no C1 first integrals H(x, y, z) defined in a neighborhood of the periodic
orbit γε satisfying that ∇H(x, y, z) and (−y − z, x, αy(1− y)− βz) are linearly
independent on the points of γε.

(b) Assume α > 2β3. Consider the new parameters (a, ε) defined as follows α =
ε(2a − 1 + a2ε2) and β = ε(1 − a). Then there exists ε0 > 0 such that for all
ε ∈ (0, ε0) and a > 1/2 there exists a periodic solution γε of (1) tending to
{z = −1/2} ∩ {x2 + (y + z)2 = 1/(2(2a− 1))} as ε → 0 which is asymptotically
stable when 1/2 < a < 1 and unstable when a > 1. Moreover, system (1)
has no C1 first integrals H(x, y, z) defined in a neighborhood of the periodic
orbit γε satisfying that ∇H(x, y, z) and (−y − z, x, αy(1− y)− βz) are linearly
independent on the points of γε.

The part of Theorem 2 regarding the existence and stability of periodic orbits is taken
verbatim from the two main results in [4] and the conclusion of the theorem follows then
from the well-known result (which goes back to Poincaré, see [14] and whose proof can
be found in [7]) which states that if system (1) has a periodic orbit γ having only one
multiplier equal to one, then it has no C1 first integrals H(X) defined in a neighborhood
of γ such that ∇H(X) and f(X) are linearly independent on the points X ∈ γ.
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193–198.
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