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Abstract. We characterize when the unique equilibrium point of the posi-
tive quadrant of a 2–dimensional Lotka–Volterra system is a global attractor
in that quadrant. Additionally we classify the phase portraits of these class
of Lokta-Volterra system.

1. Introduction and statement of the main results

A Lotka–Volterra system is given by a quadratic vector field X = (P1(x1, x2),
P2(x1, x2)) in R2 where xi is a factor of the polynomial Pi for i = 1, 2. The
Lotka–Volterra systems, were initially proposed in R2 by Alfred J. Lotka in 1925
[16] and by Vito Volterra in 1926 [22] independently, as a model for studying
the interactions between species, or the interactions in a predator-prey model.
Later on in 1936 Kolmogorov [14] extended these type of systems to the also
called Kolmogorov systems where they are considered in arbitrary dimension
and with arbitrary degree.

Many natural phenomena can be modeled by the Lotka–Volterra systems
such as the time evolution of conflicting species in biology, see for example
[11, 17, 18, 19], in ecology [2, 12], chemical reactions [8], hydrodynamics [3],
economics [21], the evolution of electrons, ions and neutral species in plasma
physics [15], etc.

We want to emphasize that the study of the existence of a global attractor
in a Lotka–Volterra system is very important in the applications to biology and
ecology. The existence of a global attractor e1 ∈ R2

+ (or in Rn
+ in general)

guarantees the no extinction of the species for initial conditions in the interior
of R2

+.

Hou [9] did important contributions to the study of global attractors in Rn
+

for the Lotka-Volterra systems. He in [10] stablishes a criterium with conditions
for the existence of a unique global attractor.

In this work we characterize the Lotka–Volterra systems in R2 with one
equilibrium point in the interior of the positive quadrant which is a global
attractor in this quadrant, i.e. a system of the form

(1) Ẋ = X(α0 + α1X + α2Y ), Ẏ = Y (β0 + β1X + β2Y ),
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with a finite equilibrium (X0, Y0) with X0 > 0 and Y0 > 0. Here the dot denotes
derivative with respect to the time t.

From works of [6], [7] and [13] it follows that a condition in order that the
Lotka–Volterra system (1) has a global attractor is that

α2

α1
< 1 and

β2
β1

< 1.

Note that without loss of generality if system (1) has an equilibrium point
(X0, Y0) in the positive quadrant we can consider that (X0, X0) = (1, 1). In-
deed, considering the change of variables (X,Y ) → (X/X0, Y/Y0) the Lotka–
Volterra system (1) becomes another Lotka–Volterra system having the equi-
librium (1, 1).

In what follows we consider an arbitrary Lotka–Volterra system with the
equilibrium (1, 1), which can be written as

(2)
ẋ = x(a1(x− 1) + a2(y − 1)),

ẏ = y(b1(x− 1) + b2(y − 1)).

This system depends on four parameters a1, a2, b1 and b2. We assume that
system (2) does not have a common factor between ẋ and ẏ. We note that
changing the sign of the time if necessary we can assume a1 ≤ 0.

We recall that a limit cycle for a planar differential system is a periodic orbit
which is isolated in the set of all periodic orbits of the system.

Bautin in [1] proved that any 2–dimensional Lotka–Volterra system cannot
have limit cycles, see also Coppel [4].

The objective of this work is to classify the Lotka–Volterra systems (2) for
which the equilibrium (1, 1) is a global attractor in the positive quadrant.

Roughly speaking we say that the Poincaré disc D2 is the closed unit disc
centered at the origin of R2, where its interior is identified with R2 and its
boundary S1 is identified with the infinity R2, in the sense that we can go to
or come from the infinity in the plane R2 in as many directions as points has
the circle S1. A polynomial differential system in R2, i.e. in the interior of D2

can be extended to its boundary S1 in a unique analytic way, this extension
was done by first time by Poincaré in [20], and now it is called the Poincaré
compactification of a polynomial differential system. For more details on the
Poincaré compactification see for instance Chapter 5 of [5].

Let p(X) be the compactified vector field in the Poincaré disc D2 of a poly-
nomial vector field X. A separatrix of p(X) is an orbit which is either an
equilibrium point, or a trajectory which lies in the boundary of a hyperbolic
sector of a finite or an infinite equilibrium point, or a limit cycle, or any orbit
contained in S1 (the boundary of D2, i.e. the infinity of the plane), for more
details see [5].
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We denote the open positive quadrant by
◦
Q = {(x, y) : x > 0, y > 0} ∩D2 of

the Poincaré disc, and by Q = {(x, y) : x ≥ 0, y ≥ 0} ∩ D2 the closed positive
quadrant.

