
CROSSING LIMIT CYCLES FOR DISCONTINUOUS PIECEWISE

LINEAR DIFFERENTIAL CENTERS SEPARATED BY THREE

PARALLEL STRAIGHT LINES

MARIA ELISA ANACLETO1, JAUME LLIBRE2, CLAUDIA VALLS3 AND CLAUDIO

VIDAL1

Abstract. In this paper we study the continuous and discontinuous planar
piecewise differential systems formed by four linear centers separated by three

parallel straight lines denoted by Σ = {(x, y) ∈ R2 : x = −b, x = 0, x =

a, a, b > 0}. We prove that when these piecewise differential systems are
continuous they have no limit cycles. While for the discontinuous case we show

that they can have at most four limit cycles and we also provide examples of
such systems with zero, one, and two limit cycles. In particular we have solved

the extension of the 16th Hilbert problem to this class of piecewise differential

systems.

1. Introduction and statement of the main result

A limit cycle is a periodic orbit of a differential system in R2 isolated in the set of
all periodic orbits of that system. The study of the limit cycles goes back essentially
to Poincaré [25] at the end of the nineteenth century. The existence of limit cycles
became important in the applications to the real world, because many phenomena
are related with their existence, see for instance the Van der Pol oscillator [28,29] or
the Belousov-Zhabotinskii reaction which is a classical reaction of non-equilibrium
thermodynamics appearing in a non-linear chemical oscillator, see [3, 30].

The study of the continuous piecewise linear differential systems separated by
one or two parallel straight lines appears in a natural way in the control theory, see
for instance the books [2, 10,13,14,19,24].

The easiest continuous piecewise linear differential systems are formed by two
linear differential systems separated by one straight line. It is known that such
systems have at most one limit cycle, see [8, 16,21,22].

The study of the discontinuous piecewise linear differential systems separated
by straight lines goes back to Andronov et al. [1] and until nowadays they had
special attention from the mathematicians, mainly because these systems appear
in mechanics, electrical circuits, economy, etc, see for instance the books [6,26] and
the surveys [23,27].
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Of course the discontinuous differential systems in principle are not well defined
on the line of discontinuity, on this line the differential system is defined following
the rules of Filippov [7].

In the planar discontinuous piecewise linear differential systems, the limit cycles
can be of two kinds: sliding limit cycles or crossing limit cycles; the first ones contain
some segment of the lines of discontinuity, and the second ones only contain isolated
points of the lines of discontinuity. In Theorem 2 are studied the limit cycles which
leaves only in three regions separated by two parallel lines. So in this paper we
only study the crossing limit cycles or simply limit cycles which intersect the four
component of R2 \ Σ. These components are denoted by

R1 = {(x, y) ∈ R2 : x < −b}, R2 = {(x, y) ∈ R2 : −b < x < 0},
R3 = {(x, y) ∈ R2 : 0 < x < a}, R4 = {(x, y) ∈ R2 : x > a}.

Again the easiest discontinuous piecewise linear differential systems are formed
by two linear differential systems separated by one straight line. It is known that
such systems can have three limit cycles, see [4,5,9,12,15,17,20]. It remains open to
know if three is the maximum number of limit cycles that such systems can exhibit.
In [18] it was proved:

Theorem 1. A continuous piecewise differential system separated by one or two
parallel straight lines and formed by linear differential centers has no limit cycles.

Theorem 2. A discontinuous piecewise differential system separated by

(a) one straight line and formed by two linear differential centers has no limit
cycles;

(b) two parallel straight lines and formed by three linear differential centers can
have at most one limit cycle, and there are examples of these piecewise
differential systems having one limit cycle.

In this work we extend the study of existence of crossing limit cycles to continuous
and discontinuous piecewise linear differential systems separated by three arbitrary
parallel straight lines Σ, and are formed by four linear differential centers. Our
main results are the following.

Theorem 3. A continuous piecewise differential system separated by three parallel
straight lines, and formed by four linear differential centers has no limit cycles.

Theorem 4. A discontinuous piecewise differential system separated by three par-
allel straight lines, and formed by four linear differential centers can have at most
four limit cycles intersecting the four pieces of these piecewise differential systems.
Moreover there are systems in this class having zero, one, or two limit cycles.

