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a b s t r a c t

The industrial sector is nowadays experiencing a digital transformation motivated by the Industry
4.0 paradigm. Concepts such as data-driven models, Artificial Neural Networks (ANNs), and Transfer
Learning (TL) are part of the current vocabulary in the industrial management and control topics.
For that reason, in this paper the application of TL techniques is proposed to derive new ANN-based
control structures from pre-existing ones. Notice that if an ANN-based controller is transferred into a
new industrial environment, its appropriate behaviour must be ensured, and what it is more important,
this must be known a priori. Nevertheless, TL techniques do not always ensure this. That is why the
Transfer Suitability Metric (TSM) is proposed here. Determining the similarity among environments,
this metric tells if the controller can be transferred, transferred with certain limitations, or if it cannot
be transferred at all. Here, the metric is applied over a Wastewater Treatment Plant (WWTP). The
objective is to derive the control structure of one control loop, let us say the Dissolved Oxygen (DO),
and then transfer it into another basic control loop in a WWTP, the Nitrate–nitrogen (NO), and vice-
versa. Results show that with the help of the TSM, an improvement around a 68.54% and 80.53%
in the Integrated Absolute Error (IAE) and the Integrated Squared Error (ISE) is obtained in the NO
management, respectively. Moreover, a simplification and speed-up of the controller design process is
achieved.

© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

During the last years, the industrial sector has experienced
digital transformation towards the Industry 4.0 paradigm. It
as arisen as one of the most important advances where in-
ustrial systems will be able to communicate among them by
eans of exchanging huge amounts of information. Together
ith the massive adoption of such systems in most of the in-
ustrial scenarios, the amount of available information related
o industrial systems and their behaviour is expected to expo-
entially increase [1,2]. This motivates the appearance of pro-
esses and tasks where Artificial Neural Networks (ANNs) are
onsidered as the crucial tool to carry out the desired activity.
ne clear example consists in the adoption of ANNs for main-
enance and anomaly detection purposes, where they predict
he correct behaviour of the processes under supervision and
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determine whether the system is behaving correctly or not [1,3].
For instance, ANNs are considered to develop soft-sensors de-
voted to determining the deformation produced in the rotors of
air pre-heater systems [4]. Results there show that ANNs can
offer a much better performance than other data-driven meth-
ods. Other recent use cases of ANNs show that Feed-forward
Neural Networks (FFNN) and Bayesian ones are considered to di-
agnose failures. The formers, for instance, determine the damage
of different structures, ranging from tiny composite plates to big-
ger ones such as a steel-concrete composite cantilever structure
[5–7]. The latter are adopted to determine different topologies of
failures of permanent magnet motors, to determine the fault di-
agnosis of multi-redundant closed-loop feedback control systems
or to estimate the performance degradation of the system model
[8–10].

Nonetheless, ANNs are not only considered to detect anoma-
lies and malfunctions of industrial systems, but also to develop
sensing tools devoted to measuring certain parameters from dif-
ferent environments [11]. For instance, Convolutional Neural Net-
works (CNNs) are considered to develop a method to track the rail
head and waists by means of laser devices pointing at the desired
points of the rail structure. In that way, the proposed method
rticle under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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xploits the features of CNNs to provide an accurate and robust
erformance [12]. Other use cases of ANNs as sensing approaches
re widely observed in the petrochemical and wastewater treat-
ent sectors. For instance, a soft-sensor based on Adaptive Linear
eurons is proposed to generate predictions of the densest con-
entration of the elements in a distillation column [13]. In [14],
soft-sensor based on recurrent neural networks, and especially
ong Short–Term Memory (LSTM) cells, is proposed to determine
iolations of effluent values in a Wastewater Treatment Plant
WWTP).

ANNs are also considered to tackle control issues as though
hey were conventional controllers. For instance, in [15], two
FNNs are considered to implement the direct and inverse con-
roller of an oil well drilling machine. Results show that this
pproach can regulate in real time the pressure of the drilling
achine. Another example consists in the adoption of ANNs to

mplement an Internal Model Controller (IMC) based on Multi-
ayer Perceptron (MLP) and FFNN networks [16]. Its main aim is to
egulate the quantity of light present in an office environment. In
17], an ANN with a Proportional Integral (PI) ability is placed in
he feedback loop of a control structure managing a buck DC/DC
onverter. In that manner, the ANN can consider a high number
f gains rather than the usual number of conventional PI con-
rollers. In [18], the power of ANNs is considered to implement a
odel Predictive Controller (MPC) devoted to controlling highly
omplex multilevel power converters.
Focusing on the WWTP domain, ANNs are also considered as

ools either supporting a control structure, or acting as the main
ontroller. For instance, in [19], ANNs are proposed to perform
redictions of future violations of the WWTP pollutant limits.
hese predictions are considered to activate either a fuzzy, or
MPC control structure as a function of the predicted value. In

20], ANNs are adopted in the identification process of a MPC
n charge of controlling the effluent concentrations of a general
urpose WWTP. Later, in [21], ANNs are considered to implement
n adaptive fuzzy controller able to track the optimal set-points
f the WWTP dissolved oxygen control loop. In that way, the ANN
xploits its performance in the modelling of non-linear processes.
s a results, a better performance compared to a conventional
uzzy controller can be achieved. Finally, in [22], Recurrent Neural
etworks (RNN) are considered to implement an IMC structure in
harge of the same loop. Results there show that such structures
an overcome the results of conventional PI structures.
As it is observed, all these works rely on the performance

f the ANN on which they are based. However, ANNs must be
roperly dimensioned and trained to offer a good performance.
he problem here lies in the fact that the training process of
n ANN can become a tedious and high time demanding and
onsuming task [23]. Indeed, ANNs are tools whose performance
ely on the data considered in the training process. Consequently,
ata scarcity problems can entail severe issues. If enough data is
ot considered, the ANN cannot be properly trained. For all these
easons, these issues must be tackled somehow, especially in the
ndustrial sector where ANNs are being more and more adopted.