Here we shall use the notion of quadrant-topologically equivalent. This def-
inition says that two Lotka–Volterra systems (2) are quadrant-topologically
equivalent if there exists a homeomorphism h : Q 7→ Q sending orbits to orbits
and the boundaries {x = 0} ∩ D2, {y = 0} ∩ D2 and S1 ∩ D2 to {x = 0} ∩ D2,
{y = 0} ∩ D2 and S1 ∩ D2 respectively, and which preserves or reverses the
orientation of all orbits. Our main result is the following.

Theorem 1. The following statements hold

(a) The phase portrait in the quadrant Q of the Poincaré disc of a 2–dimen-
sional Lotka–Volterra system (2) having a global attractor in the interior
Q is quadrant-topologically equivalent to one of the quadrants of Figure
1.

(b) In Tables 1 and 2 we provide the values of the parameters of system (2)
having a global attractor in the quadrant Q.

This work is organized as follows. In section 2 we study the local dynamics
of the finite and infinite equilibria in Q when system (2) has at (1, 1) a local
attractor. In section 3 we prove Theorem 1.

2. Phase Portraits of system (2)

First note that system (2) has always the invariant straight lines x = 0 and
y = 0. This implies that the quadrant Q is invariant by the flow of system (2),
because the infinity S1∩Q is always invariant by the Poincaré compactification.

System (2) has at most four finite equilibria in the quadrant Q and at least
two. The origin e1 = (0, 0) and e2 = (1, 1) are always finite equilibria on Q,
and under some conditions on the parameters we can have the finite equilibria
e3 = (0, (b1 + b2)/b2) and e4 = ((a1 + a2)/a1, 0).

The linear part of system (2) is

(3)

(
a1(2x− 1) + a2(y − 1) a2x

b1y b1(x− 1) + b2(2y − 1)

)
.

Therefore the eigenvalues for each finite equilibria are

(4)

e1 −→ λ1
1 = −(a1 + a2), λ1

2 = −(b1 + b2),

e2 −→ λ2
1,2 =

(
a1 + b2 ±

√
a21 + 4a2b1 + b2(b2 − 2a1)

)
/2,

e3 −→ λ3
1 = −a1 + a2b1/b2, λ3

2 = b1 + b2,
e4 −→ λ4

1 = a1 + a2, λ4
2 = a2b1/a1 − b2.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n)

Figure 1. The distinct quadrant-topologically equivalent phase
portraits of system (2) with a global attractor in the interior of
the positive quadrant of the Poincaré disc. The thick lines are
separatrices, and the thin lines are orbits, one orbit for each
canonical region.

For the study of the infinite equilibria we use the Poincaré compactification
(see details in Chapter 5 of [5]) and we get that the associated system in the
local chart U1 is

(5) z′1 = −z1(a1 − b1 + a2z1 − b2z1), z′2 = z2(−a1 − a2z1 + a1z2 + a2z2).
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b1 < −b2 b1 = −b2 −b2 < b1 < 0 b1 = 0 b1 > 0

a1 < 0
b2 > 0

a2 < −a1

a2 > b2
a1 < b1

1(l) N/F x x x L.A.

a2 > b2
a1 ≥ b1

1(d) N/F x x x L.A.

a2 = b2
a1 ≤ b1

x x x x L.A.

a2 = b2
a1 > b1

1(d) N/F x x x L.A.

a2 < b2
a1 ≤ b1

x x x x L.A.

a2 < b2
a1 > b1

L.A. x x x L.A.

a2 = −a1
a1 ≥ b1 1(a) F x x x x

a1 < b1 1(i) N/F x x x x

a2 > −a1
a1 ≥ b1 1(a) F 1(i) N/F L.A. x x

a1 < b1 1(i) N/F 1(i) N/F L.A. x x

Table 1. The classification of the Lotka–Volterra systems (2) having
at (1, 1) a global attractor in the positive quadrant with b2 > 0. As
example 1(a) provides the values of the parameters of system (2) for
which the phase portraits on Q is quadrant–topologically equivalent
to Figure 1(a), N/F means that the attractor can be a node or a
focus, N or F means that the attractor only can be a node or a focus,
respectively; L.A. denotes that (1, 1) is just a local attractor but it is
not a global attractor; x shows when for the relations of the parameters
in the table the equilibrium (1, 1) is not an attractor.

Then at infinity, i.e. at z2 = 0, we have the equilibria (0, 0) and p1 = ((b1 −
a1)/(a2 − b2), 0). Furthermore the linear part at z2 = 0 is

(6)

(
−a1 + b1 + 2(b2 − a2)z1 (a1 + a2 − b1 − b2)z1

0 −a1 − a2z1

)
.

