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E-mail: quim.aguado@uab.cat

Associate Editor: Janet Kelso

Abstract
Motivation: Advances in genomics and sequencing technologies demand faster and more scalable analysis methods that can process longer
sequences with higher accuracy. However, classical pairwise alignment methods, based on dynamic programming (DP), impose impractical
computational requirements to align long and noisy sequences like those produced by PacBio and Nanopore technologies. The recently
proposed wavefront alignment (WFA) algorithm paves the way for more efficient alignment tools, improving time and memory complexity over
previous methods. However, high-performance computing (HPC) platforms require efficient parallel algorithms and tools to exploit the computing
resources available on modern accelerator-based architectures.

Results: This paper presents WFA-GPU, a GPU (graphics processing unit)-accelerated tool to compute exact gap-affine alignments based on the
WFA algorithm. We present the algorithmic adaptations and performance optimizations that allow exploiting the massively parallel capabilities of
modern GPU devices to accelerate the alignment computations. In particular, we propose a CPU–GPU co-design capable of performing inter-
sequence and intra-sequence parallel sequence alignment, combining a succinct WFA-data representation with an efficient GPU implementation.
As a result, we demonstrate that our implementation outperforms the original multi-threaded WFA implementation by up to 4.3� and up to
18.2� when using heuristic methods on long and noisy sequences. Compared to other state-of-the-art tools and libraries, the WFA-GPU is up to
29� faster than other GPU implementations and up to four orders of magnitude faster than other CPU implementations. Furthermore, WFA-GPU
is the only GPU solution capable of correctly aligning long reads using a commodity GPU.

Availability and implementation: WFA-GPU code and documentation are publicly available at https://github.com/quim0/WFA-GPU.

1 Introduction

Pairwise sequence alignment is a fundamental building block
in many tools and libraries used in genomics and bioinformat-
ics. In particular, it plays a critical role for methods like read
mapping (Marco-Sola et al. 2012, Li 2013), de novo genome
assembly (Simpson et al. 2009, Koren et al. 2017), variant
calling (McKenna et al. 2010, Rodr�ıguez-Mart�ın et al. 2017),
and many others (Durbin et al. 1998, Jones et al. 2004).

Consequently, sequence alignment algorithms have been
extensively studied over the last 40 years, introducing multiple
strategies like dynamic programming (DP) (Sellers 1980,
Ukkonen 1985), automata (Baeza-Yates 1992, Wu and
Manber 1992, Navarro 1997), and bit-parallelism techniques
(Baeza-Yates 1989, Myers 1999). Nonetheless, these algo-
rithms are bound by the quadratic time and memory require-
ments on the sequence length. Thus, the use of classical
alignment algorithms becomes impractical as the input
sequences increase in length. Many variations and optimiza-
tions have been proposed over the years to overcome these
limitations. These solutions include techniques such as
banded approaches that only compute a portion of the DP
matrix (Suzuki and Kasahara 2017), data-layout

organizations that allow using single instruction multiple data
(SIMD) instructions (Wozniak 1997, Rognes and Seeberg
2000, Farrar 2007), bit-packed encodings (Myers 1986,
1999), and other methods (Ukkonen 1985, Zhao et al. 2013).
Nevertheless, all these proposals retain the quadratic require-
ments and fail to scale for long sequences.

Recently, the wavefront alignment (WFA) algorithm
(Marco-Sola et al. 2021) was proposed. The WFA is able to
compute the exact alignment between two sequences using
gap-affine penalties. In essence, the WFA algorithm computes
partial alignments of increasing score s until the optimal
alignment is found. The WFA algorithm takes advantage of
homologous regions between sequences to accelerate the
alignment process. As a result, the WFA algorithm largely
outperforms other state-of-the-art methods, requiring OðnsÞ
time and Oðs2Þ memory (where n is the length of the sequence
and s is the optimal alignment score).

Notwithstanding, the ever-increasing yields and read
lengths produced by sequencing machines challenge the scal-
ability of current sequence alignment methods. In particular,
modern sequencing technologies, like PacBio or Oxford
Nanopore, can produce sequences more than 100� longer
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than those produced by classical Illumina sequencers at a frac-
tion of the cost. The adoption of these technologies calls for
the development of faster and more scalable alignment solu-
tions (Petersen et al. 2019). So imperative is the need to scale
to larger volumes of genomic data, that the adoption of HPC
solutions has become more and more frequent. In particular,
GPUs have been widely adopted as hardware accelerators in
many scientific applications (Owens et al. 2008, Hwu 2011,
Chacón et al. 2014, Lin et al. 2017) as they provide higher
computational throughput and memory bandwidth compared
with traditional multi-core processors. In this context, align-
ment algorithms and tools need to address the efficient exploi-
tation of these hardware accelerators to keep up with the pace
of modern sequence data production.