Recent studies show that the most representative computa-
ional intelligence algorithms can be considered to alleviate these
ssues. For instance, a self-adaptive extreme learning algorithm
s considered to determine the optimal number of neurons in
n ANN structure [24]. The same algorithm is also proposed
o reduce the computational requirements in the ANN training
rocess [25]. More complex algorithms like the Monarch Butterfly
ptimization process can be adopted to optimise the ANN struc-
ure and therefore, derive an optimal network offering a good
erformance without carrying out huge efforts [26]. The problem
f the application of these algorithms in the control domain relies

n the fact that they entail the derivation of a new ANN for each
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control loop being controlled. Consequently, their main benefit
cannot be completely exploited. Here is where Transfer Learning
(TL) comes into action. It is in charge of getting an ANN, which
is consciously trained for a certain task in a given domain, the
source domain, and then transferring it into a new unseen task
or scenario, the target domain. This approach has been widely
studied and adopted in classification tasks and, particularly, in
image processing [27].

Notwithstanding, in the industrial sector, most of the works
where TL is involved are focused on the machine fault detec-
tion and diagnosis. For instance, convolutional neural networks
and TL are considered to implement a system able to manage
gearbox components to avoid their failure [28]. The same prin-
ciple is also observed in [29]. There, authors present a TL and
fine-tuning (FT) process devoted to implementing a machine
fault diagnosis system which will determine gearbox failures by
means of time–frequency imaging of the gearbox system. The
convolutional networks are trained with labelled data from the
source domain and then transferred into the target domain where
only unlabelled data is available. Finally, TL is also considered
joint with the AlexNet, a neural network architecture, to ob-
tain structures able to identify and classify different emulsion
mechanisms for the oil sector [30]. Other examples considering
regression tasks mainly adopt TL to implement soft-sensors to
be applied in scenarios presenting data-scarcity problems [31].
In there, an ANN-based soft-sensor is trained with data from the
source domain, the one where enough data are available, and
then transferred into the target environment, the one showing
data-scarcity issues. The same is applied in [32], where a CNN
is considered to forecast the WWTP power consumption. Here,
TL is proposed to overcome the issues related to the WWTP data
scarcity by means of transferring pre-trained CNNs.

Moreover, in the industrial domain, the benefits of TL can be
exploited to speed-up the design of control loops. For instance, TL
techniques are considered in different ways to derive new control
structures [33–36]. In [33], TL is applied to derive a new variable
speed limit control unit. The main point is that TL is applied to
introduce a reinforcement learning agent trained in the source
domain into the target ones. In that manner, an acceleration
in the training process and the control design is achieved. In
[34], TL is considered to transfer a deep reinforcement learning
agent managing the heating system of a source building into a
target one. Thus, the new heating system can be obtained in an
easy manner. Later, in [35], TL accelerates the training process
of a hybrid cloud and edge reinforcement learning based control
strategy. Finally, in [36], transfer learning is considered to derive
new reinforcement learning based controllers of heating pumps
by means of transferring the controllers of similar systems in the
same environment.

In terms of the WWTP management, a first assessment of
the application of TL to derive new controllers was presented in
[37,38], where an ANN-based control structure is transferred
among the different control loops. Results there show that a
reduction of the ANN design and training time is achieved. How-
ever, the adoption of TL in such a way entails some issues that
must be considered:

• TL is not always a workable solution, and, on some occa-
sions, the Negative Transfer effect can be suffered [39].
• In industrial scenarios, TL cannot be evaluated a posteriori

since a wrong actuation can entail the destruction of the
target industrial environment.
• There exists a lack of metrics able to show the suitability of

transferring the ANN-based control design approach.
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Fig. 1. ANN-based Controller considering two LSTM cells and two MLP layers.
Its main aim is to replicate the behaviour of a conventional control structure.

For that reason, this paper tries to shed some light in this do-
ain providing the industrial control developers with a new met-

ic measuring the transfer suitability of ANN-based controllers.
otice that this paper corresponds to an extension of the works
hown in [37,38], where all the aforementioned issues were not
onsidered. In that sense, this work firstly proposes and defines
his metric conceptually and mathematically. Later, its behaviour
s analysed considering four different academic examples. Fi-
ally, it is considered and applied in the development of new
NN-based control structures adopted in the same domain as in
37,38], a WWTP environment.

The outline of the paper is as follows: Section 2 defines the
roblem being tackled in this paper. The proposed metric solving
he problem previously defined is presented in Section 3. Its
alidation is attained in Section 4 and its final application is
erformed in Section 5. Finally, Section 6 concludes the paper.

. Problem definition

Industrial Environments are characterised by presenting huge
mounts of control loops devoted to ensuring the correct be-
aviour and functionality of the industrial plant. In that sense,
he amount of time required to implement and design each one
f these controllers increases with the number of control loops to
anage. Notwithstanding, TL arises as an option able to reduce

his design and implementation time [38]. To exploit the benefits
f TL, an ANN-based Controller (see Fig. 1) must be designed and
roperly trained so as to correctly manage an industrial process,
he source environment. Later, this ANN-based controller will be
eployed on the remaining loops or target environments, not only
educing the design complexity, but also the required time to de-
ive a control solution [38]. Here, it consists in two LSTM cells and
wo MLP layers connected in series. The number of hidden units
er layer equals to 100, 50, 25 and 1, respectively. LSTM cells
re considered here due to their power in the management of
ime-series signals such as the ones managed in control problems
40].