The associated system in the local chart U2 is
(7)
z′1 = z1(a2+(a1−b1)(z1−z2)+b2(−1+z2)−a2z2), z′2 = z2(−b2−b1z1+b1z2+b2z2),

where the origin is an equilibrium and its eigenvalues are

(8) a2 − b2 and − b2.

We are interested in the existence of a global attractor at (1, 1) in the positive
quadrant, then we need that this equilibrium will be a local attractor, this will
be satisfied, using the Routh-Hurwitz criterion, when the two coefficients of the
characteristic polynomial at (1, 1) p(λ) = λ2 − (a1 + b2)λ + (a1b2 − a2b1) are
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b1 < 0 b1 = 0 0 < b1 < −b2 b1 = −b2 b1 > −b2
a1 < 0
b2 = 0
a2 < 0

x x 1(e) 1(e) 1(e)

a1 < 0
b2 = 0
a2 > 0

a2 < −a1
a1 < b1 1(l) x x x x
a1 > b1 1(d) x x x x

a2 ≥ −a1
a1 < b1 1(f) x x x x
a1 > b1 1(n) x x x x

a1 < 0
b2 < 0
a2 ≥ 0

a2 ≥ −a1
a1 ≥ b1 1(b) N/F 1(k) N 1(k) N x x
a1 < b1 1(k) N/F 1(k) N 1(k) N x x

a2 = 0
a1 ≥ b1 1(f) N 1(n) N 1(n) N 1(m) N 1(m) N
a1 < b1 1(n) N 1(n) N 1(n) N 1(m) N 1(m) N

0 ≤ a2 < −a1
a1 ≥ b1 1(f) N/F 1(n) N/F 1(n) N/F 1(m) N /F 1(m) N /F
a1 < b1 1(n) N/F 1(n) N/F 1(n) N/F 1(m) N /F 1(m) N /F

a1 < 0
b2 < 0
a2 < 0

a1 < b1

a2 < b2 1(g) N 1(g) N 1(g) N/F 1(e)N/F 1(e) N/F
a2 = b2 1(g) N 1(g) N 1(g) N/F 1(e) N/F 1(e) N/F
a2 > b2 1(n) N 1(n) N 1(n) N/F 1(m) N/F 1(m) N/F

a1 = b1

a2 < b2 x x x x x
a2 = b2 x x x x x
a2 > b2 1(n) N x x x x

a1 > b1

a2 < b2 x x x x x
a2 = b2 x x x x x
a2 > b2 1(f) N x x x x

a1 = 0
b2 < 0

a2 < 0
a2 ≤ b2 x x 1(c) N/F 1(a) N/F 1(a) N/F
a2 > b2 x x 1(j) N/F 1(h) N/F 1(h) N/F

a2 > 0 1(b) N/F x x x x

Table 2. The classification of the Lotka–Volterra systems (2) having
at (1, 1) a global attractor in the positive quadrant with b2 ≤ 0.

positive, i.e.

(9) τ = −a1 − b2 > 0 and δ = a1b2 − a2b1 > 0.

Hence in what follows we assume that the two inequalities of (9) hold. Note
that the equilibrium (1, 1) is a stable node if τ2 − 4δ ≥ 0, and a stable focus if
τ2 − 4δ < 0.

We separate the study of the local phase portraits at the finite and infinite
equilibria according to the sign of a1.

2.1. Case a1 = 0. From (9) b2 < 0 and a2b1 < 0. Note that e4 does not exist
for a1 = 0.

Subcase: b1 < 0 and a2 > 0. We study the local phase portraits of all
equilibria in Q in order to stablish the conditions to have a global attractor at
(1, 1). In this sense we analize the finite equilibria. The origin (0, 0) under these
conditions is a hyperbolic saddle, this follows from (4) and Theorem 2.15 of [5],
with local stable manifold on the x-axis (we denote as Sh this type of saddle
where the stable manifold is the horizontal axis). The equilibrium e3 belongs
to Q and it is a hyperbolic saddle with their stable separatrices in the y-axis
(we denote this type of saddle as Sv).
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Now we are going to analize the local phase portrait at the infinite equilibria.
In U1 the origin becomes a semi-hyperbolic equilibrium with eigenvalues 0 and
b1 < 0. Applying Theorem 2.19 of [5] we obtain that it is a saddle-node with
central manifold in the z2-axis, and since a2 > 0 the flow is stable in the z1-
axis, Figure 2(c) shows the local phase portrait at the origin of system (5).
This implies than in the quadrant Q, the origin of U1 consists in one hyperbolic
sector. The infinite equilibria p1 has the coordinate z1 negative, so it is not in
Q.