This paper presents WFA-GPU, a GPU-accelerated imple-
mentation of the WFA algorithm for exact gap-affine pairwise
sequence alignment. We describe the adaptations performed
on the WFA algorithm to exploit the massively parallel capa-
bilities of modern GPU architectures. In particular, our pro-
posal combines inter-sequence and intra-sequence parallelism
to speed up the alignment computation. Moreover, we pro-
pose a succinct backtrace encoding to reduce the overall mem-
ory consumption of the original WFA algorithm.
Additionally, we present a heuristic variant of the WFA-GPU
that further improves its performance, achieving nearly the
same accuracy as the original exact WFA algorithm. We char-
acterize the performance of our implementation and present
the different performance trade-offs of our solution. As a re-
sult, we demonstrate that our implementation outperforms
other GPU and CPU state-of-the-art libraries and tools for se-
quence alignment.

The rest of the paper is structured as follows. Section 2
presents the definitions and methods of our proposal. Section
3 shows the experimental results, comparing the performance
of our method against other state-of-the-art implementations
on both CPU and GPU systems. Finally, Section 4 presents a
discussion on the methods presented and summarizes the con-
tributions and impact of this work.

2 Methods

2.1 Wavefront pairwise alignment

Let the query q ¼ q0q1 . . . qn�1 and the text t ¼ t0t1 . . . tm�1

be strings of length n and m, respectively. Similarly, let qi...j

denote a substring of q from the ith to the jth character (both
included). Also, let fx;o; eg be the set of gap-affine penalties,
where x is the mismatch cost and the gap cost is expressed as
the linear function gðlÞ ¼ oþ l � e (where l is the length of the
gap).

In essence, the WFA algorithm computes partial alignments
of increasing score until an alignment with score s reaches co-
ordinate ðn;mÞ (i.e. the end of the DP matrix). This way, the
algorithm is able to compute the optimal score s and retrieve
the optimal alignment by tracing back the alignment opera-
tions (i.e. fM;X; I;Dg for match, mismatch, insertion, and de-
letion) that led to the solution.

Let eMs, eXs, eIs, and eDs be the wavefront components that
describe partial alignments of score s that end with a match,
mismatch, insertion, and deletion, respectively. In general, we
denote fW ¼ f eM; eX;eI; eDg as the set of wavefront compo-
nents. We define fW s;k as the farthest reaching point of score s
on diagonal k. That is, fW s;k denotes the coordinate ðh; vÞ ¼
ðfWs;k;fW s;k � kÞ in the DP matrix that is farthest in the

diagonal k with score s. Thus, a wavefront fW s;k is a vector
containing the farthest reaching points with score s on each
diagonal k. In Marco-Sola et al. (2021), the authors prove
that the farthest reaching points of fW s can be computed using
the wavefronts with score s� o� e, s� e, and s� x, using
Equation (1) [where LCP(v, w) is the length of the longest
common prefix between two strings v and w]. Note that the
wavefront component eXs;k can be inferred using eMs;k, eIs;k,
and eDs;k, and we can avoid storing it.

eIs;k ¼ maxf eMs�o�e;k�1 þ 1;eIs�e;k�1 þ 1g

eDs;k ¼ maxf eMs�o�e;kþ1; eDs�e;kþ1g

eXs;k ¼ maxf eMs�x;k þ 1;eIs;k; eDs;kg

eMs;k ¼ eXs;k þ LCPðqeXs;k�k...n�1
; teXs;k...m�1

Þ

(1)

Starting with eX0;0 ¼ 0, the WFA algorithm progressively
computes wavefronts of increasing score. For a given score s,
it first increases each wavefront offset eXs;k according to the
number of matching characters along the diagonal k (i.e. com-
puting LCPðqeXs;k�k...n�1

; teXs;k...m�1
Þ for every diagonal k).

Then, the algorithm computes the next wavefronts with score
sþ 1 using Equation (1) and the previously computed wave-
fronts. This process iterates until a wavefront eM reaches the
bottom-right cell ðn;mÞ of the DP matrix (i.e. eMs;m�n ¼ m).
Hence, the optimal alignment score is s and the alignment
operations can be retrieved by tracing back the wavefronts
that originated the farthest reaching point eMs;m�n.

In the worst case, the WFA algorithm requires computing s
wavefronts of increasing length (

Ps
l¼0 1þ 2l) and compute

the LCP() for each wavefront offset. Nevertheless, each diago-
nal offset cannot be incremented more than the length of the
sequence. Thus, the WFA algorithm requires Oðnsþ s2Þ time
(OðnsÞ if the sequences share similarities, as s� n) and Oðs2Þ
memory in the worst case.

2.2 Graphics processing units

GPUs have rapidly emerged as successful hardware accelera-
tors in the HPC community for scientific applications. GPUs
are massively parallel devices containing multiple throughput-
oriented processing units called stream multiprocessors
(SMs). Each SM can host over a thousand concurrent threads,
and each clock cycle, using aggressive fine-grained multi-
threading techniques, can start executing hundreds of instruc-
tions on multiple SIMD cores. A CPU–GPU co-design
involves determining a computationally intensive function or
region of a program (i.e. computation kernel) to be offloaded
to the GPU. To exploit GPU parallel computing capabilities,
applications must launch tens of thousands of threads,
grouped in thread blocks, across all available SMs. Threads
within a block can cooperate (e.g. via synchronization primi-
tives, registers, or shared memory) to solve a given computa-
tional kernel. To maximize performance, GPUs rely on
exploiting high degrees of parallelism, much higher than those
of regular CPU multi-cores.

