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Abstract: Aerobiological predictive model development is of increasing interest, despite the distribu-
tion and variability of data and the limitations of statistical methods making it highly challenging.
The use of concentration thresholds and models, where a binary response allows one to establish
the occurrence or non-occurrence of the threshold, have been proposed to reduce difficulties. In this
paper, we use logistic regression (logit) and regression trees to predict the daily concentration thresh-
olds (low, medium, high, and very high) of six airborne fungal spore taxa (Alternaria, Cladosporium,
Agaricus, Ganoderma, Leptosphaeria, and Pleospora) in eight localities in Catalonia (NE Spain) using
data from 1995 to 2014. The predictive potential of these models was analyzed through sensitivity
and specificity. The models showed similar results regarding the relationship and influence of the
meteorological parameters and fungal spores. Ascospores showed a strong relationship with pre-
cipitation and basidiospores with minimum temperature, while conidiospores did not indicate any
preferences. Sensitivity (true-positive) and specificity (false-positive) presented highly satisfactory
validation results for both models in all thresholds, with an average of 73%. However, seeing as logit
offers greater precision when attempting to establish the exceedance of a concentration threshold and
is easier to apply, it is proposed as the best predictive model.

Keywords: aerobiology; logistic regression; mycology; prediction; regression tree

1. Introduction

The study of primary biological aerosol particles increases their importance, especially
those focused on identifying and quantifying fungal spores [1]. The increasing interest in the
utility of fungi as aerobiological particles is usually linked to agriculture and public health,
as their presence is linked to phytopathological and allergological diseases [2–4]. A review
of the spectrum of airborne fungal spores in Europe identified 67 taxa, where Alternaria
and Cladosporium were the most common taxa studied due to their spores reporting the
highest concentrations in northern Europe [5]. The frequency of analysis of each taxon is
related to the interest, importance, or impact it may have on public health, agriculture, or
the environment [3,6]. For example, Alternaria is recognized as an allergenic spore type [7],
while Ganoderma is recognized as phytopathogenic [8].

In this sense, developing observational predictive models for fungal spores is of
great interest [3,9]. Predictions will be of high value for public health, as they allow the
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susceptible population to self-manage, thus reducing critical allergic episodes and the costs
associated with the health system due to moderate and severe allergy episodes [10]. In other
sectors, such as agriculture, predictions can help improve understanding and activate the
necessary mechanisms for the eminent management of pest infections by phytopathogenic
fungi, avoiding partial or total losses in production [11]. Finally, forecasts can also be used
for other purposes, such as forest resource management and improving our understanding
of ecosystem changes and trends, among other environmental processes [12].

Some of the difficulties linked to developing predictive models include the selection
of predictors and the statistical distribution of the data used [3,13,14]. Traditional models
require linearity and normality, which are absent in the aerobiology database and assever-
ated by various studies [3,14–16]. As an alternative, the implementation of methods based
on machine learning algorithms (MLA) is being increasingly considered, as evidenced by
the advent of neural networks, generalized additive models, and vector support machines,
among other available techniques [3]. These methodologies offer multiple advantages, such
as classification, numerical prediction, and clustering, all of which improve forecasts with
respect to modeling [17]. However, interpreting results can be challenging, despite their
high fitting level.

For example, neural networks establish a suitable method of classification and re-
gression for environmental processes, but their form of execution is considered a “black
box”. The criteria for classification and the impact of independent variables in the model
cannot be identified [18]. Likewise, another possible limitation is the high computational
requirements of the MLA [18], which only sometimes yields better results than classical
methods [19,20].

Another recent alternative is to use concentration thresholds [21,22] to help generate
forecasts. Concentration thresholds are mainly established if a determined threshold is
reached [23–25]. This allows predictions to be much more efficient [26] and simultaneously
avoids the problem related to the statistical distribution of aerobiological data [27]. In
this sense, the predictive models need nonlinear equations to relate the concentration of
fungal spores (dependent variable) and meteorological parameters (independent variable)
in the forecast, as logistic regression and regression trees do. These methodologies are
characterized by binary responses, which allow us to infer the occurrence or non-occurrence
of the event modeled or, in the case of aerobiology, the thresholds modeled.