2

(a)

2

(b)

2

(c)

2

(d)

2

(e)

Figure 2. Some types of local phase portrait at (0, 0) in the
plane (z1, z2) being a (0, 0) semi–hyperbolic saddle-node.

The origin of U2 has the eigenvalues given in (8) both positives implying that
it is a hyperbolic repeller (i.e. either an unstable node or an unstable focus).
With these informations we obtain the local phase portrait of all the equilibria
of system (2) for a1 = 0, a2 > 0 and b1 < 0, see Figure 3.

Figure 3. Local phase portrait at the equilibria in Q of system
(2) for a1 = 0, a2 > 0, b1 < 0 and b2 < 0

Subcase: b1 > 0 and a2 < 0. In the finite region we can see from (4) that
the origin has eigenvalues λ1

1 = −a2 > 0 and λ1
2 = −b1− b2, then we have three

possibilities: if b1 < −b2 the origin will be a hyperbolic repeller, if b1 > −b2
the origin will be a hyperbolic saddle Sv with the local stable manifold on the
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y-axis, and if b1 = −b2 the origin is a semi-hyperbolic equilibrium, its analysis
using Theorem 2.19 of [5] gives that its local phase portrait is a saddle-node as
the one shown in Figure 2(c). Note that in the quadrant Q we have the same
dynamics for b1 > −b2 and b1 = −b2.

The equilibrium e3 is in Q if and only if b1 < −b2, furthermore from (4) its
eigenvalues λ3

1 = a2b1/b2 > 0 and λ3
2 = b1+ b2 < 0 imply that it is a hyperbolic

saddle of type Sv.

On the infinite region we have that the origin of U1 (as for the previous
subcase b1 < 0 and a2 > 0) is a semi-hyperbolic equilibrium and by Theorem
2.19 in [5] the origin of U1 is a saddle-node, but since in this case b1 > 0 it is
as the one of Figure 2(d). The infinite equilibria p1 is in Q only if a2 > b2,
and from (6) we conclude that it is a hyperbolic saddle with its local stable
separatrices in the z1-axis (its eigenvalues are −b1 < 0 and a2b1/(b2 − a2) > 0).

To complete the local analysis we have from (8) that the origin of U2 has one
eigenvalue positive, and the other eigenvalue depends on the sign of a2−b2, then
it is a hyperbolic unstable node if a2 > b2, a hyperbolic saddle with its stable
separatrices in the z1-axis if a2 < b2, and if a2 = b2 it is a semi-hyperbolic
infinite equilibrium, according to Theorem 2.19 its local phase portrait is a
saddle-node as the one of Figure 2(c). On the quadrant Q the origin of U2 has
the same dynamics for a2 < b2 and a2 = b2.

From the previous analysis we have that the local phase portrait of the equi-
libria in Q is as one of Figure 4.

(a) (b) (c) (d)

Figure 4. Local phase portraits at the equilibria in Q of system
(2) for a1 = 0, b2 < 0, a2 < 0 and b1 > 0. (a) 0 < b1 < −b2
and a2 ≤ b2, (b) 0 < b1 < −b2 and a2 > b2, (c) b1 ≥ −b2 and
a2 ≤ b2, (d) b1 ≥ −b2 and a2 > b2.

2.2. Case a1 < 0. Then from (9) it holds that a1 < −b2 and b2 < a2b1/a1.

In order to do a clear analysis we separate the study of this case in three
sub-cases according the sign of b2.

Subcase b2 > 0. Then the origin of system (2) is a hyperbolic attractor if
−b2 < b1 < 0, so we cannot have a global attractor at (1, 1). A similar situation
happens for the finite equilibria e3 for −b2 < b1, because then system (2) has
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a hyperbolic saddle on Q and one of its a stable separatrices is in the region
x > 0, y > 0. So we assume b1 ≤ −b2.

First we study the finite equilibria. From (3) the origin is a hyperbolic repeller
for b1 < −b2 and a2 < −a1; it is a hyperbolic saddle of type Sh for b1 < −b2
and a2 > −a1; it is a hyperbolic saddle of type Sv for b1 > 0. For the remaining
cases a1 = −a2 or b1 = −b2 the origin is a semi-hyperbolic equilibrium, applying
Theorem 2.19 of [5] it is a saddle-node. More precisely it is as the one of Figure
2(c) if a2 = −a1 and as the one of Figure 2(e) if b2 = −b1, i.e. it has one
hyperbolic sector on the region Q. Note that (a2 + a2)

2 + (b1 + b2)
2 ̸= 0 from

condition (9). The finite equilibria e3 only is in Q if −b2 < b1, but we already
stablish that under this condition e3 is a hyperbolic saddle that has a stable
separatrix in the region x > 0, y > 0, then (1, 1) cannot be a global attractor.
The other finite equilibrium e4 is in Q if a2 < 0, or 0 < a2 < −a1 (note that
a2 cannot be zero due to the second condition of (9)). When e4 is in Q it is
always a hyperbolic saddle Sh.

