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A B S T R A C T   

Developing efficient materials for the removal of boron from aqueous solutions is becoming an important task to 
overcome boron pollution. Herein, we present hierarchical alumina microspheres (HAM) as an outstanding 
adsorbent, synthesized via a microwave-assisted co-precipitation method. The microstructure, morphology, and 
textural characterization of the HAM particles carried out by X-ray diffraction (XRD), scanning electron mi-
croscopy (SEM), and transmission electron microscopy (TEM) revealed hollow γ-Al2O3 particles with a porous 
dandelion-like shape and an average size of 1.5 μm. The analysis of the adsorption data indicated that the 
adsorption was homogeneous in a single layer and that chemical adsorption was the controlling step in the 
process. The adsorption capacity obtained at an initial concentration of 800 mg⋅L− 1 was 51.60 mg⋅g− 1, and the 
theoretically calculated maximum adsorption capacity using the Langmuir model was 138.50 mg⋅g− 1, which 
outperforms previously reported adsorbents. The determination of thermodynamic parameters indicated that the 
adsorption is an exothermic and non-spontaneous process. The XPS spectra of HAM after adsorption indicated 
the formation of Al-O-B bonds. Of particular interest for industrial applications, the HAM adsorbent showed 
excellent selectivity for boron in the presence of competing cations or anions and at different ionic strengths. In 
addition, HAM maintained a high adsorption capacity after five consecutive adsorption/desorption cycles. These 
findings highlight the potential of HAM as a highly microporous material for boron removal in real industrial 
applications.   

1. Introduction 

Boron (B) is an essential micronutrient for plants and it is released 
into the environment from both natural processes (e.g., weathering of 
rocks and leaching of salt deposits) and anthropogenic activities (e.g., 
the production of glass, porcelain, semiconductors) [1,2]. The average 
boron concentration found in the environment varies strongly depend-
ing on the media: 9–85 mg⋅kg− 1 in soil [3], 4.5 mg⋅L− 1 in seawater [4], 
0.3–100 mg⋅L− 1 in groundwater [5], 0.01–200 mg⋅L− 1 in surface-water 
[6], and higher than 100 mg⋅L− 1 in sewage wastewater [7]. Unfortu-
nately, the presence of high concentrations of boron causes environ-
mental (e.g., acid rain and crop poisoning) and human health issues (e. 
g., kidney damage, anorexia, and diarrhea) [8]. Indeed, the World 
Health Organization (WHO) has established a guideline value of 2.4 
mg⋅L− 1 as the upper limit for boron in drinking water [9]. Taking into 
account the toxicity of concentrated boron in groundwater and surface 
water, and the need for removing boron from wastewater and seawater 

during desalination procedures, the development of effective boron 
remediation processes has become an important task [10]. 

The presence of different chemical boron species in water and their 
concentration variability imposes a great challenge for achieving an 
efficient and selective boron removal from polluted water [11]. 
Compared with other remediation methodologies, adsorption is 
considered to be one of the most promising approaches owing to its 
numerous advantages such as high efficiency, easy operation, environ-
mentally friendly, low cost, and suitability for the removal of low con-
centration pollutants [12]. Various traditional adsorbents, such as 
activated carbon [13], fly ash [14], silica [15], biomass [16], and 
magnetic nanobeads [17] have been used for boron removal. The main 
advantages of these adsorbents are their low cost and easy accessibility. 
However, they have low adsorption capacities (<20 mg⋅g− 1) and bad 
selectivity due to the weak interactions between the adsorbate and the 
adsorbents [18]. Many polyhydroxy-functionalize commercial resins 
have been also used for B removal because they show a high boron 
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selectivity [13], however, their limited chemical and thermal stability, 
together with their low adsorption capacities (e.g., Amberlite PWA10, 
LSC 780, Diaion CBR05, and Purolite S108 have an adsorption capacity 
within 5.9–7.2 mg⋅g− 1) prevent them to be considered as viable adsor-
bents for B remediation [19]. Besides, raw materials used for synthe-
sizing these resins are expensive, and the cost of recycling those 
materials is also rather high which are additional drawbacks to 
overcome. 