Theorems 3 and 4 are proved in section 3.

Note that providing the upper bound of four limit cycles in Theorem 4 we have
solved the extension of the 16th Hilbert problem to the class of discontinuous piece-
wise differential systems studied in that theorem. See [11] for the most famous
problem related with limit cycles, i.e. the 16th Hilbert problem .

We remark that in general it is very difficult to provide an explicit upper bound
for the maximum number of limit cycles for a given class of piecewise differential
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systems and even harder to provide an upper bound that it is reached for that
class. This is mainly due to the fact that our class of piecewise differential systems
depends on 12 parameters, and that the solutions of the so-called closing equa-
tions (see below) do not need to correspond necessarily to periodic solutions of the
discontinuous piecewise differential systems.

In view of Theorem 4 and from all studied discontinuous piecewise differential
systems separated by three parallel straight lines, and formed by four linear differ-
ential centers, we state the following open question.

Open Problem. It is an open problem to know if for a discontinuous piecewise
differential system separated by three parallel straight lines, and formed by four
linear differential centers the exact upper bound on the number of limit cycles is
two, three or four.

2. Preliminaries results

The following lemma, proved in [18], provides a normal form for an arbitrary
linear differential system having a center.

Lemma 1. A linear differential system having a center can be written as

ẋ = −βx− 4β2 + ω2

4α
y + δ, ẏ = αx+ βy + γ,(1)

with α > 0 and ω ̸= 0.

Note that the linear center provided in (1) has the first integral

H = 4(αx+ βy)2 + 8α(γx− δy) + ω2y2

= 4α2

((
x+

β

α
y
)2

+ 2
(γ

α
x− δ

α
y
)
+

ω2

4α2
y2
)
.

Taking the notation b = β/α, c = γ/α, d = δ/α and w = ω/(2α) it is not restrictive
to consider the first integral

H = (x+ by)2 + 2(cx− dy) + w2y2.

Moreover since w is the velocity in which the orbits are travelled it does not interfere
in the existence of periodic orbits and so it is not restrictive to take w = 1. In short,
any arbitrary linear differential system having a center can be written as

ẋ = 2d− 2bx− 2(b2 + 1)y, ẏ = 2c+ 2x+ 2by,

with first integral

H = (x+ by)2 + 2(cx− dy) + y2 = 2cx− 2dy + x2 + 2byx+ (b2 + 1)y2.

It will be convenient in this paper in order to simplify the computations to take
the new variable b̃ = b2 + 1 and with this new variable we have that any arbitrary
linear differential system having a center can be written as

ẋ = 2d− 2bx− 2b̃y, ẏ = 2c+ 2x+ 2by

with first integral

H = 2cx− 2dy + x2 + 2byx+ b̃y2.
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3. Proof of Theorems 3 and 4

Suppose that we have a piecewise linear differential system separated by three
parallel straight lines. Without loss of generality we can assume that these straight
lines are x = −b, x = 0 and x = a with a > 0 and b > 0.

In view of section 2 we can write the four linear centers of such a discontinuous
piecewise linear differential system as

(2) ẋ = 2di − 2bix− 2b̃iy, ẏ = 2ci + 2x+ 2biy

with first integrals

H = 2cix− 2diy + x2 + 2biyx+ b̃iy
2,

for i = 1, 2, 3, 4 with b̃i = b2i + 1.

In view of Theorems 1 and 2 we want to study the limit cycles of these piecewise
differential systems which intersect the four open regions x < −b , −b < x < 0,
0 < x < a and x > a. So a possible limit cycle must intersect each straight line
x = −b, x = 0 and x = a in exactly two points, namely (−b, y1), (−b, y2), (0, y3),
(a, y4), (a, y5) and (0, y6) with y1 > y2, y3 < y6 and y4 < y5. Hence the yi for
i = 1, . . . , 6 must satisfy the following system of six equations

e1 = H1(−b, y1)−H1(−b, y2) = 0,

e2 = H2(−b, y2)−H2(0, y3) = 0,

e3 = H3(0, y3)−H3(a, y4) = 0,

e4 = H4(a, y4)−H4(a, y5) = 0,

e5 = H3(a, y5)−H3(0, y6) = 0,

e6 = H2(0, y6)−H2(−b, y1) = 0.

