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ABSTRACT. The topological index, or simply the index, of an equilibrium point
of a differential system is an integer which saves important information about
the local phase portrait of the equilibrium.

There are mainly two ways to calculate the index of an isolated equilibrium
point of a smooth vector field. First Poincaré and Bendixson proved that the
index of an equilibrium point can be obtained from the number of hyperbolic
and elliptic sectors that there are in a neighborhood of the equilibrium point,
which is known as Poincaré-Bendixson formula for the topological index of an
equilibrium point. Second several works contributed to the algebraic method
of Cauchy’s index for computing the index of an equilibrium point.

In this paper we extend the Poincaré-Bendixson formula to planar piece-
wise smooth vector fields. Applying this formula we define the index of generic
codimension-one equilibria for piecewise smooth vector fields, including bound-
ary equilibria, pseudo-equilibria and tangency points.

1. INTRODUCTION AND STATEMENT OF THE MAIN RESULTS

A planar smooth differential system is defined by

dz
a - P(,’E,y),
dy
E _Q('xay)y

vector field at the point p € R? associated to system (1).

is, P(q)

Suppose that ¢ € R? is an isolated equilibrium point of the vector field (1), that
= Q(¢g) = 0. One of the fundamental problems in the qualitative theory
of planar differential systems is to provide a characterization of the local phase
portraits in the vicinity of the equilibrium point ¢. The Jacobian matrix of system

(1) at ¢ is
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FiGUure 1. Hlustration of the elliptic sector, hyperbolic sector and
parabolic sector. Fig.1.1 is an attracting parabolic sector. Fig.1.2
is a repelling parabolic sector. Fig.1.3 is a hyperbolic sector.
Fig.1.4 is an elliptic sector.

The local phase portrait at an equilibrium point ¢ having the real part of its
two eigenvalues of the Jacobian matrix of the differential system at ¢ different from
zero is determined by the Hartman-Grobman theorem (see for instance Theorem
2.15 of [9]). The semi-hyperbolic equilibria (where one of the eigenvalues equals to
zero) are also classified (see Theorem 2.19 of [9]).

Concerning the degenerate equilibria (i.e. when both eigenvalues of the Jacobian
matrix at an equilibrium point are equal to zero), the situation is much more
difficult. The Andreev theorem classifies the nilpotent equilibrium point, whose
associated Jacobian matrix is not identically zero, except the monodromic case (i.e.
when the equilibrium point is a center or a focus), see for instance Theorem 3.5 of
[9]. In general the study of the local dynamics of the orbits near an equilibrium
point with linear part identically zero is quite complicated. In this case the only
possibility is studying this equilibrium point doing the changes of variables called
blow ups, see [1].

A characteristic orbit v(t) of vector field (1) at the equilibrium point ¢ is an
orbit tending to ¢ in positive time (resp. in negative time) with a well defined di-
. : : V() —q
rection 6y, that is, v(t) — ¢ for t = +o0 (resp. t & —c0) and lim —————— =

t=+oo [ y(t) —q |
V() —q

(cosbp,sinfy) (resp. lim ————~———— = (cosby,sinby)) exists. Following From-
t=—ce || y(t) — ¢ |

mer [11] the direction of 0y is called a characteristic direction at g. There are several

methods to investigate the number of orbits tending to an equilibrium point in a

characteristic direction, see [21] for Z-sectors, see [29] for normal sectors, see [28]

for generalized normal sectors, and see [22] for quasi normal sectors.

Definition 1. Let V be a compact neighborhood of an isolated equilibrium point q
of vector field (1), and OV is the boundary of V. Suppose that there exist a finite
number of characteristic orbits c1,ca,- - ,cyn, each cutting OV transversely at one
point v;, then V' can be divided into several sectors S; := int{c; U c;11 U (vi, vi41)}
fori=1,2,--- . n—1and S, :=int{c, Ucy U (vy,,v1)}, where (v;,v;41) denote the
piece of OV between v; and v;y1. We denote by v(p) the orbit of the vector field
(1) through the point p, and by v (p) (resp. v~ (p)) the positive semi-orbit (resp.
negative semi-orbit) of the vector field (1) at the point p. Taking into account the
characteristic orbits around the equilibrium point q, we can divide the neighborhood
V' of q into several sectors as follows.

o Attracting parabolic sector. For any points of [vi,v;41] C OV the vector field
(1) points inward, and for any p € S; \ {q}, w(p) = {q} and v~ (p) N OV # 0, see
Fig.1.1.
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e Repelling parabolic sector. For any points of [v;,v;+1] C OV the vector field
(1) points outward, and for any p € S; \ {q}, a(p) = {q} and v (p) N OV # 0 see
Fig.1.2.

e Hyperbolic sector. There exists a point v} € (v;,vi11) C OV such that: for any
points of [v;,v}) the vector field points outward (resp. inward) while at all points
of (vf,vit1] the vector field points inward (resp. outward); at v} the vector field
is tangent at OV and the tangency is external in the sense that the orbit through
the point of v} stay outside V; and for any q € S; \ {¢; U ¢i41 Uv}} we have
yH(p) NV # 0 and v~ (p) N OV # 0, see Fig.1.3.

o Elliptic sector. There exists a point v} € (v;,vi41) C OV such that y(v}) CV
with w(v)) = a(vy) = {q}; at all points of [v;,v}) the vector field points outward,
v (p) € V and a(q) = ¢; at all points of p € (v,v;41] the vector field points

inward, ¥ (p) C V and w(p) = q. We denote by Sy, v = Upejvs,ve1 7~ () and

S[v;‘,vi+1] = Upe[ui*,viﬂ] 7+(p)f at all points p of S \ {S[vi,vz‘] U S[vf,vwrl] U {Q}} we
have v(p) CV and w(p) = a(p) = q. The same definition also works interchanging
[vi, vf] and [vf,viy1], see Fig.1.4.

A path in R? is a continuous map o from I = [0,1] to R? (¢ : [ — R?), such
that o(t) = (01(t),02(t)) € R? for every t € I, where o; : I — R are continuous
maps. We say that the path o is closed if 0(0) = o(1).

