
This is the **accepted version** of the journal article:

Hernandez del Amo, Elena; Poblete, Rodrigo; Sánchez Martínez, M. Olga; [et al.]. «Biological treatment and microbial composition of landfill leachate using a compost process in an airlift bioreactor». *Journal of cleaner production*, Vol. 415 (August 2023), art. 137748. DOI 10.1016/j.jclepro.2023.137748

This version is available at <https://ddd.uab.cat/record/275850>

under the terms of the license

1 **Biological treatment and microbial composition of landfill leachate using a**
2 **compost process in an airlift bioreactor**

4 Elena H. del Amo^{a,d}, Rodrigo Poblete^{b,*}, Olga Sánchez^a, Manuel I. Maldonado^{c,e}

6 ^a Departament de Genètica i Microbiologia. Universitat Autònoma de Barcelona,
7 08193 Bellaterra, Spain

8 ^b Universidad Católica del Norte, Facultad de Ciencias del Mar, Escuela de
9 Prevención de Riesgos y Medioambiente, 1780000 Coquimbo, Chile.

10 ^c CIEMAT-Plataforma Solar de Almería, Ctra. De Senés s/n, 04200 Tabernas,
11 Almería, Spain.

12 ^d Institut d'Ecologia Aquàtica. Universitat de Girona, 17003 Girona, Spain

13 ^e CIESOL, Joint Centre University of Almería-CIEMAT, 04120 Almería, Spain

15 *Corresponding author

17 **Abstract**

18 Landfill leachate (LL) contains a large amount of toxic compounds and its treatment
19 is currently a matter of concern. In this work, an adapted compost in different airlift
20 bioreactors was used to depurate a complex, toxic and old landfill leachate without
21 treatment (raw leachate) and after pretreatments (coagulation/flocculation;
22 coagulation/flocculation and filtration; coagulation/flocculation, filtration and photo-
23 Fenton process). After the complete pretreatments, a high removal of organic matter
24 was achieved, with a global removal of chemical oxygen demand (COD) and humic
25 acids of 72.4% and 83.4%, respectively; besides, copper and iron in the landfill
26 leachate presented a total removal of 91.1% and 65.8%, respectively. On the other
27 hand, after the contact of raw leachate with compost in the airlift, there was a
28 decrease of COD, copper and iron, while for humic acids there was a slight increase.
29 The same trend was observed when the leachate was submitted to the different
30 pretreatments and subsequently subjected to the biologic process with compost. The
31 respirometric analyses showed that the raw leachate was toxic, although this
32 tendency decreased along the treatments, with inhibition values of 41.8%, 27.5%,
33 22.0% and 12.1% for raw and pretreated leachate (by coagulation/flocculation,
34 filtration and photo-Fenton processes), respectively. Also, in order to improve our

35 knowledge about the composition of the microbial assemblages in compost samples
36 and their possible role in pollutants removal from LL, we analysed samples from both
37 an adapted and a non-adapted compost before and after being in contact with the
38 raw leachate by applying Illumina sequencing of the 16S rRNA gene. *Bacteroidota*,
39 *Proteobacteria*, *Firmicutes*, *Spirochaetota* and *Deinococcota* were the most
40 abundant phyla in all samples, being present in the 50 most abundant Amplified
41 Sequence Variants (ASVs) of the study, which represented 56.5% of the total
42 analysed sequences and were considered as our core community. *Chryseolinea*,
43 *Herbinix*, *Proteiniphilum*, *Pseudomonas* and *Sphaerochaeta* seemed to be the most
44 resilient genera when the compost was in contact to LL. Moreover, our results
45 showed that the metabolisms related to chemoheterotrophy, fermentation and the
46 nitrogen cycle were the most relevant in all samples. In general, the microbial
47 community was able to adapt to adverse conditions and remove pollutants, as heavy
48 metals.

49 **Keywords:** Landfill leachate treatment; organic matter; heavy metals; compost,
50 microbial community.

51

52 **1. Introduction**

53 Currently, with the rapid growth of population, urbanization, industrialization and
54 development of technology, the annual production of municipal solid waste is
55 increasing year after year. The main practice for disposing these wastes is landfill
56 (Miao et al., 2019), but one of the problems of this method is the production of
57 leachates, that is, the percolation of water in the waste layers and the *in situ*
58 occurrence of biological and chemical reactions. The landfill leachate (LL) contains
59 a large amount of refractory organic products, heavy metals, high ammonia and
60 several toxic contaminants (Hassan et al., 2016), as xenobiotic compounds like
61 aromatic hydrocarbons, pesticides, phenols, aliphatic chlorinated and plasticizers.
62 As a consequence, an inadequate disposal or treatment of LL may cause long-term
63 potential harm to the environment (Zhang et al., 2019).

64 At present, LL is mainly treated by biological and physicochemical processes.
65 Physicochemical processes can remove most of the contaminants, although they
66 are expensive and susceptible to produce secondary pollution (Miao et al., 2019). In
67 contrast, biological methods are the common technique for treating LL due to their
68 simplicity and cost-effectiveness (Bu et al., 2016), and they are applicable when the
69 ratio of biochemical oxygen demand (BOD) to chemical oxygen demand (COD) in
70 LL is higher than 0.4 (De et al., 2019). However, the high concentrations of pollutants
71 present in an old LL may reduce the activity of microorganisms and the efficacy of
72 biological treatment (Liu et al., 2015) due to the presence of nitrogen (Klein et al.,

73 2017) and organic refractories with high molecular weight and complex structures
74 (Di Iaconi et al., 2006). In this context, it is important to promote an adaptation of the
75 biological system to obtain the depuration of the wastewater that presents problems
76 caused by the low biodegradability and acute toxicity of those pollutants (Bai et al.,
77 2020).

78 Alternatively, the composting process is a technology for the transformation of
79 organic waste into stable and high-quality agricultural by-products via biochemical
80 reactions, reducing their environmental risk (Li et al., 2012). Besides, the application
81 of composting allows the valorisation of waste. The composting process is driven by
82 the microbial metabolism, and the duration of the composting period depends on
83 factors such as temperature, pH, compost mass bulk density, porosity and aeration,
84 among others (Ren et al., 2018). Furthermore, composting constitutes a
85 bioaugmentation method where thermophilic bacteria participate in the
86 biodegradation of polluting materials (Yanto and Tachibana, 2013), resulting in a
87 feasible bioremediation alternative. Compost has been studied for soil remediation
88 and has been considered a suitable material for *in situ* heavy metal removal (Zhou
89 et al., 2017) and elimination of emerging pollutants (Kuppusamy et al., 2017). The
90 effectiveness of compost use in the treatment of pollutants is either dependent on
91 the adsorption by organic matter or on the degradation by microorganisms and
92 present enzymes (Kuppusamy et al., 2017; Zhou et al., 2017). In general, the
93 compost quality has an impact on the bioavailability and biodegradation of organic
94 pollutants (Cerda et al., 2018; Luo et al., 2018). Unlike conventional biological
95 treatments, this kind of processes are easy and reliable methods for wastewater
96 treatment using very small spaces (Gholami et al., 2020).

97 Nowadays, several works have reported the use of compost for LL treatment. In the
98 research of Spiniello et al. (2023), the coupling of a hybrid constructed wetland to a
99 solar photo-Fenton process was studied, where the layers of the wetlands included
100 sand, solid compost and carriers, and the removals obtained ranged from 75 to 95%
101 for all the parameters evaluated after LL recirculation. In addition, published the use
102 of compost in the denitrification of LL, observing that it was unable to sustain the
103 denitrification process; a full denitrification was only achieved after the use of
104 augmented substrates. Besides, Liu et al. (2022) evaluated a coagulation and a
105 photo-Fenton process in the treatment of a mature LL using aluminium ions as
106 coagulant agent and, when the conditions were optimal, they obtained a removal
107 efficiency of colour and total organic carbon of 97.6% and 88.1%, respectively.

108 On the other hand, single bioreactors are often used in wastewater treatment
109 because they offer some benefits such as enhanced organic removal capacity,
110 smaller reactor volume, lower energy consumption, short hydraulic retention time
111 and high organic loading rate (Warmeling et al., 2016). Particularly, airlift bioreactors

112 are single devices that create different oxygen concentration zones (aerobic,
113 anaerobic and anoxic) by embedding the blade as a physical separation, providing
114 a more convenient operation in comparison to other single bioreactors (Asadi et al.,
115 2017). This kind of bioreactor enhances the contact efficiency between gas–solid–
116 liquid phases due to fluid circulation (Mota et al., 2015), providing a very high mixing
117 inside the reactor without the need of a mechanical stirrer (Asadi et al., 2017).
118 Besides, it presents an increased microbial diversity and high removal efficiency of
119 recalcitrant pollutants (Xu et al., 2020). The oxygen bubbles circulate inside the
120 bioreactor thanks to the action of the airlift, increasing the efficiency of oxygen mass
121 transfer, and allowing the growth of microorganisms as well as the removal of
122 organic matter (Mendes and Badino, 2015). Due to all these advantages, in this
123 work, we have focused on the characterization of pollutants, such as COD, iron,
124 humic acids and copper, and heavy metal removal from a LL in an airlift bioreactor
125 packed with a LL preadapted compost. As far as we know, no studies have been
126 done using this kind of setup for LL treatment. Therefore, it is the first research
127 focused on the evaluation of the utilization of an adapted compost to remove
128 pollutants present in a landfill leachate. Microbial communities were further
129 investigated by applying Illumina sequencing of the 16S rRNA gene, a method able
130 to provide thousands of sequence reads.

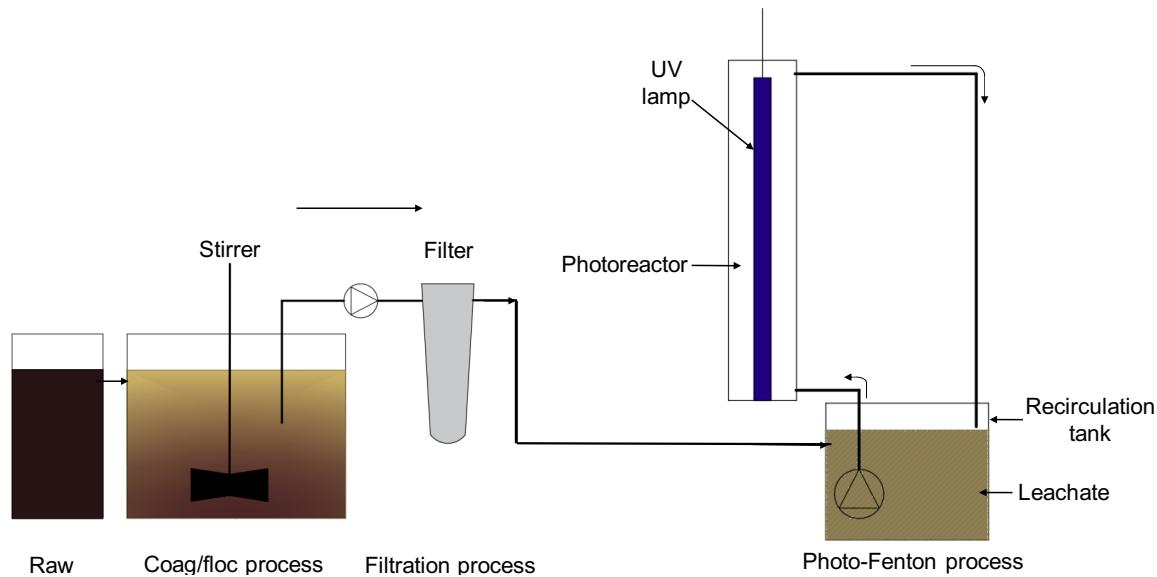
131

132 2. Materials and methods

133

134 2.1. Sample collection

135 Samples (100 L) of LL were obtained from different places of the pond of landfill El
136 Panul, where the municipal solid waste from Coquimbo (Chile, Longitude: -71.3,
137 Latitude: -29.9) is disposed off.

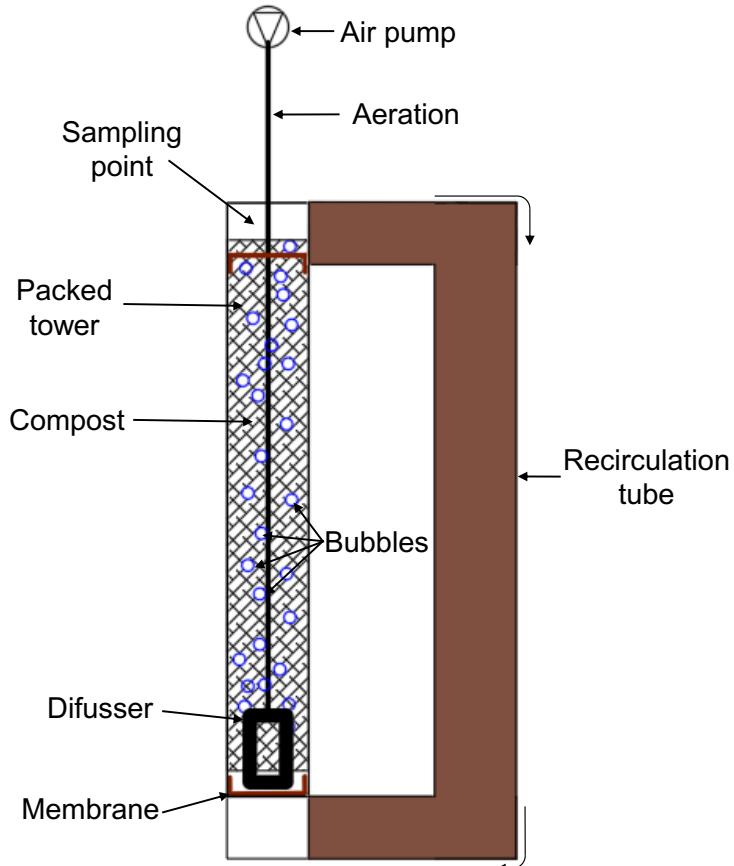

138

139 2.2. Pretreatment of the landfill leachate

140 Due to the fact that it is the first study that considers the use of compost in the
141 depuration of a LL, there is no information available about the effect of the initial
142 characteristics of this wastewater in the biological process. Considering that it is
143 possible to obtain a different response in the removal of pollutants in the biological
144 process due the initial characteristics of the LL, several pre-treatments in the LL and
145 their impact in the final stage were evaluated.