(3)

Since y1 > y2, y6 > y3 and y5 > y4 we can write

y1 = y2 +A, y6 = y3 +B, y5 = y4 + C,

with A, B and C positive.

Proof of Theorem 3. Since in Theorem 3 this piecewise differential system must be
continuous, systems (2) with i = 1 and i = 2 must coincide on x = −b, systems (2)
with i = 2 and i = 3 must coincide on x = 0 and systems (2) with i = 3 and i = 4
must coincide on x = a. Therefore,

b2 = b3 = b4, b̃1 = b̃2 = b̃3 = b̃4, c2 = c3 = c4, d2 = d3 = d4, d1 = −bb1 + b3 + bd3.

Consequently system (3) reduces to

E1 = −2(bb4 + d4) + b̃4A+ 2b̃4y2,

E2 = b2 − 2bc4 + 2d4B − 2(bb4 + d4)y2 + 2d4y6 − b̃4B
2 − 2b̃4By6 + b̃4y

2
2 − b̃4y

2
6 ,

E3 = −a2 − 2ac4 − 2d4B + 2(d3 − ab3)y4 − 2d3y6 + b̃4B
2 + 2b̃4By6 − b̃4y

2
4 + b̃4y

2
6 ,

E4 = 2(ab4 − d4) + 2b̃4C + 2b̃4y4,

E5 = a2 + 2ac4 + 2(ab4 − d4)C + 2(ab4 − d4)y4 + 2d3y6 + b̃4C
2 + 2b̃4Cy4 + b̃4y

2
4 − b̃4y

2
6 ,

E6 = −b2 + 2bc4 + 2(b4 + d4)A+ 2(bb4 + d4)y2 − 2d4y6 − b̃4A
2 − 2b̃4Ay2 − b̃4y

2
2 + b̃4y

2
6 .
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The solutions of Ei = 0, for i = 1, . . . , 6 with A,B,C, y2, y4, y6 being A,B,C
positive are of the form

y2 =
d3 − bb3

b̃3
− A

2
, y4 =

d3 − ab3

b̃3
− C

2
, B =

2d3

b̃3
− 2y6,

with

A = C =
2

|b̃3|

√
(d3 − b̃3y6)2 + bb3(bb3 + 2d3) + bb̃3(2c3 − b)

and y6 < d3/b̃3. Hence there is a continuum of periodic orbits for the continuous
piecewise linear differential system, and consequently this differential system has
no limit cycles. □

Proof of Theorem 4. System (3) becomes

e1 =− 2(bb1 + d1) + b̃1(y1 + y2) = 0,

e2 =b2 − 2bc2 − 2(bb2 + d2)y2 + 2d2y3 + b̃2y
2
2 − b̃2y

2
3 = 0,

e3 =− a2 − 2ac3 − 2d3y3 + 2(d3 − ab3)y4 + b̃3y
2
3 − b̃3y

2
4 = 0,

e4 =2(ab4 − d4) + b̃4(y4 + y5) = 0,

e5 =a2 + 2ac3 + 2(ab3 − d3)y5 + 2d3y6 + b̃3y
2
5 +−b̃3y

2
6 = 0,

e6 =− b2 + 2bc2 + 2(bb2 + d2)y1 − 2d2y6 − b̃2y
2
1 + b̃2y

2
6 = 0.

(4)

In order to lighten the computations we introduce a new notation. Let

r1 = b2−2bc2, r2 = a2+2ac3, r3 = bb2+d2, r4 = d3−ab3, r5 = d1+bb1, r6 = ab4−d4.

Note that to recover the original variables we just need to take c2 = (r1 − b2)/2b,

d2 = r3 − bb2, d3 = r4 + ab3 and b̃i = b2i + 1 for i = 1, . . . , 4.

With this new notations system (4) becomes

e1 =− 2r5 + b̃1(y1 + y2) = 0,

e2 =r1 − 2r3y2 + 2d2y3 + b̃2(y
2
2 − y23) = 0,

e3 =− r2 − 2d3y3 + 2r4y4 + b̃3(y
2
3 − y24) = 0,

e4 =2r6 + b̃4(y4 + y5) = 0,

e5 =r2 − 2r4y5 + 2d3y6 + b̃3(y
2
5 − y26) = 0,

e6 =− r1 + 2r3y1 − 2d2y6 − b̃2(y
2
1 − y26) = 0.