Assume that ¢ € R? does not belong to o(I) and let 7 be a ray with origin at g.
We denote by go(t) the ray from ¢ to o(t). For every point o(t) we denote by @(t)

the angle between the rays r and go(t). The angle ¢(t) is an element of the circle
R/27Z. The function ¢ : I — R/2xZ is continuous with respect to the parameter
t; see Figure 2.

Given an isolated equilibrium point q of a vector field Z(p) in R?, there is a
neighborhood V' of ¢ on which there is no other equilibria of Z(p). Consider now
a closed path o : I — V' \ {¢} such that o(I) is a small circle surrounding q. We
define the (topological) index of ¢ equal to i(Z o o, q); the number of turns of the
closed path Z oo around the equilibrium point of coordinates of R? when the closed
path is run in counter-clockwise sense. The index of ¢ is independent of the chosen
closed path o, see for more details Chapter 6 of [9]. In order to obtained the index
of the equilibrium point ¢, we can to compute the following integral

o1 Qz,y) _ o(1) — ¢(0)
(3) ig = %ﬁdarctan Py 5 )

We say that an isolated equilibrium point ¢ of a vector field (1) has the finite
sectorial decomposition property if ¢ is not a center, a focus or anode, and ¢ has a
finite number of characteristic orbits.

The well known Poincaré-Bendixson formula can be stated as follows:

Poincaré-Bendixson formula: Assume that ¢ is an isolated equilibrium point
of a vector field (1) having the finite sectorial decomposition property. Let e, h and
p denote the number of elliptic, hyperbolic and parabolic sectors of the local phase

e—h

portrait at q respectively. Then iy =1+ 5
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FIGURE 2. Definition of @(t).

Note that the Poincaré-Bendixson formula can be extended to the case that the
equilibrium point ¢ is a focus, a center or a node.

Up to now piecewise smooth differential systems have appeared in control the-
ory [3], impact and friction mechanics [5, 18], nonlinear oscillations [2], economics
[14, 16], and biology [17], ..., see for more details the book [4] and the references
therein. One of the most important goals concerning the theory of piecewise smooth
differential systems is to look over the validity of the results coming from the clas-
sical theory of smooth differential systems into the piecewise smooth differential
systems. On one hand, it is obvious that the existence and uniqueness theorem is
not true in the piecewise smooth context [12]. While on the other hand, under suit-
able assumptions, Poincaré-Bendixson theorem [6], Bendixson-Dulac theorem [8],
Peixoto theorem [26] and Poincaré recurrence theorem [10] have been generalized
to piecewise smooth differential systems. This paper focuses on the Poincaré index
formula and its generalization to piecewise smooth differential systems. In order to
state our main result we need some preliminary definitions.

A planar piecewise smooth (PWS) differential system is defined by
dz

E = Pi (xay)a
(4) q for (z,y) € ©F.
Y _ o+
3 = 9 (@),
where the whole plane R? is partitioned into two open zones Y% := {(z,y)| £

h(z,y) > 0} by the discontinuous boundary ¥ = h~1(0), which is an one-dimensional
smooth manifold and h has 0 as a regular value. Let Z*(p) = (P*(p),Q*(p)) be
the piecewise smooth vector field associated to the piecewise differential system (4).

Definition 2. Let ZTh(p) = (Z1(p), Vh(p)) and Z~h(p) = (Z~(p), Vh(p)) be
defined in X7 and X~ respectively. The discontinuous boundary ¥ can be divided
as follows:

e Crossing region ¢ = {p € | Z*Th(p)Z~h(p) > 0}, see Fig.3.1.

o Attracting region ©¢ = {p € X| ZTh(p) <0,Z~h(p) > 0}, see Fig.3.2.
e Repelling region X" = {p € | Z*th(p) >0,Z h(p) < 0}, see Fig.3.3.
e Tangency points X' = {p € | Z* h(p)Z~h(p) = 0}.

In the crossing region Y:¢ the trajectories of ZT and Z~ can be concatenated
naturally. However in the attracting region ¥ (resp. repelling region "), the
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FiGURE 3. Illustration of the orbits in the crossing, attracting and
repelling regions. Fig.3.1 is the crossing region ¥¢. Fig.3.2 is the
attracting region %. Fig.3.3 is the repelling region X"

trajectories cannot be continued through X% (resp. ¥") and they slid in X (resp.
¥7) in forward (resp. backward) time. Thus both attracting and repelling regions
are called sliding region, that is X° := ¥* U X". Following the Filippov’s convex
method we construct the sliding vector field in the form

(5) Z*(p) = AZ"(p) + (1 = N)Z~ (p),

where A € (0,1) is such that Z® is tangent to X°. In this case
-

(6) \ h(p)

~ Z~h(p) = Z"h(p)’
In the following we give the definition of pseudo-equilibrium of sliding vector
field (5).

Definition 3. The points p € ¥° which satisfy Z*(p) = 0 will be called pseudo-
equilibria of sliding vector field (5).

Now we can define Y—regular points and X—equilibria for piecewise smooth
vector field (4), see [13].

Definition 4. p € ¥ will be called ¥—regular point of piecewise smooth vector field
(4) if one of the following conditions hold.

e p € 3¢ is a crossing point, that is, Z*h(p)Z~h(p) > 0.

e p € X% is not an equilibrium point of Z*(p), that is, ZTh(p)Z~h(p) < 0 and
Z%(p) # 0.