146 Since the performance of the photocatalytic processes depends on the transparency
147 of water, and it is needed to avoid the presence of pollutants, such as humic acids,
148 which interfere with the UV transmittance and effectivity (Wang et al., 2023), we

150 carried out a coagulation/flocculation process, that is a physicochemical treatment
 151 which allows the removal of organic matter and humic acids (Alfaia et al., 2019).
 152 Also, the coagulation/flocculation makes an adequate combination with filtration,
 153 since the first one allows to increase the size of the particles through the
 154 destabilization and aggregation of colloids and particles, favouring the performance
 155 of the second one. Filters reject particles with larger size than its pore diameter so,
 156 these particles are retained in the membrane, enhancing the performance of the
 157 filtration process (Lee et al., 2020). As a consequence, to improve the removal of
 158 pollutants, the raw LL was submitted to a coagulation/flocculation process using
 159 FeCl_3 with a load of 1 g/L (Merck), stirred at 150 rpm for 2 h (Poblete et al., 2020),
 160 then being left to rest for 12 hours. Then the supernatant was collected and
 161 submitted to a 5 μm filtration. Subsequently, the filtered LL was treated by a photo-
 162 Fenton process in a laboratory scale photoreactor of 1 L capacity, using UV
 163 irradiation emitted by an immersion UV lamp of 36 W (Atman Unit) with a maximum
 164 emission at a wavelength of 254 nm. The pH of the LL was adjusted to 3 using H_2SO_4
 165 and the reagents used in the photo-Fenton reaction were $\text{FeSO}_4 \cdot 7\text{H}_2\text{O}$ and H_2O_2 in
 166 concentrations of 0.3 g/L and 0.67 g/L, respectively. The reagent concentrations
 167 were established according to previous results obtained by our research group,
 168 aimed to achieve the higher removal of pollutants in a LL treated by a photo-Fenton
 169 process (Poblete et al., 2019). The run lasted 1 h. A submerged pump (40 W)
 170 recirculated the LL at a flow rate of 8 L/min from a recirculation tank of 5 L useful
 171 capacity, which received LL from the photoreactor. Figure 1 shows a schematic
 172 diagram of the pretreatments involved.

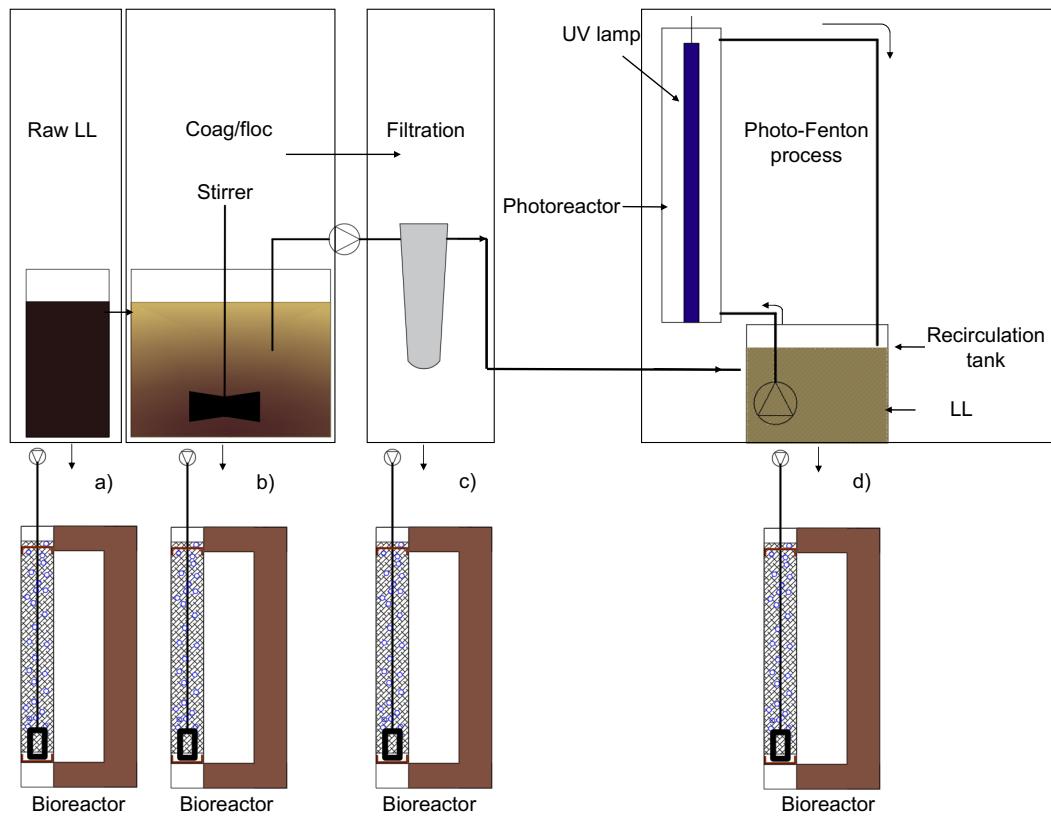

173 Raw Coag/floc process Filtration process Photoreactor process
 174 Figure 1. Schematic diagram of the pretreatment of the raw landfill leachate (LL).
 175 2.3. Biological treatment in an airlift packing bioreactor

176 The removal efficiency of different pollutants present in the LL was evaluated using
177 an airlift packing bioreactor (APBR) at a prototype scale in batch condition. The
178 APBR was inoculated with immature compost that was obtained using organic
179 wastes constituted by 10 kg of granulated solid coffee waste and 10 kg of sawdust,
180 that were placed in a 50-litre cylindrical container. The solid coffee waste used to
181 compost was obtained from a local shop in Coquimbo (Chile). Sawdust was obtained
182 from carpentry stores also in Coquimbo.

183 With the aim of adapting the microorganisms present in the compost to the complex
184 content of the LL, it was wetted with a 10% concentration of the raw leachate for one
185 week. The following week, the concentration of the leachate was increased again by
186 10%, and this rise in concentration was maintained until week 10, to finally use a
187 leachate without dilution (pure raw leachate) and maintain the periodically wetted
188 compost with pure raw landfill leachate for a duration of 6 months, in order to allow
189 the microorganisms present in the compost to gradually adapt to the complex and
190 toxic substances of the leachate (Yadav et al., 2020; Tombola et al., 2019).

191 In the APBR with adapted compost, 1 kg of material was placed inside the reactor
192 as a packed tower of 1 L of volume. A diffusor and a tube of air connected to a 10
193 W-power air pump were positioned at the bottom of the tower (Figure 2). The air
194 pump provided aeration to allow the oxygenation of the packed tower and the
195 recirculation of the LL.

196 In the bottom and in the upper parts of the packed tower there was a geotextile
197 membrane to avoid leakage of the compost. The system was filled with 2 L of LL and
198 the air pump was turned on to produce the effect of airlift and the recirculation of the
199 LL in the system with a flow of 0.5 L/min. The packed tower of the APBR was 50 cm
200 high, with an external diameter of 5 cm, connected to a recirculation tube with the
201 same dimensions (Figure 2). In the upper zone of the packed tower a 10 cm
202 extension of the tube was maintained free of LL and compost, which allowed sample
203 collection and the retention of the foam generated during the process.



204
205
206

Figure 2. Schematic diagram of the airlift packing bioreactor (APBR).

207 To evaluate the effect of the pretreatments above described on the biological
208 process, the LL submitted to the different pretreatment stages was treated in the
209 APBRs (Figure 3). The system operated continuously for 10 days for each LL. Thus,
210 the LL added into the bioreactors was: a) raw LL; b) LL submitted to
211 coagulation/flocculation; c) LL submitted to coagulation/flocculation and filtration;
212 and d) LL submitted to coagulation/flocculation, filtration and photo-Fenton process.

213

214
215 Figure 3. Schematic diagram of the pretreatment processes and final airlift
216 packing bioreactors.
217

218 2.4. Determination of pretreatment parameters

219 The removal efficiency of the pollutants was determined by taking samples of LL in
220 the recirculating system on the sample points and measuring the changes in
221 chemical oxygen demand (COD), humic acids, heavy metals, faecal coliforms and
222 toxicity. These parameters were determined along the different stages of the
223 pretreatment in order to characterize the increase in biodegradability before and after
224 the biological treatment. All the samples were taken by triplicate. The COD of the LL
225 was measured according to the EPA 410.4 methodology and Colorimetric Method,
226 pH was measured using a pH meter (WTW 3150i unit), and humic acids were
227 determined spectrophotometrically in an Optizen Pop spectrophotometer at 254 nm
228 (ABS254). Iron was analysed with the EPA phenanthroline method 315B, while total
229 copper was determined using the Bicinchoninate Acid Method (HI-93702-01). The
230 Total Organic Carbon (TOC) analysis, was carried out with 50 µL of samples injected
231 in a Shimadzu TOC-L, with an acid-catalysed combustion at 650 °C, using a non-
232 dispersive infrared (NDIR) detector. Faecal coliforms were determined using the
233 NCh 2313/23 method. Heterotrophic plate counts (HPC) microorganisms were

234 measured according to the spread plate method, in terms of Colony-Forming Units
235 (CFU).

236 To determine the microbial compost stability and activity (Villaseñor et al., 2011),
237 which depends on the biodegradability and toxicity of the mixture of LL+compost in
238 the different APBRs, a respirometric test was carried out based on the oxygen
239 uptake rate (OUR) of a mixture of liquid medium containing nutrients. The aeration
240 and stirring of the suspension allowed oxygen to be adequately dispersed (Scaglia
241 et al., 2011). The test was performed using a BM-T respirometer (Surcis S.L.),
242 constituted by a 1 L capacity vessel, equipped with a thermometer and an oxygen
243 probe (Protos 3400, Knick Elektronische Messgeräte GmbH & v Co. KG). Fifty grams
244 of LL + compost collected from the top of the APBR were shredded and
245 homogenized in a stirrer and then placed in the vessel of the respirometer; 1 L of
246 distilled water was added and the mix was homogenized, the temperature was set
247 at 20°C and the system was continuously aerated and stirred (Scaglia et al., 2007).
248 The reference sample was made up with 50 mL of distilled water with 0.5 g of sodium
249 acetate per gram of volatile suspended solid (as a highly biodegradable compound).
250 Fifty mL of the different samples were added to obtain the OUR. The pH of each
251 sample was previously adjusted to 7 (Lo, 2010). Each assay continued until a
252 plateau in the respiration of the sludge (Rs , mg/L·h) was obtained and the maximum
253 respiration rate (Rs_{max} , mg/L·h) was achieved. The inhibition percentages (%I) were
254 calculated using the following equation:

$$255 \%I = \left(1 - \frac{Rs}{Rs_{max}} \right) * 100 \quad (1)$$

256 Anova and Tukey HSD post hoc tests were done to evaluate significant differences
257 between the different treatments, with a p-value of 0.05.

259 2.5. DNA extraction

260 We extracted DNA from adapted and non-adapted compost samples, as well as from
261 samples from both types of compost which had been in contact with raw LL for 10
262 days in order to compare the composition of microbial communities before and after
263 being in contact with LL. DNA extraction was performed using the DNeasy Power
264 Soil Kit (Qiagen) according to the manufacturer's instructions. DNA concentration
265 and purity were measured using a Nanodrop spectrophotometer (NanoDrop
266 Technologies, Inc., Wilmington, DE) at 260 nm and 260/280 nm respectively. DNA
267 extracts were conserved at -80°C for further analyses.

269 2.6. Amplicon sequencing

270 DNA was sequenced by RTL Genomics (Lubbock, TX, USA;
271 <https://rtlgenomics.com>). Two primers were used to amplify bacterial and archaeal
272 16S rRNA gene: 515F-Y (GTGYCAGCMGCCGCGTAA) and 926R:
273 (CCGYCAATTYMTTTRAGTTT) (Parada et al., 2016). Illumina MiSeq 2x300 flow
274 cells was used. Sequence data from the MiSeq platform were quality filtered,
275 trimmed, dereplicated, merged and, after a process of chimera removal, clustered
276 into amplicon sequence variants (ASVs) using the DADA2 Pipeline (Callahan et al.,
277 2016). Afterwards, ASVs tabulation, and taxonomy assignment were performed
278 using the Silva taxonomic database (v132). Sequences with unclassified genera or
279 species with the Silva database were taxonomically identified by Blast (NCBI).
280 Finally, the Phyloseq package was used to tabulate relative abundances at various
281 taxonomic levels and to determine the microbial core community (McMurdie and
282 Holmes, 2013). DADA2 and Phyloseq have been run as an R script (in R v.4.2.1)
283 using R packages dada2 v.1.24.0, phyloseq v. 1.40.0 and ggplot2 v.3.3.6.
284 Taxonomic identification was carried out by means of the tool Faprotax (Louca et al.,
285 2016) to predict the functional composition of the microbial communities based on
286 16S rRNA marker gene profiles.

287 Sequence statistical analyses were performed using the R statistical software (R
288 Core Team, 2021) and the *vegan* and *venneuler* packages. Alphadiversity analyses
289 were performed using a ASVs abundance table that was previously subsampled
290 down to the minimum number of reads in order to avoid artefacts due to an uneven
291 sequencing effort among samples. For alphadiversity analyses, we calculated the
292 Chao1 index as a measure of richness and the Shannon index as diversity metrics.
293 Sequence data has been deposited in GenBank database with BioProject accession
294 number PRJNA911052.

295

296 3. Results and discussion

297

298 3.1. Parameters after LL pretreatment

299 The raw LL was submitted to different pretreatment processes
300 (coagulation/flocculation, filtration and photo-Fenton process) and after each stage,
301 it was subject to a biological process in an APBR system. The main characteristics
302 of the LL samples in the different stages of the pretreatment are presented in Table
303 1.