(5)

From the equations e1 and e4 we obtain

y2 =
r5

b̃1
− A

2
and y4 = −r6

b̃4
− C

2
,

respectively. Substituting these expressions in equations e2, e3, e5, e6 in (5), and
denoting them as E2, E3, E5, E6 we get that

E2 − E6 = −4b̃1
(
2A(b̃1r3 − b̃2r5) +Bb̃1(Bb̃2 − 2d2 + 2b̃2y3)

)
.

Solving E2 − E6 = 0 in the variable y3 and since B > 0 we get

y3 =
d2

b̃2
+

b̃2r5 − b̃1r3

Bb̃1b̃2
A− B

2
.
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Now introducing y3 in E2, E3, E5 and denoting them as F2, F3, F5 we get that

F3 − F5 = −8B2b̃1b̃2b̃4
(
b̃3b̃4(b̃1r3 − b̃2r5)A+ b̃1b̃4(b̃2d3 − b̃3d2)B − b̃1b̃2(b̃4r4 + b̃3r6)C

)
.

We consider two different cases.

Case 1: b̃4r4 + b̃3r6 = 0.

In this case we get that

F3 − F5 = −8B2b̃1b̃2b̃4
(
b̃3b̃4(b̃1r3 − b̃2r5)A+ b̃1b̃4(b̃2d3 − b̃3d2)B

)
.

If b̃2d3 − b̃3d2 = 0 then the solution would be either A = 0 which is not possible,
or A ̸= 0 and b̃1r3 − b̃2r5 = 0, but in this last case the solution of F2 = F3 = 0
leads to a continuum of solutions, because we have two equations F2 = F3 = 0 and
three unknowns A,B,C.

In summary we can assume that b̃2d3 − b̃3d2 ̸= 0 and solving F3 − F5 = 0 in the
variable B we get

B =
b̃3(b̃1r3 − b̃2r5)

b̃1(b̃3d2 − b̃2d3)
A.

In this case introducing B into F2 and F3 and denoting them by G2, G3 we get that

G2 = (b̃1r3 − b̃2r5)
2
(
A2b̃2b̃

2
3

(
b̃21

(
b̃22d

2
3 − 2b̃2b̃3d2d3 + b̃23

(
d22 − r23

))
+ 2b̃1b̃2b̃

2
3r3r5

−b̃22b̃
2
3r

2
5

)
− 4(b̃3d2 − b̃2d3)

2
(
b̃21

(
b̃2d

2
3 + b̃23r1 − 2b̃3d2d3

)
+ 2b̃1b̃

2
3r3r5 − b̃2b̃

2
3r

2
5

))

and

G3 = (b̃1r3 − b̃2r5)
2
(
−b̃21

(
b̃43

(
b̃24

(
C2d22 −A2r23

)
− 4d22r

2
6

)
+ b̃23d3

(
b̃22d3

(
b̃24C

2 − 4r26

)

−8b̃2b̃
2
4d2r2 + 4b̃24d

2
2d3

)
+ 4b̃22b̃

2
4d

4
3 + 2b̃33d2

(
−b̃2b̃

2
4C

2d3 + 4b̃2d3r
2
6 + 2b̃24d2r2

)

+4b̃2b̃3b̃
2
4d

2
3(b̃2r2 − 2d2d3)

)
− 2A2b̃1b̃2b̃

4
3b̃

2
4r3r5 +A2b̃22b̃

4
3b̃

2
4r

2
5

)

Note that if b̃1r3 − b̃2r5 = 0 we have a continuum of solutions. On the other hand,
G2 is a polynomial that only depends on the variable A and is of degree two in this
variable. Moreover, G3 is a polynomial in the variables A,C and is of degree two
in these variables. Since A and C must be positive, solving G2 = 0 we get a unique
positive value of A and introducing it in G3 = 0 and solving in the variable C we
get a unique positive value of C. In short, there is at most a unique solution of
ei = 0 for i = 1, . . . , 6 and so at most a unique limit cycle in this case.