Any other points p € ¥ which are not ¥— regular points will be called ¥ —equilibria.
More precisely, we have

Definition 5. The Y¥—equilibria of piecewise smooth vector field (4) are:
e p € X is a boundary equilibrium point, that is, either Z+ (p)=0o0rZ (p)=0.

e p € X° is a pseudo-equilibrium, that is, Z*°(p) = 0. Moreover, we will call
stable pseudo-node to any point p € L such that Z%(p) = 0 and (Z*) (p) < 0,
see Fig.17.1; unstable pseudo-node to any point p € X" such that Z*(p) = 0 and
(Zs),(p) > 0, see Fig.17.2; pseudo-saddle to any point p € X% such that Z°(p) =0
and (Z®) (p) > 0 (see Fig.16.1) or q¢ € X" such that Z*(p) = 0 and (Z°) (p) < 0
(see Fig.16.2).

e p € Xt is a tangency point, that is, ZTh(p)Z~h(p) = 0. A point p € X is a
fold of Z*+ if Z*h(p) = 0 and (Z1)2h(p) := ZT(ZTh(p)) # 0. Moreover, the fold



6 SHIMIN LI, CHANGJIAN LIU, JAUME LLIBRE

Fig.4.1 Fig.4.2
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FIGURE 4. Illustration of a crossing, attracting and repelling re-
gion. Fig.4.1 is a crossing region. Fig.4.2 is the regularization of
a crossing region. Fig.4.3 is an attracting region. Fig.4.4 is the
regularization of an attracting region. Fig.4.5 is a repelling region.
Fig.4.6 is the regularization of a repelling region.

p € Z+ is wvisible if (Z1)?h(p) > 0, and it is invisible if (Z)?h(p) < 0. Similarly,
a point p € X is a fold of Z~ if Z~h(p) =0 and (Z7)?h(p) # 0. Furthermore, the
fold p € Z~ is visible if (Z7)*h(p) <0, and it is invisible if (Z~)?h(p) > 0.

Definition 6. A point p € ¥ is a two-fold if it is a fold for both Z+ and Z~. There

are three types of two-fold, visible-visible two-fold see Figure 13; wvisible-invisible
two-fold see Figure 14; invisible-invisible two-fold see Figure 15.

In order to study the dynamics of a piecewise smooth vector field (4) we describe
its regularization process as follows:

Definition 7. A ¢.-reqularization of a piecewise smooth vector field (4) is an one-
parameter family of vector fields Z.(p) defined by

(1) Z%(p) = (Pe(p), Q=(p) = (1 = ¢ (h(p))) Z~ (p) + = (h(p) Z™ (p),
where p:(h(p)) = ¢ (M), and ¢ : R — R is a smooth function satisfying ¢(t) =0

€

ift<—1, o(t)=1ift>1and o (t) >0 ift € (=1,1).

We define the index of an isolated equilibrium point ¢ € ¥ of a piecewise smooth
vector field (4) using its regularization vector field (7) as follows

(8) = lim — 7{ darctan QE z,9)

e—0 27 )

In the paper [27] the authors regularized the regular points ¢ € X, see Figure 4.
It is obvious that if the discontinuous boundary ¥ is sliding, then the trajectories of
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FIiGURE 5. Illustration of an elliptic, a hyperbolic and a parabolic
sector in a crossing region. Fig.5.1, Fig.5.2, Fig.5.5 and Fig.5.6 are
parabolic sectors. Fig.5.3 and Fig.5.7 are elliptic sectors. Fig.5.4
and Fig.5.8 are hyperbolic sectors.

the piecewise smooth system (4) staring at 3™ (resp. ¥7) cannot enter ¥~ (resp.
¥T). However in the crossing region ¢ the trajectories of the piecewise smooth
system (4) will be affected by both Z* and Z~. Thus in the crossing region it can
exist parabolic, elliptic and hyperbolic sectors. According to the direction of the
vector field in both ¥ and ¥~ there are eight situations in the regularized crossing
regions, see Figure 5.

Now we can state our main result as follows.

Theorem 1. Suppose that Z* is a piecewise smooth vector field (4) defined in
a neighborhood V' of q an isolated Y—equilibrium point having the finite sectorial
decomposition property. Letet, h™ and p™ denote the number of elliptic, hyperbolic,
and parabolic sectors of q for vector field ZT in the region X7, respectively. e~
h™ and p~ denote the number of elliptic, hyperbolic, and parabolic sectors of q for
vector field Z~ in the region %~ , respectively. Let é, h and p denote the number
of elliptic, hyperbolic, and parabolic sectors of q in the reqularized crossing regions.
Then
(et +e +é)—(ht+h™ +h)

9 g = 1 .
() Zq + 2

Remark 2. According to Theorem 1 the index iq of a piecewise smooth vector
field Z* depends on the number of elliptic and hyperbolic sectors which belong not
only to the regions in X* but also to the reqularized crossing regions around 3,
see for example Figure 11. If q is in the crossing region of ¥ and this case will be
considered in section 3.3, then € +p+ h = 2. If q is in X, either in hte sliding
region or in the crossing region, we investigate it in section 3.2 and we shall see

that é+]5+i~z = 1. If q is in the sliding region of 3 it will be analyzed in section 3.1,

N + o= — (Bt -
andweshallseethatézﬁzhzOandhenceiq:1+(e te) (AT +h ),see

2
for instance Figure 16. In this last case the formula of Theorem 1 coincides with
the Poincaré-Bendizson formula of a smooth vector field.

Remark 3. The authors of [7] also studied the extension of the Poincaré index
to piecewise smooth vector fields, but they do not provide the explicit formula of
Theorem 1.
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In [23], the authors consider the following piecewise smooth Liénard differential
system

dx

a4 F(I) - Y,
(10) o

a :g(m)7

where F(z) = [; f(z)dz with

filx), x>0,
-]

fa(x), x<0,

and

g(z), x>0,
g(x) = {

QQ(x), x <.

With the assumptions zg(x) > 0 and zf(z) > 0 for  # 0, then system (10)
has a unique equilibrium point ¢(0, 0), which is a visible-invisible two-fold (VI1, see
Fig.14.1) when g1(0)g2(0) > 0; visible-visible two-fold (VV2, see Fig.13.2) when
g1(0) > 0,92(0) < 0; invisible-invisible two-fold (II12, see Fig.15.2) when g¢;(0) <
0, 92(0) > 0.

Remark 4. The authors of 23] analyzed the non-ezxistence and uniqueness of limit
cycles of piecewise smooth Liénard differential system (10) for the case ¢1(0) <
0, g2(0) > 0.

According to our Theorem 1, it is obvious that the index of equilibrium point
iq = 0 for the case g1(0)g2(0) > 0 (see section 3.6), and the the index of equilibrium
point i = —1 for the case g1(0) > 0,92(0) < 0 (see section 3.5). According to
Corollary 11 of [7], we can conclude that system (10) cannot have limit cycles for
the above two cases.