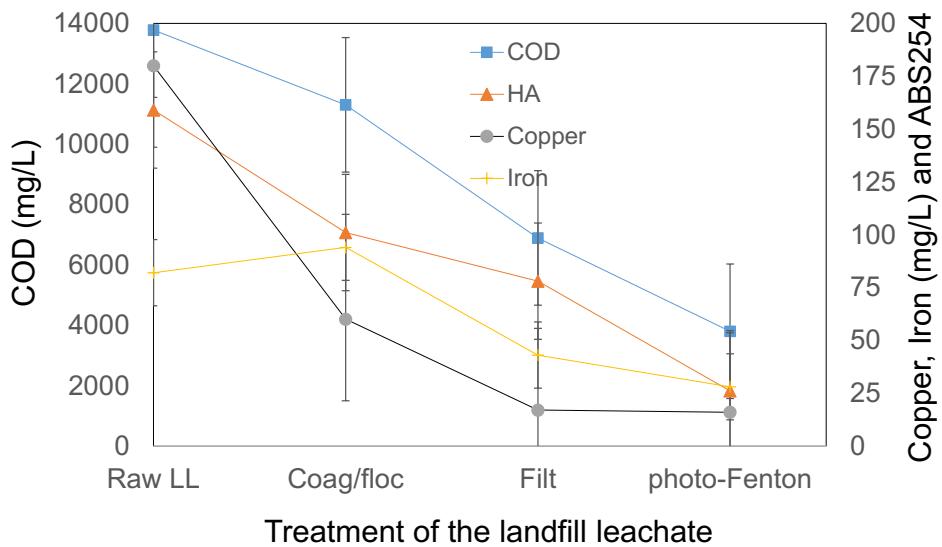
304

305 Table 1. Landfill leachate (LL) characteristics.

Stage treatment

Parameter	Raw	Coag/Flocc	Filtration	Photo-Fenton
	Value			
COD (mg/L)	13780	11300	6890	3800
pH	8.85	8.82	8.83	2.95
Total Iron (mg/L)	82.3	94.1	43.5	28.1
Copper (mg/L)	180.6	60.9	17.1	16.8
Humic acids (abs 254 nm)		101.6	78.0	28.1
TOC (mg/L)	3845.4	3250.6	2801.5	1600.4
Faecal coliforms (MPN)	nd	nd	nd	nd
HPC (CFU)	nd	nd	nd	nd

306 MPN: most probable number


307 nd: not detected

308 The non detection of faecal coliforms and HPC in the raw LL was probably due to the toxicity of this
309 kind of water (Wijekoon et al., 2022).

310
311
312 Figure 4 shows the changes in the concentration of copper, humic acids (ABS₂₅₄)
313 and iron in the raw LL submitted to subsequent coagulation/flocculation, filtration and
314 photo-Fenton processes before the biological treatment. A high removal of organic
315 matter was observed in terms of COD and humic acids along the pretreatment
316 process, with COD decreasing from 13780 to 11300 mg/L after
317 coagulation/flocculation, from 11300 to 6890 mg/L after filtration, and from 6890 to
318 3800 mg/L due to photo-Fenton, achieving a global removal of a 72.4%. In the case
319 of humic acids, the trend was similar, going from 159.5 to 101.7 mg/L, from 101.7 to
320 78.0 mg/L and from 78.0 to 26.4 mg/L, due to coagulation/flocculation, filtration and
321 photo-Fenton processes respectively, reaching a global removal of 83.4%.

322 We have to take into consideration that the UV-quenching substances of LL are
323 constituted by a hydrophilic fraction and also hydrophobic humic substances such
324 as humic acids and fulvic acids, and each has distinct behaviours during its treatment
325 (Iskander et al., 2018). Since these kind of substances can attract heavy metals and
326 organic matter, allowing their transportation into surface water of groundwater
327 (Reshadi et al., 2020), their removal is crucial for environmental protection.

328

329

Treatment of the landfill leachate

330

Figure 4. Change in the concentration of COD, copper, humic acids (ABS₂₅₄) and iron in the different stages of LL pretreatment. Error bars represent the standard deviations for three replicated measures (n = 3).

331

332

The removal of organic matter due to coagulation/flocculation could be explained by the agglomeration of particles in the LL suspension, including organic colloids (Cheng et al., 2020; Ibrahim and Yaser, 2019). The suspension is destabilized by the coagulant, and the flocculation occurs when compact flocs are formed and settled (Zahrim et al., 2018). The flocs that do not settle can be trapped in the filter, reducing the concentration of organic matter. On the other hand, the decrease of organic matter in the photo-Fenton process can be due to the generation of the highly reactive hydroxyl radicals, that are non-selectively oxidant (Espinoza-Quiñones et al., 2019), as shown by equations 2 and 3 which allow the oxidation of the organic matter present in the LL and enhance its biodegradability, as previously reported (Poblete and Pérez, 2020).

344

345

346

Concerning the heavy metals analysed, the copper decreased from 180.3 to 60.5 mg/L after coagulation/flocculation, from 60.5 to 17.8 mg/L after filtration and from 17.5 to 16.8 mg/L due to the photo-Fenton process, obtaining a global removal of 91.1%. In the case of iron, its concentration changed from 82.0 to 94.1 mg/L, from 94.1 to 43.5 mg/L and from 43.5 to 28.1 mg/L, due to coagulation/flocculation, filtration and photo-Fenton processes, achieving a global removal of 65.8%. The increase of the concentration of iron after the coagulation/flocculation process is due to the addition of this metal in the process, concentration that was reduced after the filtration process. The removal of copper in the LL achieved by the coagulation/flocculation process, that used Fe(III), demonstrated the high

347

348

349

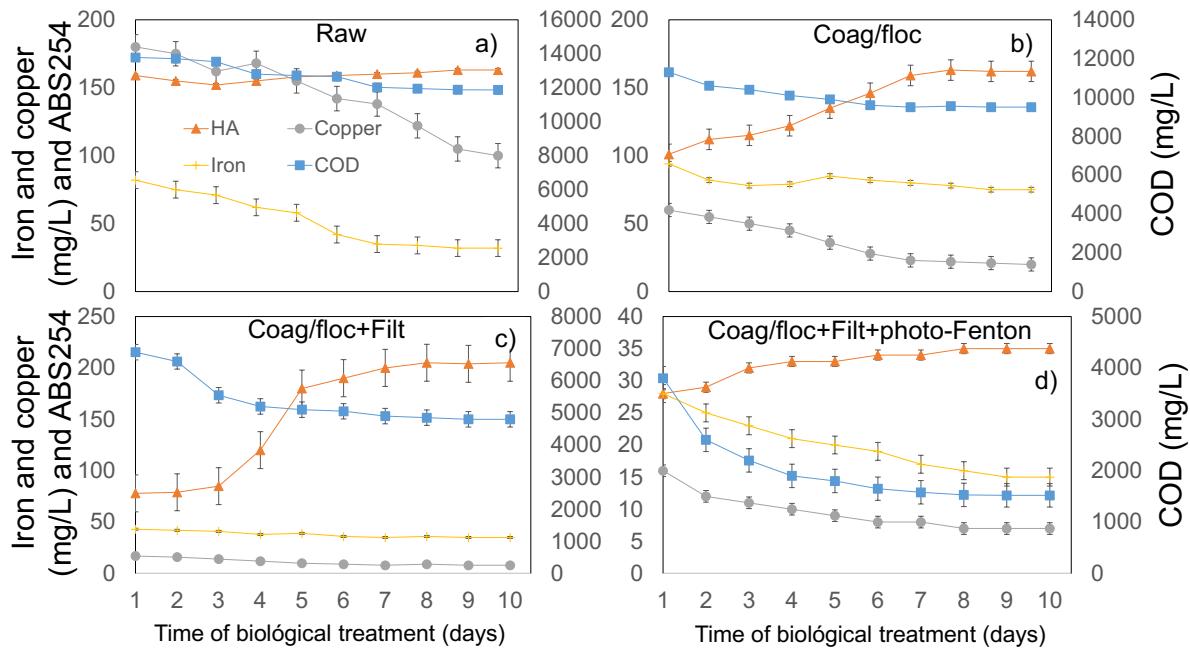
350

351

352

353

354


355

356 performance of Fe(III), being in agreement with the data reported by Chu et al.,
357 (2020), who published removal rates of dissolved organic carbon, Ni and As, of
358 84.1%, 73.1% and 96.9%, respectively.

359 As can be observed in Table 1, TOC underwent a high removal, especially in the
360 photo-Fenton process, where an elimination of 42.8% was achieved, mostly caused
361 by the removal of organic carbon as aromatic compounds, leading to the generation
362 of hydroxyl radicals in the oxidation process (Welter et al., 2018). Nonetheless, the
363 subtraction of TOC was lower than that obtained by Liu et al., (2022) who reached a
364 76.4% removal of this parameter, probably due to the fact that they spent longer time
365 in the photocatalytic process. On the other hand, we did not detect the presence of
366 faecal coliforms nor heterotrophic plate counts, probably due to the toxicity of this
367 kind of water.

368 3.2. Parameters during LL biological treatment

369 The raw LL and the LL submitted to different pretreatments were placed in four
370 different APBR with the aim of promoting their contact with the compost throughout
371 the 10 day experiment, and to evaluate the removal of pollutants as well as the effect
372 of the different pretreatment stages. As can be observed in Figure 5, there is a
373 difference in the removal of the pollutants due to the biological process in the APBR,
374 depending on the stage of the pretreatments carried out. When LL without any
375 pretreatment (raw LL) was fed to the biological process (Figure 5a), the change in
376 COD varied from 13780 to 11870 mg/L, while copper decreased from 180.6 to 100
377 mg/L, and iron from 82.3 to 32 mg/L; in the case of humic acids, there was a slight
378 increase from 159.5 to 163 ABS₂₅₄. When the LL was subjected to
379 coagulation/flocculation and to the biologic process (Figure 5b), the COD diminished
380 from 11300 to 9500 mg/L, while copper declined from 60.9 to 20.4 mg/L, and iron
381 varied from 94.1 to 75.6 mg/L; humic acids increased again from 101.6 to 162.0
382 ABS₂₅₄. When the LL was submitted to coagulation/flocculation and filtration
383 processes in the bioreactor (Figure 5c), the change in COD was from 6890 to 4800
384 mg/L, for copper from 17.1 to 8.3 mg/L, for iron from 43.5 to 35.4 mg/L and, in the
385 case of humic acids from 78.8 to 205.6 ABS₂₅₄. When the LL was submitted to the
386 whole pretreatment (coagulation/flocculation, filtration plus photo-Fenton),
387 decreases in COD from 3800 to 1520 mg/L, for copper from 16.8 to 8.37 mg/L, and
388 for iron from 28.1 to 15.4 mg/L were obtained in the biological process (Figure 5d),
389 while for humic acids the value increased from 26.1 to 35.5 ABS₂₅₄.

391 Figure 5. Change in the concentration of different pollutants present in the LL
 392 submitted to the biological process without pretreatment (a) or after the different
 393 pretreatments (b: coagulation/flocculation, c: coagulation/flocculation + filtration, d:
 394 coagulation/flocculation + filtration + photo-Fenton). Error bars represent the
 395 standard deviation of the results (n = 3).

396 In general, there was an enhancement in the concentration of humic acids
 397 throughout time in the different bioreactors due to the action of the compost. Humic
 398 acids are organic substances rich in amino, hydroxyl and carboxyl groups, present
 399 in the compost due to the high concentration of lignin (Wang et al., 2022). They
 400 participate in the control of nutrients for microbial consortia and they protect
 401 microorganisms from the action of hazardous compounds (Sun et al., 2022), being
 402 also their presence an indicator of fertility in soils (Liu et al., 2023). Therefore, their
 403 presence in the compost promotes the removal of toxic material from the LL.

404 Concerning the removal of COD, the results showed significant differences, with F
 405 values higher than the tabulated number (440.3>0.005) (Table 2). A Tukey test
 406 (Table 3) indicated that there were significant differences between all the treatments
 407 evaluated. Also, significant differences were observed in the removal of humic acids,
 408 with F values higher than the tabulated result (36.9>0.00004). The Tukey test
 409 showed that there were significant differences between the photo-Fenton treatment
 410 and all the rest of the treatments, including raw LL.

411

412

413

Table 2. Analysis of variance (ANOVA) for COD removal

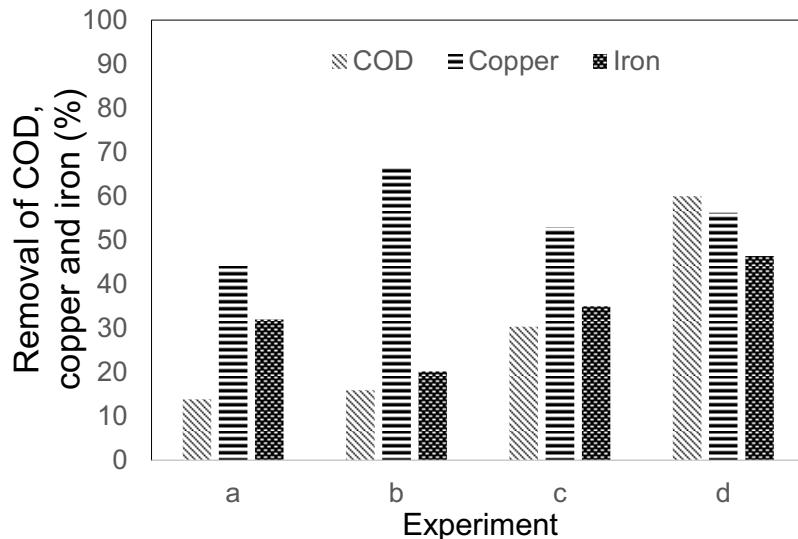
	DF	Sum of Squares	Mean Square	F Value	Prob>F
Model	3	6.78E+08	2.26E+08	440.30	0.005
Error	36	1.85E+07	513510.6		
Total	39	6.97E+08			

414

415

Table 3. Tukey tests for COD removal.