Nevertheless, the ANN-based controller cannot be transferred
ithout determining a priori its suitability and preventing a Neg-
tive Transfer [39]. Its effects can entail the malfunction of the
ontrol loop and therefore, the incorrect operation of the in-
ustrial process. The avoidance of this effect is required for any
ndustrial scenario, but it is indispensable for critical industries
uch as WWTPs and petrochemistry environments, where a mal-
unction or mismanagement can entail the destruction of the
ndustrial plant or the environment. For that reason, the need of
easuring the suitability of TL is obvious. Some works have ad-
ressed this in the last years. In [41], a first attempt to determine
ow transferable are certain parts of neural networks has been
erformed. In there, the effects of TL and fine-tuning processes
erformed to a set of neural networks dealing with the ImageNet

ataset are assessed. Something similar is done in [42], where
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the limits of transfer learning are studied from the theoretical
point of view. From a practical one, in [43], TL suitability is
determined training several convolutional neural networks in the
source domain. Then, they are transferred into the target domain
and ranked with data coming from the source environment. The
best network is finally considered as the model to be used. In [44],
the adoption of several metrics is evaluated to determine the TL
effect a posteriori. Nine different non-intrusive load monitoring
algorithms are tested with source and target data to classify
and estimate the energy consumption. However, results are only
proved on energy consumption datasets, which cannot assure
their adoption in other environments. From the regression point
of view, Boudabous et al. present a traffic flow estimation system
where its transferability is assessed [45]. Another example is
shown in [46], where the transferability and accuracy of ANNs
in charge of estimating the soil moisture is analysed. There, the
transferability analysis is performed to determine the best dataset
to train an ANN able to perform the desired prediction task.
Finally, in [47], a metric to quantify the separability of data classes
in classification issues is presented.

Although these works present an attempt to measure the
transfer suitability of the different structures, all of them show
the same issues:

• Most of the measuring approaches are devoted to deter-
mining the transfer suitability of structures performing clas-
sification tasks. However, here we are dealing with a re-
gression problem since we want to transfer an ANN-based
controller dealing with time-series signals. Therefore, the
approaches for classification problems are not valid since
the time correlation, which is a common feature of industrial
measurements, is broken.
• The transferability of the structures dealing with regression

tasks is usually computed a posteriori [37,38,46]. Thus, bad
actuations and performances cannot be avoided.

Taking all this into account, this work is focused on provid-
ing a new measuring approach, the Transfer Suitability Metric
(TSM), which can a priori determine the transfer suitability of an
ANN-based control structure. Its main aim is to determine the
similarity of the control loops between environments. Thus, the
TSM metric, which is based on the idea presented in [47] and the
correlations presented in [46], is computed to give a numerical
value to this similarity and therefore, to decide if the ANN-based
structure is transferable or not. Fig. 2 depicts the idea behind the
problem that TSM is willing to solve.

A first approach to this behaviour is proposed in [48], where
the first definition of the metric was proposed. However, it was
tested a posteriori over academic examples. Here, we provide a
deeper understanding of the proposed metric. Besides, we pro-
pose the adoption of the metric over academic examples and a
digital version of a critical industrial environment, a WWTP. In
both cases the metric is computed a priori considering two differ-
nt control configurations: (i) an open loop one where the envi-
onment is not being controlled and (ii) considering the historical
ata of the closed loop. As a summary, the main contributions of
his work are:

• Reduce the complexity and speed-up the control design
process by means of transferring ANN-based structures be-
tween industrial environments.
• Define and develop a metric able to compute the suitabil-

ity of transferring an ANN-based controller between critic
source and target control loops. The key point here is that
this metric is computed a priori. This is crucial since one can
determine the performance of the controller in the target

domain before performing the transference.



I. Pisa, A. Morell, J.L. Vicario et al. Journal of Process Control 124 (2023) 36–53

a

Fig. 2. TSM objective. The main idea is to determine if the ANN-based controller derived from the source domain can be transferred into the target domain or not.
Notice that r(s), P(s), u(s) and y(s) are the reference signal, the process under control, and the actuation and controlled signals, respectively.
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• Assess the behaviour of the metric in a critical environment
such as WWTP domain.

The fact that this metric is computed a priori opens a new
paradigm that can be highly beneficial in the industrial control
design: industrial controllers can be implemented by means of
ANNs which are able to replicate the behaviour of conventional
structures such as Proportional Integral Derivative (PID) con-
trollers, MPCs or IMCs [19,20,22,49,50]. They will be designed for
the source scenario and then, tested with measurements from
the target one. Measurements of the source domain are already
obtained since they are considered in the training process of the
ANN-based controller. On the other hand, the ones coming from
the target environment can be obtained directly from historical
data. Hence, the transference suitability of the control struc-
ture can be assessed without disturbing the target environment
performance.

3. Transfer suitability metric

3.1. TSM introduction

TSM is focused on computing the similarity between the
source and target environments where the transference of the
ANN-based control structure will be performed. Since industrial
measurements from both domains can be understood as time-
series signals, the computation of correlations is proposed to
determine these similarities [46]. The main idea is to obtain the
outputs of the ANN-based controller when it is dealing with
measurements from the source and target domains, respectively.
Then, the correlations are computed to determine if the outputs
are similar enough to consider the transference of the ANN-
based controller. High correlation values will be obtained in
those situations where the ANN is treating the measurements
from both domains similarly and therefore, when the ANN-based
controller is transferable. On the other hand, low values will
be obtained in those situations where the ANN is performing
different processes to the input measurements. Consequently, the
control problems are different enough to not apply the ANN-
based controller transference. In that sense, the autocorrelation
and cross-correlation between measurements of both domains
are adopted here.