Each SM has fast on-chip memories with a relatively small
capacity. They are distributed among compiler-managed reg-
ister memory (up to 256 KB), processor-managed L1 cache,
and programmer-managed shared memory (up to 100 KB for
the total sum of L1 and shared memory). The SMs get their
data from an off-chip RAM memory of several GBs capable
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of delivering bandwidths of over 600 GB/s. An L2 cache holds
several MBs of the RAM memory contents and offers 3–5
times higher bandwidth.

The peak computational throughput of GPUs is much
higher than its peak memory bandwidth. Therefore, doing
very few memory accesses per arithmetic operation is para-
mount to achieving good GPU utilization. The use of fast
on-chip memories (registers, L1, and shared memory) can al-
leviate this problem. Still, there is a critical compromise be-
tween the number of concurrent threads hosted by each SM
and the amount of data each thread can store in fast memo-
ries. Allocating too many threads per SM results in more
threads competing for the relatively small fast memories, in-
creasing the number of data accesses to slow memory, and
performance may suffer. Reducing the number of threads per
SM can improve memory performance, but at the price of re-
ducing parallelism and the ability to hide long execution and
memory latencies, potentially decreasing performance.

2.3 WFA-GPU

In this section, we present the parallel WFA-GPU algorithm,
the main performance challenges, and effective solutions to
mitigate these problems. This way, Section 2.3.1 presents an
overview of the parallel algorithm and its mapping to the
GPU computing architecture. Afterwards, we discuss the prin-
cipal performance limitations of its implementation on GPU.

First, we show that the memory requirements grow qua-
dratically as the alignment error increases, limiting the scal-
ability of the implementation when aligning tens of thousands
of sequences in parallel. To alleviate this problem, in Sections
2.3.2 and 2.3.3, we present an efficient GPU memory man-
agement strategy and an algorithmic technique to reduce the
overall memory used by the WFA on GPU.

Second, we argue that the number of operations to compute
successive wavefronts becomes a limiting factor when aligning
large and noisy sequences. In Section 2.3.4, we present a strat-
egy to accelerate the LCP() computation and, in Section
2.3.5, we propose a GPU-aware heuristic extension to reduce
the volume of computations performed on the GPU.

Finally, in Section 2.3.6, we present a CPU–GPU co-design,
which allows overlapping the execution of GPU kernels, CPU
tasks, and data transfers (between the memories of the two
devices) to improve the overall performance of the
implementation.

2.3.1 WFA-GPU parallel algorithm
Some parallel solutions to the sequence alignment problem
are based on exploiting inter-sequence parallelism (i.e. letting
each GPU thread compute a different alignment). However,
as parallelism increases, aligning a large number of sequences
simultaneously requires unfeasible amounts of memory.
Moreover, differences in the workload (e.g. sequence length
and alignment error) cause variations in the execution flow of
each alignment, generating thread divergence. Alternatively, it
is feasible to exploit parallelism within a single alignment task
(i.e. intra-sequence parallelism). However, a single alignment
rarely allows exploiting the massive amounts of parallel
resources available on modern GPUs. Our proposal is to com-
bine both parallel strategies (inter- and intra-parallelism) to
compute multiple alignments on concurrent thread blocks,
each using several threads cooperatively to calculate a single
alignment.

The WFA algorithm depicts a simple computational pattern
to calculate each sequence alignment. Equation (1) shows that
a wavefront fW s is computed using only wavefronts fWs�o�e,fWs�e, and fWs�x. More importantly, each diagonal offset
fWs;k can be computed independently. Figure 1 illustrates in
detail the parallel computation of a given wavefront s using
multiple GPU threads, exploiting intra-sequence parallelism
( ). At the same time, other alignments can be computed by
different thread blocks on the GPU using inter-sequence par-
allelism ( ).

Algorithm 1 presents the high-level pseudocode of the
WFA-GPU. For each alignment, multiple threads cooperate to
compute consecutive wavefronts. In particular, for every score
s and diagonal k, each GPU thread in the block computes
fWs;k independently (lines 7–10). After every diagonal of
wavefronts fW s is computed, GPU threads synchronize (line
11) and proceed to compute the following wavefronts fW sþ1.
This process is repeated until the optimal alignment is found
(line 4).

Each GPU thread concurrently undertakes the computation
of the data item of a different diagonal offset, applying
Equation (1) and using the previously computed wavefronts
and the LCP() function. Notably, as the algorithm progresses,
wavefronts become increasingly larger and the potential par-
allelism of the problem grows. For large and noisy sequences,
the problem becomes embarrassingly parallel, allowing to
perform up to 2sþ 1 parallel computations for each fW s.
Such a highly parallel algorithm is suitable for modern GPUs.