Case 2: b̃4r4 + b̃3r6 ̸= 0. Solving in the variable C we get

C =
b̃4(Ab̃3(b̃1r3 − b̃2r5) +Bb̃1(b̃2d3 − b̃3d2))

b̃1b̃2(b̃3r6 + b̃4r4)
.

Introducing C into F2 and F3 and denoting them by G2 and G3 respectively, we
get

G2 = β0B
4 + β1B

2 + β2A
2B2 + β3A

2,

G3 = α0B
4 + α1AB

3 + α2B
2 + α3A

2B2 + α4AB + α5A
2,
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where

β0 = b̃21b̃
2
2,

β1 = −4b̃21

(
d22 − b̃2r1

)
+ 8b̃1b̃2r3r5 − 4b̃22r

2
5,

β2 = −b̃21b̃
2
2,

β3 = 4(b̃1r3 − b̃2r5)
2,

α0 = b̃21b̃3b̃
2
4

(
b̃23

(
b̃24d

2
2 − b̃22r

2
6

)
+ b̃22b̃

2
4

(
d23 − r24

)
− 2b̃2b̃3b̃4(b̃2r4r6 + b̃4d2d3)

)
,

α1 = −2b̃1b̃
2
3b̃

4
4(b̃1r3 − b̃2r5)(b̃3d2 − b̃2d3),

α2 = −4b̃21(b̃3r6 + b̃4r4)
2
(
b̃3

(
b̃24d

2
2 − b̃22r

2
6

)
− b̃2b̃4(b̃2b̃4r2 + 2b̃2r4r6 + 2b̃4d2d3)

)
,

α3 = b̃33b̃
4
4(b̃1r3 − b̃2r5)

2,

α4 = 8b̃1b̃
2
4(b̃1r3 − b̃2r5)(b̃3d2 − b̃2d3)(b̃3r6 + b̃4r4)

2,

α5 = −4b̃3b̃
2
4(b̃1r3 − b̃2r5)

2(b̃3r6 + b̃4r4)
2.

We need to compute the common zeroes of G2 = 0 and G3 = 0. For doing so we
will compute the resultant of G2 and G3 with respect to the variable A, that is,
R = Res (G2, G3, A). This resultant is

(6) R = b̃22B
4(C0 + C1B

2 + C2B
4 + C3B

6 + C4B
8),

for some constants Ci for i = 0, . . . , 4. Since the variable B must be positive, we get
that there are at most four positive solutions of R = 0. Note that G2 = G2(A

2, B2)
being a polynomial of degree two in the variable A and of degree two in the variable
B. Again since the variable Amust be positive, for each B being a solution ofR = 0
there is a unique A solving G2 = 0. In short, there is at most four positive solutions
of G2 = G3 = 0, and so there are at most four crossing limit cycles in this case.

Remark 5. We point out that if all the linear systems are homogeneous then there
at most two limit cycles. In fact, that the polynomial C0 +C1B

2 +C2B
4 +C3B

6 +
C4B

8 in the resultant (6) assumes the form C0 +C1B
2 +C2B

4. The same is true
when three linear systems are homogeneous. But in the case of two homogeneous
linear systems there are at most four limit cycles.

Below are examples with zero, one and two limit cycles that will complete the
proof of the theorem.

First we are going to exhibit an example with zero limit cycle and we consider
a = b = 1. In this case we consider the systems

ẋ = −y, ẏ = x− 1 in x < −1,

ẋ = −y, ẏ = 4x− 2 in − 1 < x < 0,

ẋ = −y, ẏ = 9x− 2 in 0 < x < 1,

ẋ = −y, ẏ = x+ 5 in x > 1,
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with first integrals

H1(x, y) =x2 − 2x+ y2,

H2(x, y) =4x2 − 4x+ y2,

H3(x, y) =9x2 − 4x+ y2,

H4(x, y) =x2 + 10x+ y2.

Then system (3) is equivalent to system

e1 = (y2 − y1)(y1 + y2) = 0,

e2 = y21 − y24 + 8 = 0,

e3 = y24 − y26 − 5 = 0,

e4 = (y6 − y5)(y6 + y5) = 0,

e5 = −y23 + y25 + 5 = 0,

e6 = −y22 + y23 − 8 = 0.