This paper is organized as follows. In section 2 we give the proof of Theorem
1. We apply Theorem 1 for investigating the indices of all generic codimension-1
equilibria in the planar piecewise smooth vector fields, such as: boundary equilibria,
pseudo-equilibria and tangency points.

2. PROOF OF THEOREM 1

Without loss of generality we assume that ¢ = (0,0) and h(z,y) = y in the
piecewise smooth vector field (4). Thus the discontinuous boundary ¥ = {(z,y)|ly =
0} = {(z,0)|z > 0}UoU{(x,0)|x < 0} divides the plane R? into X+ = {(z,y)|y > 0}
and X~ = {(z,y)|y < 0}.

Step 1. We regularized the piecewise smooth vector field (4) by an one-parameter
family of continuous vector fields

(11) Z(p) = (P:(p), Q=(p)) = (1 — @ () Z™ (p) + ¢ (¥) Z ™ (p).

Step 2. Now we shall deduce the Poincaré-Bendixson formula for the continuous
vector field Z. using similar ideas to the proof of Proposition 6.32 of [9]. Since we
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FIGURE 6. Illustration of a permissible parametrization p for both
discontinuous boundaries {(z,0)[0 < x < o} and {(x,0)| — z¢ <
x < 0} in the sliding region. Here n™ =4 and n~ = 3.

focus on the local dynamics at ¢(0,0), then we can choose a suitable g > 0 such
that both intervals {(z,0)] —zo < = < 0} and {(2,0)|0 < = < z¢} are either in
a regularized crossing region or in a regularized sliding region. Let V be a small
disc centered at g and OV be the boundary of V. Thus 8V = 0V U OV~ where
oVt =9V Nyt

2.1. The discontinuous boundary has two sliding regions. We consider that
the discontinuous boundaries {(z,0)|0 < z < z¢} and {(z,0)| —x9 < z < 0} are in
the sliding region, see Figure 6.

Suppose that the curve OV + (resp. OV =) has s; fori =1,2,--- ,e* (resp. s; for

i=1,2,--- ,e7) points having an internal tangency, and r;r forj=1,2,--- ' h" (re-
sp. rj forj=1,2,--- ,h™) points having an external tangency. We can rearrange
the n* = et + h* contact points by ¢ for k =1,2,--- ,nT, and n~ = e~ + h~

contact points by ¢, for k = 1,2,--- ,n~. Let pj = VN {(2,0)[0 < 2 < z}
and p, = IV N{(z,0)] — 29 < = < 0}. Now we can choose intermediate points
p$ € (q,j,q;;_l) fork=1,---,nt —1,and p, € (@ sQpyr) for k=1,--- ,n~ — 1.
From Definition 1 it is obvious that we can obtain an elliptic sector for each internal
tangency, thus the number of elliptic sectors is equivalent to the number of inter-
nal tangency. Similarly we can get a hyperbolic sector for each external tangency
and hence the number of hyperbolic sectors is equivalent to the number of external
tangency.

We choose a permissible parametrization p : S' — 9V which satisfy p(e’*™/7") =
pi for k=0,1,--- ,n*t — 1 and p(e!™+**/"")) = p.- for k = 0,1,--- ,n~ — 1. See
Figure 6 for the case n* =4 and n™ = 3.
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By means of a continuous transformation the index of an isolated equilibrium
point with (e™ + e, h*t +h™,pT + p™~) sectors is equal to the index of an isolated
equilibrium point with the same number of equal triangular sectors of the same
kind and order than the sectors (e™ +e~,ht +h™,pT +p7).

In the region X1 each sector of (e*,h™,p™") is a triangular sector of angle 7 /m™
where m™ = et + A" + pT. Now we can see the contribution to the index of each
sector in X7 as follows.

(i) A triangular parabolic sector which starts with the angle ¢(0) = « and
ends with the angle p(7/m*) = a + m/m™, with a net gain 7/m*. See
Fig.1.1 and Fig.1.2.

(ii) A triangular hyperbolic sector which starts with the angle ¢(0) = o and
ends with the angle p(r/m") = a + m/m*™ — m, with a net contribution
w/m* — m. See Fig.1.3.

(iii) A triangular elliptic sector which starts with the angle ©(0) = « and ends
with the angle ¢(m/m™) = a+m/m™* +n, with a net contribution 7/m™* 4.
See Fig.1.4.

Similarly in the region ¥~ each sector of (e7,h™,p~) is a triangular sector of
angle m/m~ where m~ = e~ + h~ + p~. In the following we can deduce the
contribution to the index of each sector in X~

(i) A triangular parabolic sector which starts with the angle p(0) = a and

ends with the angle ¢(7/m~) = a+7/m~, with a net contribution w/m™.

(ii) A triangular hyperbolic sector which starts with the angle ¢(0) = « and

ends with the angle o(m/m~) = o+ n/m~ — m, with a net contribution
m/m” — .

(iii) A triangular elliptic sector which starts with the angle ¢(0) = « and ends

with the angle ¢(7/m™) = a+7/m~ +n, with a net contribution 7/m=+.

Let o := {(r,0)|0 € [0,27)} be the circle OV of radius r surrounding the origin
with r small enough. Going through the whole closed curve o = o U o~ with

ot ={(r,0)|0 € [0,7)} and 0~ = {(r,0)|0 € [r,2m)}, we get

iq = Z(Qa U) = ’L(q, J+ U Ji)

T < m
_izlﬁi;(i”)*;(m—ﬂ)
N 2m
P e h T
Zf_JFZ(i_JFW)ﬂLZ(f_*W)
+i=1m i=1 i=1 \T
2m
+ L pt + -4+ h -
et ++p 7t & i 7+p T+ (et —ht+e” —h7)m
m m

2T
(et +e7)— (AT + h*).

=1
+ 2
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FIiGURE 7. Illustration of a permissible parametrization p for dis-
continuous boundaries {(z,0)|0 < z < zo} is in the sliding region
and {(z,0)| — 2o < & < 0} is in the crossing region, where m* = 4
and m~ = 2.

‘We haye obtained the formula for the index stated in Theorem 1 because in this
case e =h=p=0.