Logistic regression has been used to predict increases in Annual Integral [13] and
daily concentration [28]. Regression trees have only been used to forecast hourly/daily
concentrations [29–34] and to relate meteorological parameters with concentrations of
fungal spores [35]. However, both methodologies have a fundamental binary response.
Therefore, the aim of this study was to assess the performance of logistic regression and
regression trees as tools to predict the daily concentration thresholds of airborne fungal
spores in Catalonia, Spain.

2. Materials and Methods
2.1. Study Area

Catalonia, northeast of Spain, is our study area. It has a Mediterranean climate with
warm winters, hot summers, and rainy episodes in autumn and spring. Additionally, this
region has a wide diversity of local flora due to varied geomorphology and distances to the
sea, which give rise to diverse phytoclimates [36]. Eight aerobiological stations in Catalonia
are placed in four phytoclimates. Three stations are localized in urban areas—two of them
on the Mediterranean coast (Barcelona and Tarragona), one inland (Girona); three are
rural-urban, one on the Mediterranean coast (Roquetes-Tortosa), and two near agricultural
areas (Bellaterra and Manresa). Finally, two stations are located in a predominantly rural
environment: one in the Pyrenees (Vielha) and one in the Central Catalan Depression
(Lleida). More details on the study are shown in Figure 1, while the meteorological
conditions and aerobiological stations are elaborated in Figure S1 and Table S1, respectively.
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Figure 1. Geographical situation, meteorological characteristics, and phytoclimates of the aerobiolog-
ical stations in Catalonia [37].

2.2. Aerobiological and Meteorological Data

The aerobiological database was retrieved from Catalan Aerobiological Network
(Xarxa Aerobiològica de Catalunya, XAC). Samples were obtained by employing Hirst
traps [38] and analyzed according to the Spanish Aerobiological Network [39]. The ter-
minology applied in this study was derived from Galán et al. [40]. Considering the daily
concentration of fungal spores as the number of fungal spores per cubic meter of air
(spore/m3), we selected six taxa according to the results of a previous study in the group,
applying the gamma model [14], which identified them as the fungal aerobiological taxa
most representative of Catalonia. These taxa were Leptosphaeria and Pleospora (ascospores),
Agaricus and Ganoderma (basidiospores), and Alternaria and Cladosporium (conidiospores).
The aerobiological data used were daily mean concentrations from 1995 to 2014 (details for
each station in Table S1). We modeled four concentration thresholds: low, medium, high,
and very high. The range of concentration per each threshold and taxa is presented in Table
S2 and they correspond to those used by the authors in previous studies [14] and were
established based on the expertise of the XAC group and the knowledge related to allergies
in Catalonia. Thresholds of airborne biological particles vary with the environmental
conditions of the study areas and cannot be universally established. After stating that the
high level of diversity of fungi in the air makes it difficult to define the allergenicity of
individual fungi and establish clinical thresholds coherent with environmental concentra-
tions of airborne fungal spores, Annes-Hill et al. [5] cited two clinical allergy thresholds for
Alternaria (100 spores/m3) and Cladosporium (3000 spores/m3). Both thresholds proposed
for northern Europe are out of the range of the concentrations of these spores in our study
area.

The meteorological variables considered in this study were as follows: temperature
(maximum, minimum, and their squares); rainfall (in the day and one, two, and three
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previous days); and relative humidity (Table S3 shows a brief justification of the selected
predictors). Agencia Estatal de Meteorología and Servei Meteorològic de Catalunya provided the
meteorological data. A summary of the parameters is available in Figure S1.