In this study, we propose using hierarchical gamma-phase alumina 
microspheres (HAM) synthesized via microwave-assisted co-precipita-
tion method as an alternative adsorbent for achieving effective and se-
lective boron removal from aqueous solutions in the presence of 
competing ions. The high density of hydroxyl groups on the surface of 
γ-Al2O3 provides abundant adsorption sites for the effective removal of 
pollutants from water, which has been demonstrated in numerous 
studies [20,21]. Besides, in contrast with the commercial resins 
mentioned above, the low-cost and environmentally-friendly production 
makes HAM a more sustainable and economically viable option for 
large-scale water treatment applications. Furthermore, the overall 
micrometer-sized structure of γ-Al2O3 particles provides several ad-
vantages over other nanoscale adsorbents. It reduces the aggregation of 
particles in solution, which enhances their dispersibility and prevents 
the formation of filter cake during the filtration process. This, in turn, 
results in better mechanical strength, facile transportation, and easy 
recovery of the adsorbent, making it a practical option for real-world 
water treatment applications [22,23]. 

2. Materials and methods 

2.1. Chemical reagents 

All chemicals used in the experiments were of analytical grade and 
purchased from Sigma-Aldrich (Missouri, USA), Panreac (Barcelona, 
Spain), Scharlab (Barcelona, Spain), or Honeywell, (Charlotte, USA). 

Aluminum potassium sulfate dodecahydrate (KAl(SO4)2⋅12H2O) and 
urea (CO(NH2)2) were used to synthesize HAM. The source of boron was 
boric acid, B(OH)3. An aqueous stock solution of 1000 mg⋅L− 1 boron was 
first prepared and then diluted as required. Hydrochloric chloride (HCl) 
and sodium hydroxide (NaOH) were used to adjust the pH of the solu-
tions in the synthesis and adsorption processes. Carmine (C22H20O13) 
and sulfuric acid (H2SO4) were used for the detection of boron by the 
carmine colorimetric method as reported elsewhere [24]. The method is 
described in detail in Section S1 in the Supplementary information (SI). 

2.2. Microwave-assisted synthesis of HAM 

HAM was synthesized using a microwave (MARS-5, CEM, Matthews, 
North Carolina, USA) assisted methodology following previously re-
ported works [25]. In brief, a 100 ml aqueous solution of aluminum 
potassium sulfate dodecahydrate (0.05 M) and urea (0.10 M) was stirred 
at 300 rpm for 15 min. The resulting solution was divided into seven 
microwave vessels of 100 ml using a graduated cylinder, then heated at 
180 ◦C for 20 min setting the microwave power to 1000 W. Once cooled 
down to room temperature, the pH was adjusted to ~9.0 by adding 1 M 
NaOH solution (the initial pH of the solution was ~7.2). The resulting 
solid material was collected by centrifugation (3000 rpm, 5 min) and 
washed with hot Milli-Q water (70 ◦C) and ethanol to remove the excess 
chemicals. The collected precipitate was dried in an oven at 80 ◦C for 12 
h. The dried precipitate was calcinated in a muffle at 600 ◦C for 2 h. After 
cooling down to room temperature, the lump of material finally ob-
tained was broken down by gently grinding and stored for future use. A 
diagram of the HAM synthesis is displayed in Fig. S1. 

2.3. Characterizations of HAM 

The morphology and size of the HAM particles were studied by 

scanning electron microscope, SEM (Merlin, Carl Zeiss AG, Oberkochen, 
Germany) and transmission Electron Microscope, TEM (JEM-1400, 
JEOL, Tokyo, Japan). The SEM images were analyzed using Image-pro 
Plus software to determine the particle size distribution. X-ray powder 
diffraction, XRD (X-Pert, Philips, Amsterdam, Netherlands) was carried 
out to identify the crystallographic phase of HAM. Fourier-transform 
infrared spectroscopy, FTIR (Nicolet iS10, Waltham, America), and X- 
ray photoelectron spectroscopy, XPS (Thermo Scientific K-Alpha, Wal-
tham, America) analysis were performed to study the adsorption 
mechanism. 