3.2. TSM definition

In order to derive the TSM metric, let us consider two different
processes, a First Order Plus Dead-Time (FOPDT) process, Ps(s),

nd a Second Order Plus Dead-Time (SOPDT) process, Pt (s). Both
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ave been previously defined and deeply assessed in [51,52]:

Ps(s) =
K

Ts+ 1
· e−Ls =

1.4
1.2s+ 1

· e−0.4s

Pt (s) =
Kω2

n

s2 + 2ζωns+ ω2
n
· e−Ls =

1.521
s2 + 0.338s+ 1.59

· e−0.370s

(1)

where K , T and L correspond to the gain, time constant, and delay
of the FOPDT process, respectively. In terms of the SOPDT, the
ωn equals to the natural frequency of the process and ζ to its
damping coefficient.

In such a context, Ps(s) is controlled by an ANN-based PID
ontroller such as the one presented in Fig. 1. It is properly
rained so as to replicate the PID controller defined in [51]. Then,
t is proposed to be transferred into Pt (s). Hence, the similarity
etween industrial processes is computed to determine if Pt (s)
an be controlled by the same ANN-based controller.
Consequently, two matrices are obtained for each one of the

NN-based layers when dealing with measurements from Ps(s)
and Pt (s), respectively. These matrices are defined as Xi,Yi

∈

RN×D, where D is the output dimension of the ith layer of the
ANN structure and N is the number of time instants (see Fig. 3).
Thus, Xi and Yi can be understood as the set of outputs of the
ith layer sorted in time, i.e., Xi

=
[
xi(t0), . . . , xi(tN )

]T and Yi
=[

yi(t0), . . . , yi(tN )
]T , where xi(t), yi(t) ∈ R1×D are the outputs of

the ith layer at a time instant t ∈ [t0, tN ].
The first step to compute the proposed metric is to reduce

the dimension of each ANN layer to a determined one. This
is performed to obtain an invariant metric with respect to the
dimensions of each layer of the ANN-based controller and to
preserve their time correlation. The number of dimensions can
be set to whatever dimension is desired, however, in this work
a 2-dimension matrix is proposed since it allows for a visual
interpretation. Here, the algorithm to perform this task consists
in the well-known Multidimensional Scaling (MDS) algorithm
[53,54]. While other possible methods such as Principal Com-
ponent Analysis (PCA), Linear Discriminant Analysis (LDA), and
Independent Component Analysis (ICA) reduce the dimension of
data without preserving the relationships among measurements,
the MDS algorithm is considered due to its ability to preserve
these relationships once the dimensions are reduced [53]. It is
important to preserve them since later the correlation compu-
tation will take them into account. In that sense, the following
transformation is performed:

Xi
∈ RN×D MDS

−−→ X′,i ∈ RN×2

Yi
∈ RN×D MDS

−−→ Y′,i ∈ RN×2
(2)

Visually, one can observe in Fig. 4 that the output of the layer
is changed from a set of values in the form of a matrix, which
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Fig. 3. Structure of matrices Xi and Yi for the ith layer of the ANN-based controller. Notice that a continuous time-delay block is added with a delay of Ts . In this
case, Ts corresponds to the sampling time of measurements which holds the Nyquist Sampling Theorem.
cannot be easily managed, to a situation where the output of the
layer can be easily interpreted as the evolution of a signal in a 2-
dimensional space. For instance, we are going to take the outputs
of the second LSTM layer (LSTM 2) of the ANN-based controller
presented in [38], not only when it is controlling Ps(s), but also
Pt (s). In this case, it can be clearly observed that the evolution of
the dimensions of the ANN-based controller are not similar at all.

Since the correlation values highly depend on the input mea-
surements, the time-correlation matrices consist in the
normalised autocorrelation of the data coming from the source
control loop, Rx′,i ∈ R(2N−1)×2, and the normalised
cross-correlation between the data coming from the source and
the target control loops, Rx′y′,i ∈ R(2N−1)×2. Thus, they consist in:

Rx′,i =

⎡⎢⎣
1

max(r
x′ ij=1

) · rx′ ij=1
1

max(r
x′ ij=2

) · rx′ ij=2

⎤⎥⎦ (3)

Rx′y′,i =

⎡⎢⎢⎣
1√

max(r
x′ ij=1

)max(r
x′y′ ij=1

)
· rx′y′ ij=1

1√
max(r

x′ ij=2
)max(r

x′y′ ij=2
)
· rx′y′ ij=2

⎤⎥⎥⎦ (4)

where rx′ ij and rx′y′ ij ∈ R(2N−1)×1 are the sample autocorrelation

and cross-correlation vectors for
[
X′,i

]
and

[
Y′,i

]
, respectively.
j,· j,·

40
Once the normalised autocorrelation and cross-correlation
matrices for the given layer of the ANN-based controller are
obtained, we proceed with the computation of the TSM for the
ith layer:

TSMi = 1−

√ 1
2(2N − 1)

2N−1∑
k=1

2∑
j=1

([
Rx′,i

]
k,j −

[
Rx′y′,i

]
k,j

)2
(5)

Then the TSM value for the considered ANN-based controller
is computed as:

TSM = min(TSMi) (6)

Taking all this into account, the TSM computation can be
performed following the Algorithm 1.