2.3. Statistical Methods
2.3.1. Logistic Regression

The logistic regression model, i.e., logit model, is a modeling technique in which the
answer is a probability of occurrence from n potential prediction variables [18]. This model
is described in several books on statistics. Hosmer and Lemeshow [41] is the most suitable
reference. The generic mathematical equation is as follows:

f (x) = log
[

p
1 − p

]
= β0 + β1x1 + · · ·+ βnxn (1)

where x1, . . . , xn are the predictors or explicative variables, and p is the proportion in which
a certain result is observed.

From a mathematical point of view, the logit model is a parametric, additive, and
flexible model with a binary response that is easy to interpret, because the sign of β
parameters indicate the sense (positive or negative) of the relationship and its value shows
the predictor weighting in the equation. However, the incorporation or elimination of
predictors tends to provoke convergent problems [18,41].

Although the logit model is not optimal for real-time forecasts, it can be used to
make predictions regarding critical values through the probabilities of occurrence in the
data modeled [13]. However, establishing the critical value for aerobiological data could
be a major problem since aerobiological data usually do not follow an ideal symmetric
distribution. Possible solutions could be subsampling with the expected proportion desired,
true/false case = 0.5 [42], or pondering factors [43]. Nevertheless, these strategies tend to
cause a loss of information or change the original database. Consequently, establishing
the critical value of the binary response with the percentage of times that the modeled
threshold has exceeded in the database is proven to be the most efficient and coherent
alleviative strategy [44,45].

2.3.2. Regression Trees

Regression trees operate in the same way as a traditional regression model—using one
or more variables or predictors to forecast the modeled variable. However, a regression tree
uses a binary classification and hierarchy, generating model regions or subregions with high
homogeneity, and then adjusts a traditional linear regression, such as the critical value (as a
constant). First, the model cuts the database into two regions from one predictive variable;
then, if an answer is not homogenous, take each region and cut them into subregions, and
so on, until good homogeneity is obtained in the subregions. The methodology for selecting
the predictive variables is diverse but generally based on the impurity in the generated
regions [46,47].

The conceptual simplicity of the regression tree gives this method a greater advantage
since it facilitates interpretation, serving as a powerful and intuitive tool for the develop-
ment of models in various areas of knowledge [47]. Mathematically, the regression tree is
usually represented as:

f (x) =
M

∑
m=1

cm I(x ε Rm) (2)

where cm is the constant m in the regression region R, x is the predictive variable used to
split the observation into n observations, and Rm is the m homogeneity region obtained in
the set of n observations that respond to constant regression Cm.

The regression tree is a non-additive and hierarchical methodology that facilitates the
interpretation of the results based on the exploration of the data and not on the inference
of itself, as in traditional methods. This allows for one or more exploration routes in the
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database [48]. The first corresponds to descriptive exploration, reducing the data volume in
R regions while, at the same time, preserving the characteristics of the sample. In contrast,
the second corresponds to an exploratory classification, where the R region should be
interpreted in a significative way in the context of the subsampling or hypothesis proposed.
Finally, the exploratory generalization analysis allows one to map the predictive variable
to the modeled variable through R regions. All this allows for the modeling of future
events [48].

Another advantage is that a regression tree is a non-parametric test, meaning that it
allows for data exploration without previous knowledge about probabilistic distribution
function, likewise reducing the high computational resources needed for its development,
storage, and application [48,49]. Additionally, this methodology efficiently uses the char-
acteristics available in the data, generating a more effective classification based on the
hierarchical decomposition on which the method is based. Finally, a regression tree can
model a one- or bi-modal database and is not affected by missing data [47–49]. As a
disadvantage, a regression tree favors the predictive variable with high variability in the
hierarchical process and, at the same time, has low flexibility regarding the binary answer
associated with a classification problem, occasionally resulting in overestimation results.
Finally, since it is not an additive model, it is impossible to obtain a significance and rela-
tionship between the predictors and the modeled variable [47]. However, it can be solved
by analyzing the hierarchy generated by the model. Variables at higher levels indicate a
higher incidence of the predictor in the development of the model.