2.3.2 Alignment scheduling and GPU memory management
A simple and naive implementation would spawn a thread
block per each WFA alignment offloaded to the GPU.
However, each WFA alignment kernel requires GPU memory
to store all the intermediate wavefronts. It is not feasible to re-
serve GPU memory for every alignment in advance when
processing tens of thousands of sequence alignments.
However, it is possible to request an upper-bound of the total
WFA memory required for a number of alignments that can
be processed in parallel in the GPU at the same time.

Algorithm 1. WFA-GPU parallel algorithm.
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Thus, our implementation creates a pool of outstanding
WFA aligners and allocates memory for as many alignment
blocks as can be processed simultaneously on the GPU. Then,
an alignment scheduler assigns WFA alignments to thread
blocks. Whenever a thread block finishes an alignment, it
requests another from the alignment pool until all alignments
offloaded to the GPU have been completed. We guarantee the
correct synchronization of the different aligners by using
atomic operations and a global counter.

Nevertheless, having to allocate GPU memory beforehand
forces to estimate the maximum memory required by each
WFA alignment in advance. For that, our method establishes
a configurable upper-bound on the required memory based
on a conservative estimation of the maximum error rate (i.e.
10% of sequence length by default on our example tool).
Nonetheless, some alignments may over-ride initial estima-
tions and require more memory. For those cases, the
WFA-GPU implements a rescue mechanism that returns the
alignment to the CPU to be computed using the original WFA
algorithm. In practice, when aligning long and noisy sequences
(like those produced by PacBio or Nanopore Technologies),
the amount of rescued alignments is below 0.2%. Furthermore,
the computation of the rescued alignments can be performed in
the host CPU; meanwhile, the GPU is computing other align-
ments, as described in Section 2.3.6.

Although modern GPUs are equipped with large DRAM
memories, accesses to global memory are relatively slow and
can potentially reduce the performance of GPU applications.
To take advantage of fast on-chip memories and minimize the
latency of global memory accesses in the GPU, our implemen-
tation allocates the most frequently accessed wavefront

diagonals (i.e. the central diagonals) of wavefronts in the
shared memory. This way, the WFA-GPU benefits from fast
on-chip memory access to the elements of the central
diagonals.

2.3.3 Piggybacked backtrace operations
For an alignment with optimal score s, the WFA algorithm
requires storing all the intermediate wavefronts up to fWs to
be able to retrieve the alignment path (a.k.a. CIGAR) during
the final backtrace step. However, alignments with a large
nominal number of errors require a non-negligible amount of
memory. That is, an upper-bound of 3

Ps
i¼0 1þ 2i ¼

3ðsþ 1Þ2 wavefronts offsets, consuming up to 12ðsþ 1Þ2
bytes per alignment. These memory requirements become im-
practical when aligning multiple noisy sequences in parallel,
even for modern GPUs equipped with large amounts of global
memory.

To reduce the memory consumption, our method piggy-
backs the backtrace operations (i.e. X, I, and D) to the wave-
fronts as they are being computed. Using only two bits, each
backtrace operation is encoded in a bitmap stored for every
diagonal of the wavefront. Therefore, for a given score s and
diagonal k, our method stores a bitmap with the alignment
operations required to reach fW s;k. It follows that the bitmap
associated with eMs;m�n contains the optimal alignment’s
backtrace. Note that these bitmaps do not grow regularly, as
a different number of backtrace operations may have the
same score (e.g. multiple insertions may be equivalent to a
mismatch).

In practice, our implementation uses 32-bit bitmap words
to store backtrace operations (i.e. BT-block). Once a BT-

Figure 1. Multiple alignments are computed concurrently on the GPU, exploiting inter-sequence parallelism ( ). At the same time, multiple GPU threads

compute different diagonals of a given wavefront (fW s ) in parallel, exploiting intra-sequence parallelism ( ).
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block of a diagonal is full and cannot encode more backtrace
operations (¶ on Fig. 2), it is offloaded to a global backtrace
buffer (•) (i.e. BT-buffer). Each BT-block stores an index to
the previous BT-block (‚) in the chain that allows retrieving
the complete alignment backtrace associated with any fWs;k

offset. A complete alignment backtrace is recovered by tra-
versing the linked BT-blocks starting from the last one.

The computation of each backtrace operation is coupled
with the computation performed in Algorithm 1 to generate
each diagonal offset. For that, the corresponding backtrace
operation (i.e. X, I, and D) is piggybacked to each source
wavefront offset ( eMs�o�e;k�1, eMs�o�e;kþ1, eIs�e;k�1, eDs�e;kþ1,
and eMs�x;k) in Equation (1), using the two less significant bits
(„). Then, as a byproduct of the computation of the maxi-
mum offset, the corresponding backtrace operation is found
piggybacked, and is added to the current BT-block (”). In
practice, this strategy turns out to be computationally
lightweight.