Notice that TSM relies on data, which may come from SCADA
systems as well as physical sensors that might introduce noise
to the measurements or return missing values. In such a context,
prior to compute the TSM a data preprocessing stage should be
performed to assure that measurements corrupted by noise are
cleaned and missing values are imputed. Data-based strategies
such as the application of Autoencoders and Denoising Autoen-
coders can be applied [22,55]. In addition, we have empirically
proved that only a total amount equivalent to the 30% of the
required data to properly train the models is needed to safely
compute the TSM value in the scenarios proposed in this work.
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Algorithm 1 Algorithm to compute the TSM metric

for i = 1 to M do ▷ M ← Number of layers
Obtain the data:
Xi
= outputs of the i-th ANN layer controlling Ps(s)

▷ Xi
∈ RN×D

Yi
= outputs of the i-th ANN layer controlling Pt (s)

▷ Yi
∈ RN×D

Compute the MDS:
X′,i = MDS(Xi, 2) ▷ X′,i ∈ RN×2

Y′,i = MDS(Yi, 2) ▷ Y′,i ∈ RN×2

for j = 1 to 2 do

Define X∆,i
j :

X∆,i
j =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

[
X′,i

]
N,j 0 · · · 0[

X′,i
]
N−1,j

[
X′,i

]
N,j · · · 0

...
. . .

...[
X′,i

]
1,j

[
X′,i

]
2,j · · ·

[
X′,i

]
N,j

0
[
X′,i

]
1,j · · ·

[
X′,i

]
N−1,j

...
. . .

...

0 0 · · ·
[
X′,i

]
2,j

0 0 · · ·
[
X′,i

]
1,j

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
▷ X∆,i

j ∈ R(2N−1)×N

Compute autocorrelation rx′ ij and cross-correlation rx′y′ ij
vectors:
rx′ ij = X∆,i

j ·
[
X′,i

]
·,j ▷ rx′ ij ∈ R(2N−1)×1

rx′y′ ij = X∆,i
j ·

[
Y′,i

]
·,j ▷ rx′y′ ij ∈ R(2N−1)×1

Normalise autocorrelation and cross-correlation:[
Rx′,i

]
·,j =

1
max(r

x′ ij
) · rx′ ij[

Rx′y′,i
]
·,j =

1√
max(r

x′ ij
)·max(r

x′y′ ij
)
· rx′y′ ij

end for
Compute Transfer Suitability Metric for i-th ANN layer:

TSMi = 1−

√
1

2(2N−1)

2N−1∑
k=1

2∑
j=1

([
Rx′,i

]
k,j −

[
Rx′y′,i

]
k,j

)2

end for
Compute Transfer Suitability Metric as:
TSM = min(TSMi)

If lower amounts are considered, however, some dynamics of the
ANN-based controller management can be lost since the slowest
dynamics could not be properly captured. Besides, the TSM could
not converge efficiently due to the lack of this information and
therefore, produce undesired outputs.

3.3. TSM interpretation

Once the minimum TSM value is computed, the rule to decide
etween transferring or not is the following one:

ransfer =
{
Suitable if TSM > γsuitability

Unsuitable if TSM ≤ γsuitability
(7)

where γsuitability corresponds to the transfer suitability limit.
It is worth noting that, with the considered normalisation, the

maximum and minimum correlation values are set to 1 and 0,
 1

41
respectively. For that reason, values close to 1 mean that the
autocorrelation and cross-correlation are remarkably similar and
therefore, that the ANN-based controller can behave similarly in
the source and the target domain. Otherwise, TSM values equal
to 0 would be obtained in the hypothetical scenario where the
autocorrelation matrix totally differs from the cross-correlation
matrix.

To clearly observe that, let us consider the case of transfer-
ring the ANN-based controller of Ps(s) into Pt (s). TSM values are
computed for each layer, showing that its maximum is given
at the output of the ANN-based controller. It equals to 0.665.
On the other hand, the lowest TSM, which equals to 0.5683, is
offered by the first MLP layer. Visually, Fig. 5 clearly shows that
the transference of the ANN-based controlling Ps(s) into Pt (s) is
not a suitable option. From this, it can be extrapolated that TSM
values closer to 0.6 or lower will be obtained in those cases
where the transfer of the ANN-based controller is not suitable. For
that reason, and to leave a certain margin, the transfer suitability
limit is set to γsuitability = 0.7. Notice that this value is ad-
hoc. Therefore, γsuitability should be computed for each domain,
i.e., other control scenarios. However, a rule-of-thumb has been
considered to set the value of γsuitability: it must be placed above
0.7. TSM is based on the correlation concept and values higher
than 0.7 are considered as strong correlations [56]. From that
minimum value, the higher the value of γsuitability, the stronger the
required relationship between domains (which could be the case
when addressing more complex and critical processes).

4. TSM validation

Before applying the TSM on the WWTP environment, its be-
haviour is assessed considering four academic controlled pro-
cesses (see Fig. 6). They consist in two FOPDT systems, Ps(s)
and P2(s), an over-damped SOPDT process, P3(s), and a SOPDT
ystem with resonant frequencies, P4(s). Ps(s) is considered as the
ource domain while P2(s), P3(s), and P4(s) are considered as the
arget ones. All these systems have been previously developed
nd deeply analysed by Kurokawa et al. [51,52].

.1. Source environment

Ps(s) is defined in (1), where its gain, K , is equal to 1.4 and
ts dead-time or delay to L = 0.4 s. The conventional one degree
f freedom PID controller controlling this process is taken from
urokawa et al. in [51]. It is defined as:

s(s) = 1.286 ·
[(

1+
1

1.8109s

)
· es(s)+

0.2367s
α · 0.2367s+ 1

· ys(s)
]
(8)

where es(s) corresponds to the mismatch between the reference
signal rs(s) and the output signal of Ps(s), ys(s).