2.3.3. Criteria for the Application of Regression to Modeling

The regression models will be applied to forecast the probability of occurrence of the
different concentration thresholds of the airborne fungal spores under study. In determin-
ing the threshold occurrence, the critical values were set as the percentage of times the
threshold was exceeded in the aerobiological database (details of each critical value are
available in Table S4). This is in agreement with the work of Real et al. [50], who elucidated
the incidence of the proportions of presence/absence in the model’s success. We previously
tested it using the standard value of 0.5 in the regressions. The results showed an overesti-
mation, especially in taxa with a low frequency of appearance or low concentration of the
aerobiological database.

To evaluate the potential prediction capacity of the models, sensitivity and specificity
parameters were used, which are the most popular parameters in biostatistics for binary
response models. Cross-validation is not recommended, especially when a big part of the
data has low/null values, because the fraction of expected true positives is lower with
respect to the fraction of true-false, increasing the value of cross-validation which is not a
good measure of the potential model prediction. As described by De Linares et al. [13] and
Vélez-Pereira et al. [28], sensitivity is the percentage of true positives with respect to the
total observed positives, and specificity is the percentage of true negatives with respect to
the sum of observed negatives. In the present study, these values were calculated for each
model, threshold, taxon, and station using the data from the testing period (2012–2014).

As already mentioned, the logit model gives the type (direct or indirect) and signifi-
cance of each predictor (meteorological parameter) with the modeled variable (concentra-
tion threshold). At the same time, the regression tree allows us to infer, from the split level,
what is the variable with more influence on the model development (see Figure S2). So, to
compare the regression technique, we will use this output.

The calculations were developed with R statistical software, using the GML (Fitting
Generalized Linear Models) function to develop the logistic regression and the rpart
package to develop the regression trees.

3. Results

Figure 2 shows the signification and kind of relationship between the concentration
fungal spore thresholds and the meteorological parameters for each taxon resulting from
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logistic regression. The values represented on the Y-axis indicate the number of aero-
biological stations for which the meteorological variable (X-axis) shows a significative
p-value: zero (no station) to eight (all stations). Precipitation shows a greater positive
significance in ascospores (Leptosphaeria and Pleospora), as well as minimum temperature,
relative humidity, the precipitation of the previous day (for low, medium, and high thresh-
olds), and the precipitation of two days ago (low threshold). Basidiospores (Agaricus and
Ganoderma) show that square minimum temperature is the most influential predictor in the
airborne spores’ concentration, except in the low threshold, where minimum temperature
is most influential. Basidiospores also show a high frequency of positive significance with
maximum temperature and humidity, while precipitation is of little significance. Finally,
conidiospores (Alternaria and Cladosporium) do not show a main influential predictor. Al-
ternaria shows a high frequency with maximum temperature, while Cladosporium shows a
high frequency with the minimum temperature. Humidity is negative to Alternaria and
positive to Cladosporium. For this last taxon, the precipitation of previous days also shows a
significant positive relationship, especially the precipitation three days ago. More detail
on the significance of the logit model is available in the Supplementary Materials (from
Tables S5–S10).
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Figure 2. Frequency and significance level of the predictors (meteorological variables) by fungal
spore taxon and concentration threshold were studied by the logistic regression model. Tmax:
maximum temperature, Tmax2: squared maximum temperature, Tmin: minimum temperature,
Tmin2: squared minimum temperature, Prec: precipitation of the day (≥0.5 mm), Prec 1: Precipitation
of the previous day, Prec 2: Precipitation of two days ago, Prec 3: Precipitation of three days ago, RH:
relative humidity.
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The influence of the predictors on the concentration thresholds produced by the re-
gression trees is illustrated in Figure 3; the Y-axis shows the number of times the predictor
occurs in the first four levels of the regression tree model by taxon and threshold. As-
cospores and basidiospores show similar results to logit models. However, the influence
of precipitation in the previous day on ascospores is notable, especially in Pleospora. In
contrast, temperature predictors are the most notable for conidiospores.
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Figure 3. Frequency split levels of the predictors (meteorological variables) by fungal spore taxa and
concentration thresholds studied via regression tree. Tmax: maximum temperature, Tmax2: squared
maximum temperature, Tmin: minimum temperature, Tmin2: squared minimum temperature, Prec:
precipitation of the day (≥0.5 mm), Prec 1: Precipitation of the previous day, Prec 2: Precipitation of
two days ago, Prec 3: Precipitation of three days ago, RH: relative humidity.