2.2. The discontinuous boundary has a crossing region and a sliding
region. We consider that the discontinuous boundary has both crossing region
and sliding region. More precisely, without loss of generality we assume that
{(z,0)] — 29 < x < 0} is a crossing region and {(z,0)|0 < = < zo} is a sliding
region, see Figure 7.

Suppose that the curve OV T (resp. V™) has s} for i = 1,2,--- ,e* (resp. s;
1,

fori=1,2,---,e7) points having an internal tangency, and T;-r forj=1,2,---,ht
(resp. Ty for j =1,2,---,h7) points having an external tangency.
We can rearrange the n* = et +h™* contact points as ¢ for k =1,2,--- ,n*, and

n~ =e~ +h~ contact points as q; for k=1,2,--- ,n". Let p = 0V N{(z,0)[0 <
z <o}, py =0V N{(z,e)] —zo <z <0} and p; =9V N{(z,—¢)| —zg <z <0}
with € > 0 sufficiently small, see Figure 7. Now we can choose intermediate points
pf € (g qfyy) for k =1,---,nt — 1 and p; € (q;,q4,) for k =1,--- n~

1. Since {&)0” — 129 < x < 0} is a crossing region, we define the triangular
sector int(gp, U qp, Y (Py ,Ba)) in the regularized crossing region. We choose a

permissible parametrization p : S' — 9V such that p(e?F(m—arcsin 5)/m+) = pg, for

k= 0,1,---,nt — 1 and p(el(rth(rarcsine)/m™)y = p~ for k = 1,--- ,n~ — 1,
p(el(mmaresine)) — 5 and p(e(mraresine)) — p, » see Figure 7 again.

In short, by means of a continuous transformation the index of an isolated equi-
librium point with (et +e~ +é&,hT +h™ + h,p™ +p~ + p) sectors is equal to the
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index of an isolated equilibrium point with the same number and order of equal
triangular sectors (e +e~ + & hT +h™ + h,pT +p~ +p).

In the region 3 each sector of (et,h™ pT) is a triangular sector of angle (7 —
arcsine)/m™* where m™ = e* + h™ + pT. Now we can investigate the contribution
to the index of each sector in X7 as follows.

(i) A triangular parabolic sector which starts with the angle ¢(0) = a and
ends with the angle p((m — arcsine)/m™*) = a + (7 — arcsine)/m™, with a
net contribution (7 — arcsine)/m™.

(ii) A triangular hyperbolic sector which starts with the angle ¢(0) = « and
ends with the angle p(m —arcsine) = a+ (7 — arcsine)/m™ — 7, with a net
contribution (7 — arcsine)/m* — .

(iii) A triangular elliptic sector which starts with the angle ¢(0) = « and ends
with the angle ¢((r — arcsine)/m™) = a + (7 — arcsine)/m™* + m, with a
net contribution (7 — arcsine)/m™ + .

Similarly in the region ¥~ each sector of (e7,h™,p~) is a triangular sector of
angle (m—arcsine)/m~ where m~™ = e~ +h~ +p~. In the following we can consider
the contribution to the index of each sector in 7.

(i) A triangular parabolic sector which starts with the angle ¢(0) = a and will
end with the angle p((m — arcsine)/m~) = a + (7 — arcsine)/m~, with a
net contribution (7w — arcsine)/m™.

(ii) A triangular hyperbolic sector which starts with the angle ¢(0) = « and
will end with the angle p((m —arcsine)/m~) = o+ (7 — arcsine)/m~ —m,
with a net contribution (m — arcsine)/m~ — .

(iii) A triangular elliptic sector which starts with the angle ©(0) = a and will
end with the angle ¢((7m —arcsine)/m™) = a+ (7 —arcsine)/m~ + 7, with
a net contribution (7 — arcsine)/m~ + .

While in the regularized crossing region each sector of (¢, 71,]3) is a triangular
sector of angle 2arcsine. We can now consider the contribution to the index of
each sector.

(i) A triangular parabolic sector which starts with the angle ¢(0) = « and
ends with the angle p(2arcsine) = o + 2arcsine, with a net contribution
2arcsine. See Fig.5.1.

(ii) A triangular hyperbolic sector which starts with the angle ¢(0) = « and
ends with the angle ¢(2arcsine) = a+2 arcsin e —7, with a net contribution
2arcsine — w. See Fig.5.3.

(iii) A triangular elliptic sector which starts with the angle ¢(0) = « and ends
with the angle p(2arcsine) = o + 2arcsine + 7w, with a net contribution
2 arcsine + w. See Fig.5.4.

Going through the whole closed curve 9V = o0 = ¢t Uo~ Ug with ot =
{(r,0)]|0 € [0, — arcsine)}, o~ = {(r,0)|0 € (7 + arcsine,2m)} and 6 = {(r,0)|0 €
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m — arcsine, T + arcsinel}, we get

iq =i(qg,0)=1i(qg,0TUo™ UGF)

+ .
P' o1 arcsine ¢ W*&I‘CSIH&‘ R /7w — arcsine
R R
i=1 i=1 =

mt mt
2
PZ 7 — arcsine "Z T — arcsms hz T — arcsine
r-asre Lo bt
=1 i=1 m- i=1 m—
_l’_
21

Iz é h
>~ 2arcsine + ) (2arcsine+m) + > (2arcsine — 7)

i=1 i=1 i=1

+ 2m

+ L pt + -4+ h - -

et ++p w4 & tho+p 74+ (et —ht+e” —h™+é—h)w
_ m m-

2m
_’_(é—i-ﬁ—i-ﬁ—l)arcsine
T

_1+(e++e_+é)—(h++h_+iz)+(é+i~z+]3—1)arcsin5
= 5 - .

So when € — 0 we obtain for the index the formula of the statement of Theorem 1.

2.3. The discontinuous boundary has two crossing regions. We consider
that the discontinuous boundaries {(z,0)|0 < z < z¢} and {(z,0)| — zo < x < 0}
are in the crossing region, see Figure 8.