The point of zero charge (pHpzc) of HAM was detected using the pH 
drift method [26]. Various flasks were filled with 30 ml of 0.01 M KNO3 
solutions. The pH of these solutions was adjusted to get a pH from 2.0 to 
10.0 using 0.1 M HCl and NaOH solutions. Subsequently, 0.1 g of 
adsorbent was added to each solution, and the pH was measured again 
after 48 h. The pHpzc is determined as the pH value at which the initial 
and final pH values are identical. 

2.4. Adsorption and desorption experiments 

Boron adsorption experiments were performed in 50 ml plastic tubes 
containing 25 ml of boron solution and 0.1 g of adsorbent. The tubes 
were agitated mechanically at 300 rpm, and the experiments were 
performed at different temperatures: 293, 318, and 343 K. The solutions 
were separated from the adsorbents by centrifugation (3000 rpm, 5 
min), and the concentration of the unabsorbed boron was determined by 
the carmine colorimetric UV–Vis method (see Section S2 for further 
details). The adsorption capacity at equilibrium (qe) was calculated 
using the following equation: 

qe = (Co − Ce)
V
m

(1)  

where qe (mg⋅g− 1) is the adsorption capacity, V (L) is the volume of the 
solution, m (g) is the weight of the adsorbent, Co and Ce (mg⋅L− 1) are 
initial and equilibrium concentrations of boron, respectively. 

Desorption experiments were performed using 25 ml of 0.1 M HCl 
solution and agitating for 2 h. The adsorbents were separated by 
centrifugation and the adsorption/desorption cycle was repeated several 
times to assess the regeneration capabilities. 

2.5. Effect of competing ions and different ion strength 

To examine the competing effects in the boron adsorption procedure 
due to the presence of other ions that may be present in natural systems, 
a 1:1 molar concentration mixture of each ion (cations or anions) and 
boron was used with an initial concentration of 18.50 mM (200 mg⋅L− 1 

for boron). This concentration was chosen considering the boron con-
centration in real wastewater of oil/gas excavation, geothermal water, 
mining, metal-processing, or semiconductor industries as reported by 
Lin et al. [6]. Besides, to account for the composition of wastewater in 
real conditions, experiments with a higher concentration ratio of 
different anions ([B]:[anion], 1:100), were also performed. Different salt 
reagents were used as cation sources (NaCl, KCl, CaCl2, MgCl2), metal 
sources (Ni(NO3)⋅4H2O, Cu(NO3)2⋅6H2O, Cr(NO3)2⋅6H2O and Fe 
(NO3)2⋅6H2O) and anion sources (NaCl, NaNO3, Na2SO4⋅10H2O, 
Na3PO4⋅12H2O). The adsorption experiments were performed at pH 8.0. 
To examine the effect of the ion strength of the solution on the boron 
adsorption capacity, a series of adsorption experiments were performed 
by adding NaCl to the boron solution within the range 0–58.44 g⋅L− 1. To 
further examine the competitive adsorption of boron under real condi-
tions, simulated tap water and ground water polluted with boron were 
prepared. The compositions of these samples are provided in Section S3 
and Table S1. 
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3. Results and discussion 

3.1. Characterization of HAM 

The morphology study of HAM provided information about the 
shape, average size, and size distribution of the synthesized particles. 
SEM images (Fig. 1a) showed that HAM are hollow particles with a 
highly textured surface and porous dandelion shape. This structure 
provides a large specific surface area (ca. 250 m2⋅g− 1) [25], which 
would benefit the boron adsorption. The average size of HAM particles 
was 1.5 ± 0.5 μm. These values are similar to those reported in previous 
works following a similar synthesis procedure [25]. The hollow and 
porous dandelion morphology of the HAM particle was confirmed in the 
TEM image (Fig. 1b). Besides, the size of HAM determined from TEM 
images was consistent with the results from SEM characterization. In 
addition, XRD was used to identify the crystal structure of the synthe-
sized HAM particles. The diffraction pattern obtained, Fig. 1c, corre-
sponds to the structure reported for γ-Al2O3 (Crystallography Open 
Database ID: 2015530) [27]. Even though the diffraction peaks of the 
HAM particles are rather wide due to the nanosized wall thickness of the 
hierarchical structure, the main reflections are matching those obtained 
from the simulation of the γ-Al2O3 structure. 