Taking all this into account, the signals of the Ps(s) control
ystem (ys(s) and us(s)) when it is controlled by the Kurokawa’s
ID are considered in the training process of the ANN-based
ID controller. It is trained considering a variable set-point, r(s),
hich is generated by means of a pseudo-random uniformly
istributed sequence of values between 0 and 2.
The ANN-based PID structure is developed and trained in

ensorFlow in its 1.14 version over Python 3.6 [57]. The most
ommon libraries of Python, such as Pandas, Numpy, Matplotlib,
cikit-Learn and Scipy are also considered [58–62]. Finally, the
NN is trained considering the ADAM optimiser and
ack-propagation training algorithm with a learning rate of 1 ·
0−3 and a L penalty of 1 · 10−4 to avoid overfitting issues [40,
2
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Fig. 5. Control performance when Ps(s) and Pt (s) systems are managed with the
NN-based controller.

ection 7.2]. This process is carried out considering an NVIDIA
eForce RTX 2080 Ti GPU and an Intel Xeon CPU working at a
aximum clock frequency of 3.60 GHz. Once trained, the ANN-
ased PID controller is implemented over Matlab

®
R2020b and
42
Simulink
®

v.10.2. For further details readers are referred to
[38].

Results show a Root Mean Squared Error (RMSE) equal to
0.0630 units, a Mean Average Percentage Error (MAPE) of 8.57%,
and a determination coefficient (R2) of 0.996. Details on the pre-
diction performance metrics can be observed in [63, Performance
evaluation].

Then, the ANN-based structure is tested as the Ps(s) controller
o assess its control behaviour as well as to determine if it can
e considered as a candidate to be transferred. This performance
s evaluated by means of the usual Integrated Absolute Error
IAE) and Integrated Squared Error (ISE) indexes. Results show
hat the IAE and ISE values for Ps(s), when it is controlled by
he conventional PID of (8) for a variable set-point during 365 s,
re equal to 16.6027 and 6.8499, respectively. In terms of the
NN-based controller, these amounts are increased until 18.6457
nd 7.0470, respectively, which are only deviated a 12.03% and a
.88% with respect to the conventional PID results, respectively.
esides, it can be observed in Fig. 7 that the control performance
nd the manipulated signal of the proposed ANN-based controller
lmost match the conventional PID as it is expected.

.2. Target environments

In terms of the target environments, the second FOPDT pro-
ess, P2(s), is defined as follows:

2(s) =
2.5

e−0.6s (9)

1.4s+ 1
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Fig. 6. TSM validation. The main idea is to determine if the ANN-based controller for the source domain can be transferred over the target domains.
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Fig. 7. Control performance when Ps(s) is managed with the conventional PID
and the ANN-based controller.

where K = 2.5, T = 1.4 and L = 0.6 s. As it is observed, the
dynamics of P2(s) differ from Ps(s) mainly in the introduced delay
as well as in the gain of the process.

The first SOPDT process, P3(s), is described by the following
transfer function,

P3(s) =
1.11

s2 + 2.2200s+ 1
· e−0.420s

=
1

s+ 1.5918
·

1.11
s+ 0.6282

· e−0.420s
(10)

hich defines an over-damped process with ζ = 1.11. On the
ther hand, P4(s) shows a resonance phenomenon at 1.14 rad/s.

This phenomenon can be observed in the Bode Diagram where
the gain of the process increases instead of decreasing or being
constant along the frequencies (see Fig. 8). Thus, P4(s) equals to:

P4(s) =
3.3120

s2 + 0.5280s+ 1.4400
· e−0.310s (11)

here ω = 1.2, ζ = 0.22, and K = 2.3 [52].
n m

43
Fig. 8. Bode diagram for Ps(s), P2(s), P3(s) and P4(s) processes.

As it has been previously stated, the main objective of this
work is to compute the suitability of transferring an ANN-based
controller between different domains. For that reason, the ANN-
based PID controlling Ps(s) is transferred into P2(s), P3(s) and
P4(s) control loops. In that sense, one can face two different
onfigurations of the target processes:

1. The processes present an open-loop configuration and
therefore, data from the target domain does not contem-
plate any kind of information regarding the control be-
haviour.

2. Historical data from the target domain being managed by
default PID controllers are available.

.2.1. Open-loop data-generation scenario
The first configuration corresponds to the open-loop one,

here target processes are not being controlled. Therefore, infor-
ation regarding the control effects over the processes are not
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Table 1
TSM between correlations when transferring the Ps(s) data-based controller to manage Pi,2(s), Pi,3(s) and Pi,4(s) systems.
TSM from Ps(s) to Pi,2(s), Pi,3(s) and Pi,4(s) systems

Layers Ps(s) to Pi,2(s) Ps(s) to Pi,3(s) Ps(s) to Pi,4(s)

Fix Variable Fix Variable Fix Variable

Input 0.7823 0.9581 0.8803 0.9739 0.6954 0.7873
LSTM 1 0.8014 0.9475 0.9003 0.9718 0.7357 0.6889
LSTM 2 0.8300 0.9447 0.9334 0.9717 0.6084 0.6857
MLP 1 0.8486 0.9478 0.9345 0.9721 0.6289 0.6450
MLP 2 0.7143 0.9789 0.8850 0.9867 0.4713 0.5909

Minimum 0.7143 0.9447 0.8803 0.9717 0.4713 0.5909

Computation Time - (s) 33.28 161.77 37.02 166.01 33.85 162.82
c
s
A
v
0
P
F

v
1
i
t
3
f
i
a
f
a
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4

t

available. One option tackling this could be to directly place the
ANN-based PID over the desired target environment, but this is
counterproductive, especially for critical infrastructures since no
information about the control performance is known.