Suppose that the curve VT (resp. 9V ™) has s for i = 1,2,--- et (resp. s;

fori =1,2,--- ,e7) points having an internal tangency, and T;_ forj=1,2,--- ,hT
(vesp. r; for j =1,2,--- ,h7) points having an external tangency.
We can rearrange the nt = et +h* contact points as g;” for k = 1,2,--- ,n*, and

n~ =e~ +h~ contact points as g, for k=1,2,--- ,n". Let pj = 0V N{(x,€)[0 <
z <o} and pf = 9V N{(z,—¢)|0 <z <20}, py =V N{(z,¢)| — 79 <z <0}
and p; = 0V N {(z,—¢)| — 20 < = < 0}, see Figure 8. Now we can choose
intermediate points p; € (q,j7q,j+1) fork=1,---,nt —landp, € (@g » Qpeyp) for
k=1,---,n~ —1, see Figure 8 for the case nt =4 and n~ = 2. Since {(z,0)|0 <
x < zo}and {(z,0)]—x0 < x < 0} are in the crossing region, we define the triangular
— — =
sectors int(gpg U qga’ U (pg s ]33’)) and int(qpy Uqp, U (P ,p, ) in the regularized
crossing region. We choose a permissible parametrization p:S' — OV such that
p(eik(ﬂ'—Z arcsin s)/n+) _ p;ci- for k = 1,--- —1and p( i(m+k(r—2arcsine)/n~ )) _ p’;
for k = 1,---,n —1, p(ei(ﬂfarcsin 5)) _ pO , p( z(7r+arcsme)) _ pa’ p(ez(arcsme)) _ 793

i(— arcsine) )

and p(e = pl. See Figure 8 again.

In short, by means of a continuous transformation the index of a equilibrium
point with (et + e~ + & ht +h™ + h,pT + p~ + p) sectors is equal to the index
of a equilibrium point with the same number and order of equal triangular sectors
(et +e  +éhT+h™ +hpt+p +p).
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+
P2
+
D: N
7o, Pa
--------------------------------------------------------- —
e ot
Zy £0
Do

FiGURE 8. Illustration of a permissible parametrization p for both
discontinuous boundaries {(z,0)|0 < z < z¢} and {(z,0)| — zy <
x < 0} are in the crossing region, where m™ = 4 and m~ = 2.

In the region $* each sector of (e, h™,pT) is a triangular sector of angle (m —
2arcsine)/m™* where m*™ = e™ + h™ 4+ p™. Now we can consider the contribution
to the index of each sector in X1 as follows.

(i)

A triangular parabolic sector which starts with the angle ¢(0) = « and
ends with the angle o((m —2arcsine)/m™) = a+ (7 — 2arcsine)/m™, with
a net contribution (7 — 2arcsine)/m™.

A triangular hyperbolic sector which starts with the angle ©(0) = « and
ends with the angle (7 — 2 arcsine) = a + (7 — 2arcsing)/m*™ — 7, with a
net contribution (7 — 2arcsine)/m* — 7.

A triangular elliptic sector which starts with the angle ¢(0) = a and ends
with the angle o((7 — 2arcsine)/m*) = a + (7 — 2arcsine)/m™* + 7, with
a net contribution (7 — 2arcsine)/m* + 7.

Similarly in the region ¥~ each sector of (e7,h™,p~) is a triangular sector of
angle (m —2arcsine)/m~ where m™ = e~ +h~ +p~. In the following we can reveal
the contribution to the index of each sector.

(i)

A triangular parabolic sector which starts with the angle ¢(0) = « and will
end with the angle p((m — 2arcsine)/m™) = a+ (7 — 2arcsine)/m ™, with
a net contribution (7w — 2arcsine)/m™.

A triangular hyperbolic sector which starts with the angle ¢(0) = « and
will end with the angle o((m—2arcsine)/m~) = a+(r—2arcsine)/m~ —,
with a net contribution (7 — 2arcsine)/m~ — 7.

A triangular elliptic sector which starts with the angle ¢(0) = « and will
end with the angle ¢((m — 2arcsine)/m~) = a+ (7 — 2arcsine)/m~ + m,
with a net contribution (m — 2arcsing)/m~ + .
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While in the regularized crossing region each sector of (¢, 71,13) is a triangular
sector of angle 2arcsine. Finally we can deduce the contribution to the index of
each sector.

(i) A triangular parabolic sector which starts with the angle p(0) = a and
ends with the angle p(2arcsine) = a 4 2arcsine, with a net contribution
2arcsine.

(ii) A triangular hyperbolic sector which starts with the angle ¢©(0) = « and
ends with the angle (2 arcsine) = a+2 arcsin e —7, with a net contribution
2arcsine — 7.

(iii) A triangular elliptic sector which starts with the angle ¢(0) = « and ends
with the angle p(2arcsine) = a + 2arcsine + 7w, with a net contribution
2arcsine + .

Going through the whole closed curve 0 = o™ Uo~ Ug with o = {(r,0)|0 €
(arcsine, m — arcsine)}, o~ = {(r,0)|0 € (7 + arcsine,2r — arcsine)} and & =
{(r,0)|0 € [r — arcsine, w + arcsine|} U {(r,0)|0 € [— arcsine, arcsinel]}, we get

iq =1i(g,0)=1i(g,0TUo~ U0)

P' o —2arcsine ¢, /71— 2arcsine ' /7w — 2arcsine
oot § (ot ) (e
i=1 i=1

m+ i=1 m+

2
— 2 arcsin 5 e (7 —2arcsine h™ (7 —2arcsine
_ _— 7 _—— -7

M'U
M

+2

i=1

m—

=1 =1

2T

b é h
> 2arcsine + Y (2arcsine + ) + > (2arcsine — )
; i=1 i=1

2w
et +ht +pt e~ +h +p”
™+

T+ (et —ht+e —h +é—h)r
2m

mt m

+arcsins(é +h+p-2)
7r

(et +e +¢&) — (ht +h™ +h) N arcsine(é + h+ p — 2)
2 s '
So when € — 0 we obtain for the index the formula of the statement of Theorem 1.

Step 3. We extend the index of the equilibria of the continuous vector field Z. to
the piecewise smooth vector field Z*. The following results explain the relationship
between i(Z.,0) and i(Z*, o), for more details see Proposition 8 of [7].