3.2. Effect of pH 

In water, boron speciation is influenced by the pH and the concen-
tration of the solution (see Fig. S2). The most common species of boron 
are boric acid, B(OH)3, and various kinds of borates (e.g., B(OH)4

− ) [28]. 
Boric acid and borate oxyanion, B(OH)4

− , are mainly present at low 
concentrations (<216.2 mg⋅L− 1). Boric acid dominates at low pH values, 
while borate ions dominate at high pH values. At high concentrations 
(>270.3 mg⋅L− 1), water-soluble polyborate ions such as B2(OH)5

− , 
B3O3(OH)4

− , and B4O5(OH)4
2− are formed with an increase of pH value 

from 6.0 to 10.0 [29]. Therefore, pH is an important parameter that 
should be investigated when studying boron adsorption [30]. The boron 
adsorption capacity of HAM with 200 mg⋅L− 1 initial concentration, 0.1 g 
of the adsorbent per 25 ml solution, 120 min contact times at 293 K as a 
function of pH is shown in Fig. 2a. 

The results show that within the pH range studied, the adsorption 
capacity increases with the pH until reaching a plateau around 6.0–7.0 
which is followed with a further increase reaching a maximum (14.92 
mg⋅g− 1) at around 8.0. For higher pH, a slight decrease is found. These 
results are related to the change in the fraction of the boron species 
present as a function of pH and influenced by the charge of the HAM 
surface that varies as a function of the pH. As reported, alumina has 
considerably strong Lewis acidity and little Brönsted acidity [22]. The 
pHPZC of HAM was determined by the pH drift method. Fig. S3 shows 
that the pHpzc of HAM is 5.9. Therefore, at pH values below 5.9, the 
surface of HAM is positively charged, whereas at pH values above 5.9, 
the surface is negatively charged. 

Regarding boron, at pH values below 7.0, it exists predominant as B 
(OH)3, which exhibits low affinity to HAM due to the weak Lewis acid 
nature of boric acid. As the pH increased to 9.0, B(OH)3 is converted into 
B(OH)4

− rapidly. These borate anions can interact favorably with amino 
and hydroxyl groups [31]. Despite the electrostatic repulsion between 
the negative surfaces of both HAM and B(OH)4

− , the dominant ion ex-
change of boron anions with hydroxyl groups on HAM surface led to a 
higher adsorption capacity of boron. At pH values above 9.0, the 
chemical form of boron was B(OH)4

− , and the strong electrostatic 
repulsion between HAM and B(OH)4

− prevailed, leading to a decrease in 
the adsorption capacity [32]. 

3.3. Effect of contact time 

The adsorption kinetic parameters are important to determine the 
efficiency and the mechanism responsible for the adsorption process 
[33]. In this study, different contact time experiments from 1 min to 24 h 
with 200 mg⋅L− 1 initial concentration, 293 K reaction temperature and 
pH 8.0 were performed. The results displayed in Fig. 2b revealed an 
initial sharp increase in the adsorption capacity, which might be 
attributed to a large number of adsorption sites initially available on the 
surface of HAM. After 120 min, the adsorption capacity becomes almost 
constant, which means that the adsorption equilibrium has been 
reached. 

To better study the rate and mechanism of boron adsorption onto the 
HAM surface, the experimental kinetic data were fitted to the pseudo- 
first order kinetic model and pseudo-second order kinetic model. The 
equations of those two models are displayed in Section S6. The modeling 
results are shown in Fig. 2c and the parameters obtained from simulated 
curves are shown in Table 1. Despite obtaining a relatively good 
agreement with the two models (R2 > 0.90), the pseudo-second order 
kinetic model provided a better agreement. This implies that chemi-
sorption is controlling the velocity of the adsorption process. Hence, the 
adsorption of boron on HAM involves valence forces and ion exchange 
mechanisms through the sharing/exchange of electrons between the 
hydroxyl groups on the adsorbent surface and boron [34,35]. 