Now the origin of U1 has one eigenvalue −a1 positive and the other, from
(6) is −a1 + b1, then it is a hyperbolic unstable node if a1 < b1, a saddle Sh if
a1 > b1, and for a1 = b1 the origin becomes semi-hyperbolic. Then we study its
local phase portraits through Theorem 2.19 of [5], and it is a saddle-node, more
precisely, (9) implies that a2 > b2 when a1 < 0 and b2 > 0, and consequently
it is as the one of Figure 2(c). Thus, if a1 = b1 the origin of U1 in Q consist
of one hyperbolic sector. The other infinite equilibria located in U1 is p1, with
eigenvalues a1−b1 and (a1b2−a2b1)/(a2−b2), it is in Q only for two combination
of parameters, first for a1 < b1 and a2 > b2 being a hyperbolic saddle Sh, and
second for a1 > b1 and a2 < b2 being a hyperbolic saddle of type Sv. This
implies that a stable separatrix becomes from the finite region, then we cannot
have a global attractor at (1, 1) when a1 > b1 and a2 < b2.

The origin of U2 has one negative eigenvalue −b2 and the other, from (8),
is a2 − b2, then we have three possible local phase portraits for the origin of
U2. It is a hyperbolic unstable node if a2 < b2, it is a hyperbolic saddle Sv

if a2 > b2, and for a2 = b2 it becomes in a semi-hyperbolic equilibrium, by
Theorem 2.19 of [5], it is a saddle-node, more precisely, from (9) it holds that
for a1 < 0, b2 > 0 and a2 = b2 we have a1− b1 > 0, then its local phase portrait
is as the one of Figure 2(b). Note that in the region Q of the Poincaré disc the
origin of U2 consists in one hyperbolic sector.

Note that if a1 < 0 and b2 > 0 we have that the finite equilibria (1, 1) is
a local hyperbolic attractor if a1 < −b2 and b2 < a2b1/a1 (from (9)), but we
can have another attracting sector or a stable separatrix that prevents that
(1, 1) be a global attractor, this happens for b1 > 0, for −b2 < b1 < 0, and for
a2 < b2 and a1 > b1. Table 3 summarizes the cases when (1, 1) is or not a local
attractor, and shows the cases when it is just a local attractor but not a global
attractor.

We summarize in Figure 5 the local phase portraits of the equilibria of system
(2) in the quadrant Q for a1 < 0 and b2 > 0 when e2 = (1, 1) is a local attractor.
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b1 < −b2 b1 = −b2a1 < b1 a1 = b1 a1 > b1

a2 < −a1

a2 > b2 Fig. 5(a) Fig. 5(b) Fig. 5(b)
xa2 = b2 x

Fig. 5(b)
a2 < b2 L.A.

a2 = −a1 Fig. 5(c) Fig. 5(d) Fig. 5(d) x
a2 > −a1 Fig. 5(c) Fig. 5(d) Fig. 5(d) Fig. 5(c)

Table 3. About the finite equilibria (1, 1) for a1 < 0 and b2 > 0.
x: (1, 1) is not an attractor or the relations are not well defined.
L.A: (1, 1) is a local attractor but is not a global attractor.
Fig. 5: (1, 1) is a local attractor as shows Figure 5 and can be a
global attractor.

(a) (b) (c) (d)

Figure 5. Local phase portraits at the equilibria of system (2)
for a1 < 0 and b2 > 0 with b2 < a2b1/a1. (a) if b1 < −b2, a2 > b2
and a1 < b1, (b) if b1 < −b2, a1 ≥ b1 and a2 > b2; or if a1 > b1
and a2 = b2, (c) b1 < −b2, a1 < b1 and a2 ≥ −a1; or if b1 = −b2
and a2 > −a1. (d) b1 < −b2, a1 ≥ b1 and a2 ≥ −a1.