	Mean Diff	SEM	q Value	Prob	Alpha	Sig
Coag/floc Raw	-2696	320.4	11.89721	0	0.05	1
Filt Raw	-7317	320.4	32.28928	0	0.05	1
Filt Coag/floc	-4621	320.4	20.39207	0	0.05	1
Photo-Fenton Raw	-10681	320.4	47.13432	0	0.05	1
Photo-Fenton Coag/floc	-7985	320.4	35.23711	0	0.05	1
Photo-Fenton Filt	-3364	320.4	14.84504	2.55E-07	0.05	1


416 *Sig equal 1 indicates that the means difference is significant at the 0.05 level.*

417

418 In the case of the variation of cooper in the bioreactor after the different treatments,
 419 significant differences were obtained in this parameter, with F values higher than the
 420 tabulated number ($154.6 > 2.86$). The Tukey test showed that there were meaningful
 421 differences between all the treatments except for the photo-Fenton and filtration
 422 process.

423 Taking into consideration the change on the concentration of iron in the LL, the
 424 anova test shows that there were significant differences in this parameter, with F
 425 values higher than the tabulated number ($59.8 > 4.64 \times 10^{-14}$). The Tukey test showed
 426 that there were meaningful differences between all the treatments evaluated.

427 The percentage of removal of pollutants such as COD, copper and iron present in
 428 the LL after the biological treatment is showed in Figure 6. The biological treatment
 429 that reached the highest removal of COD was the one that underwent
 430 coagulation/flocculation plus filtration plus photo-Fenton pretreatment processes,
 431 with an elimination value of 60.0%. A similar trend was observed with iron, which
 432 achieved a removal of 46.5%. In contrast, for copper, the highest elimination was
 433 accomplished with LL pretreated with the coagulation/flocculation process, with a
 434 value of 56.3%.

435

436 Figure 6. Removal of pollutants (%) present in LL treated in the APBRs, using a)
 437 raw LL, or different pretreatment processes: b) Coag/Floc, c) filtration and d) photo-
 438 Fenton).

439

440 According to the respirometric tests carried out using sludges, the raw LL was toxic
 441 and although toxicity decreased along the pretreatments of LL. Inhibition values of
 442 41.8%, 27.5%, 22.0% and 12.1% were obtained for raw, coagulation/flocculation,
 443 filtration and photo-Fenton processes respectively. These results agree with
 444 previous findings from our research group (Poblete and Pérez, 2020), where a
 445 decrease in the toxicity throughout the LL treatments was reported. This reduction
 446 in the inhibition of sludge in the presence of the LL + compost mixture is due to the
 447 pretreatment and the biological process, which promoted the removal of toxic
 448 compounds from the wastewater, such as the adsorption of copper. Up to now, a
 449 95% removal of this heavy metal has been previously reported (Pennanen et al.,
 450 2020), as well as the oxidation of complex organic matter by hydroxyl radicals, with
 451 a removal of an 80% of COD of a LL using a photo-Fenton process (Carbajo et al.,
 452 2021). Additionally, the use of UV light and a photocatalyst, enhanced the
 453 biodegradability of LL by 89% (da Costa et al., 2018). Table 4 shows a comparison
 454 on the pollutants removal obtained in this work and in other ones where different
 455 treatments were applied.

456

457

458

459 Table 4. Comparison on the pollutants removal obtained in this work and in other
 460 ones where different treatments were applied.

Pollutant	Treatment method	% of removal		Reference
		In this manuscript	In other works	
COD	Coag/Flocc	14	35	(Reddy et al., 2022)
	Filtration	16	33	(Rohers et al., 2021)
	Photo-Fenton	60	43	(Ghanbarzadeh Lak et al., 2018)
	Biological process	60	60	(Tripathy and Kumar, 2022)
Copper	Coag/Flocc	67	87	(Ma et al., 2023)
	Filtration	53	28	(Bremner et al., 2020)
	Biological process	56	59	(Genethliou et al., 2023)
Humic acids	Coag/Flocc	36	20	(Kong et al., 2021)
TOC	Coag/Flocc	15	15	(Righetto et al., 2021)
	Filtration	14	24	(Agabo-García et al., 2023)
	Photo-Fenton	43	32	(Kanafin et al., 2023)

461

462 3.3. Operational costs

463 Table 5 shows the operational costs of the evaluated treatment, considering the
 464 expenses of the reagents as well as the costs of the electric power consumption by
 465 the equipment used in the different experiments. It should be highlighted that
 466 experiment a (raw LL) corresponds to less reagent and total costs, as expected,
 467 since there is not a pretreatment, which led to the lowest removal of pollutants
 468 (Figure 6). In contrast, experiment d, which considers all the pretreatments, has the
 469 highest values of operational costs, especially due to the use of reagents, although
 470 it achieves the best levels of iron and copper removal, allowing less inhibition of the
 471 sludge in the respirometric test. It is quite an interesting result, because copper
 472 present in LL is considered an harmful substance, hazardous to the aquatic
 473 environment (Wdowczyk and Szymańska-Pulikowska, 2021) and with negative
 474 effects on microorganisms (Kwak et al., 2020).

475 Table 5. Operational costs of the different treatments carried out.

Exp	Operational costs (\$US/m ³)		
	Reagent	Energy	Total
a (raw LL and biologic)	3.8	22.2	26.0
b (coag/floc and biologic)	34.0	22.3	56.3
c (coag/floc, filtr and biologic)	34.0	22.3	56.3
d (coag/floc, filtr, photo-Fenton and biologic)	79.8	23.7	103.5

476

477 Also, it is possible to observe that operational costs associated to energy
478 consumption were similar for all the experiments, since these runs were carried out
479 in the APBR, that used aeration for 10 days. Although the power of the air pump was
480 small (10 W), its prolonged use over time, necessary to maintain a sufficient amount
481 of gas/liquid phases mass recirculation, implied a relatively high energy consumption
482 which generated higher operational costs (Chen et al., 2021; Yen and Liu, 2014). In
483 fact, the energy spent by the aeration process was more than 50% of the total energy
484 consumed in the biological treatment (McCarty et al., 2011), lower than that used by
485 Hu et al., (2020), who used an air compressor with a very high power. On the other
486 hand, Wei et al., (2023) published a cost of 113,9 €/m³ of oxypyrolysis of LL using
487 Fe₂O₃@SiO₂-Al₂O₃ as a catalyst.

488

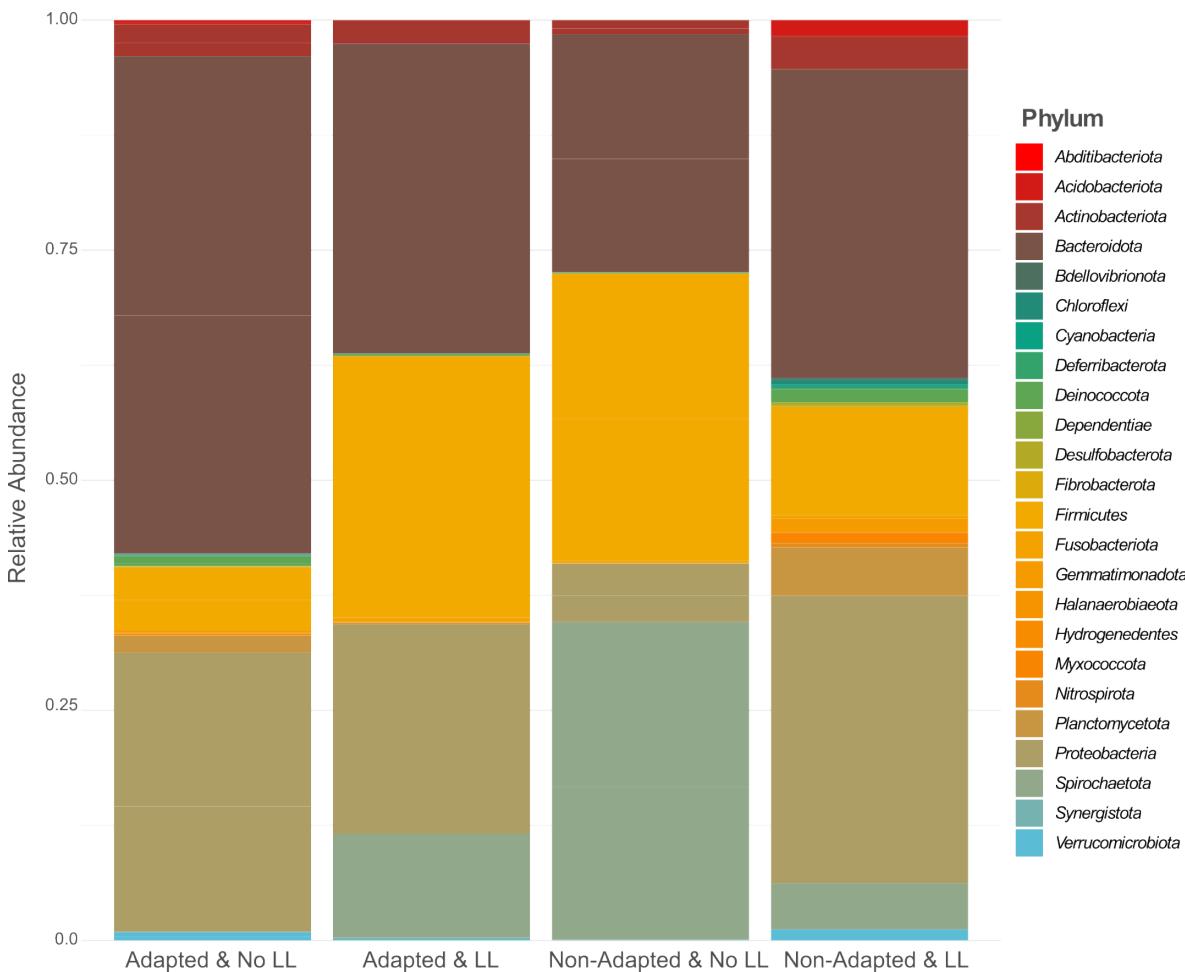
489 The whole treatment, that includes coagulation-flocculation, filtration, photo-Fenton
490 reaction and biological process, has higher operational cost than others, as reported
491 by Turan et al., (2023) who published a cost of 50 \$US/m³ using FeCl₃ as coagulant
492 for LL treatment. However, it has to be taken into consideration that the non-
493 biodegradable and toxic behaviour of the mature LL studied in this work required
494 complex treatments (Yan et al., 2022; Gautam and Kumar, 2021).

495

496 It has been reported that aeration allows the enrichment of heterotrophic denitrifying
497 bacteria and the removal of nitrogen and organic matter (Song et al., 2020). Also,
498 the utilization of the APBR allows an effective suspension of solids, high mass
499 transfer, low shear stress to microorganisms suitable for biological processes, and
500 the absence of stagnant volumes into this reactor (Mirghorayshi et al., 2020).

501 3.4. Microbial community structure and predicted metabolisms in adapted and non-
502 adapted compost samples

503 In order to improve our knowledge about the composition of the microbial
504 assemblages in compost samples and their possible role in pollutants removal from
505 LL, we analysed samples from both an adapted and a non-adapted compost before
506 and after being in contact with the raw leachate on the basis of the 16S rRNA gene
507 sequence. After a rigorous quality control (see Materials and Methods), a total of
508 443,640 sequences passed quality filtering. On average, 73,940 sequences were
509 obtained per sample (ranging from 44,031 to 105,511). At this sequencing depth,
510 rarefaction curves revealed a reasonable coverage of bacterial richness (Figure S1).
511 Observed richness (number of Amplicon Sequence Variants or ASVs) varied
512 between 749 and 1,901 (Table 6). These values were similar to those obtained from
513 the richness estimate index (Chao1), which ranged from 953 to 2072. Despite
514 variation in ASVs number, no significant differences were found between samples in


515 richness indices (Kruskal-Wallis and Wilcoxon's test with Bonferroni correction, $p >$
516 0.05). Shannon's diversity index varied from 3.33 to 5.95, showing usual diversity
517 values for microbial communities (Feranchuk et al., 2018). In this case, significant
518 differences were found between samples, showing lower diversity values without
519 preadaptation and without contact to the LL than those which were previously
520 adapted or exposed to the LL (one-way ANOVA and Tukey post-hoc test, $p < 0.05$).