3.4. Effect of different initial concentrations 

In our work, adsorption experiments at different initial boron con-
centrations from 1 to 1000 mg⋅L− 1, 120 min contact times at 293 K and 
pH 8.0 were performed. As can be seen in Fig. 2d, the adsorption ca-
pacity increases monotonically with the initial concentration of boron 
without reaching saturation within the concentration range studied. It is 
worth mentioning that the top-end of the concentration range is much 
higher than the concentration found in polluted waters targeted by this 
study, ~200 mg⋅L− 1 [6]. 

The adsorption isotherm modeling results are displayed in Table 2. 
Among the three models considered (Langmuir, Freundlich, and Tem-
kin; see Section S7), Langmuir and Freundlich models provided a good 

Fig. 1. Morphological and structural characterizations of synthesized HAM: SEM images (a), TEM images (b), and XRD pattern (c).  
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agreement (R2 > 0.99), however Langmuir model was the best one. This 
suggests that chemisorption is the main process [36–38]. Besides, for the 
Temkin model, the value of the regression coefficient is much worse, R2 

= 0.6993, which means that the boron adsorption process by HAM 
cannot be explained by this model. This points out that, in our case, the 
heat of adsorption does not decrease linearly with the decrease of sur-
face coverage. The obtained adsorption capacity at 800 mg⋅L− 1 initial 
concentration was 51.60 mg⋅g− 1 and the theoretical maximum capacity 
calculated by the Langmuir model was 138.50 mg⋅g− 1 which is an 
outstanding value when compared with other reported materials as it 
will be shown below. 

3.5. Thermodynamic analysis 

Thermodynamic parameters such as Gibbs free energy change (ΔG◦), 
enthalpy change (ΔH◦), and entropy change (ΔS◦) can predict the 
feasibility and nature of the adsorption process. ΔS◦ and ΔH◦ were 

obtained from the linear fit of the Arrhenius plot (see Fig. S4, Table 3). 
See Section S8 for further details. Our results show that ΔH◦ is negative, 
which indicates the adsorption of boron by HAM is an exothermic pro-
cess and prefers to happen at lower temperatures. However, for 293, 
318, and 343 K, ΔG◦ was determined to be 5.18, 8.15, and 11.11 
kJ⋅mol− 1, respectively. The positive values of ΔG◦ for all investigated 
temperatures show the non-spontaneity of boron adsorption using HAM. 
Besides, the value of ΔG◦ increases by increasing the temperature which 
itself shows that higher temperatures result in a decreasing in the boron 
adsorption capacity. In addition, a decrease in randomness at the solid- 
solution interface during the adsorption process was indicated by the 
negative value of ΔS◦ [39]. 

3.6. Effect of the competing ions 

To investigate the effect of competing ions on the boron adsorption 
by HAM, several boron adsorption experiments were performed by 

Fig. 2. Effect of different parameters on boron adsorption capacity of HAM: pH values (a), contact time (b), kinetic fitting (c), initial concentration with corre-
sponding isotherm modeling (d). 

Table 1 
Kinetic parameters obtained from the model fitting of boron adsorption on HAM: 
K1 (min− 1), K2 (g⋅mg− 1⋅min− 1).  

Kinetic model R2 Rate constant 

Pseudo-first order  0.9795 K1 = 0.0290 
Pseudo-second order  0.9996 K2 = 0.0445  

Table 2 
Parameters of different isotherms models of boron adsorption by HAM. The parameters are expressed in the following units: qm (mg⋅g− 1), KL (L⋅mg− 1), KF [(mg⋅g− 1) 
(L⋅mg− 1)1/n], AT (L⋅g− 1), bT (K⋅Jmol− 1).  

Langmuir isotherm Freundlich isotherm Temkin isotherm 

qm KL R2 KF 1/n R2 AT bT R2  

138.50  0.0007  0.9949  0.25  0.80  0.9931  0.26  0.38  0.6993  

Table 3 
Thermodynamic parameters for boron adsorption onto the HAM.  

T (K) ln K ΔG◦ (kJ⋅mol− 1) ΔH◦ (kJ⋅mol− 1) ΔS◦ (J⋅mol− 1⋅K− 1)  

293  − 2.19  5.18  
− 29.59  − 118.62  318  − 2.94  8.15  

343  − 3.97  11.11  
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adding cations (Na+, Mg2+, K+, Ca2+, Cr2+, Fe2+, Ni2+, and Cu2+); or 
anions (Cl− , NO3

− , SO4
2− , PO4

3− ). The results for cations and anions are 
shown in Fig. 3a and b, respectively. 