Lemma 1. If o is a closed continuous simple curve, and there is no equilibria of

Z* on o, then i(Z.,0) = i(ZF,0) for e > 0 sufficiently small.

According to Lemma 1 we have

(et +e  +&)— (bt +h™ +h)
5 .

(12) ig =i(Z%,0) = limi(Z:,0) = 1+
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TABLE 1. The index of the boundary focus of system (4).

et h* e h~ é h iq
BFis |0 1 0 0 0 1 0
BF3 0 0 0 0 0 0 1
BF, 0 0 0 0 0 0 1
BF5 0 1 0 0 0 1 0

This complete the proof of Theorem 1.

3. APPLICATIONS

The equilibria in the disocntinuous boundary 3 of a piecewise-smooth vector field
(4) have been investigated in [12, 15, 20, 25]. Using the regularization technique the
works [19, 24] provided the bifurcations of a two-fold of the vector field (4). Accord-
ing to [20] the authors gave an overview of all generic codimension-1 bifurcations
of a piecewise smooth vector field (4). In this section, we will define the index of
these generic codimension-1 equilibria of (4) case by case by Poincaré-Bendixson
formula which given in (9).

3.1. Boundary-focus. There are five generic critical cases: BF; fori =1,2,3,4,5,
see Figure 9. It is worth to note that the cases BF} and BF5 have the same local
phase portraits before bifurcation.

For the case BF; for i = 1,2, see Fig.9.1. It is obvious that in the region ®+
there is a hyperbolic sector and no elliptic sectors. Neither hyperbolic sectors nor
elliptic sectors in the region ¥~. While in the crossing region there is a hyperbolic
(0+0+0)-(1+0+1) _

2

sector and no elliptic sectors. Thus we have ¢, = 1+
See the first row of Table 1.

For the case BFj3 see Fig.9.2. There is neither hyperbolic sectors nor elliptic
sectors in both the regions ©* and the regularized crossing regions, thus we have

(0+0+0)—(0+0+0)
+ 2

For the case BFy see Fig.9.3. The proof is similar with the case BFj3, thus we

0+0+0) ; 0+0+0) _ 1, see the third row of Table 1.

For the case BFj see Fig.9.4. Similar with the case BF, we get i; = 1 +
(0+04+0)—(1+0+1)
2

=1 =1, see the second row of Table 1.

have i, =1+

= 0, see the forth row of Table 1.

3.2. Boundary-node. There are two generic critical cases: BN; for i = 1,2, see
Figure 10.

For the case BN; see Fig.10.1. There is neither hyperbolic sectors nor elliptic
sectors in both the regions ©* and in the regularized crossing region, hence we have

(0+0+0)-(0+0+0) =1, see the first row of Table 2.

ig =1+ .
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N

FIGURE 9. Boundary-focus and its regularisation. Fig.9.1, BF} 2
and its regularization, the index of BF} 5 is 0. Fig.9.2, BF; and its
regularization, the index of BFj is 1. Fig.9.3, BF, and its regular-
ization, the index of BF}y is 1. Fig.9.4, BF5 and its regularization,
the index of BFj5 is 0.

For the case BN> see Fig.10.2. It is obvious that in the region X7 there is one hy-
perbolic sector and no elliptic sectors. Neither hyperbolic sectors nor elliptic sectors
in the regions >~. While in the regularized crossing region there is one hyperbolic
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TABLE 2. The index of the boundary-node of system (4).

et h* e h~ é h iq
BN, 0 0 0 0 0 0 1
BN, 0 1 0 0 0 1

Fig.10.2

FI1GURE 10. Boundary-node and its regularisation. Fig.10.1, BNy
and its regularization, the index of BN; is 1. Fig.10.2, BN, and
its regularization, the index of BNy is 0.

(0404+0) —(14+0+1)
2

sector and no elliptic sectors. Thus we have i =1+ =0,

see the second row of Table 2.

3.3. Boundary-saddle. There are three generic critical cases: B.S; for i = 1,2, 3,
see Figure 11. It is worth note that the cases B.S; and BSs have the same local
phase portraits before bifurcation.

For the case BS; for i = 1,2 see Fig.11.1. It is obvious that in the region ¥+
there is neither hyperbolic sectors nor elliptic sectors. While in both the region >~
and in the regularized crossing region, there is one hyperbolic sector and no elliptic
(0+0+0)—(04+1+41)

5 = 0, see the first row of

sectors. Thus we obtain ¢ = 1+
Table 3.

For the case BS3 see Fig.11.2. There is one hyperbolic sector and no elliptic
sectors in ¥ . Two hyperbolic sectors and no elliptic sectors in the region ¥~. In
the regularized crossing region there is one hyperbolic sector and no elliptic sectors.
(0+04+0)—(1+2+1)

2

Thus we get i, =1 + = —1, see the second row of Table

3.
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TABLE 3. The index of the boundary-saddle of system (4).

et h* e h~ é iq
BSi2 |0 0 0 1 0 1 0
BS; 0 1 0 0 1 -1

Fig.11.1

Fig.11.2

FI1GURE 11. Boundary-saddle and its regularisation. Fig.11.1,
BS1,2 and its regularization, the index of BS;, is 0. Fig.11.2,
BSs3 and its regularization, the index of B.Ss is -1.

3.4. Double tangency. There are two generic critical cases: DT; for i = 1,2, see
Figure 12.

For the case DT; see Fig.12.1. It is obvious that there is neither hyperbol-
ic sectors nor elliptic sectors in both ¥ and ¥~. While in the crossing region
there are two hyperbolic sectors and no elliptic sectors. Thus we have i, =
(04+0+0)—(040+2)

2
For the case DT5 see Fig.12.2. There is one hyperbolic sector and no elliptic
(0+04+0)—(1+1+40) —0
2 )

1+ =0, see the first row of Table 4.

sectors in both 1 and ¥~. Hence we obtain iq = 1+

see the second row of Table 4.

3.5. Visible-visible two-fold. There are two generic critical cases: V'V, for ¢ =
1,2, see Figure 13.
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TABLE 4. The index of the double tangency of system (4).

et h* e h~ é h iq
DTy 0 0 0 2 0
DTy, 0 1 0 1 0 0 0

Fig.12.1

Fig.12.2

FIGURE 12. Double tangency and its regularisation. Fig.12.1, DT}
and its regularization, the index of DTy is 0. Fig.12.2, DT5 and its
regularization, the index of DT5 is 0.