Subcase b2 < 0. In this case the condition on the parameters (9) is reduced
to b2 < a2b1/a1. We start the study of the local phase portraits of the finite
equilibria. Studying the eigenvalues of (4) we have that the origin is a hyperbolic
repeller if b1 ≤ b2 and a2 < −a1; it is a hyperbolic saddle of type Sh if a2 > 0
and −a2 < a1; and it is a hyperbolic saddle of type Sv if b1 > −b2 and −a2 > a1.
When one eigenvalue is zero (both eigenvalues cannot be zero from condition
(9)) we have a semi-hyperbolic saddle-node, its local phase portrait is obtained
applying Theorem 2.19 of [5] and it is as the one of Figure 2(c) if a1 = −a2,
or as the one of Figure 2(b) if b1 = −b2. Note that the saddle-node in both
cases has one hyperbolic sector on Q. The finite equilibria e3 belongs to Q if
b1 < −b2, and it is a hyperbolic saddle of type Sh (this not contradicts that

e2 can be a global attractor in
◦
Q). Finally the equilibrium e4 belongs to Q if

a2 < −a1, then e4 is a hyperbolic saddle of type Sh, i.e its stable separatrices
are locally on the x-axis.
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b1 < 0 0 ≤ b1 < −b2 b1 ≥ −b2

a2 ≥ −a1
Fig. 6(a) if a1 ≥ b1
Fig. 6(b) if a1 < b1

Fig. 6(b) x

0 ≤ a2 < −a1
Fig. 6(c) if a1 ≥ b1
Fig. 6(d) if a1 < b1

Fig. 6(d) Fig. 6(e)

Table 4. About the finite equilibria (1, 1) for a1 < 0, b2 < 0
and a2 ≥ 0 with b2 < a2b1/a1.

b1 < 0 0 ≤ b1 < −b2 b1 ≥ −b2

a1 < b1
a2 ≤ b2 Fig. 6(g) Fig. 6(g) Fig. 6(f)
a2 > b2 Fig. 6(d) Fig. 6(d) Fig. 6(e)

a1 = b1
a2 ≤ b2 x x x
a2 > b2 Fig. 6(c) x x

a1 > b1
a2 ≤ b2 x x x
a2 > b2 Fig. 6(c) x x

Table 5. About the finite equilibria (1, 1) for a1 < 0, b2 < 0
and a2 < 0 with b2 < a2b1/a1.

At infinity we study the origin of both local charts and p1 when it is in Q.
Since we are considering b2 < 0 it follows from (8) that the origin of U2 has one
positive eigenvalue, then it is a hyperbolic unstable node if a2 − b2 is positive;
it is a hyperbolic saddle of type Sh if a2 < b2; and for a2 = b2 it becomes a
semi-hyperbolic equilibrium, doing the analysis through the theorem previously
mentioned for semi-hyperbolic equilibria it is a saddle-node as the one of Figure
2(a) if a1− b1 > 0, or it is a saddle-node as the one of Figure 2(c) if a1− b1 < 0.
Note that in Q there is a hyperbolic sector for a1 − b1 > 0, and a repelling
parabolic sector for a1 − b1 < 0.

The origin of the local chart U1 has the same local phase portrait that for
the case a1 < 0 and b2 > 0. This means that it is a hyperbolic unstable node
if a1 < b1, it is a hyperbolic saddle Sh if a1 > b1, and for a1 = b1 it is a saddle-
node as the one of Figure 2(c) with one hyperbolic sector in Q. The remaining
infinite equilibria p1 is in Q for a2 ≤ 0, b1 > a1 and b2 < a2, or for a2 > 0 and
b1 > a1, in both cases it is a hyperbolic saddle Sh.

In Tables 4 and 5 are summarized the conditions for the existence of the
local phase portraits in the quadrant Q shown in Figure 6 for system (2) with
a1 < 0 and b2 < 0 being (1, 1) a local attractor. Note that Figure 6(a) coincides
exactly with Figure 3.

Subcase b2 = 0. Then system (2) takes the form

(10) ẋ = x(a1(x− 1) + a2(y − 1)), ẏ = b1 y(x− 1),

and it has the finite equilibria e1, e2 and e4. If b2 = 0 and a1 < 0, then e2 is a
local hyperbolic attractor if a2b1 < 0 according to (9).



GLOBAL ATTRACTOR OF LOTKA–VOLTERRA SYSTEMS IN R2 12

(a) (b) (c) (d)

(e) (f) (g)

Figure 6. Local phase portraits of the equilibria in Q of system
(2) for a1 < 0 and b2 < 0 being (1, 1) a local hyperbolic attractor.

