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In this work we classify the polynomial Liénard differential equations 𝑥̈+ 𝑓 (𝑥)𝑥̇+ 𝑥 = 0, having a rational first
integral. Such classification was asked by Poincaré in 1891 for any general polynomial differential systems in
the plane R2. As far as we know it is the first time that the complete classification is given for a relevant class
of polynomial differential equations of arbitrary degree.
1. Introduction and statement of the main results

We consider a polynomial differential system that we can write as

𝑑𝑥
𝑑𝑡

= 𝑥̇ = 𝑃 (𝑥, 𝑦),
𝑑𝑦
𝑑𝑡

= 𝑦̇ = 𝑄(𝑥, 𝑦), (1)

where 𝑃 (𝑥, 𝑦) and 𝑄(𝑥, 𝑦) are real polynomials in the variables 𝑥 and
𝑦, and 𝑡 is the independent variable. The degree of the polynomial
differential system (1) is the maximum degree of the polynomials 𝑃 and
𝑄. The polynomial differential system (1) has associated the polynomial
vector field  = 𝑃 (𝑥, 𝑦)𝜕∕𝜕𝑥 +𝑄(𝑥, 𝑦)𝜕∕𝜕𝑦.

Let 𝑈 be an open subset of R2. A first integral is defined as a 1

non–locally constant function 𝐻 ∶ 𝑈 → R such that it is constant on the
solutions (𝑥(𝑡), 𝑦(𝑡)) of the polynomial differential system (1) contained
in 𝑈 , that is, satisfies 𝐻 = 𝑃 (𝑥, 𝑦)𝜕𝐻∕𝜕𝑥+𝑄(𝑥, 𝑦)𝜕𝐻∕𝜕𝑦 ≡ 0 in 𝑈 . We
say that 𝐻 is a rational first integral when the function 𝐻 is rational.

Let 𝐹 (𝑥, 𝑦) be a real polynomial in the variables 𝑥 and 𝑦. The
algebraic curve 𝐹 (𝑥, 𝑦) = 0 is an invariant algebraic curve of a polynomial
differential system (1) if for some polynomial 𝐾 = 𝐾(𝑥, 𝑦) the equation

𝐹 = 𝑃 𝜕𝐹
𝜕𝑥

+𝑄𝜕𝐹
𝜕𝑦

= 𝐾𝐹 , (2)

is satisfied. The curve 𝐹 = 0 is formed by trajectories of the vector
field  because on the points of the algebraic curve 𝐹 = 0 the gradient
(𝜕𝐹∕𝜕𝑥, 𝜕𝐹∕𝜕𝑦) of the curve 𝐹 (𝑥, 𝑦) = 0 is orthogonal to the vector field
 = (𝑃 ,𝑄). Consequently on the points of 𝐹 = 0 the vector field 
is tangent to the curve 𝐹 = 0. Therefore the algebraic curve 𝐹 = 0 is
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invariant under the flow defined by  , i.e. 𝐹 = 0 is formed by orbits
of the differential system, see for instance [1].

One of the oldest problems in qualitative theory of differential
systems on the plane is provide necessary and sufficient conditions in
order that a polynomial differential system has a rational first integral.
This problem goes back to the beginning of the qualitative theory
and was stated by Poincaré in 1891, see [2]. In fact is a problem of
global nature because the rational first integral is defined in all the
plane except on the curves where the denominator of the rational
first integral vanishes. This question involves the whole classes of
polynomial differential systems and for this reason is being so hard.

One of the most studied polynomial differential equations are the
Liénard differential equations given by

𝑥̈ + 𝑓 (𝑥)𝑥̇ + 𝑥 = 0, (3)

where 𝑓 (𝑥) is a polynomial. This differential equation was considered
by Liénard [3] during the development of radio and vacuum tube
technology. Later on this equation and its generalizations was intensely
studied as can be used to model oscillating circuits, see for instance [4]
and the references therein.

The second order differential equations (3) can be write as the
planar differential systems

𝑥̇ = 𝑦, 𝑦̇ = −𝑓 (𝑥)𝑦 − 𝑥, (4)

where 𝑓 (𝑥) is a polynomial in 𝑥 of degree 𝑚 ≥ 0, and consequently the
degree of the polynomial differential system (4) is 𝑚 + 1.
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The objective of this work is to classify the polynomial Liénard
differential systems (4) having a rational first integral.