TABLE 5. The index of the visible-visible two-fold of system (4).

et ht e h~ é h iq
4% 0 1 0 1 0 0 0
VVa 0 1 0 1 0 2 -1

For the case V'V; see Fig.13.1. It is obvious that in the region 3% there is one hy-
(0+040)—(14+1+0)

perbolic sector and no elliptic sectors. Thus we have i, = 1+
0, see the first row of Table 5.

2

For the case VV; see Fig.13.2. There is one hyperbolic sector and no elliptic

sectors in both ¥ and ¥~. Two hyperbolic sectors and no elliptic sectors in the

0+0+0)—(1+1+42
regularized crossing regions. Thus we have i, = 1—1—( +0+0) 5 (1+1+2) =—1,

see the second row of Table 5.
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o N\
27N

Fig.13.2

FIGURE 13. Visible-visible two-fold and its regularisation.
Fig.13.1, VV; and its regularization, the index of VV; is 0.
Fig.13.2, V'V, and its regularization, the index of V'V; is —1.

TABLE 6. The index of the visible-invisible two-fold of system (4).

et h* e h~ é h iq
VI 0 1 0 0 0 1 0
Vi, 0 3 0 1 0 0 -1
VI 0 1 1 0 0 0 1

3.6. Visible-invisible two-fold. There are three generic critical cases: VI; for
i1 =1,2,3, see Figure 14.

For the case VI see Fig.14.1. It is obvious that in the region Xt there is a
hyperbolic sector and no elliptic sectors. Neither hyperbolic sectors nor elliptic
sectors in the region ¥~. While in the crossing region there is a hyperbolic sector
(0+0+0)—(1+0+1)

2

and no elliptic sectors. Thus we have 7, = 1 + = 0, see

the first row of Table 6.

For the case VI see Fig.14.2. There is three hyperbolic sectors and no elliptic

sectors in ¥, one hyperbolic sector and no elliptic sectors in ™. Hence we have

0+0+0)—(3+1+0
iq:1+( s )2( ks ):—1,seethesecondrowofTableG.

For the case VI3 see Fig.14.3. There is one hyperbolic sector and no elliptic
sectors in X7, one elliptic sector and no hyperbolic sectors in ¥~. Then we have

0+140)—(1+0+0
+( it )2( 0+ ):1,seethethirdrowofTableG.

ig=1

3.7. Invisible-invisible two-fold. There are two generic critical cases: II; for
i =1,2, see Figure 15.

For the case II; see Fig.15.1. It is obvious that there are one hyperbolic
sector and no elliptic sectors in both £* and ¥7. Thus we have i, = 1+
(0+040)—(14+1+0)

5 = 0, see the first row of Table 7.
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Fig.14.2

NETRRN7

S~

Fig.14.3

FIGURE 14. Visible-invisible two-fold VI and its regularisation.
Fig.14.1, VI; and its regularization, the index of VI; is 0. Fig.14.2,
VI, and its regularization, the index of V15 is —1. Fig.14.3, VI3
and its regularization, the index of VI3 is 1.

TABLE 7. The index of the invisible-invisible two-fold of system (4).

é iq
I, |0 1 0 1 0 0 0
I, |0 0 0 0 0 0 1

Fig.15.2

FiGUureE 15. Invisible-invisible two-fold and its regularisation.
Fig.15.1, I1; and its regularization, the index of I'l; is 0. Fig.15.2,
115 and its regularization, the index of 5 is 1.

For the case Il; see Fig.15.2. There is neither hyperbolic sectors nor elliptic
sectors in both % regions and in the regularized crossing region. Hence we have
. (0+0+0)—(0+0+0)
g =1+ 5

=1, see the second row of Table 7.
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TABLE 8. The index of the pseudo-saddle of system (4).

et h* e h~ é h iq
PS, |0 2 0 2 0 0 1
PS, |0 2 0 2 0 0 1
/ | \\ VAN
< ® > —e =
\‘ / \ A /
Fig.16.1
/A\ /u\
¥
Fig.16.2

FIGURE 16. Pseudo-saddle and its regularisation. Fig.16.1, PS;
and its regularization, the index of PS; is —1. Fig.16.2, PS5 and
its regularization, the index of PS3 is —1.

3.8. Pseudo-saddle. There are two generic critical cases: PS; forv = 1,2, see Fig-

ure 16. For the case P51 it is obvious that there are two hyperbolic sectors and no el-

0+0+0)—(24+2+0
liptic sectors in both ¥ and ¥~ Thuswehaveiq:1+( +0+0) - (2+2+ ):

2
—1, see the first row of Table 8.
The proof of PS5 is similar with PS].

3.9. Pseudo-node. There are two generic critical cases: PN; for ¢ = 1,2, see
Figure 17. For the case PN; there are neither hyperbolic sectors nor elliptic sectors

0+0+0)—(04+0+0
in both ¥F and X~. Thuswehaveiq:1+( s )2( s ):1. See the
first row of Table 9.

The case PNy is similar with PN; and we omit its proof.

3.10. Pseudo-saddle-node. The pseudo-saddle node see Figure 18. It is obvious
that there are one hyperbolic sector and no elliptic sectors in both 1 and ™.
0+0+0)-(1+1+0) = 0. See Table 10.

Thus we have i, =1+ 5
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TABLE 9. The index of the pseudo-node of system (4).

h* e h~ é h iq
PN; 0 0 0 0 0 1
PN, 0 0 0 0 0 1

FIGURE 17. Pseudo-node and its regularisation. Fig.17.1, PN;
and its regularization, the index of PNy is 1. Fig.17.2, PN> and
its regularization, the index of PNs is 1.

TABLE 10. The index of the pseudo-saddle-node of system (4).

+

h* e~ h~ h iq

0 0

o

PSN |0 1 1

-

N

>——> :>‘
N

AN

FIGURE 18. Pseudo-saddle-node and its regularisation. The index
of PSN is 0.

AN
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