If a2 < 0 and b1 > 0 the origin is a hyperbolic saddle Sv, and e4 is in Q and
it is a hyperbolic saddle Sh. If a2 > 0 and b1 < 0 we need to consider two sub-
cases: For a1 < −a2 the origin is a hyperbolic repeller and e4 is a hyperbolic
saddle Sh. If a1 ≥ −a2 the local phase portrait at the origin is a hyperbolic
saddle Sh if a1 > −a2, or is a saddle-node as the one of Figure 2(c) if a1 = −a2.
Note that in both cases the origin has one hyperbolic sector in Q, with its local
stable separatrices on the x-axis. When a1 ≥ −a2 the finite equilibria e4 does
not belong to Q.

At infinity using the Poincaré compactification we have that the origin of U1

for b1 > 0 is a hyperbolic repeller, and for b1 < 0 its local phase portrait changes
with the sign of the eigenvalue −a1 + b1, if a1 < b1 it is a hyperbolic repeller,
for a1 > b1 it is a hyperbolic saddle Sh, and for a1 = b1 it is a semi-hyperbolic
equilibrium, since a2 > 0 it is a saddle-node as the one of Figure 2(c). Then
the local phase portrait at the origin of U1 in Q when b1 < 0 coincides with the
phase portrait when a1 > b1 and a1 = b1.

The infinite equilibrium p1 of U1 is in Q only if b1 < 0, a2 > 0 and a1 < b1,
then it is hyperbolic saddle Sh.

Finally the origin of U2 has the eigenvalues (see (8)) 0 and a2, then it is
semi-hyperbolic. By Theorem 2.19 of [5] it is a saddle-node, even more, for
a2 < 0 and b1 > 0 is as the one of Figure 2(e), and for a2 > 0 and b1 < 0 it is
as the one of Figure 2(d).

These previous analysis allow to give all the local phase portraits of the
equilibria in Q. The local phase portraits at the equilibria of system (10) in Q
are as the ones of Figure (5)(a) if a2 > 0, b1 < 0, a1 < −a2 and b1 > a1; are as
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the ones of Figure (5)(b) if a2 > 0, b1 < 0, a1 < −a2 and b1 ≤ a1; are as the
ones of Figure (5)(c) if a2 > 0, b1 < 0, a1 ≥ −a2 and b1 > a1; are as the ones of
Figure (5)(d) if a2 > 0, b1 < 0, a1 ≥ −a2 and b1 ≤ a1; and are as the ones of
Figure (6)(f) if a2 < 0, b1 > 0.

3. Global Phase Portraits

Now we shall provide the global phase portraits which are not quadrant–
topologically equivalent of system (2) having at (1, 1) a global attractor in the

open quadrant
◦
Q. It is important to remember that a Lotka-Volterra system

(2) cannot have a limit cycle as it was establish in section 1.

We have fifteen local phase portraits in Figures 4, 5 and 6 which are different
between them (we recall that Figure 3 coincides with Figure 6(a)). However
Figure 4(c) and Figure 5(d) have the same equilibria on each boundary and they
have the same local phase portraits but with reverse orientation, then accord-
ing with our definition of quadrant-topologically equivalent they are equivalent.
Therefore we analyse the global phase portrait of Figure 4(c) and of the remain-
ing thirteen figures.

We started with Figure 4(c) its boundary contains only three equilibria, each
one generating one hyperbolic sector in Q. So the boundary is a graphic formed
by these three equilibria, the x-axis, the y-axis and S1 ∩ Q. When the local
phase portrait of system (2) is quadrant–topologically equivalent to 4(c) the
parameters satisfy τ2 − 4δ < 0, i.e. the finite equilibrium (1, 1) is always a
stable focus. Then, by the Poincaré-Bendixon Theorem (see Corollary 1.30 of

[5]) the α-limit of all the orbits in
◦
Q different from the equilibrium (1, 1) is the

graphic of the boundary of Q, and their ω-limit is the equilibrium (1, 1). We
conclude that the global phase portrait associated to Figure 4(c) (and 5(d)) is
quadrant-topologically equivalent to Figure 1(a).

We continue with the analysis when we have three finite equilibria and two
infinite equilibria in Q. The finite equilibria are as usual the origin and (1, 1),
and the third one can be either on x = 0, or on y = 0, and it is a saddle
with its stable separatrices on one of the axis. If the third equilibrium is on
x = 0 we are in the cases when the parameters are such that the local phase
portraits are as the one of Figure 3 (or equivalent Figure 6(a)), or as the one of
Figure 4(a). In both cases, and again by the Poincaré-Bendixon Theorem, the
unstable separatrix of the third equilibrium located on x = 0 must go to (1, 1).
Since does not exist more separatrices we can complete the global phase portrait
considering the continuity of the solutions. The global phase portrait of system
(2) with parameters having the local phase portraits showed in Figure 3 and
Figure 6(a) is quadrant–topologically equivalent to Figure 1(b); and the global
phase portrait of system (2) with parameters having the local phase portrait
showed in Figure 4(a) is quadrant-topologically equivalent to Figure 1(c). For
Figures 1(b) and 1(c) and the following ones the attractor (1, 1) can be a stable
node when τ2 − 4δ ≥ 0, or a stable focus for τ2 − 4δ < 0 (both behaviours can
occur).
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In a similar way if the third finite equilibria is located on y = 0 (local phase