Our main results are the following two theorems.

Theorem 1. The linear Liénard differential systems 𝑥̇ = 𝑦, 𝑦̇ = −𝑎𝑦 − 𝑥
has a rational first integral if and only if 𝑎 = ±2𝑘∕

√

𝑘2 − 1 where 𝑘 ∈
Z ⧵ {−1, 0, 1}.

Theorem 2. The polynomial Liénard differential systems (4) of degree > 1
has no invariant algebraic curves. Therefore they do not have rational first
integrals.

We prove Theorems 1 and 2 in the next section.
We note that Theorems 1 and 2 characterize all the Liénard differ-

ential equations (3) which have rational first integrals. As far as we
know it is the first time that all rational first integrals of a relevant
class of polynomial differential equations of arbitrary degree has been
classified. We remark that Theorems 1 and 2 solved the problem stated
by Poincaré about the characterization of the rational first integrals for
the class of polynomial Liénard differential equations.

In fact, in Theorem 2 of the paper [5] it was stated that the
polynomial Liénard differential systems (4) of degree > 1 have no
rational first integrals, but the proof provided there was not correct
because it uses a result of Hayashi [6] which is incorrect as it was
proved in [7,8]. More precisely, the result stated by Hayashi in [6] is:

Theorem 3. The generalized Liénard polynomial differential system

̇ = 𝑦, 𝑦̇ = −𝑓𝑚(𝑥)𝑦 − 𝑔𝑛(𝑥), (5)

where 𝑚 = deg𝑓𝑚, 𝑛 = deg 𝑔𝑛, 𝑓𝑚 ≢ 0 and deg 𝑓 + 1 ≥ 𝑛 has an invariant
lgebraic curve if and only if there is an invariant curve 𝑦 − 𝑃 (𝑥) = 0
atisfying 𝑔𝑛(𝑥) = −(𝑓𝑚(𝑥) + 𝑃 ′(𝑥))𝑃 (𝑥), where 𝑃 (𝑥) or 𝑃 (𝑥) + 𝐹 (𝑥) is a
olynomial of degree at most one, such that 𝐹 (𝑥) = ∫ 𝑥

0 𝑓 (𝑠)𝑑𝑠.

In fact the correct statement of Theorem 3 is the following theorem
proved in [8].

Theorem 4. The generalized Liénard polynomial differential system (5)
with 𝑓𝑚 ≢ 0 and 𝑚 + 1 ≥ 𝑛 has the invariant algebraic curve 𝑦 − 𝑃 (𝑥) = 0
f 𝑔𝑛(𝑥) = −(𝑓𝑚(𝑥) + 𝑃 ′(𝑥))𝑃 (𝑥), being 𝑃 (𝑥) or 𝑃 (𝑥) + 𝐹 (𝑥) a polynomial
f degree at most one, where 𝐹 (𝑥) = ∫

𝑥

0
𝑓 (𝑠)𝑑𝑠.

In summary, the claim that Theorem 3 characterize all the invariant
algebraic curves of the generalized Liénard polynomial differential
system is false.

On the other hand Theorem 2 applied to the van der Pol differential
equation, 𝑥̇ = 𝑦, 𝑦̇ = −𝜇(𝑥2 − 1)𝑦 − 𝑥, shows that the limit cycle of
this equation is not algebraic. This result already was proved by Odani
in [9] studying the generalized Liénard system 𝑥̇ = 𝑦, 𝑦̇ = −𝑔(𝑥) −𝑓 (𝑥)𝑦
using complete different arguments. In fact Odani proved the following
result.

Theorem 5. If the generalized polynomial system 𝑥̇ = 𝑦, 𝑦̇ = −𝑔(𝑥)−𝑓 (𝑥)𝑦
satisfies deg 𝑓 ≥ deg 𝑔 and 𝑓𝑔(𝑓∕𝑔)′ ≠ 0, then it has no invariant algebraic
curves.