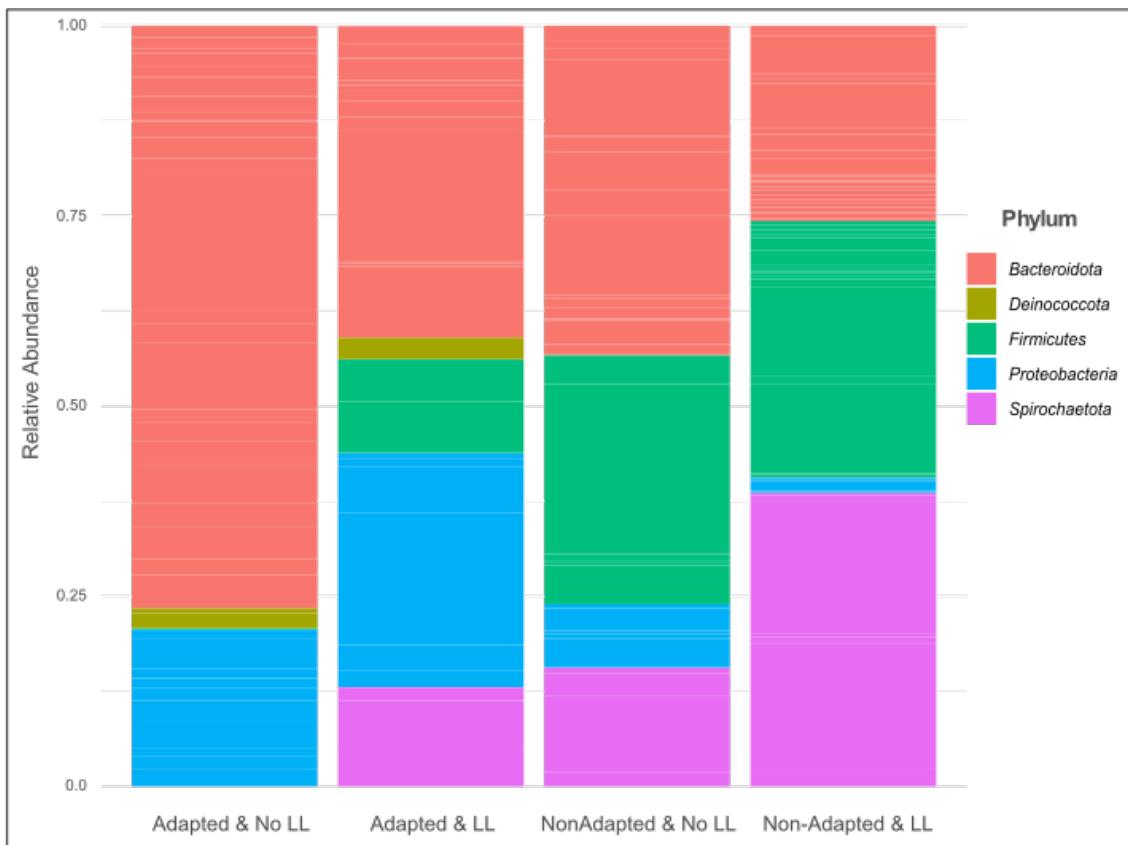
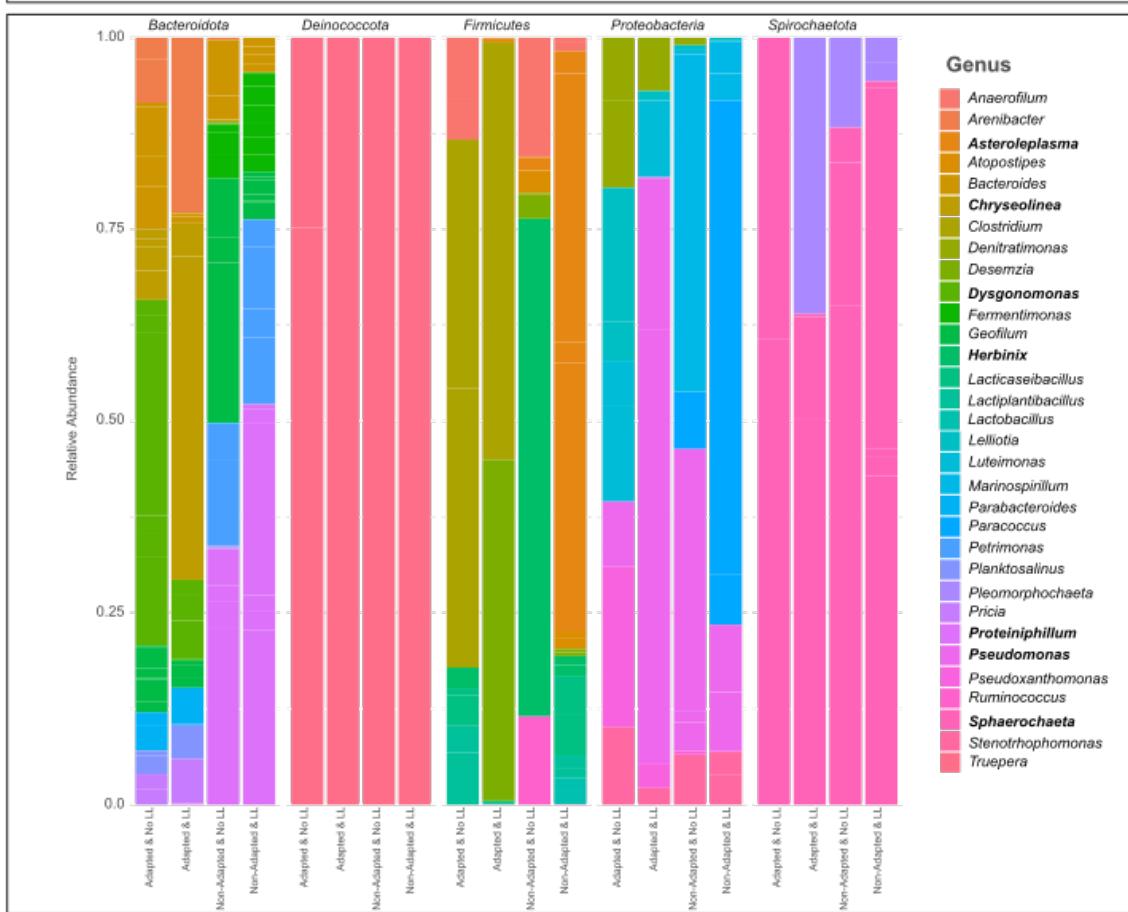
521 Table 6. Alphadiversity from the microbial communities of the studied compost
522 samples.

Sample	Observed	Chao1	Shannon
Adapted & No LL	1647	1960.84	5.59
Adapted & LL	1327	1791.55	4.69
Non- adapted & No LL	749	952.55	3.33*
Non-adapted & LL	1901	2072.23	5.95

523 * significant differences in Shannon index ($p < 0.05$)

524 *Bacteroidota, Proteobacteria, Firmicutes, Spirochaetota* and *Deinococcota* were the
525 most abundant phyla in the studied samples (Figure 7). These five phyla were found
526 in all samples, being present in the 50 most abundant ASVs of the study, which
527 represented 56.5% of the total analysed sequences and were considered as our
528 core community (Neu et al., 2021).

529



530 Figure 7. Relative abundance of each phylum in the microbial community from
 531 adapted and non-adapted compost samples before (no LL) and after (LL) being
 532 exposed to raw LL

533 Interestingly, the most representative phylum in samples which had been in contact
 534 with leachate in some moment (i.e. preadaptation or treatment of LL) was
 535 *Bacteroidota* (Figure 8). This phylum utilizes complex organic substrates in aquatic
 536 environments, being able to degrade recalcitrant compounds, an activity previously
 537 reported in studies from LL (Gabarró et al., 2013; Wang et al., 2022). Nevertheless,
 538 in the compost sample not preadapted to leachate, *Spirochaetota* and *Firmicutes*
 539 were more abundant than *Bacteroidota*. Both phyla, *Spirochaetota* and *Firmicutes*,
 540 were previously described in microbial communities from compost of organic waste
 541 or from rice straw (Tanahashi et al., 2005; Galitskaya et al., 2017). Recent studies
 542 have shown the possible role of these phyla in decontaminating metals from different
 543 environments. On the one hand, some genera from *Bacteroidota*, *Spirochaetota*,
 544 and *Firmicutes*, are involved in the sulfur cycle and can use iron in their metabolisms
 545 (Astorch-Cardona et al., 2023; Hashemi et al., 2022). Furthermore, these three phyla
 546 have also been found in artificial copper-contaminated samples from MFCs and even

547 in gut microbiota (Gao et al., 2023; Wu et al., 2022). In this sense, it showed the
548 relevance of these phyla in the *core* community, taking into account that all of them
549 could contribute to the decontamination of LL.

550

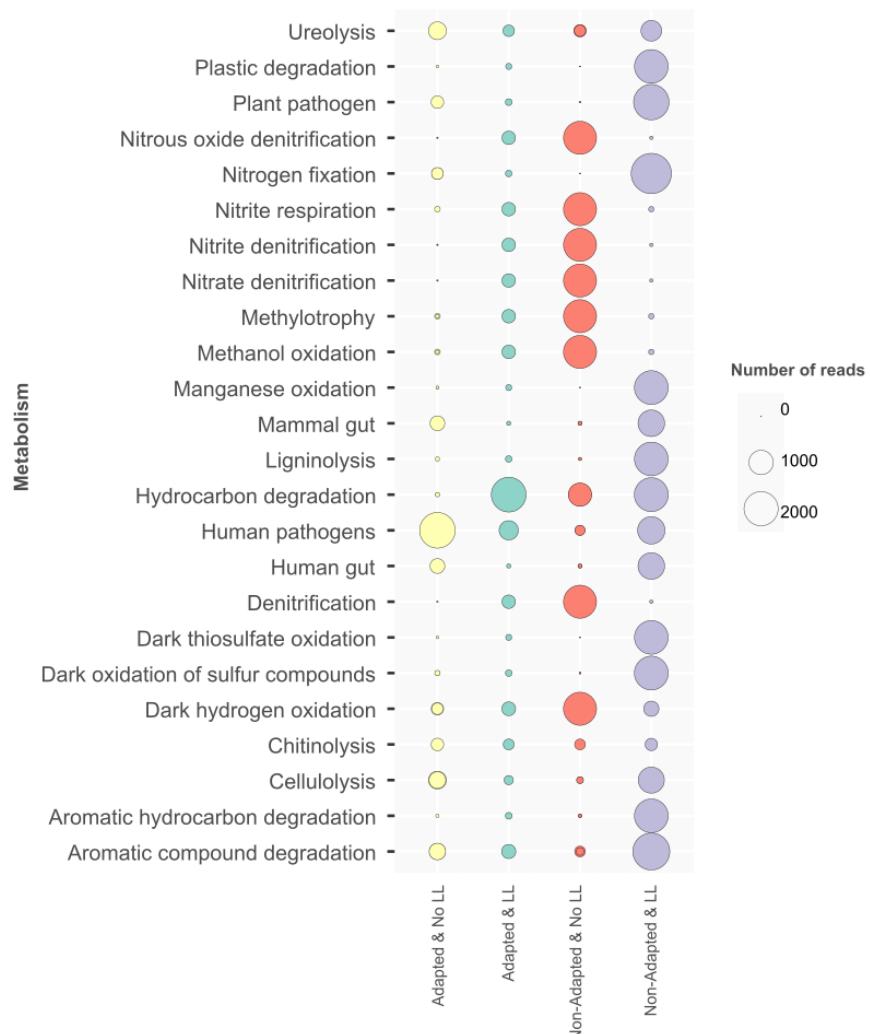
551

A**B**

553 Figure 8. Taxonomy of the core community. Data refer to the different microbial
554 communities from adapted and non-adapted compost samples before (no LL) and
555 after (LL) being exposed to raw LL. a) Relative abundance of each phylum in the
556 most abundant 50 ASVs b) Relative abundance of genus belonging to different
557 phyla from the main 50 ASVs. Bold letters label the most representative genera
558 from the microbial community.

559 At genus level, the relative abundance of some ASVs presented differences between
560 samples, and the final composition of the microbial community appeared to depend
561 on the preadaptation or not of the compost samples. In the case of the preadapted
562 compost to LL, the main genus was *Dysgomonas* (34% of sequences of core
563 community). However, when the sample was exposed to raw LL, *Dysgomonas*
564 became less abundant (until 0.1% of sequences) and another genus that was not
565 predominant at the beginning turned into the representative bacteria of the
566 community. Other genera that underwent significant changes in abundance before
567 and after being exposed to LL were *Herbinix* (from < 0.1% of sequences before the
568 contact of raw LL to 21% of sequences after the treatment), *Proteiniphilum* and
569 *Sphaerochaeta* (Figure 8). *Herbinix*, and concretely *Herbinix luporum* was described
570 as a cellulose degrading bacterium able to metabolize lignocellulose to acetate,
571 ethanol, and propionic acid in different biogas reactors (Koeck et al., 2016; Liu et al.,
572 2017). In these kind of reactors, previous to the digestion process of the substrate,
573 pollutants were frequently found (i.e. nitrogen compounds and heavy metals)
574 (Rahman et al., 2021). Moreover, *Proteiniphilum* sp. was also usually detected in
575 biogas reactors. This genus has been reported as strict anaerobes that use several
576 macromolecular organic molecules as carbon and energy sources and produce
577 acetic acid (Dang et al., 2013). *Proteiniphilum* sp. has been recently isolated from
578 anaerobic digesters treating brewery wastewater or maize silage and wheat straw,
579 as well as from municipal solid waste landfill (Orellana et al., 2022; Wang et al.,
580 2022). Thus, the most representative genera of our microbial community after being
581 preadapted and exposed to raw LL, showed a tolerance to different complex
582 substrates, being involved in the decrease of COD and metals concentration of the
583 raw LL.

584 A similar trend in the core microbial community was observed between compost
585 samples without preadaptation before and after the contact to raw LL. In this case,
586 *Sphaerochaeta* (37% of sequences of core community) and *Asteroleplasma* (26%
587 of sequences) were the dominant genera in the microbial assemblage of the non-
588 adapted compost before being in contact with LL. After the treatment of compost
589 with landfill leachate, the genera *Pseudomonas* (from 0.3% of to 23%) and
590 *Chryseolinea* (from <0.1% of to 19%), underwent a substantial abundance increase.
591 *Asteroleplasma* almost disappeared after the treatment, while *Sphaerochaeta*,
592 though decreased its relative abundance, remained one of the 5 most abundant


593 genus of the community (Figure 8). *Pseudomonas* strains are frequently reported as
594 exhibiting a great metabolic versatility and could survive in different ecological niches
595 including contaminated environments (Rojo, 2010). *Pseudomonas* sp. is a
596 microorganism that can naturally produce extracellular polysaccharide (EPS). EPS
597 structures support the sequestration of metal ions and prevent them from penetrating
598 into the cell surface or from being released in the environment (Imron et al., 2021).
599 *Pseudomonas putida* has been previously showed to have heavy metal resistance
600 genes and the ability to biodegrade phenolic LL (Paliwal et al., 2014; Michalska et
601 al., 2020). *Pseudomonas parafulva* and *Pseudomonas putida*, which are closely
602 related between them, were the main species in the compost sample in contact to
603 LL. On the other hand, *Chryseolinea* has been reported to be an aerobic
604 chemotrophic bacterium (Kim et al., 2013) that could remove nutrients from water.
605 Bacteria belonging to this genus were found in different reactors treating landfill
606 leachate and were mainly related to nitrogen and phosphorous cycles (Xu et al.,
607 2018; Mu et al., 2022), suggesting a great ability to adapt to complex environments.

608 Finally, *Sphaerochaeta* was a genus present in all samples after the contact with raw
609 LL. *Sphaerochaeta* is a strictly fermentative genus which produces volatile fatty
610 acids, ethanol, hydrogen, and CO₂ by fermenting complex organic compounds (Zhou
611 et al., 2017). Moreover, *Sphaerochaeta* has been previously reported as the
612 predominant bacteria in landfill leachate (Wong et al., 2019; Zhao et al., 2021;
613 Nimonkar et al., 2022), showing high resilience after the exposure to adverse
614 conditions.