To alleviate this, the identification of P2(s), P3(s) and P4(s) is
erformed to estimate the ANN-based PID behaviour. Here, we
pt for the 123c identification model [64]. Notice that SOPDT
rocesses are identified by Double Pole Plus Dead-Time (DPPDT)
odels:

(s) =
Kω2

n

s2 + 2ζωns+ ω2
n
· e−Ls → P ′(s) =

K ′

(T ′s+ 1)2
e−L
′s (12)

Once identified, the models can be adopted to close the control
loop and therefore, determine the behaviour of the ANN-based
PID without testing it in the final industrial environment. In such
a context, the identification process performed over the target
scenarios provides the following process models:

Pi,2(s) =
2.5

1.399s+ 1
· e−0.6s

i,3(s) =
1.11

(1.1410s+ 1)2
· e−0.3240s

i,4(s) =
2.300

(0.3468s+ 1)2
· e−1.3040s

(13)

here Pi,2(s), Pi,3(s) and Pi,4(s) stand for the identifications of
P2(s), P3(s) and P4(s), respectively. P2(s) and Pi,2(s) are nearly equal
since P2(s) is a FOPDT system which can be easily identified.

The results of the identification process can be observed in
Fig. 9, where the identified processes are contrasted to the orig-
inal ones when a unitary step is considered as the input. As
it is observed, the identified systems yield values really close
to the ones from the original processes except for Pi,4(s). This
act is motivated by the identification process as such. Since
OPDT processes are modelled by a DPPDT, the effects of resonant
requencies are lost. Therefore, the transient state of the identified
odel differs from the original one to later be as close as possible

n the steady state.
Results concerning the transferability of the ANN-based PID

nto the target environments with an open-loop configuration
re observed in Table 1. TSM is computed for the outputs of
ach ANN-based PID’s layer when it is controlling the identified
ersions of the target environments, i.e., Pi,2(s), Pi,3(s), and Pi,4(s).
fix set-point equal to one unit and a variable set-point are

onsidered in the evaluation of the ANN-based PID control per-
ormance. Hence, it is clearly observed that the transference from
s(s) to Pi,4(s) is not feasible at all since none of the considered
et-points provide a minimum TSM over the transference limit.
or instance, the minimum TSM for a variable set-point equals to
.5909 whereas for a fixed one it equals to 0.4713.
On the other hand, the transference from Ps(s) to Pi,3(s) is

ecommendable. In this case, all the layers of the ANN-based PID

eturn TSM values placed over the suitability limit. In terms of the

44
Fig. 9. Target processes identified models.

fix set-point, the lowest TSM is given by the input layer, where
the ANN-based PID does not actuate over the measurements. TSM
values for the variable set-point increase until showing a mini-
mum TSM equal to 0.9717. Now, the highest value is obtained at
the output of the MLP2 layer, showing that the actuation signals
for Ps(s) and Pi,3(s) are really similar. Finally, TSM values regarding
the transference from Ps(s) to Pi,2(s) show that this transference
an be performed as well. The minimum TSM for a variable
et-point equals to 0.9447, clearly showing that the proposed
NN-based PID can be transferred. However, the minimum TSM
alue for a fix set-point diminishes until a TSM equivalent to
.7143. This shows that the control behaviour of the ANN-based
ID managing Pi,2(s) and a fix set-point can be compromised (see
ig. 10).
Regarding the required time to compute the TSM, it is pro-

ided as the Computation Time. In this case, for a total amount of
0 000 samples, it is observed that the highest Computation Time
s obtained when a variable set-point is considered. In average,
his time equals to 163.53 s. For a fix set-point, it is equivalent to
4.72 s in average, which represents a decrement of 128.82 s. This
act is motivated by the dynamics of the set-point. As its name
ndicates, the fix set-point consists in a constant value generating
constant output, whereas the variable set-point considers dif-

erent input and output dynamics. Consequently, these dynamics
re more difficult to process by the MDS algorithm and therefore,
equire an extra computational time.

.2.2. Closed-loop data-generation scenario
The other configuration that one may face corresponds to

he closed-loop one, where conventional control structures are
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Table 2
Parameters of the conventional PIDs for P2(s), P3(s) and P4(s).
Controller KPID Ti,PID Td,PID
u2(s) 0.6371 1.8109 0.2367
u3(s) 2.6200 3.3800 0.4400
u4(s) 0.2780 0.6760 1.6200

already controlling the target environments. In that sense, TSM
cannot be computed by means of substituting the conventional
structures by the ANN-based PID. This could entail drastic issues
since the correct behaviour of the ANN-based structure is not
ensured for the target domain. Instead, the adoption of historical
data is considered. These data will be directly obtained from his-
toric measurements without the necessity of generating neither
new control structures, nor identifying the process under control.
Nevertheless, some deviations with respect to the real behaviour
of the ANN-based PID over the target scenario can appear.

Historical data consist in the input and output measurements
btained from the actuation of the conventional PID structures
efined in [51]. They consist in one-degree of freedom PID con-
rollers designed to guarantee a target robustness (Ms) of 1.4 for
ervo purposes [51]:

x(s) = KPID ·

[(
1+

1
Ti,PIDs

)
· ex(s)+

Td,PIDs
α · Td,PIDs+ 1

· yx(s)
]

(14)

here ux(s) is the control signal, yx(s) the output signal of Px(s),
nd ex(s) = rx(s)−yx(s) the error between the reference (rx(s)) and
x(s) signals. α, which is devoted to making proper the derivative
art of the controller, equals to 0.1. The parameters of each
onventional PID, i.e., their gain KPID, their integral time Ti,PID and
heir derivative time Td,PID can be observed in Table 2.