The boron adsorption capacity was slightly lower in the presence of 
most of the cations. However, in the case of Cu2+, Cr3+, and Fe2+, the 
adsorption capacity exhibited a significant increase. This notable 
enhancement could be attributed to the formation of hydroxide pre-
cipitates when adjusting the pH of the solution up to 8.0, as shown in 
Fig. S5. These hydroxide precipitates can also adsorb boron ions. 

The results for the boron adsorption in the presence of the anions, 
Fig. 3b, show that, for the molar ratio of [B]:[anion] = 1:1, the 
adsorption capacity did not change noticeably and only a slight reduc-
tion is observed respect to the case without having anions, therefore 
these anions do not have a special affinity to HAM that could hamper the 
adsorption of boron. To assess the effect of the concentration of the 
anions, the molar ratio [B]:[anion] was increased to 1:100. In this case, 
boron adsorption capacities were higher than those for 1:1. For most 
anions, the adsorption capacity was almost identical than the case 
without anions. However, for PO4

3− , there was a noticeable increase in 
the adsorption capacity. This may be related to the compression of the 
electrical double layer on the HAM surface due to the presence of 
trivalent phosphate which facilitates the interaction between the 
adsorption surface and the neutral boric acid species [40]. To corrobo-
rate this, boron adsorption experiments were performed at different 
ionic strengths by adding NaCl (0–58.44 g⋅L− 1, see Fig. 3c). Initially, at 
low ionic strength, below 2.92 g⋅L− 1, the adsorption capacity of boron 
decreased. This can be ascribed to the competing adsorption of Na+ and 
Cl− ions. When the ionic strength increased from 2.92 to 58.44 g⋅L− 1, 
there is a concomitant increase in the boron adsorption. This increment 
can be attributed to the dominant effect of the double-layer compression 
over the adsorption of Na+ and Cl− ions competing with B. In addition, 
this observation indicates that the mechanism of boron adsorption 
removal on HAM surface may be due to the formation of inner-sphere 
surface complexes rather than outer-sphere surface complexes. Similar 

findings were also reported for boron adsorption on other metal oxide 
adsorbents [41,42]. The competitive adsorption of boron in simulated 
tap water and ground water was also investigated. As depicted in Fig. 3d, 
despite the presence of competitive anions and cations, the adsorption 
capacities of boron in tap water and ground water remained higher than 
72.6 % and 80.5 %, respectively, compared to that in Milli-Q water. 

3.7. Adsorption capacity comparison with similar adsorbent systems 

As shown in Table 4, when comparing the maximum adsorption 
capacity of HAM with other adsorbents previously reported, we found 
that HAM performs better than most inorganic and organic adsorbent 
materials, and commercial resins. This outstanding adsorption is related 
to the hollow dandelion-like porous structure of the HAM which facili-
tates the interaction of the hydroxyl groups, typically present on the 
surface of nanostructured metal oxides, with the boron. Indeed, boric 
acid is known to have a strong affinity with polyols by chelation as re-
ported by Bhagyaraj et al. [19]. 

3.8. Adsorption mechanism study 

The adsorption mechanism of boron on HAM was investigated using 
FTIR technique. The spectra of boric acid, HAM, and HAM after 
adsorption with 200 mg⋅L− 1 and 1000 mg⋅L− 1 boron solutions are shown 
in Fig. S6. It could be observed that the spectral profile of HAM did not 
change after adsorption. This is mainly due to the fact that the amount of 
boron adsorbed onto HAM is too small, lower than the detection limit of 
the FTIR technique. 