(7)

Taking account that the solutions (y1, y2, y3, y4, y5, y6) of system (7) must satisfies
y1 > y2, y3 < y4 and y5 < y6 we obtain the solution

(y1, y2, y3, y4, y5, y6) =

(√
y23 − 8, −

√
y23 − 8, y3, −y3, −

√
y23 − 5,

√
y23 − 5

)
,

with y3 < 0, y23 − 8 > 0 and y23 − 5 > 0. Thus, we have a continuum of periodic
orbits and, therefore system (7) has not limit cycle.

We consider the following planar discontinuous piecewise differential system with
four zones separated by the three straight parallel lines x = −1, x = 0 and x = 1
and formed by the four linear differential centers

ẋ = −y, ẏ = 16x− 2 in x < −1,

ẋ = −y − 1, ẏ =
1849

100
x− 3 in − 1 < x < 0,

ẋ = −y − 5

2
, ẏ = 9x− 2 in 0 < x < 1,

ẋ = −y − 3

20
, ẏ =

729

100
y + 5 in x > 1,

(8)

with first integrals

H1(x, y) =16x2 − 4x+ y2,

H2(x, y) =
1849

100
x2 − 6x+ y2 + 2y,

H3(x, y) =9x2 − 4x+ y2 + 5y,

H4(x, y) =
729

100
x2 + 10x+ y2 +

3

10
y,

respectively. This discontinuous piecewise differential system has a unique crossing
limit cycle (see Figure 1), because the unique real solution (y1, y2, y3, y4, y5, y6) of
system (3) with y1 > y2, y3 < y4, y5 < y6 is

(5.1732..,−5.1732..,−7.47345.., 6.91191..,−6.94243.., 6.64243..).
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This limit crossing limit cycle is hyperbolic and stable because the derivative of
the Poincaré map defined in a neighborhood of the point (1, 6.64243..) on the line
x = 1 is approximately 0.8985...

-3 -2 -1 1 2 3

-6

-4

-2

2

4

6

Figure 1: The unique crossing limit cycle of the discontinuous piecewise differential
system formed by the centers (8). This limit cycle is traveled in counterclockwise.

Now we construct a piecewise differential system having exactly two crossing
limit cycles. We consider a = b = 1 and the piecewise differential system

ẋ = −y, ẏ = x+ 1 in x < −1,

ẋ = −y − 19

5
, ẏ =

1369

25
x+

207

10
in − 1 < x < 0,

ẋ = −y − 1, ẏ =
1681

25
x− 21

2
in 0 < x < 1,

ẋ = −y − 1

8
, ẏ = 81x− 2 in x > 1,

(9)

with first integrals

H1(x, y) =x2 + 2x+ y2,

H2(x, y) =
1369

25
x2 +

207

5
x+ y2 +

38

5
y,

H3(x, y) =
1681

25
x2 − 21x+ y2 + 2y,

H4(x, y) =81x2 − 4x+ y2 +
1

4
y,

respectively. This discontinuous piecewise differential system formed by the pre-
vious four linear differential centers has two crossing limit cycles (see Figure 2),
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coming from the two real solutions (y1, y2, y3, y4, y5, y6) of system (3) with y1 >
y2, y3 < y4, y5 < y6 which are

(7.03696..,−7.03696..,−8.68241.., 7.63677..,−4.57483.., 4.32483..),

(5.47132..,−5.47132..,−7.81912.., 6.16581..,−1.51028.., 1.26028..).

These two crossing limit cycles are hyperbolic, being the biggest limit cycle
stable because the derivative of the Poincaré map defined in a neighborhood of
the point (1, 4.32483..) on the line x = 1 is approximately 0.927034.., and the
smallest limit cycle is unstable because the derivative of the Poincaré map defined
in a neighborhood of the point (1, 1.26028..) on the line x = 1 is approximately
1.88... □

-8 -6 -4 -2 2

-5

5

Figure 2: The two crossing limit cycles of the discontinuous piecewise differential
system formed by the centers (9). These limit cycles are traveled in counterclock-
wise.
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