Finally, the results for conidiospores show that Alternaria is influenced by the maxi-
mum temperature, whereas Cladosporium is influenced by the minimum temperature—the
same results as in the logit model. The frequency of the predictor and split values of the
regression tree model are available in the Supplementary Materials (from Tables S11–S13).

Regarding the split value established by each regression tree, ascospores show that
the split value increases when the concentration threshold is higher. Likewise, greater
variations in the minimum temperature and relative humidity are observed in the following
sublevels—possibly related to an increase in the concentration threshold of Leptosphaeria
and Pleospora, which is consistent with the results reported for the logit model (details in
Table S11). Meanwhile, basidiospores present the same behavior, only that the predictor is
maximum temperature, increasing split value at the same time as when the concentration
threshold increases (details in Table S12). Finally, conidiospores are also consistent with the
logit model. Alternaria shows an increase in the maximum temperature split value with
increased threshold concentration (details in Table S13).
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Table 1 shows the sensitivity and specificity results obtained during the testing models
for each taxon, threshold, and station under study. The values show excellent performance
in the two models. The logit model varied between 62% and 76% in sensitivity and 72%
and 81% in specificity, while the regression tree showed values of sensitivity (68–88%)
and specificity (50–69%) that are close to those reported in the logit model but higher in
sensitivity and lower in specificity.

Table 1. Sensitivity and specificity of logistic regression and regression tree per threshold, taxon, and
aerobiological station under study.

Taxon Station

Concentration Thresholds

Low Medium High Very High

Logit Trees Logit Trees Logit Trees Logit Trees

Sen Spe Sen Spe Sen Spe Sen Spe Sen Spe Sen Spe Sen Spe Sen Spe

A
sc

os
po

re
s Le

pt
os

ph
ae

ri
a

Barcelona 50% 75% 51% 73% 58% 74% 48% 88% 59% 76% 59% 83% 67% 74% 57% 85%
Bellaterra 67% 65% 56% 77% 69% 68% 64% 87% 74% 68% 65% 87% 80% 68% 71% 87%
Girona 57% 77% 65% 71% 67% 75% 60% 81% 69% 71% 62% 88% 75% 71% 70% 86%
Lleida 47% 82% 62% 65% 54% 86% 51% 85% 58% 85% 55% 85% 61% 85% 66% 86%
Manresa 57% 82% 61% 78% 65% 81% 54% 89% 69% 77% 57% 89% 75% 79% 76% 87%
Roquetes–
Tortosa 55% 78% 55% 73% 64% 77% 58% 85% 66% 78% 59% 85% 72% 79% 67% 93%

Tarragona 58% 74% 65% 61% 63% 73% 60% 82% 66% 73% 57% 87% 70% 75% 68% 86%
Vielha 68% 78% 56% 83% 73% 80% 47% 90% 74% 80% 51% 92% 75% 79% 50% 90%

Pl
eo

sp
or

a

Barcelona 54% 69% 60% 71% 54% 68% 46% 82% 59% 67% 45% 86% 61% 67% 48% 83%
Bellaterra 56% 73% 61% 68% 58% 72% 51% 85% 62% 71% 48% 92% 63% 72% 57% 90%
Girona 41% 86% 49% 77% 50% 86% 40% 92% 49% 83% 52% 89% 53% 82% 64% 88%
Lleida 67% 49% 80% 33% 65% 64% 53% 74% 71% 66% 55% 81% 70% 67% 64% 81%
Manresa 53% 74% 70% 57% 57% 76% 55% 84% 60% 79% 57% 87% 65% 80% 59% 94%
Roquetes–
Tortosa 54% 83% 61% 67% 57% 81% 58% 86% 61% 83% 58% 90% 67% 76% 70% 90%