portrait as Figure 5(b) and Figure 6(f)), then its unstable separatrix in
◦
Q

must go to the attractor (1, 1). From the Poincaré–Bendixson Theorem we
complete the global phase portrait. Then the global phase portrait associated
to parameters that generate the local phase portraits at the equilibria showed
in Figures 5(b) and Figure 6(f) are quadrant-topologically equivalent to Figure
1(d) and Figure 1(e) respectively.

In the next we do the analysis considering the cases when we still have only
two infinite equilibria, but now we have four finite equilibria as occurs when the
parameters a1 > 0, b2 < 0 and a2, b1 satisfied the conditions for Figures 6(c)
and 6(g). The differences between these two figures are that the local phase
portraits of the origin of U1 and U2 are interchanged, in both cases we have one
repelling parabolic sector at the origin of U1 or at the origin of U2 and the other
consists in one hyperbolic sector, then the orbits coming from the infinity in this
repelling sector must go to the attractor (1, 1). On the other hand, the unstable
separatrix of e3 and of e4 located in Q must go to the attractor (1, 1). By the
Poincaré–Bendixson Theorem the global phase portraits for system (2) when
its parameters are satisfying Figures 6(c) and 6(g) are quadrant-topologically
equivalent to Figures 1(f) and 1(g) respectively. This concludes the study of
the global phase portraits having two infinite equilibria, the origin of U1 and
the origin of U2.

We focus now in the study of the global phase portraits for the cases when
there exist three infinite equilibria, and we separate the study in three cases
according to the number of finite equilibria. First, we analyse when system (2)
only has the attractor (1, 1) and the origin as finite equilibria. This happens
when the parameters satisfy the conditions for local phase portraits showed in
Figures (4)(d) and Figure 5(c). In each case the local phase portrait of the
infinite equilibrium p1 consists in two hyperbolic sectors in Q with two stable
separatrices at infinity and the unstable separatrix go to the finite region and
must go to the attractor (1, 1). By the Poincaré–Bendixson Theorem we can
conclude that all orbits being born at the repeller located at the infinity must
go to the attractor (1, 1). The previous analysis implies that the global phase
portraits of system (2) when the parameters satisfy the conditions of Figures
(4)(d) and 5(c) are quadrant-topologically equivalent to Figure 1(h) and 1(i)
respectively.

Second, for the cases with three finite equilibria in Q, i.e. when besides
the origin and the attractor (1, 1) also exist a third equilibrium which can be
located on x = 0 or y = 0. As before, the infinite equilibrium p1 is a saddle with
its unstable separatrix going to (1, 1). The finite equilibrium e3 or e4 consists
in two hyperbolic sectors in Q, with stable separatrices on some axis. Then

the unstable separatrix located in
◦
Q must go to the attractor (1, 1). Since

we already have determined the α– and ω- limits of all the separatrices we
obtain that the global phase portrait when the parameters satisfy Figure 4(b)
is quadrant-topologically equivalent to Figure 1(j). If the parameters satisfy
Figure 6(b) the global phase portrait is quadrant–topologically equivalent to
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Figure 1(k). If they satisfy Figure 5(a) the global phase portrait is quadrant–
topologically equivalent to Figure 1(l). If they satisfy Figure 6(e) then the
global phase portrait is quadrant–topologically equivalent to Figure 1(m).

Finally we consider the case when the parameters are such that system (2)
have three infinite equilibria and four finite equilibria in Q (see Figure 6(d)). In

this case the finite equilibria e3 and e4 have one unstable separatrix in
◦
Q, and

due to the fact that the only attractor is the finite equilibrium (1, 1), each one
of these unstable separatrices must go to this attractor. In the same way the
unstable separatrix of the infinite equilibria in U1 ∩V1 must go to (1, 1) and we
established all the connections of the separatrices in Q, then we can complete
the global phase portrait of system (2) when there exist the major quantity of
possible equilibria in Q and it is quadrant-topologically equivalent to Figure
1(n).

In Tables 1 and 2 are summarized the relations of the parameters when (1, 1)

is a global attractor of system (2) in the
◦
Q and shows the quadrant-topologically

equivalent global phase portraits.

This completes the proof of Theorem 1.
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