In fact the result obtained here is an extension of Theorem 5 for
all the classical polynomial Liénard differential equations, i.e. when
𝑔(𝑥) = 𝑥 and without the extra condition 𝑓𝑔(𝑓∕𝑔)′ ≠ 0 of Theorem 5.

We note that Theorem 2 cannot be extended to any generalized
Liénard system 𝑥̇ = 𝑦, 𝑦̇ = −𝑔(𝑥) − 𝑓 (𝑥)𝑦 with 𝑓 and 𝑔 polynomials
as the following system shows. The differential system 𝑥̇ = 𝑦, 𝑦̇ =
−(4𝑥+𝑥3)∕4−3𝑥𝑦∕2 has the rational first integral 𝐻 = (4+𝑥2+2𝑦)2∕(4𝑥2+
𝑥4 + 4𝑥2𝑦 + 4𝑦2).

We remark that the limit cycles of the polynomial Liénard differen-
tial equations (3) have been intensively studied by several authors, see
for instance [10–14]. However many open questions about these limit
2

cycles remain still open.
2. Proofs of Theorems 1 and 2

Proof of Theorem 1. The linear Liénard differential system of degree
1 is system (4) with 𝑓 (𝑥) = 𝑎, that is,

̇ = 𝑦, 𝑦̇ = −𝑎𝑦 − 𝑥. (6)

It is easy to verify that system (6) has the first integral

𝐻 =
(

𝑎𝑥𝑦 + 𝑥2 + 𝑦2
)

( (

𝑎2−2−
√

𝑎2−4𝑎
)

𝑥2+2
(

𝑎−
√

𝑎2−4
)

𝑥𝑦+2𝑦2

𝑎𝑥𝑦+𝑥2+𝑦2

)− 𝑎
√

𝑎2−4
.

Note that 𝐻 is a rational first integral if and only if 𝑎 = ±2𝑘∕
√

𝑘2 − 1
with 𝑘 ∈ Z ⧵ {−1, 0, 1}. □

Proof of Theorem 2. We assume that 𝐹 (𝑥, 𝑦) = 0 is an invariant
algebraic curve of degree 𝑛 of the polynomial differential system (4) of
degree 𝑚 + 1. We expand 𝐹 (𝑥, 𝑦) in its homogeneous parts as 𝐹 (𝑥, 𝑦) =

𝑛
𝑗=0 𝐹𝑗 (𝑥, 𝑦), where 𝐹𝑗 are homogeneous polynomials of degree 𝑗 in

𝑥, 𝑦). Of course 𝐹𝑛(𝑥, 𝑦) ≠ 0.
We also write the polynomial 𝑓 (𝑥) of degree 𝑚 as 𝑓 (𝑥) =

∑𝑚
𝑗=0 𝑎𝑖𝑥

𝑖,
ith 𝑎𝑚 ≠ 0. Moreover it is easy to see from (2) that the cofactor
of the invariant algebraic curve 𝐹 (𝑥, 𝑦) = 0 is a polynomial in 𝑥

f degree at most the degree of the polynomial 𝑓 (𝑥). So we write
(𝑥) =

∑𝑚
𝑗=0 𝑘𝑖𝑥

𝑖.
Substituting 𝐹 (𝑥, 𝑦), 𝑓 (𝑥) and 𝐾(𝑥) in Eq. (2) we obtain that the

ighest homogeneous part of that equation has degree 𝑚 + 𝑛 and is

𝑚
(

𝑎𝑚𝑦
𝜕𝐹𝑛
𝜕𝑦

+ 𝑘𝑚𝐹𝑛

)

= 0 (7)

Solving this differential equation we get 𝐹𝑛(𝑥, 𝑦) = 𝑦−
𝑘𝑚
𝑎𝑚 𝐶𝑛(𝑥), where

𝐶𝑛(𝑥) is an arbitrary function in the variable 𝑥. Since 𝐹𝑛(𝑥, 𝑦) must
be a homogeneous polynomial of degree 𝑛 we have 𝑘𝑚 = −𝑎𝑚𝑘 with
𝑘 ∈ {0, 1,… , 𝑛} and 𝐹𝑛(𝑥, 𝑦) = 𝑐𝑛𝑥𝑛−𝑘𝑦𝑘 for some constant 𝑐𝑛 ≠ 0 that we
can take equals 1 because this does not change the invariant algebraic
curve 𝐹 (𝑥, 𝑦) = 0.