Note that BT-blocks only contain edit operations (i.e. X, I,
D) and not the matches in between. To retrieve the complete
alignment CIGAR, the algorithm needs to compute any miss-
ing matches between backtrace operations. Nonetheless, this
is a remarkably simple operation. Using the same LCP() func-
tion presented earlier, the algorithm computes matches until a
mismatch is found. Then, it adds the following backtrace op-
eration and proceeds again to compute the LCP(). This pro-
cess halts when all the backtrace operations from the chain of
BT-blocks have been processed.

However, the piggyback strategy introduces some extra
operations when computing Equation (1) to add the backtrace
operation to the lower bits of the offset. Nevertheless, this op-
eration can be implemented using fast bitwise instructions,

adding a low overhead. Additionally, an atomic operation is
needed when offloading a BT-block into the global backtrace
buffer.

Overall, the piggyback strategy effectively reduces the
memory consumed by the wavefronts to 4 bits per entry (ac-
counting for the BT-block indices). Compared to storing the
raw wavefront offsets as the original WFA does (i.e. 4 bytes
per entry), this strategy represents an 8� reduction.

2.3.4 Bit-parallel sequence comparison using packed DNA
sequences
WFA’s execution time is dominated by the computation of
the LCP() function (Eizenga and Paten 2022). A naive imple-
mentation would compare sequences character by character
until a non-matching character is found. This approach not
only executes a non-negligible amount of instructions per
LCP() call but also creates divergence across threads comput-
ing the same alignment. That is, each GPU thread within a
block performs a different number of comparisons depending
on the characters being compared. Because GPU threads exe-
cute in groups of 32 threads in lock-step mode, divergent exe-
cution (i.e. variable-iterations loops) forces idle threads to
wait until all threads have finished iterating.

To alleviate this problem, we propose a bit-packed encod-
ing of DNA sequences using 2 bits per base. The encoding
turns out to be remarkably simple, as the ASCII representa-
tion of each base has two unique bits on position 1 and 2 (i.e.
A¼ 1000001, C¼ 1000011, G¼ 1000111, T¼ 1010100).
This process is also well suited for GPU execution, as each
character can be computed in parallel. Sequence packing is
done at runtime, just before the WFA-GPU alignment kernel
starts. Using a bit-packed representation, our implementation

Figure 2. Illustration of the piggybacked backtrace strategy and data-layout organization. From left to right of the figure, we show the source wavefronts

( eMs�x , eMs�o�e ,eI s�e , and eDs�e ) and how they are combined to generated wavefronts at score s. Each diagonal has a BT-block (shaded in grey) and an

offset. At the center, we detail the process of computing Equation (1) for a single diagonal and the piggyback of the corresponding backtrace operation. At

the bottom, the global BT-buffer is depicted, where each slot represents a BT-block (displayed vertically for better readability of the figure).
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compares blocks of 16 bases at once using 32-bit operations.
This strategy reduces execution divergence and, most impor-
tantly, the total number of instructions executed, which trans-
lates into faster execution times.

2.3.5 GPU-aware approximated wavefront alignment
For some applications, the exact computation of the align-
ment may be unnecessary, and a reasonable approximation of
the optimal solution may suffice [e.g. pre-filtering (Alser et al.
2017, 2019) and clustering (Zorita et al. 2015, Zou et al.
2020) applications]. For that, heuristic strategies can reduce
the number of computations required, improving perfor-
mance at the expense of a potential loss of accuracy. In
addition to the exact WFA-GPU algorithm, we propose a heu-
ristic extension that improves the performance of the exact
algorithm achieving nearly the same accuracy. Our heuristic
strategy draws inspiration from the original WFA-Adapt
(Marco-Sola et al. 2021) heuristic and other adaptive techni-
ques (Suzuki and Kasahara 2017). Unlike previous
approaches, our strategy is tailored to the architecture and
resources available in the GPU and exploits the GPU parallel-
ism to minimize the overhead of executing the heuristic.

Our heuristic strategy employs a fixed-size wavefront of
length b. Initially, wavefronts are centered around the main
diagonal. Every k steps, the algorithm computes the most
promising diagonal. That is, the diagonal closest to the target
cell (the bottom-right corner of the DP table). Afterwards,
newly computed wavefronts are centered around the most
promising diagonal, focusing the wavefront computation to-
ward the most promising partial alignment. As a result, the
heuristic avoids the computation of wavefront diagonals that
are left behind (unlikely to lead to the optimal solution).

Selecting adequate values of b and k can have an impact on
performance and accuracy. Note that a small b can lead to
significant accuracy loss. Similarly, a small k could lead to
overheads computing the heuristic. As opposed, large values
of b and k could render the heuristic ineffective. Our imple-
mentation selects a value of b such that all the wavefronts can
fit into the fast on-chip shared memory of the GPU.
Regarding k, we observe that values k � 100 perform simi-
larly in terms of accuracy. Moreover, to alleviate the compu-
tational burden when k is small, our implementation uses a
thread-cooperative strategy. For that, threads within a warp
cooperate to find the most promising diagonal and center the
wavefront around it. Supplementary Section S5 presents a
more in-depth parameter exploration of the impact of (b; k)
on time and recall.