615 On the other hand, on the basis of our 16S rRNA sequences, we utilized the Faprotax
616 tool in order to perforym a prediction of the main potential metabolisms ruling the
617 microbial communities of adapted and non-adapted compost samples before and
618 after their exposition to raw LL. Our results showed that the metabolisms related to
619 chemoheterotrophy, fermentation and the nitrogen cycle were the most relevant in
620 all samples (Table S2). Furthermore, in samples exposed to raw LL from adapted
621 and non-adapted composts, the most abundant metabolisms were related to
622 anaerobic pathways, which might play important roles in degrading complex organic
623 molecules into easily degradable substances (Zhao et al., 2021). Particularly,
624 samples from non-adapted composts were characterized by routes related to
625 nitrogen and methane metabolisms (Figure 9), a trend that has already been
626 observed in composting processes (Hoang et al., 2022). However, when these
627 samples were exposed to raw LL, those metabolisms were lost and enriched with
628 routes related to sulfur cycle, which has been previously associated to the presence
629 of iron (Long et al., 2016), as well as to plastic, hydrocarbon and aromatic
630 compounds degradation, and ligninolysis and cellulolysis metabolisms, implying
631 high activities of carbon-related metabolisms and the biotransformation of organic
632 substances (Toledo et al., 2017; Zhao et al., 2021). In contrast, in the preadapted
633 compost sample, all these last metabolisms were found from the very beginning and

634 once it was in contact with raw LL, the prevailing pathways related to hydrocarbon
 635 degradation. In summary, both phylogenetic and metabolic results showed that, after
 636 being exposed to raw LL, microbial communities were enriched with groups able to
 637 use recalcitrant material indifferently if the biological sample was preadapted to LL
 638 or not, thus the DOC removal and the degradation of complex compounds and heavy
 639 metals were optimized with a minimal cost. The presence of *Pseudomonas*,
 640 *Chryseolinea*, and *Sphaerochaeta* as the dominant genera in the microbial
 641 community was found to have the best removal effect, considering the community
 642 diversity and ability to recover after exposure to raw landfill leachate. When these
 643 three genera were predominant, the most prevalent metabolisms in the microbial
 644 community were related to the degradation of complex organic compounds found in
 645 the LL.

646

647

648 Figure 9. Main representative metabolisms in microbial communities from adapted
649 and non-adapted compost samples before (no LL) and after (LL) being exposed to
650 raw LL. The diameter of the circles represents the prevalence of each metabolism in
651 the sample.

652

653 **4. Conclusions**

654 The different pretreatments carried out allowed a high removal of organic matter and
655 heavy metals in the LL. The removal of organic matter was observed along all the
656 pretreatments, although in the case of copper and iron, the removal was especially
657 due to the coagulation/flocculation and filtration processes. The contact of LL with
658 the compost produced an enhancement of humic acids throughout time in the
659 bioreactors, which stimulates the removal of toxic material in this polluted water. The
660 biological treatment with compost reached a higher removal of COD and iron when
661 coagulation/flocculation plus filtration plus photo-Fenton as pretreatment processes
662 were performed. On the other hand, the highest copper removal was obtained when
663 the LL was pretreated by coagulation/flocculation before the biological process. In
664 summary, the toxicity of the raw LL was reduced by the action of the pretreatments
665 and the biological treatment carried out, due to the removal of toxic compounds,
666 such as copper and recalcitrant organic matter.

667 The biological process applied to raw LL led to the lowest costs, but when this
668 process was applied to a LL submitted to all the pretreatments, the operational costs
669 raised due to the increase of reagents. Otherwise, the energy consumption was
670 similar for all the experiments, since all of them included an aerated bioreactor.

671 Concerning the microbial community, it was able to adapt to raw LL, showing a high
672 tolerance and resilience to toxic conditions, both in the compost previously in contact
673 with LL or not, though this item could affect the species composition of the
674 population. However, the genus *Sphaerochaeta* was able to hold up in all the studied
675 conditions. The prediction of microbial metabolisms also showed a remarkable ability
676 from microorganisms to remove and metabolize different complex and toxic
677 substances.

678 Thus, we can conclude that the application of this airlift bioreactor allows an effective
679 removal of pollutants in the LL with a minimal cost.

680

681 **5. Acknowledgments**

682 The authors wish to thank to the Chilean Ministry of Education and its Regular
683 Fondecyt N° 1210841, for the financial support and the Central Laboratory for Marine

684 Aquaculture of the Marine Sciences Department of the Universidad Católica del
685 Norte for equipment support. Elena H. del Amo is a Margarita Salas fellow from the
686 Spanish Government (REQ2021). This study was also supported by grant
687 MICOLOR (PID2021-125469NB-C32) from the Spanish Ministry of Science and
688 Innovation (MICIN) to OS.

689

690 **References**

691 Agabo-García, C., Repetto, G., Albqmi, M., Hodaifa, G., 2023. Evaluation of the
692 olive mill wastewater treatment based on advanced oxidation processes
693 (AOPs), flocculation, and filtration. *J. Environ. Chem. Eng.* 11, 109789.
694 <https://doi.org/10.1016/j.jece.2023.109789>

695 Alfaia, R.G.S.M., Nascimento, M.M.P., Bila, D.M., Campos, J.C., 2019.
696 Coagulation/flocculation as a pretreatment of landfill leachate for minimizing
697 fouling in membrane processes. *Desalin. Water Treat.* 159, 53–59.
698 <https://doi.org/10.5004/dwt.2019.24280>

699 Asadi, A., Zinatizadeh, A.A., van Loosdrecht, M., 2017. Effects of operational
700 models (batch, continuous and CFID modes) on the performance of a single
701 A2O airlift bioreactor for treatment of milk processing wastewater. *Chem. Eng.
702 Res. Des.* <https://doi.org/10.1016/j.cherd.2017.08.004>

703 Astorch-Cardona, A., Guerre, M., Dolla, A., Chavagnac, V., Rommevaux, C., 2023.
704 Spatial comparison and temporal evolution of two marine iron-rich microbial
705 mats from the Lucky Strike Hydrothermal Field, related to environmental
706 variations. *Front. Mar. Sci.* 10.

707 Bai, F., Tian, H., Ma, J., 2020. Landfill leachate treatment through the combination
708 of genetically engineered bacteria *Rhodococcus erythropolis* expressing Nirs
709 and AMO and membrane filtration processes. *Environ. Pollut.*
710 <https://doi.org/10.1016/j.envpol.2020.114061>

711 Bremner, C., Cochrane, T.A., McGuigan, P., Bello-Mendoza, R., 2020. Removal of
712 dissolved heavy metals from stormwater by filtration with granular recycled
713 glass and mussel shell with and without microalgae biofilm. *Environ. Technol.
714 Innov.* 18, 100662. <https://doi.org/10.1016/J.ETI.2020.100662>

715 Bu, G., Xian, P., Zhan, L., Feng, X., Tang, H., 2016. Optimizing operating
716 conditions for advanced treatment of landfill leachate using the coagulation-
717 fenton oxidation method. *Polish J. Environ. Stud.* 25, 1863–1871.
718 <https://doi.org/10.15244/pjoes/63067>

719 Callahan, B.J., McMurdie, P.J., Rosen, M.J., Han, A.W., Johnson, A.J.A., Holmes,
720 S.P., 2016. DADA2: High-resolution sample inference from Illumina amplicon
721 data. *Nat. Methods* 13, 581–583. <https://doi.org/10.1038/nmeth.3869>

722 Carbajo, J., Silveira, J.E., Pliego, G., Zazo, J.A., Casas, J.A., 2021. Increasing

723 Photo-Fenton process Efficiency: The effect of high temperatures. *Sep. Purif.*
724 *Technol.* 271, 118876. <https://doi.org/10.1016/j.seppur.2021.118876>

725 Cerdá, A., Artola, A., Font, X., Barrena, R., Gea, T., Sánchez, A., 2018.
726 Composting of food wastes: Status and challenges. *Bioresour. Technol.*
727 <https://doi.org/10.1016/j.biortech.2017.06.133>

728 Chen, D., Liu, H., Yu, Y., Yu, N., Ye, J., Cheng, Z., 2021. Enhanced biodegradation
729 of n-hexane in a two-phase partitioning bioreactor inoculated with
730 *Pseudomonas mendocina* NX-1 under chitosan stimulation. *J. Hazard. Mater.*
731 419, 126330. <https://doi.org/10.1016/j.jhazmat.2021.126330>

732 Cheng, S.Y., Show, P.L., Juan, J.C., Ling, T.C., Lau, B.F., Lai, S.H., Ng, E.P.,
733 2020. Sustainable landfill leachate treatment: Optimize use of guar gum as
734 natural coagulant and floc characterization. *Environ. Res.* 188.
735 <https://doi.org/10.1016/j.envres.2020.109737>

736 Chu, D., Ye, Z.L., Chen, S., 2020. Interactions among low-molecular-weight
737 organics, heavy metals, and Fe(III) during coagulation of landfill leachate
738 nanofiltration concentrate. *Waste Manag.* 104, 51–59.
739 <https://doi.org/10.1016/j.wasman.2020.01.015>

740 da Costa, F.M., Daflon, S.D.A., Bila, D.M., da Fonseca, F.V., Campos, J.C., 2018.
741 Evaluation of the biodegradability and toxicity of landfill leachates after
742 pretreatment using advanced oxidative processes. *Waste Manag.*
743 <https://doi.org/10.1016/j.wasman.2018.02.030>

744 Dang, Y., Ye, J., Mu, Y., Qiu, B., Sun, D., 2013. Effective anaerobic treatment of
745 fresh leachate from MSW incineration plant and dynamic characteristics of
746 microbial community in granular sludge. *Appl. Microbiol. Biotechnol.* 97,
747 10563–10574. <https://doi.org/10.1007/s00253-013-4792-2>

748 De, S., Hazra, T., Dutta, A., 2019. Sustainable treatment of municipal landfill
749 leachate by combined association of air stripping, Fenton oxidation, and
750 enhanced coagulation. *Environ. Monit. Assess.*
751 <https://doi.org/10.1007/s10661-018-7171-8>

752 Di Iaconi, C., Ramadori, R., Lopez, A., 2006. Combined biological and chemical
753 degradation for treating a mature municipal landfill leachate. *Biochem. Eng. J.*
754 <https://doi.org/10.1016/j.bej.2006.06.002>

755 Espinoza-Quiñones, F.R., Góes Trigueros, D.E., Giordani da Costa, S.I., Colombo,
756 A., Módenes, A.N., Borba, F.H., 2019. Treatment of sanitary landfill leachate
757 by the combination of photo-Fenton and biological processes. *J. Clean. Prod.*
758 214, 145–153. <https://doi.org/10.1016/j.jclepro.2018.12.310>

759 Feranchuk, S., Belkova, N., Potapova, U., Kuzmin, D., Belikov, S., 2018.
760 Evaluating the use of diversity indices to distinguish between microbial
761 communities with different traits. *Res. Microbiol.* 169, 254–261.
762 <https://doi.org/10.1016/j.resmic.2018.03.004>

763 Gabarró, J., Hernández-del Amo, E., Gich, F., Ruscalleda, M., Balaguer, M.D.,
764 Colprim, J., 2013. Nitrous oxide reduction genetic potential from the microbial
765 community of an intermittently aerated partial nitritation SBR treating mature
766 landfill leachate. *Water Res.* 47, 7066–7077.
767 <https://doi.org/10.1016/j.watres.2013.07.057>

768 Galitskaya, P., Biktasheva, L., Saveliev, A., Grigoryeva, T., Boulygina, E.,
769 Selivanovskaya, S., 2017. Fungal and bacterial successions in the process of
770 co-composting of organic wastes as revealed by 454 pyrosequencing. *PLoS*
771 One 12, e0186051. <https://doi.org/10.1371/journal.pone.0186051>

772 Gao, Y., Yu, T., Ai, F., Ji, C., Wu, Y., Huang, X., Zheng, X., Yan, F., 2023. *Bacillus*
773 *coagulans* XY2 ameliorates copper-induced toxicity by bioadsorption, gut
774 microbiota and lipid metabolism regulation. *J. Hazard. Mater.* 445, 130585.
775 <https://doi.org/10.1016/j.jhazmat.2022.130585>

776 Gautam, P., Kumar, S., 2021. Characterisation of Hazardous Waste Landfill
777 Leachate and its Reliance on Landfill Age and Seasonal Variation: A Statistical
778 Approach. *J. Environ. Chem. Eng.* 9, 105496.
779 <https://doi.org/10.1016/J.JECE.2021.105496>

780 Genethliou, C., Tatoulis, T., Charalampous, N., Dailianis, S., Tekerlekopoulou,
781 A.G., Vayenas, D. V., 2023. Treatment of raw sanitary landfill leachate using a
782 hybrid pilot-scale system comprising adsorption, electrocoagulation and
783 biological process. *J. Environ. Manage.* 330, 117129.
784 <https://doi.org/10.1016/J.JENVMAN.2022.117129>

785 Ghanbarzadeh Lak, M., Sabour, M.R., Ghafari, E., Amiri, A., 2018. Energy
786 consumption and relative efficiency improvement of Photo-Fenton –
787 Optimization by RSM for landfill leachate treatment, a case study. *Waste*
788 *Manag.* <https://doi.org/10.1016/j.wasman.2018.07.029>

789 Gholami, F., Zinatizadeh, A.A., Zinadini, S., McKay, T., Sibali, L., 2020. An
790 innovative jet loop-airlift bioreactor for simultaneous removal of carbon and
791 nitrogen from soft drink industrial wastewater: Process performance and
792 kinetic evaluation. *Environ. Technol. Innov.*
793 <https://doi.org/10.1016/j.eti.2020.100772>

794 Hashemi, B., Horn, S.J., Lamb, J.J., Lien, K.M., 2022. Potential role of sulfide
795 precipitates in direct interspecies electron transfer facilitation during anaerobic
796 digestion of fish silage. *Bioresour. Technol. Reports* 20, 101264.
797 <https://doi.org/10.1016/j.biteb.2022.101264>

798 Hassan, M., Zhao, Y., Xie, B., 2016. Employing TiO₂ photocatalysis to deal with
799 landfill leachate: Current status and development. *Chem. Eng. J.*
800 <https://doi.org/10.1016/j.cej.2015.09.093>

801 Hoang, H.G., Thuy, B.T.P., Lin, C., Vo, D.-V.N., Tran, H.T., Bahari, M.B., Le, V.G.,
802 Vu, C.T., 2022. The nitrogen cycle and mitigation strategies for nitrogen loss
803 during organic waste composting: A review. *Chemosphere* 300, 134514.