Now the homogeneous part of Eq. (2) of degree 𝑚 + 𝑛 − 1 is

𝑦𝑥𝑚
𝜕𝐹𝑛−1
𝜕𝑦

− 𝑘𝑥𝑚𝐹𝑛−1(𝑥, 𝑦) +
1
𝑎𝑚

(𝑎𝑚−1𝑘 + 𝑘𝑚−1)𝑦𝑘𝑥𝑚+𝑛−𝑘−1 = 0. (8)

olving this differential equation we obtain

𝑛−1(𝑥, 𝑦) = 𝑦𝑘𝐶𝑛−1(𝑥) −
1
𝑎𝑚

(𝑎𝑚−1𝑘 + 𝑘𝑚−1)𝑦𝑘𝑥𝑛−𝑘−1 log 𝑦,

here 𝐶𝑛−1(𝑥) is an arbitrary function of 𝑥. Since 𝐹𝑛−1(𝑥, 𝑦) must be a
omogeneous polynomial of degree 𝑛− 1 we must have 𝑘𝑚−1 = −𝑎𝑚−1𝑘
nd 𝐹𝑛−1(𝑥, 𝑦) = 𝑐1𝑥𝑘𝑦𝑛−𝑘−1 where 𝑐1 is a constant.

Case 1: 𝑚 ≥ 𝑛 ≥ 1. We shall prove by induction the following expres-
sions for the invariant algebraic curve 𝐹 (𝑥, 𝑦) = 0 and the cofactor
𝐾(𝑥)

𝐹 (𝑥, 𝑦) = 𝑦𝑘(𝑥𝑛−𝑘 + 𝑐1𝑥
𝑛−𝑘−1 +⋯ + 𝑐𝑛−𝑘−1𝑥) + 𝐹0,

𝐾(𝑥) = −𝑘(𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥
𝑚−1 ⋯ + 𝑎𝑚−𝑛+𝑘𝑥

𝑚−𝑛+𝑘),

here 𝐹0 is a constant.
We have seen that the induction assumptions hold for the homoge-

eous parts of Eq. (2) of degrees 𝑚+𝑛 and 𝑚+𝑛−1, now we assume that
hey hold for the homogeneous parts of Eq. (2) of degree 𝑚+𝑛−(𝓁−1)
ith 𝓁 = {2,… , 𝑛−𝑘+1} and we shall prove them for the homogeneous
art of Eq. (2) of degree 𝑚 + 𝑛 − 𝓁.

Substituting

(𝑥, 𝑦) = 𝑦𝑘
(

𝑥𝑛−𝑘 + 𝑐1𝑥
𝑛−𝑘−1 +⋯ + 𝑐𝑚−(𝓁−1)𝑥

𝑛−𝑘−𝑚+𝓁−1) ,

𝐾(𝑥) = −𝑘(𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥
𝑚−1 ⋯ + 𝑎𝓁−1𝑥

𝓁−1),

n (2) we get that its highest homogeneous part has degree 𝑚 + 𝑛 − 𝓁
nd is

𝑥𝑚
𝜕𝐹𝑛−𝓁 − 𝑘𝑥𝑚𝐹𝑛−𝓁 + 1 (𝑎𝑚−𝓁𝑘 + 𝑘𝑚−𝓁)𝑦𝑘𝑥𝑚+𝑛−𝑘−𝓁 = 0.

𝜕𝑦 𝑎𝑚
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The solution of this differential equation is

𝐹𝑛−𝓁(𝑥, 𝑦) = 𝑦𝑘𝐶𝑛−𝓁(𝑥) −
1
𝑎𝑚

(𝑎𝑚−𝓁𝑘 + 𝑘𝑚−𝓁)𝑦𝑘𝑥𝑛−𝑘−𝓁 log 𝑦,

where 𝐶𝑛−𝓁(𝑥) is an arbitrary function of 𝑥. Since 𝐹𝑛−𝓁(𝑥, 𝑦) must be a
homogeneous polynomial of degree 𝑛−𝓁 we must have 𝑘𝑚−𝓁 = −𝑎𝑚−𝓁𝑘
and 𝐹𝑛−𝓁(𝑥, 𝑦) = 𝑐𝓁 𝑦𝑘𝑥𝑛−𝑘−𝓁 . Hence the induction is proved until