Tarragona 48% 77% 68% 53% 55% 74% 45% 87% 56% 73% 50% 86% 63% 71% 63% 89%
Vielha 54% 72% 46% 76% 60% 78% 50% 85% 60% 81% 48% 92% 73% 83% 50% 95%

Ba
si

di
os

po
re

s A
ga

ri
cu

s

Barcelona 70% 49% 36% 73% 75% 51% 27% 87% 73% 52% NC NC 77% 54% 45% 79%
Bellaterra 72% 68% 52% 77% 70% 69% 43% 83% 73% 68% 41% 85% 71% 68% 53% 78%
Girona 65% 52% 63% 52% 68% 57% 35% 83% 70% 58% 32% 86% 71% 61% 45% 83%
Lleida 59% 67% 33% 73% 58% 74% 33% 82% 57% 73% 34% 81% 61% 76% 29% 90%
Manresa 60% 65% 54% 68% 64% 68% 36% 81% 64% 68% 69% 54% 59% 68% 33% 91%
Roquetes–
Tortosa 65% 69% 61% 54% 65% 63% 44% 74% 63% 67% 39% 77% 72% 69% 52% 78%

Tarragona 68% 56% 25% 87% 73% 56% 44% 72% 75% 57% 43% 77% 77% 56% 63% 61%
Vielha 72% 85% 43% 84% 77% 85% 46% 89% 78% 81% 50% 87% 76% 80% 59% 84%

G
an

od
er

m
a

Barcelona 78% 80% 76% 82% 88% 75% 82% 75% 91% 71% 74% 76% 96% 65% 91% 62%
Bellaterra 77% 93% 76% 92% 80% 91% 74% 92% 82% 87% 69% 92% 86% 83% 63% 90%
Girona 64% 93% 67% 89% 74% 94% 75% 93% 80% 93% 76% 93% 85% 89% 69% 93%
Lleida 63% 85% 57% 84% 68% 84% 56% 88% 65% 84% 43% 92% 66% 85% 37% 93%
Manresa 74% 87% 65% 88% 79% 85% 59% 89% 75% 82% 59% 88% 69% 77% 42% 88%
Roquetes–
Tortosa 69% 77% 58% 84% 78% 78% 71% 84% 82% 78% 71% 79% 74% 77% 77% 73%

Tarragona 81% 82% 77% 80% 88% 73% 76% 79% 92% 0% 0% 100% 89% 66% 81% 71%
Vielha 74% 92% 74% 87% 80% 92% 83% 90% 81% 92% 78% 91% 82% 93% 75% 94%

C
on

id
io

sp
or

es A
lte

rn
ar

ia

Barcelona 68% 80% 71% 67% 72% 78% 75% 66% 83% 66% 61% 82% 87% 60% 68% 69%
Bellaterra 68% 86% 83% 47% 76% 81% 83% 69% 86% 67% 78% 75% 90% 63% 70% 72%
Girona 52% 92% 58% 84% 67% 92% 74% 87% 83% 91% 65% 93% 82% 85% 64% 88%
Lleida 79% 75% 96% 50% 64% 79% 61% 83% 59% 91% 71% 71% 64% 93% 64% 87%
Manresa 55% 88% 74% 68% 59% 93% 75% 66% 68% 89% 65% 88% 75% 85% 58% 88%
Roquetes–
Tortosa 60% 85% 68% 80% 63% 92% 73% 76% 73% 84% 67% 82% 80% 76% 61% 83%

Tarragona 71% 72% 79% 61% 74% 73% 84% 55% 81% 67% 58% 77% 80% 64% 59% 74%
Vielha 57% 89% 57% 90% 84% 88% 74% 90% 82% 85% 62% 93% 75% 86% 50% 94%