2.3.6 CPU–GPU co-design system
The WFA-GPU implements a CPU–GPU co-design that allows
the simultaneous execution of GPU computations overlapped
with data transfers and CPU alignment rescue. To maximize
performance, our implementation offloads batches containing
multiple alignments to the GPU. For that, input sequences
from a batch have to be transferred to the device. To minimize
GPU idle times, our implementation makes asynchronous ker-
nel launches, allowing overlapping data transfers with GPU
computations. That is, while the GPU is computing the align-
ments for a given batch, the sequences of the following batch
are being copied to the device. As a result, latencies due to
transfer times are effectively hidden and overlap with useful
GPU computations.

Furthermore, the asynchronous implementation of WFA-
GPU allows employing idle CPU time to rescue alignments
returned by the GPU. As explained in Section 2.3, a small per-
centage of alignments may not be aligned in the GPU due to
exceeding memory requirements. For those few cases, the im-
plementation overlaps the CPU WFA execution with GPU
computations and data transfers.

3 Results

We evaluated the performance of the WFA-GPU, together
with other state-of-the-art CPU and GPU tools for sequence
alignment. In Section 3.1, we present the system specifications
and datasets used. In Section 3.2, we present an evaluation us-
ing simulated datasets. Finally, in Section 3.3, we present the
experimental results using real datasets.

3.1 Experimental setup

For the experimental evaluation, we select simulated and real
datasets. For the simulated datasets, we generate synthetic
pairs of sequences of 150, 1000, and 10 000 bases aligning
with an average edit-error of 2%, 5%, and 10% differences.
For the evaluation using real datasets, we select publicly avail-
able datasets representative of current sequencing technolo-
gies (see Supplementary Table S1). The target sequences are
retrieved from mapping the source sequences against
GRCh38 using Minimap2 (Li 2018) and default parameters.

To compare the performance of the WFA-GPU, we select
other sequence alignment libraries and tools representative of
the state-of-the-art on both CPU and GPU devices. For the
GPU tools comparison, we select the library GASAL2
(Ahmed et al. 2019), ADEPT (Awan et al. 2020), and
two NVIDIA libraries [NVBio (https://nvlabs.github.io/nvbio)
and CudaAligner (https://github.com/clara-parabricks/
GenomeWorks) from Clara Parabricks Genomeworks].
Unfortunately, we were unable to include the GPU aligners
Logan (Zeni et al. 2020), Darwin (Ahmed et al. 2020), and
GenASM (Lindegger et al. 2022) due to inadequacy in per-
forming basic pairwise alignment and the unavailability of the
source code. As for the CPU tools, we selected the most
widely used and efficient libraries available to date. That is,
Seqan (Döring et al. 2008), Parasail (Daily 2016), Edlib (�So�si�c
and �Siki�c 2017), and KSW2 (Suzuki and Kasahara 2018).
Naturally, we also include the original WFA implementation
[(https://github.com/smarco/WFA2-lib), commit 931181d] in
the comparison. Note that Edlib and CudaAligner can only
compute the edit-distance alignment (a much simpler problem
than computing gap-affine alignments). Regardless, we in-
clude them in the comparison as an interesting point of refer-
ence. In an attempt to evaluate the recall of these tools using
gap-affine scores, we re-scored the reported CIGAR using
gap-affine penalties and compared it with the optimal score.
ADEPT computes the local alignment of two sequences, as we
compute global alignment, ADEPT cannot be compared with
WFA-GPU in terms of accuracy. The tables indicate this as
‘not-comparable’ (n/c).

All the experiments are executed using a 10-core Intel
Xeon-W2155 (3.3 GHz) processor equipped with 126 GB of
memory and an NVIDIA GeForce 3080 with 10 GB of mem-
ory. Moreover, all CPU executions are performed in parallel
using the 10 physical cores available in the platform. All GPU
execution times include CPU–GPU data transfer, alignment,
backtrace, and CIGAR generation time.
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3.2 Evaluation on simulated data

Supplementary Table S2 shows time (in seconds) and recall
(percentage of sequences for which the optimal alignment was
correctly reported) for the alignment executions using simu-
lated datasets.

Considering the alignment of short sequences (i.e.
�150 bps), NVBio outperforms all other tools at the expense
of a significant loss in alignment accuracy as the alignment er-
ror increases. WFA-GPU is between 1.2 and 2.9 times faster
than the best CPU time obtained. GASAL2 shows good per-
formance (as it is tailored to short-sequence alignment).
Because dynamic-programming approaches are error-
independent, GASAL2 outperforms our implementation
when the error is high. The other GPU aligners, ADEPT and
CudaAligner, are one order of magnitude slower than WFA-
GPU and GASAL2. For these short-sequence datasets, using
the WFA-GPU approximated alignment does not provide any
significant benefit because the error is very small.