𝐹 (𝑥, 𝑦) = 𝑦𝑘(𝑥𝑛−𝑘 + 𝑐1𝑥
𝑛−𝑘−1 +⋯ + 𝑐𝑛−𝑘−1𝑥),

𝐾(𝑥) = −𝑘(𝑎𝑚𝑥𝑚 + 𝑎𝑚−1𝑥
𝑚−1 ⋯ + 𝑎𝑚−𝑛+𝑘+1𝑥

𝑚−𝑛+𝑘+1),

Substituting these last expressions for 𝐹 (𝑥, 𝑦) and 𝐾(𝑥) in Eq. (2) its
highest homogeneous part has degree 𝑚 and is

𝑎𝑚𝑘 𝑥
𝑚𝐹0 − (𝑎𝑚−𝑛+𝑘𝑘 − 𝑘𝑚−𝑛+𝑘)𝑦𝑘𝑥𝑚−𝑘 = 0.

Therefore

𝐹0 =
(𝑎𝑚−𝑛+𝑘𝑘 − 𝑘𝑚−𝑛+𝑘)𝑦𝑘𝑥−𝑘

𝑎𝑚𝑘
,

ut as 𝐹0 must be a constant we must to impose 𝑘𝑚−𝑛+𝑘 = −𝑎𝑚−𝑛+𝑘𝑘
nd we get 𝐹0 = 0.

This implies that 𝐹 (𝑥, 𝑦) = 𝑦𝑘(𝑥𝑛−𝑘 + 𝑐1𝑥𝑛−𝑘−1 + ⋯ 𝑐𝑛−𝑘−1𝑥) with
≤ 𝑘 ≤ 𝑛. If 𝑘 ≠ 0 then 𝑦 = 0 is an invariant straight line, but

his is not possible for the Liénard system (3) because 𝑦̇|𝑦=0 ≠ 0. If
= 0 then the invariant solution is function of 𝑥, i.e., 𝐹 (𝑥, 𝑦) = 𝐹 (𝑥)

nd Eq. (2) becomes 𝐹 ′(𝑥)𝑦 = 0 which implies that 𝐹 (𝑥) is constant,
gain a contradiction with the hypothesis that 𝐹 (𝑥, 𝑦) = 𝐹 (𝑥) = 0 be an
nvariant algebraic curve. In summary, in case 1 the polynomial Liénard
ifferential systems (4) have no invariant algebraic curves.

ase 2: 𝑚 < 𝑛. This case can be solved in a similar way to case 1. We
ivide it into two subcases.

ubcase 2.1: 𝑛 − 𝑘 ≤ 𝑚. Then the induction process is exactly the same
han in case 1, and consequently the polynomial Liénard differential
ystems (4) have no invariant algebraic curves.

ubcase 2.2: 𝑚 < 𝑛 − 𝑘. In this case we also will see that there are no
nvariant algebraic curves. The highest homogeneous part of Eq. (2)
f degree 𝑛 + 𝑚 is given in (7) which implies 𝐹𝑛(𝑥, 𝑦) = 𝑥𝑛−𝑘𝑦𝑘 with
< 𝑛 − 𝑚 where we have to impose 𝑘𝑚 = −𝑎𝑚𝑘. The next highest

homogeneous part of Eq. (2) given in (8) determines 𝐹𝑛−1(𝑥, 𝑦) which
akes the value 𝐹𝑛−1(𝑥) = 𝑐1𝑥𝑛−𝑘−1𝑦𝑘 imposing 𝑘𝑚−1 = −𝑎𝑚−1𝑘. The next

highest homogeneous parts of Eq. (2) give the same results than in Case
1, i.e. 𝐹𝑛−𝑖 = 𝑐𝑖𝑥𝑛−𝑘−𝑖𝑦𝑘 for 𝑖 = 1,… , 𝑚− 1. The next homogeneous part
of Eq. (2) is of degree 𝑚 and is the differential equation