804 <https://doi.org/10.1016/j.chemosphere.2022.134514>

805 Hu, D., Zhao, Y., Wang, H., Min, H., Cui, Y., Luo, K., Zhang, L., Liu, W., Zhang, Y.,
806 2020. Multiple draft tubes airlift loop membrane bioreactor as an efficient
807 system for acidic 7-amino cephalosporanic acid (7-ACA) wastewater
808 treatment. *Bioresour. Technol.* 304, 123014.
809 <https://doi.org/10.1016/J.BIORTECH.2020.123014>

810 Ibrahim, A., Yaser, A.Z., 2019. Colour removal from biologically treated landfill
811 leachate with tannin-based coagulant. *J. Environ. Chem. Eng.* 7, 103483.
812 <https://doi.org/10.1016/j.jece.2019.103483>

813 Imron, M.F., Kurniawan, S.B., Abdullah, S.R.S., 2021. Resistance of bacteria
814 isolated from leachate to heavy metals and the removal of Hg by
815 *Pseudomonas aeruginosa* strain FZ-2 at different salinity levels in a batch
816 biosorption system. *Sustain. Environ. Res.* 31, 14.
817 <https://doi.org/10.1186/s42834-021-00088-6>

818 Iskander, S.M., Zhao, R., Pathak, A., Gupta, A., Pruden, A., Novak, J.T., He, Z.,
819 2018. A review of landfill leachate induced ultraviolet quenching substances:
820 Sources, characteristics, and treatment. *Water Res.* 145, 297–311.
821 <https://doi.org/10.1016/j.watres.2018.08.035>

822 Kanafin, Y.N., Abdirova, P., Arkhangelsky, E., Dionysiou, D.D., Poulopoulos, S.G.,
823 2023. UVA and goethite activated persulfate oxidation of landfill leachate.
824 *Chem. Eng. J. Adv.* 14, 100452. <https://doi.org/10.1016/j.cej.2023.100452>

825 Kim, J.-J., Alkawally, M., Brady, A.L., Rijpstra, W.I.C., Sinninghe Damsté, J.S.,
826 Dunfield, P.F., 2013. *Chryseolinea serpens* gen. nov., sp. nov., a member of
827 the phylum Bacteroidetes isolated from soil. *Int. J. Syst. Evol. Microbiol.* 63,
828 654–660. <https://doi.org/10.1099/ijns.0.039404-0>

829 Klein, K., Kivi, A., Dulova, N., Zekker, I., Mölder, E., Tenno, T., Trapido, M., Tenno,
830 T., 2017. A pilot study of three-stage biological–chemical treatment of landfill
831 leachate applying continuous ferric sludge reuse in Fenton-like process. *Clean
Technol. Environ. Policy.* <https://doi.org/10.1007/s10098-016-1245-5>

833 Koeck, D.E., Maus, I., Wibberg, D., Winkler, A., Zverlov, V. V., Liebl, W., Pühler,
834 A., Schwarz, W.H., Schlüter, A., 2016. Complete Genome Sequence of
835 *Herbinix luporum* SD1D, a New Cellulose-Degrading Bacterium Isolated from
836 a Thermophilic Biogas Reactor. *Genome Announc.* 4, e00687-16.
837 <https://doi.org/10.1128/genomeA.00687-16>

838 Kong, Y., Ma, Y., Ding, L., Ma, J., Zhang, H., Chen, Z., Shen, J., 2021. Coagulation
839 behaviors of aluminum salts towards humic acid: Detailed analysis of
840 aluminum speciation and transformation. *Sep. Purif. Technol.* 259, 118137.
841 <https://doi.org/10.1016/J.SEPPUR.2020.118137>

842 Kuppusamy, S., Thavamani, P., Venkateswarlu, K., Lee, Y.B., Naidu, R., Megharaj,
843 M., 2017. Remediation approaches for polycyclic aromatic hydrocarbons
844 (PAHs) contaminated soils: Technological constraints, emerging trends and

845 future directions. *Chemosphere*.
846 <https://doi.org/10.1016/j.chemosphere.2016.10.115>

847 Kwak, J. II, Nam, S.H., Kim, L., An, Y.J., 2020. Potential environmental risk of solar
848 cells: Current knowledge and future challenges. *J. Hazard. Mater.* 392,
849 122297. <https://doi.org/10.1016/J.JHAZMAT.2020.122297>

850 Lee, H., Segets, D., Süß, S., Peukert, W., Chen, S.C., Pui, D.Y.H., 2020. Effects of
851 filter structure, flow velocity, particle concentration and fouling on the retention
852 efficiency of ultrafiltration for sub-20 nm gold nanoparticles. *Sep. Purif.*
853 *Technol.* 241, 116689. <https://doi.org/10.1016/J.SEPPUR.2020.116689>

854 Li, R., Wang, J.J., Zhang, Z., Shen, F., Zhang, G., Qin, R., Li, X., Xiao, R., 2012.
855 Nutrient transformations during composting of pig manure with bentonite.
856 *Bioresour. Technol.* <https://doi.org/10.1016/j.biortech.2012.06.065>

857 Liu, T., Sun, L., Müller, B., Schnürer, A., 2017. Importance of inoculum source and
858 initial community structure for biogas production from agricultural substrates.
859 *Bioresour. Technol.* 245, 768–777.
860 <https://doi.org/10.1016/j.biortech.2017.08.213>

861 Liu, Y., Chen, Y., Da, Y., Xie, F., Wang, J., 2022. Advanced treatment of landfill
862 leachate using integrated coagulation/ photo-Fenton process through in-situ
863 generated nascent Al³⁺ and H₂O₂ by Cl, N co-doped aluminum-graphite
864 composite. *Appl. Catal. B Environ.* 304, 121003.
865 <https://doi.org/10.1016/J.APCATB.2021.121003>

866 Liu, Y., Zhang, K., Zhang, H., Zhou, K., Chang, Y., Zhan, Y., 2023. Humic acid and
867 phosphorus fractions transformation regulated by carbon-based materials in
868 composting steered its potential for phosphorus mobilization in soil 325.
869 <https://doi.org/10.1016/j.jenvman.2022.116553>

870 Liu, Z., Dang, Y., Li, C., Sun, D., 2015. Inhibitory effect of high NH₄⁺-N
871 concentration on anaerobic biotreatment of fresh leachate from a municipal
872 solid waste incineration plant. *Waste Manag.*
873 <https://doi.org/10.1016/j.wasman.2015.06.031>

874 Lo, J.L.C., 2010. Ecotoxicology and Environmental Safety A comparative study of
875 different tests for biodegradability enhancement determination during AOP
876 treatment of recalcitrant toxic aqueous solutions 73, 1189–1195.
877 <https://doi.org/10.1016/j.ecoenv.2010.07.021>

878 Long, Y.-Y., Du, Y., Fang, Y., Xu, J., He, Y.-N., Shen, D.-S., 2016. Effect of
879 migration and transformation of iron on the endogenous reduction of H₂S in
880 anaerobic landfill. *Waste Manag.* 53, 76–81.
881 <https://doi.org/10.1016/j.wasman.2015.11.008>

882 Louca, S., Parfrey, L.W., Doebeli, M., 2016. Decoupling function and taxonomy in
883 the global ocean microbiome. *Science* 353, 1272–1277.
884 <https://doi.org/10.1126/science.aaf4507>

885 Luo, G., Li, L., Friman, V.P., Guo, J., Guo, S., Shen, Q., Ling, N., 2018. Organic
886 amendments increase crop yields by improving microbe-mediated soil
887 functioning of agroecosystems: A meta-analysis. *Soil Biol. Biochem.*
888 <https://doi.org/10.1016/j.soilbio.2018.06.002>

889 Ma, B., Ke, Q., Ulbricht, M., 2023. Simultaneous removal of natural organic matters
890 and copper (II) with ultrafiltration for drinking water treatment. *J. Memb. Sci.*
891 671, 121408. <https://doi.org/10.1016/J.MEMSCI.2023.121408>

892 McCarty, P.L., Bae, J., Kim, J., 2011. Domestic wastewater treatment as a net
893 energy producer-can this be achieved? *Environ. Sci. Technol.*
894 <https://doi.org/10.1021/es2014264>

895 McMurdie, P.J., Holmes, S., 2013. phyloseq: An R Package for Reproducible
896 Interactive Analysis and Graphics of Microbiome Census Data. *PLoS One* 8,
897 e61217. <https://doi.org/10.1371/journal.pone.0061217>

898 Mendes, C.E., Badino, A.C., 2015. Oxygen transfer in different pneumatic
899 bioreactors containing viscous Newtonian fluids. *Chem. Eng. Res. Des.*
900 <https://doi.org/10.1016/j.cherd.2014.09.002>

901 Miao, L., Yang, G., Tao, T., Peng, Y., 2019. Recent advances in nitrogen removal
902 from landfill leachate using biological treatments – A review. *J. Environ.*
903 *Manage.* <https://doi.org/10.1016/j.jenvman.2019.01.057>

904 Michalska, J., Piński, A., Żur, J., Mrozik, A., 2020. Analysis of the Bioaugmentation
905 Potential of *Pseudomonas putida* OR45a and *Pseudomonas putida* KB3 in the
906 Sequencing Batch Reactors Fed with the Phenolic Landfill Leachate. *Water*
907 12, 906. <https://doi.org/10.3390/w12030906>

908 Mirghorayshi, M., Akbar, A., Loosdrecht, M. Van, 2020. Simultaneous
909 biodegradability enhancement and high-efficient nitrogen removal in an
910 innovative single stage anaerobic / anoxic / aerobic hybrid airlift bioreactor (
911 HALBR) for composting leachate treatment : Process modeling and
912 optimization. *Chem. Eng. J.* 127019. <https://doi.org/10.1016/j.cej.2020.127019>

913 Mota, A., Ferreira, A., Vicente, A.A., Sechet, P., Martins, J.M.F., Teixeira, J.A.,
914 Cartellier, A., 2015. Customization of an optical probe device and validation of
915 a signal processing procedure to study gas-liquid-solid flows. Application to a
916 three-phase internal-loop gas-lift Bioreactor. *Chem. Eng. Sci.*
917 <https://doi.org/10.1016/j.ces.2015.08.046>

918 Mu, S., Chen, X., Song, B., Wu, C., Li, Q., 2022. Enhanced performance and
919 mechanism of the combined process of ozonation and a semiaerobic aged
920 refuse biofilter for mature landfill leachate treatment. *Chemosphere* 308,
921 136432. <https://doi.org/10.1016/j.chemosphere.2022.136432>

922 Neu, A.T., Allen, E.E., Roy, K., 2021. Defining and quantifying the core
923 microbiome: Challenges and prospects. *Proc. Natl. Acad. Sci.* 118,
924 e2104429118. <https://doi.org/10.1073/pnas.2104429118>

925 Nimonkar, Y.S., Kajale, S., Dake, M., Ranade, D.R., Yadav, K.K., Kumar, R.,
926 Prakash, O., 2022. A culture-based and culture-independent approach to the
927 study of landfill leachate bacterial and archaeal communities. *Anaerobe* 77,
928 102626. <https://doi.org/10.1016/j.anaerobe.2022.102626>

929 Orellana, E., Guerrero, L.D., Davies-Sala, C., Altina, M., Pontiggia, R.M., Erijman,
930 L., 2022. Extracellular hydrolytic potential drives microbiome shifts during
931 anaerobic co-digestion of sewage sludge and food waste. *Bioresour. Technol.*
932 343, 126102. <https://doi.org/10.1016/j.biortech.2021.126102>

933 Paliwal, V., Raju, S.C., Modak, A., Phale, P.S., Purohit, H.J., 2014. *Pseudomonas*
934 *putida* CSV86: A Candidate Genome for Genetic Bioaugmentation. *PLoS One*
935 9, e84000. <https://doi.org/10.1371/journal.pone.0084000>

936 Pennanen, T., Srivastava, V., Sillanpää, M., Sainio, T., 2020. Compost: Potent
937 biosorbent for the removal of heavy metals from industrial and landfill
938 stormwater. *J. Clean. Prod.* 273, 122736.
939 <https://doi.org/10.1016/J.JCLEPRO.2020.122736>

940 Poblete, R., Cortes, E., Bakit, J., Luna-Galiano, Y., 2020. Use of fish scales as an
941 adsorbent of organic matter present in the treatment of landfill leachate. *J.*
942 *Chem. Technol. Biotechnol.* <https://doi.org/10.1002/jctb.6349>

943 Poblete, R., Cortes, E., Bakit, J., Luna-Galiano, Y., 2019. Landfill leachate
944 treatment using combined fish scales based activated carbon and solar
945 advanced oxidation processes. *Process Saf. Environ. Prot.* 123, 253–262.
946 <https://doi.org/10.1016/j.psep.2019.01.017>

947 Poblete, R., Pérez, N., 2020. Use of sawdust as pretreatment of photo-Fenton
948 process in the depuration of landfill leachate. *J. Environ. Manage.* 253.
949 <https://doi.org/10.1016/j.jenvman.2019.109697>

950 Rahman, M.S., Hoque, M.N., Puspo, J.A., Islam, M.R., Das, N., Siddique, M.A.,
951 Hossain, M.A., Sultana, M., 2021. Microbiome signature and diversity
952 regulates the level of energy production under anaerobic condition. *Sci. Rep.*
953 11, 19777. <https://doi.org/10.1038/s41598-021-99104-3>