For medium-length sequences (�1 Kbps), GPU implementa-
tions either fail due to execution errors (like NVBio and
ADEPT) or obtain a recall below 10%. Only GASAL2
remains competitive when the error increases but at a signifi-
cantly low accuracy (52.4%). Compared to CPU implementa-
tions, WFA-GPU executes 2.5–3.3� faster than the original
WFA and up to 5500� faster than other libraries. Using
WFA-GPU approximated alignment, we obtain an additional
speedup of up to 3� when computing the optimal alignment
path (backtrace).

Experiments aligning long simulated sequences (i.e.
�10 Kbps) turn out to be the most challenging for most GPU
tools. All other GPU implementations either fail (i.e. ADEPT
and NVBio), give incorrect results (i.e. CudaAligner), or have
significantly low recall (i.e. GASAL2 with less than 50% accu-
racy). WFA-GPU is the only GPU implementation that can
scale to long sequences reporting the optimal alignment result.
When compared to the original WFA, WFA-GPU executes
3.1–3.8� faster. Using the approximate WFA-GPU align-
ment, the speed increase is even greater, at 14.2–61.9�, while
maintaining 100% accuracy.

When executing WFA-GPU without calculating the align-
ment path (only calculating the alignment distance), the pro-
cess is 1.8–4.7� faster than the baseline WFA-GPU. This
results in a speed increase of up to 16.8� compared to the
CPU WFA implementation. In addition, we implement an ap-
proximated distance-only kernel, which gives a speedup of up
to 133.0� compared to the multi-threaded CPU WFA
implementation.

3.3 Evaluation on real data

Table 1 compares the performance of WFA-GPU to other
state-of-the-art libraries and tools when aligning real datasets
(listed in Supplementary Table S1). Figure 3 illustrates the
results of the most relevant datasets and implementations.

For the case of aligning high-quality short sequences, like
those produced by Illumina sequencers, NVBio delivers the
fastest results at the expense of scoring low in recall (only
49.2% and 27.2% of the alignments are correct). GASAL2
delivers similar performance to WFA-GPU when aligning the
Illumina 150 dataset and is 1.7� slower when aligning
Illumina 250 (which has slightly longer sequences).
Compared to the original WFA, which achieves the best exe-
cution time among all CPU libraries, WFA-GPU is 1.2�
slower when aligning the Illumina 150 dataset, and 1.3�
faster when aligning the Illumina 250 dataset. Compared to
other CPU libraries, WFA-GPU obtains remarkable speedups
(up to 1264� compared with Parasail). On these datasets
(that have a small nominal error), using WFA-GPU approxi-
mate alignment has little effect, providing an additional speed
increase of only 1.3�. Computing only the alignment distance
(distance-only kernel) is 1.4–2� faster than computing the
whole alignment, giving an overall speedup of 1.7� compared
with the multi-threaded CPU WFA implementation.

Using PacBio sequences, WFA-GPU achieves a speedup of
2.5� (on PacBio CSS) and 3� (on PacBio HiFi) compared to
the multi-threaded CPU version of the WFA. The speedup
raises up to 4.8� if we don’t compute the alignment path (dis-
tance-only version). Our implementation outperforms by up
to four orders of magnitude other CPU tools and libraries.
The only GPU implementation able to finish is CudaAligner,

Table 1. Time (T, in seconds) and recall (R, as a percentage of exact alignments) for real datasets.a

Illumina 150 Illumina 250 PacBio CSS PacBio HiFi Nanopore

100M alignments 100M alignments 10M alignments 10M alignments 10M alignments

T (s) R (%) T (s) R (%) T (s) R (%) T (s) R (%) T (s) R (%)

GPU GASAL2 12 99.9 28 94.7 error n/a error n/a error n/a
ADEPT 158 n/c 308 n/c error n/a error n/a error n/a
NVBio 4 49.2 6 27.2 error n/a error n/a error n/a
CudaAlignerb 102 97.5 169 91.6 2036 42.6 3105 32.5 1350 0.0
WFA-GPU 13 100 17 100 71 100 159 100 4395 100

approx 10 100 17 100 66 98.6 101 98.4 1041 98.7
distance 7 100 13 100 48 100 100 100 1083 100

approx 5 100 13 100 55 98.6 69 98.4 569 98.6
CPU Seqan 1810 100 5076 100 timeout n/a timeout n/a timeout n/a

Parasail(strip) 8424 99.9 21 240 99.9 timeout n/a timeout n/a timeout n/a
Parasail(scan) 1160 99.9 2814 99.9 timeout n/a timeout n/a timeout n/a
Parasail(diag) 1878 99.9 4912 99.9 timeout n/a timeout n/a timeout n/a
Edlibb 155 97.5 246 91.8 2127 47.7 7998 35.7 22 620 0.0
KSW2 251 100 661 100 163 860 100 timeout n/a 86 580 100
WFA 11 100 21 100 175 100 486 100 18 960 100

a All CPU executions use 10 threads. Executions taking more than 48 h are marked as timeout.
b Implementations that can only produce edit-distance alignments.
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even though it obtains a significantly low recall (less than
50%) while being between 19.5 and 26.7� slower than our
solution. When using WFA-GPU approximate alignment, we
obtain an overall speedup of 2.7� and 4.8� for the CSS and
HiFi datasets, respectively. Combining the approximated ap-
proach and the distance-only kernel, the speedup goes up to
7.1�.