C
la

do
sp

or
iu

m

Barcelona 66% 85% 79% 57% 76% 73% 57% 81% 83% 59% 59% 74% 85% 54% 70% 72%
Bellaterra 67% 91% 72% 78% 76% 79% 73% 81% 83% 65% 49% 80% 89% 59% 80% 62%
Girona 54% 96% 69% 68% 67% 93% 65% 93% 76% 88% 57% 92% 81% 80% 49% 89%
Lleida 44% 95% 64% 67% 45% 97% 62% 57% 53% 85% 49% 87% 54% 87% 33% 93%
Manresa 55% 95% 77% 78% 63% 84% 66% 77% 72% 82% 44% 91% 75% 77% 41% 88%
Roquetes–
Tortosa 67% 95% 77% 65% 72% 88% 62% 85% 75% 74% 50% 85% 81% 73% 42% 85%

Tarragona 61% 90% 74% 55% 75% 75% 50% 85% 89% 62% 58% 75% 92% 53% 70% 64%
Vielha 74% 94% 70% 92% 79% 92% 55% 94% 76% 87% 58% 90% 77% 83% 62% 88%

NC: model does not converge. The bold numbers indicate the high-performance parameter of each model. Sen:
sensitivity. Spe: Specificity.
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Ascospores show that Leptosphaeria has higher mean values in both parameters and
all models. Likewise, Ganoderma is the basidiospore type with high mean values in both
parameters in the two models. Finally, regarding conidiospores, Alternaria shows high
values in the logit model in both parameters, while the regression tree shows high values
in Cladosporium specificity and Alternaria sensitivity.

The results per concentration thresholds are not consistent. Regarding the logit model,
high sensitivity values are observable in the high threshold, while basidiospores and
conidiospores show high specificity values in the low threshold. On the other hand, the
regression tree shows that only basidiospores and conidiospores matched with respect to
the high sensitivity values in low thresholds.

4. Discussion

The high response of ascospores to the precipitation obtained in the logit model and
regression tree analyses could be due to fungal spore release being favored by the rain,
provoking higher emissions after rain ceased [5,51–55]. Likewise, the results agree with
other studies in terms of relative humidity but differ with respect to minimum tempera-
ture [56–59]. However, our results agree with Toscano-Underwood et al. [60], who assert
that ascoma can develop in a wide range of temperatures (5–20 ◦C), but it is optimal
between 15 and 20 ◦C. This is corroborated by Kaczmarek et al. [61], who assert that an
increase in temperature is associated with an increasing trend of ascospores in Poland.

In the case of basidiospores, the results related to temperature agree with those shown
in other studies [54,62–65]. In alignment with our results, Hernández et al. [64] evidenced
the requirement of temperate temperatures in the sporulation process, although an increase
in temperature (warm temperature) limits the process, and this is corroborated by peaks
of these taxa during spring and after summer. Additionally, Calderon et al. [66] reported
higher concentrations between 20 and 24 ◦C in dry weather and between 24 and 26 ◦C in
wet conditions. Even the intra-diurnal behavior of some basidiospores shows restrictions
because the high values are reported during the night and first hours of the day when
the temperature is temperate, and the humidity should be high [67,68]. In the case of
Catalonia, the results reported by Vélez-Pereira et al. [69] support the relationship between
the presence of basidiospores in the air and temperature because the trend analyzed shows
that basidiospores tend to increase annual values when the temperature tends to increase,
especially in cold and temperate geographical zones.

The results regarding relative humidity are also similar to other studies [58,62,64,67,68,70,71].
Hasnain et al. [67] and Quintero et al. [70] assert that high humidity and light precipitation
facilitate the sporulation of basidiospores. Meanwhile, the low influence of precipitation agrees
with the results reported by Gonzálo et al. [72], who confirm that basidium development occurs
in periods without rainfall. Burch and Livetin [73] and Quintero et al. [70] stated the same, but
with reference to the sporulation process of the basidiospores.