954 Reddy, C.V., Rao, D.S., Kalamdhad, A.S., 2022. Combined treatment of high-
955 strength fresh leachate from municipal solid waste landfill using coagulation-
956 flocculation and fixed bed upflow anaerobic filter. *J. Water Process Eng.* 46,
957 102554. <https://doi.org/10.1016/J.JWPE.2021.102554>

958 Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Wang, J., Deng, Y., Liu, Y., Peng,
959 B., 2018. The potential impact on the biodegradation of organic pollutants from
960 composting technology for soil remediation. *Waste Manag.*
961 <https://doi.org/10.1016/j.wasman.2017.11.032>

962 Reshadi, M.A.M., Bazargan, A., McKay, G., 2020. A review of the application of
963 adsorbents for landfill leachate treatment: Focus on magnetic adsorption. *Sci.*
964 *Total Environ.* 731, 138863. <https://doi.org/10.1016/j.scitotenv.2020.138863>

965 Righetto, I., Al-Juboori, R.A., Kaljunen, J.U., Mikola, A., 2021. Multipurpose
966 treatment of landfill leachate using natural coagulants - Pretreatment for
967 nutrient recovery and removal of heavy metals and micropollutants. *J. Environ.*
968 *Chem. Eng.* 9, 105213. <https://doi.org/10.1016/j.jece.2021.105213>

969 Rohers, F., Dalsasso, R.L., Nadaleti, W.C., Matias, M.S., de Castilhos Júnior, A.B.,
970 2021. Physical-chemical pre-treatment of sanitary landfill raw leachate by
971 direct ascending filtration. *Chemosphere* 285, 131362.
972 <https://doi.org/10.1016/J.CHEMOSPHERE.2021.131362>

973 Rojo, F., 2010. Carbon catabolite repression in *Pseudomonas*: optimizing
974 metabolic versatility and interactions with the environment. *FEMS Microbiol.*
975 *Rev.* 34, 658–684. <https://doi.org/10.1111/j.1574-6976.2010.00218.x>

976 Sawyerr, N., Trois, C., Oyebode, O., Bwapwa, J.K., 2021. Denitrification of
977 leachate using composted domestic waste at different levels of stability: A
978 batch test investigation. *Sci. African* 14, e00989.
979 <https://doi.org/10.1016/J.SCIAF.2021.E00989>

980 Scaglia, B., Acutis, M., Adani, F., 2011. Precision determination for the dynamic
981 respirometric index (DRI) method used for biological stability evaluation on
982 municipal solid waste and derived products. *Waste Manag.*
983 <https://doi.org/10.1016/j.wasman.2010.08.024>

984 Scaglia, B., Erriquens, F.G., Gigliotti, G., Taccari, M., 2007. Precision
985 determination for the specific oxygen uptake rate (SOUR) method used for
986 biological stability evaluation of compost and biostabilized products 98, 706–
987 713. <https://doi.org/10.1016/j.biortech.2006.01.021>

988 Song, J., Zhang, W., Gao, J., Hu, X., Zhang, C., He, Q., Yang, F., Wang, H.,
989 Wang, X., Zhan, X., 2020. A pilot-scale study on the treatment of landfill
990 leachate by a composite biological system under low dissolved oxygen
991 conditions: Performance and microbial community. *Bioresour. Technol.*
992 <https://doi.org/10.1016/j.biortech.2019.122344>

993 Spiniello, I., De Carluccio, M., Castiglione, S., Amineva, E., Kostryukova, N.,
994 Cicatelli, A., Rizzo, L., Guarino, F., 2023. Landfill leachate treatment by a
995 combination of a multiple plant hybrid constructed wetland system with a solar
996 photoFenton process in a raceway pond reactor. *J. Environ. Manage.* 331,
997 117211. <https://doi.org/10.1016/J.JENVMAN.2022.117211>

998 Sun, S., Abdellah, Y.A.Y., Miao, L., Wu, B., Ma, T., Wang, Y., Zang, H., Zhao, X.,
999 Li, C., 2022. Impact of microbial inoculants combined with humic acid on the
1000 fate of estrogens during pig manure composting under low-temperature
1001 conditions. *J. Hazard. Mater.* 424, 127713.
1002 <https://doi.org/10.1016/J.JHAZMAT.2021.127713>

1003 Sun, Y., Zhou, S., Chiang, P.-C., Shah, K.J., 2019. Evaluation and optimization of
1004 enhanced coagulation process: Water and energy nexus. *Water-Energy*
1005 *Nexus* 2, 25–36. <https://doi.org/10.1016/J.WEN.2020.01.001>

1006 Tanahashi, T., Murase, J., Matsuya, K., Hayashi, M., Kimura, M., Asakawa, S.,
1007 2005. Bacterial Communities Responsible for the Decomposition of Rice Straw
1008 Compost in a Japanese Rice Paddy Field Estimated by DGGE Analysis of
1009 Amplified 16S rDNA and 16S rRNA Fragments. *Soil Sci. Plant Nutr.* 51, 351–
1010 360. <https://doi.org/10.1111/j.1747-0765.2005.tb00040.x>

1011 Teow, Y.H., Chiah, Y.H., Ho, K.C., Mahmoudi, E., 2022. Treatment of
1012 semiconductor-industry wastewater with the application of ceramic membrane
1013 and polymeric membrane. *J. Clean. Prod.* 337, 130569.
1014 <https://doi.org/10.1016/J.JCLEPRO.2022.130569>

1015 Toledo, M., Gutiérrez, M.C., Siles, J.A., García-Olmo, J., Martín, M.A., 2017.
1016 Chemometric analysis and NIR spectroscopy to evaluate odorous impact
1017 during the composting of different raw materials. *J. Clean. Prod.* 167, 154–
1018 162. <https://doi.org/10.1016/j.jclepro.2017.08.163>

1019 Tombola, R., Buttiglieri, G., Auset, M., Gonzalez-Olmos, R., 2019. Recycled
1020 corrugated wire hose cover as biological carriers for greywater treatment in a
1021 sequential batch biofilm reactor. *J. Environ. Manage.* 240, 475–484.
1022 <https://doi.org/10.1016/J.JENVMAN.2019.02.116>

1023 Tripathy, B.K., Kumar, M., 2022. Leachate treatment using sequential microwave
1024 and algal photo-bioreactor: Effect of pretreatment on reactor performance and
1025 biomass productivity. *J. Environ. Manage.* 311, 114830.
1026 <https://doi.org/10.1016/J.JENVMAN.2022.114830>

1027 Turan, A., Kobya, M., Iskurt, C., Gengec, E., Khataee, A., 2023. A techno-
1028 economical assessment of treatment by coagulation-flocculation with
1029 aluminum and iron-bases coagulants of landfill leachate membrane
1030 concentrates. *Chemosphere* 314, 137750.
1031 <https://doi.org/10.1016/J.CHEMOSPHERE.2023.137750>

1032 Villaseñor, J., Pérez, M.A., Fernández, F.J., Puchalski, C.M., 2011. Bioresource
1033 Technology Monitoring respiration and biological stability during sludge
1034 composting with a modified dynamic respirometer 102, 6562–6568.
1035 <https://doi.org/10.1016/j.biortech.2011.03.080>

1036 Wang, G., Yang, Y., Kong, Y., Ma, R., Yuan, J., Li, G., 2022. Key factors affecting
1037 seed germination in phytotoxicity tests during sheep manure composting with
1038 carbon additives. *J. Hazard. Mater.* 421, 126809.
1039 <https://doi.org/10.1016/J.JHAZMAT.2021.126809>

1040 Wang, J., Wang, C., Shi, A., Shi, Y., Yue, D., Zhang, L., Wang, J., Wang, H.,
1041 Wang, C., Cui, D., 2023. An innovative approach for landfill leachate treatment
1042 based on selective adsorption of humic acids with carbon nitride. *Chem. Eng. J.* 461, 142090. <https://doi.org/10.1016/J.CEJ.2023.142090>

1044 Warmeling, H., Behr, A., Vorholt, A.J., 2016. Jet loop reactors as a versatile reactor
1045 set up - Intensifying catalytic reactions: A review. *Chem. Eng. Sci.*
1046 <https://doi.org/10.1016/j.ces.2016.04.032>

1047 Wdowczyk, A., Szymańska-Pulikowska, A., 2021. Analysis of the possibility of
1048 conducting a comprehensive assessment of landfill leachate contamination
1049 using physicochemical indicators and toxicity test. *Ecotoxicol. Environ. Saf.*
1050 221, 112434. <https://doi.org/10.1016/J.ECOENV.2021.112434>

1051 Wei, T., Zhao, B., Zhou, Z., Di, H., Shumba, T., Cui, M., Zhou, Z., Xu, X., Qi, M.,
1052 Tang, J., Ndungu, P.G., Qiao, X., Zhang, Z., 2023. Removal of organics and
1053 ammonia in landfill leachate via catalytic oxyPyrolysis over MOF-derived
1054 $\text{Fe}_2\text{O}_3@\text{SiO}_2\text{-Al}_2\text{O}_3$. *Sep. Purif. Technol.* 305, 122467.
1055 <https://doi.org/10.1016/j.seppur.2022.122467>

1056 Welter, J.B., Soares, E.V., Rotta, E.H., Seibert, D., 2018. Bioassays and Zahn-
1057 Wellens test assessment on landfill leachate treated by photo-Fenton process.
1058 *J. Environ. Chem. Eng.* <https://doi.org/10.1016/j.jece.2018.01.059>

1059 Wijekoon, P., Koliyabandara, P.A., Cooray, A.T., Lam, S.S., Athapattu, B.C.L.,
1060 Vithanage, M., 2022. Progress and prospects in mitigation of landfill leachate
1061 pollution: Risk, pollution potential, treatment and challenges. *J. Hazard. Mater.*
1062 421, 126627. <https://doi.org/10.1016/j.jhazmat.2021.126627>

1063 Wong, Y.M., Show, P.L., Wu, T.Y., Leong, H.Y., Ibrahim, S., Juan, J.C., 2019.
1064 Production of bio-hydrogen from dairy wastewater using pretreated landfill
1065 leachate sludge as an inoculum. *J. Biosci. Bioeng.* 127, 150–159.
1066 <https://doi.org/10.1016/j.jbiosc.2018.07.012>

1067 Wu, S., Zhang, X., Lu, P., Zhang, D., 2022. Copper removal and elemental sulfur
1068 recovery from fracturing flowback water in a microbial fuel cell with an extra
1069 electrochemical anode. *Chemosphere* 303, 135128.
1070 <https://doi.org/10.1016/j.chemosphere.2022.135128>

1071 Xu, J., He, J., Wang, M., Li, L., 2018. Cultivation and stable operation of aerobic
1072 granular sludge at low temperature by sieving out the batt-like sludge.
1073 *Chemosphere* 211, 1219–1227.
1074 <https://doi.org/10.1016/j.chemosphere.2018.08.018>

1075 Xu, P., Wei, Y., Ma, C., Li, S., Guo, T., Wang, X., Li, W., 2020. Multi-factorial
1076 analysis of the removal of dichloromethane and toluene in an airlift packing
1077 bioreactor. *J. Environ. Manage.* <https://doi.org/10.1016/j.jenvman.2019.109665>

1078 Yadav, D., Singh, N.K., Pruthi, V., Kumar, P., 2020. Ensuring sustainability of
1079 conventional aerobic wastewater treatment system via bio-augmentation of
1080 aerobic bacterial consortium: An enhanced biological phosphorus removal
1081 approach. *J. Clean. Prod.* 262, 121328.
1082 <https://doi.org/10.1016/J.JCLEPRO.2020.121328>

1083 Yan, Z., Li, A., Shim, H., Wang, D., Cheng, S., Wang, Y., Li, M., 2022. Effect of
1084 ozone pretreatment on biogranulation with partial nitritation - Anammox two
1085 stages for nitrogen removal from mature landfill leachate. *J. Environ. Manage.*
1086 317, 115470. <https://doi.org/10.1016/J.JENVMAN.2022.115470>

1087 Yanto, D.H.Y., Tachibana, S., 2013. Biodegradation of petroleum hydrocarbons by

1088 a newly isolated Pestalotiopsis sp. NG007. *Int. Biodeterior. Biodegrad.*
1089 <https://doi.org/10.1016/j.ibiod.2013.09.008>

1090 Yen, H.W., Liu, Y.X., 2014. Application of airlift bioreactor for the cultivation of
1091 aerobic oleaginous yeast *Rhodotorula glutinis* with different aeration rates. *J.*
1092 *Biosci. Bioeng.* 118, 195–198. <https://doi.org/10.1016/J.JBIOSC.2014.01.002>

1093 Zahrim, A.Y., Azreen, I., Jie, S.S., Yoiying, C., Felijia, J., Hasmilah, H., Gloriana,
1094 C., Khairunis, I., 2018. 11 -Nanoparticles Enhanced Coagulation of Biologically
1095 Digested Leachate, in: *Nanotechnology in Water and Wastewater Treatment:*
1096 *Theory and Applications*. Elsevier, pp. 205–241. <https://doi.org/10.1016/B978-0-12-813902-8.00011-3>

1098 Zhang, F., Peng, Y., Wang, S., Wang, Z., Jiang, H., 2019. Efficient step-feed partial
1099 nitrification, simultaneous Anammox and denitrification (SPNAD) equipped
1100 with real-time control parameters treating raw mature landfill leachate. *J.*
1101 *Hazard. Mater.* <https://doi.org/10.1016/j.jhazmat.2018.09.066>

1102 Zhao, R., Liu, J., Feng, J., Li, X., Li, B., 2021. Microbial community composition
1103 and metabolic functions in landfill leachate from different landfills of China. *Sci.*
1104 *Total Environ.* 767, 144861. <https://doi.org/10.1016/j.scitotenv.2020.144861>

1105 Zhou, R., Liu, X., Luo, L., Zhou, Y., Wei, J., Chen, A., Tang, L., Wu, H., Deng, Y.,
1106 Zhang, F., Wang, Y., 2017. Remediation of Cu, Pb, Zn and Cd-contaminated
1107 agricultural soil using a combined red mud and compost amendment. *Int.*
1108 *Biodeterior. Biodegrad.* <https://doi.org/10.1016/j.ibiod.2017.01.023>

1109