Regarding the Nanopore dataset, which consists of large
sequences with a high error rate, WFA-GPU is 4.3� faster
than the CPU implementation of WFA and 17.5� faster when
using the distance-only version. In comparison, CudaAligner
is 3� faster for this execution, but it generates incorrect
results (0% recall). When compared to other CPU libraries,
WFA-GPU is up to 19.7� faster. However, this speedup is
not as high as on previous datasets because alignments with a
high nominal error represent the worst-case scenario for the
WFA algorithm. Despite this, a high error rate presents a
good opportunity for approximated methods to improve exe-
cution times. In particular, the WFA-GPU approximated ap-
proach obtains a speed increase of 18.2� compared with the
multi-threaded WFA CPU version. Only computing the align-
ment distance while using approximate WFA-GPU results in a
speedup of 33.3�.

In general, other GPU implementations either fail to scale
with increasing sequence lengths, drop enormously in the re-
call, or simply fail to execute. Although CudaAligner delivers
good performance results, it is bounded to produce edit-
distance alignments that fail to capture the biological insights
that gap-affine models do. While traditional DP-based algo-
rithms fail to scale with sequence length, WFA-based imple-
mentations demonstrate to scale with increasing error rates
and lengths. In practice, DP-based implementations require
impractical execution times. As opposed, our WFA-GPU im-
plementation delivers good performance results, even when

aligning long and noisy sequences. Additionally, our approxi-
mate alignment method for WFA can provide additional
speedups with little accuracy compromise (less than 2% of
sub-optimal alignments reported).

4 Discussion

Future advances in sequencing technologies and genomics
present critical challenges to current bioinformatics methods
and tools. This situation calls for improved methods and tools
that can scale with increasing production yields and sequence
lengths. Current HPC computing relies on GPUs as successful
hardware accelerators for computing-intensive applications in
many areas of research. This work presents the first GPU-
based tool for sequence alignment based on the efficient WFA
algorithm. We proposed algorithmic adaptations and optimi-
zations of the WFA to effectively parallelize the alignment
task, exploiting the high-performance capabilities of modern
GPU cards.

We demonstrate the benefits of WFA-GPU compared to
other state-of-the-art CPU and GPU tools and libraries. Our
WFA-GPU implementation performs up to 29� faster than
other GPU tools, and up to four orders of magnitude faster
than DP-based CPU libraries. Compared to the WFA CPU im-
plementation (fastest CPU library to date), we obtain speed-
ups up to 4.3� on real datasets, without any accuracy loss.
When computing only the distance, we get an extra speedup
up to 4�. Using our WFA-GPU approximated alignment
strategy to align long and noisy sequences, our method
reaches a maximum speedup of 18.2� compared to the origi-
nal WFA CPU, retaining a 98.6% accuracy. To the best of
our knowledge, WFA-GPU is the only GPU-based pairwise
aligner capable of producing exact gap-affine alignments for
long-sequencing datasets, like PacBio HiFi or Oxford

Figure 3. Alignments per second obtained with the most performant CPU and GPU gap-affine implementations compared with WFA-GPU.

8 Aguado-Puig et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/article/39/12/btad701/7425447 by guest on 14 January 2025



Nanopore, in reasonable time using commodity GPU devices.
Supplementary Section S4 explores how our solution scales
with different GPU devices.

Using GPUs in conjunction with WFA-GPU not only offers
speed gains but also provides a cost-effective approach for
building systems dedicated to pairwise alignment. In our
experiments, the CPU employed has a recommended cus-
tomer price (RCP) of 1440 USD, whereas the GPU utilized
has an RCP of 799 USD. As a result, a system equipped with
two CPUs would cost 2880 USD, whereas a system incorpo-
rating one CPU and one GPU totals 2239 USD. Even when
considering an ideal CPU scalability, opting for the GPU-
enhanced system yields a performance-to-cost ratio of 1.2–
3.7� higher than the dual-CPU configuration.

Moreover, WFA-GPU consumes between 1.6 and 2.5� less
energy in comparison to WFA CPU-based alignment. For an
analysis of energy consumption, refer to Supplementary
Section S3.

With the advent of improved sequencing technologies and
more sophisticated genomic studies, WFA-GPU offers an ac-
curate, fast, and scalable sequence alignment solution that ef-
fectively exploits the massive computing capabilities of
modern GPU devices. Therefore, we hope that WFA-GPU will
become a valuable and practical addition to the bioinformat-
ics toolkit that supports efficient research in future genome
analysis.

Supplementary data

Supplementary data are available at Bioinformatics online.
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