Finally, the results regarding conidiospores are consistent with other studies [74–76],
in which it is also shown that this type of spore is favored by temperature and lack of
precipitation, even though punctual meteorological events could have a different effect on
the sporulation process [77–80]. The predictors used to indicate a relationship between
Alternaria and Cladosporium are similar compared to the work of Recio et al. [81], who
stated that fluctuation occurs in a short period as a result of temperature variation, which
controlled the physiological process of formation, while other meteorological parameters
(precipitations and relative humidity) affected the physical process of emission, dispersion,
and suspension in the atmosphere.

In comparing the results from the logit model and regression tree, we observed that, in
general, the specificity values were high in all thresholds, except in low thresholds in Agari-
cus of the logit model and Cladosporium and Alternaria in the regression tree. Considering
that sensitivity represents the percentage of true positives, the logit model tended to have
high sensitivity values, except in the low threshold. These results show that the logistic
regression model’s predictions are more accurate when the threshold is reached, while the
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regression tree’s predictions are more precise when the threshold is not exceeded. It is
important to note that the high validation values obtained are not comparable with those of
other investigations or published techniques. Classic descriptors such as R2 or root mean
square error tend to overestimate the values of the fit due to the high proportion of non-null
days that are equal to or close to zero. This could be better explained by analyzing the
observed and measured proportions based on the probability of occurrence of the events
(presence/absence), where the proportion of values in which the model must establish a
true-positive prediction is very low regarding the true-negatives due to a high quantity of
concentrations that are close to or equal to zero, thus generating validation values that do
not reflect their true predictive power.

A challenge often faced in creating the aforementioned models is the selection of the
concentration thresholds for the specified region related to allergy response or pathogenic
infections in crops and, likewise, for the taxa studied. In this sense, future research should
focus on conducting allergological/phytopathological studies that consider aerobiological
records to establish accurate concentration thresholds.

5. Conclusions

Aerobiological predictions based on concentration thresholds facilitate the application
of statistical methodologies for constructing observation base models. In this sense, the
logistic regression model and regression tree applied in this study are simple and intuitive
when it comes to interpreting the results. Both models show similar results regarding
the relationship and/or influence of predictors (meteorological parameters) in different
simulated thresholds. The validation results show satisfactory values. However, the logistic
regression model shows greater precision in estimating the exceedance of the modeled
threshold. Considering that it is much easier to apply and store, the logistic regression
model is the ideal model for establishing the prediction of thresholds in the aerobiological
stations of Catalonia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/atmos14061016/s1, Figure S1: Monthly averages of the maximum
temperature (red boxplot) and minimum temperature ((blue boxplot), total precipitation (green bar),
number of days with precipitation (italic number inside the bar), and relative humidity (orange line)
of the station under study in the period 1995–2014 [37]; Figure S2: Diagram of the levels and split of a
regression tree; Table S1: Details on the geographical and meteorological characteristics of the aerobio-
logical sampling stations, [5,14,82–84]; Table S2: Classification, category, and concentration thresholds
per fungal spore for Catalonia; Table S3: Arguments for the inclusion of predictors into the mod-
els [6,28,68,69,81,85]; Table S4: Critical values used as positive binary answers per taxon-concentration
thresholds-aerobiological station; Table S5: Details on the logistic regression coefficient for Leptosphaeria
for each aerobiological station and concentration thresholds modeled; Table S6: Details on the logistic
regression coefficient for Pleospora for each aerobiological station and concentration threshold modeled;
Table S7: Details on the logistic regression coefficient for Agaricus for each aerobiological station and
concentration threshold modeled; Table S8: Details on the logistic regression coefficient for Ganoderma
for each aerobiological station and concentration threshold modeled; Table S9: Details on the logistic re-
gression coefficient for Alternaria for each aerobiological station and concentration threshold modeled;
Table S10: Details on the logistic regression coefficient for Cladosporium for each aerobiological station
and concentration threshold modeled; Table S11: First four regression tree split values and frequency
for ascospores for each aerobiological station and modeled concentration threshold; Table S12: First
four regression tree split values and frequency for basidiospores for each aerobiological station and
modeled concentration threshold; Table S13: First four regression tree split values and frequency for
conidiospores for each aerobiological station and modeled concentration threshold.
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