The XPS technique was also utilized to determine the adsorption 
mechanism. The spectra of HAM and HAM after adsorption with a 1000 
mg⋅L− 1 boron solution were analyzed, as shown in Fig. 4. Similar to the 
FTIR results, no significant new peaks appeared in the full-scan spectrum 
after adsorption (see Fig. 4a). However, as shown in Fig. 4b, the pres-
ence of a B(1s) contribution confirms the successful adsorption of boron 

Fig. 3. Adsorption capacity of boron in the presence of competing cations (a), anions (b), different ionic strengths (c), and in simulated real waters (d).  
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on the HAM. Compared with the spectrum of boric acid, the binding 
energy of B(1s) in HAM appears at lower energy 192.61 eV, instead of 
193.4 eV, after adsorption, indicating the formation of a bond. 
Furthermore, the binding energy at Al(2p) (see Fig. 4c) and O(1s) (see 
Fig. 4d) decreased after adsorption, which was attributed to the bonding 
of adsorbent with boron species at higher pH values than the point of 
zero charge [43]. All these results are consistence with previous studies 
[44,45] and strongly indicate the formation of Al-O-B bonds. 

3.9. Adsorption-desorption study 

For practical applications, the regeneration capability of adsorbents 
is a key parameter to assess. The adsorption capacity did not show sig-
nificant change after the 1st regeneration (see Fig. 5). From the 2nd to 
5th regeneration cycle, the adsorption capacity of HAM shows only a 
slight decrease (<15.28 %) which demonstrates that this material has a 
good regeneration capabilities regarding boron adsorption. 

Table 4 
Boron maximum adsorption capacities of several inorganic and organic adsor-
bents, and commercial resins.  

Adsorbents Maximum adsorption 
capacity (mg⋅g− 1) 

Particle size 
(μm) 

Ref 

HAM  138.50 1–2 This 
work 

Activated carbon  0.97 – [46] 
Wood sawdust  1.58 – [46] 
Activated alumina  1.97 – [47] 
Composite 

alginate–alumina  56.33 800–2300 [48] 

Pyrocatechol-modified 
MCM-41  

19.45 1.3⋅10-3 [49] 

MgO–Co-ferrite  0.25 43⋅10-3 [50] 
Li/Al-LDHs  42.91 – [51] 
NMDG modified 4-vinyl-

benzyl chloride  7.19 28 ⋅10-3 [52] 

NMDG@GPTMS-NBF  17.71 0.3 [53] 
CL-RESIN  8.37 722–855 [54] 
NCL-RESIN  8.57 710–845 [54] 
IRA743-RESIN  10.92 550–700 [54] 
P(GMA-co-TRIM)-EN-PG- 

RESIN  
29.22 <241 [55] 

P(GMA-co-TRIM)-TETA- 
PG-RESIN  23.25 <273 [55] 

T-RESIN  21.25 – [56]  

Fig. 4. XPS spectra of HAM before and after adsorption. Full-scan spectrum (a), B 1s (b), Al 2p (c), and O 1s (d).  

Fig. 5. Adsorption capacity of boron after various adsorption/desorp-
tion cycles. 
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4. Conclusions 

In this study, HAM hollow spherical particles (~1.5 μm) with a 
porous dandelion structure were synthesized through a microwave- 
assisted co-precipitation method and used for effective boron removal 
from aqueous solutions. The modeling of the adsorption isotherm and 
the kinetics indicated that single-layer homogeneous adsorption occurs 
(Langmuir) and that chemical adsorption was the controlling step in the 
adsorption (pseudo-second order). The obtained adsorption capacity at 
800 mg⋅L− 1 initial concentration was 51.60 mg⋅g− 1 and the theoretical 
maximum capacity calculated was 138.50 mg⋅g− 1, which is higher than 
many adsorbents that have been previously reported in the literature. 

According to the analysis of the thermodynamic parameters, ΔH◦ is 
negative and ΔG◦ is positive which indicates that the adsorption of 
boron on HAM is an exothermic and non-spontaneous process. HAM also 
showed excellent selectivity towards boron in an aqueous solution in the 
presence of competitive salt ions (Na+, K+, Ca2+, Mg2+), metal ions 
(Cu2+, Cr2+, Ni2+, and Fe2+), anions (Cl− , NO3

− , SO4
2− , PO4

3− ) and 
different ion strengths. The XPS spectra of HAM after adsorption indi-
cated the formation of new Al-O-B bonds. In addition, no significant 
decrease in the adsorption performance was observed after five regen-
eration cycles. Therefore, HAM can be a promising adsorbent material 
for boron removal from contaminated water in industrial applications. 
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