𝑎𝑚𝑘𝑥
2𝐹𝑛−𝑚 − 𝑎𝑚𝑥

2𝑦
𝜕𝐹𝑛−𝑚
𝜕𝑦

− 𝑘 𝑥1−𝑘+𝑛𝑦𝑘−1

− (𝑎0𝑘 + 𝑘0)𝑥𝑛−𝑘𝑦𝑘 + (𝑛 − 𝑘)𝑥𝑛−𝑘−1𝑦𝑘+1 = 0,

whose solution is

𝐹𝑛−𝑚(𝑥, 𝑦) =
1
𝑎𝑚

(

𝑥𝑛−𝑚−𝑘−1𝑦𝑘
(𝑘𝑥2

𝑦
− 𝑘𝑦 + 𝑛𝑦

)

− (𝑎0𝑘 + 𝑘0)𝑥 log 𝑦
)

+ 𝑐𝑚𝑥
𝑛−𝑘−𝑚𝑦𝑘.

Therefore we have take 𝑘0 = −𝑎0𝑘 and consequently the cofactor 𝐾(𝑥)
becomes 𝐾(𝑥) = −𝑘𝑓 (𝑥). Now we consider the term of 𝐹𝑛−𝑚 given by

 = 1
𝑎𝑚

(𝑛 − 𝑘)𝑥𝑛−𝑚−𝑘−1𝑦𝑘+1.

This term substituted into Eq. (2), that is,  = (𝜕 ∕𝜕𝑥)𝑦 + (𝜕 ∕𝜕𝑦)
(−𝑥 − 𝑓 (𝑥)𝑦) which gives always the isolate term

− 1 (𝑛 − 𝑘) 𝑥𝑛−𝑚−𝑘𝑦𝑘.
3

𝑎𝑚
a term of degree 𝑛−𝑚. Therefore affect the homogeneous part of degree
− 𝑚 of Eq. (2) which is

− 1
𝑎𝑚

(𝑛 − 𝑘)(𝑚 + 1 + 𝑘 − 𝑛)𝑥𝑛−𝑚−2−𝑘𝑦𝑘+2 − 1
𝑎𝑚

(𝑘 − 1)𝑘 𝑥𝑛−𝑚+2−𝑘𝑦𝑘−2

− 1
𝑎3𝑚

𝐴(𝑎𝑚−𝑖, 𝑐𝑖, 𝑘, 𝑛) 𝑥𝑛−𝑚−1−𝑘𝑦𝑘+1 −
1
𝑎3𝑚

𝐵(𝑎𝑚−𝑖, 𝑐𝑖, 𝑘, 𝑛) 𝑥𝑛−𝑚+1−𝑘𝑦𝑘+1

− 1
𝑎𝑚

(𝑛 − 𝑘)𝑥𝑛−𝑚−𝑘𝑦𝑘 + 𝑎𝑚𝑘𝑥
𝑚𝐹𝑛−2𝑚 − 𝑎𝑚𝑥

𝑚𝑦
𝜕𝐹𝑛−2𝑚
𝜕𝑦

= 0,

where 𝐴 and 𝐵 are functions of the parameters 𝑘, 𝑛, 𝑎𝑚−𝑖 and 𝑐𝑖 for
𝑖 = 1,… , 𝑚. The resolution of this equation determines 𝐹𝑛−2𝑚 which
contains the logarithmic term

− 1
𝑎2𝑚

(𝑛 − 𝑘)𝑥𝑛−2 𝑚−𝑘𝑦𝑘 log 𝑦,

which implies 𝑛 − 𝑘 = 0 which is a contradiction because the unique
ossibility is 𝑘 = 𝑛 and then 𝐹𝑛 = 𝑦𝑛, 𝐹𝑛−𝑖 = 0 for 𝑖 = 1,… , 𝑚 − 1 and
𝑛−𝑚 = 𝑛𝑦𝑛−1∕(𝑎𝑚𝑥𝑚−1) which is not a homogeneous polynomial except

f 𝑚 = 1. But for 𝑚 = 1 𝐹𝑛−𝑚−1 = (𝑛𝑦𝑛−2(𝑛𝑥 − 𝑥 − 2𝑎𝑚−1𝑦))∕(2𝑎2𝑚𝑥) which
s not a polynomial. □
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