Thus, data generated by these PID structures are considered to
etermine the TSM values whenever a closed-loop configuration
s used. The output of the target process being controlled by the
onventional PID as well as the reference signal are then consid-
red as the inputs of the ANN-based PID structure. The outputs
f each ANN layer are later adopted in the TSM computation.
Results regarding TSM values when the default PIDs are con-

idered are shown in Table 3. In this case, it is observed that TSM
45
alues show the same tendency as in the open-loop configuration.
or instance, the transference of the ANN-based PID from Ps(s)
nto P2(s) and into P3(s) can be considered since all TSM values are
ver the suitability limit, i.e., over 0.7. The minimum TSM value
or P2(s) equals to 0.9472 and 0.9880 for the fix and variable set-
oints, respectively. These values change until 0.9499 for the fix
et-point and 0.9872 for the variable one in case of being trans-
erred into P3(s). These results clearly state that the ANN-based
ID can be adopted as the ANN-based structure controlling either
2(s) or P3(s), regardless of the considered set-point. Nevertheless,
he situation completely changes when P4(s) is considered. The
inimum TSM value equals to 0.3926 and 0.5428 for the fix and
ariable set-points, respectively.
Regarding the time needed to compute the TSM, the same be-

aviour as in the Open-loop Data-generation scenario is observed.
ow, the average time required for a variable set-point equals to
56.14 s whereas it diminishes until 34.25 s for a fix set-point.
s stated before, these times are motivated by the complexity
f the process being controlled as well as the topology of the
et-point. Taking this into account, the objective of speeding-up
he control design process and achieve the scalability of it can
e fulfilled. The scalability is achieved since no extra controllers
ave to be designed nor trained. Moreover, in terms of the design
cceleration, the times involved in the design of a new control
tructure are much higher than those required in transferring
controller [38]. Besides, TSM could be computed periodically
nd therefore, determine when the control structure needs to
e updated (fine-tuned or retrained with new data) instead of
eriving new solutions.

.2.3. Discussion
TSM metric has been validated on two different configurations

f the environment: (i) an open-loop and (ii) closed-loop data-
eneration configurations. In both cases, results show that the
SM is behaving as it should. Large values are provided for those
ituations where the controller can be transferred whereas low
alues are obtained otherwise. Nevertheless, results also show
hat there are some pros and cons that must be considered:
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Table 3
TSM between correlations when transferring the Ps(s) data-based controller to manage P2(s), P3(s) and P4(s) systems.
TSM from Ps(s) to P2(s), P3(s) and P4(s) systems

Layers Ps(s) to P2(s) Ps(s) to P3(s) Ps(s) to P4(s)

Fix Variable Fix Variable Fix Variable

Input 0.9867 0.9953 0.9789 0.9955 0.8067 0.9872
LSTM 1 0.9472 0.9902 0.9499 0.9895 0.8667 0.6667
LSTM 2 0.9477 0.9880 0.9504 0.9872 0.8298 0.6588
MLP 1 0.9476 0.9890 0.9504 0.9885 0.8019 0.6765
MLP 2 0.9473 0.9929 0.9500 0.9924 0.3926 0.5428

Minimum 0.9472 0.9880 0.9499 0.9872 0.3926 0.5428

Computation Time - (s) 34.32 153.28 34.41 161.09 34.02 154.06
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• When TSM is applied over an open-loop data-generation
scenario, the actuation of the controller cannot be consid-
ered. This implies that the loop should be closed to deter-
mine the ANN-based controller. This is performed consider-
ing the identification of the target processes, allowing us to
obtain the required data in an easy way by using the process
model.
• On the other hand, we can find that the target environ-

ments are being managed by a default controller, i.e., PI,
PID and so on. In this case, the metric can be computed
considering historical measurements from the conventional
controller behaviour. The problem here lies in the fact that
the actuation of the controller over the target environment
is present in the data and therefore, this can mask the simi-
larity between source and target domains. Nevertheless, the
identification of the system is not required and therefore,
the process of designing a controller can be speed-up.

In both cases, the pros we can obtain using the TSM metric
re more beneficial. Moreover, the drawbacks can be considered
s affordable since the deviations observed in the performance of
he transferred controllers are really small.

It is worth noticing that one of the objectives of TSM is to
chieve the speed-up of the control design process. This speeding
s achieved by means of the TL process itself and the adoption
f TSM. The speeding achieved with the TL is clear: the amount
f time involved in the training of an ANN-based controller from
cratch is much higher than the time involved in a probable fine-
uning process [38]. Moreover, the amount of time involved in
he TSM computation must be considered. In both cases, it is
bserved that it depends on the topology of set-point as well as
n the complexity of the process under control.

. WWTP TSM application

.1. WWTP environment

The industrial environment where the proposed metric is go-
ng to be applied corresponds to a WWTP, but instead of comput-
ng the TSM values over the real plant, the Benchmark Simulation
odel No. 1 (BSM1) is considered [65]. It corresponds to a general
urpose WWTP digital model implemented in Matlab

®
R2020b

nd Simulink
®

v.10.2. It consists of five reactor tanks connected
n series. The first two, Tank 1 and Tank 2, correspond to anoxic
anks with a volume of 1000 m3 each. Its main objective is
o carry out the denitrification process where the amount of
itrates present in the residual urban waters are transformed
ntro nitrogen products [66]. Later, these products are managed
n the last three reactor tanks, Tank 3, Tank 4, and Tank 5, which
onsist of aerated reactors with a volume of 1333 m3 each. They
re in charge of transforming the nitrogen products, especially the
mmonia (SNH ) into nitrates, by means of the nitrification process
66].
46
Fig. 11. BSM1 model with its default PI controllers. KLa,5 , Qint , Qe and Qr are
the oxygen transfer coefficient, the internal recirculation flow, the effluent and
the external recirculation flow, respectively.

Moreover, BSM1 also presents two default PI controllers man-
aging the crucial WWTP control loops: (i) the dissolved oxygen
(DO) and (ii) the nitrate–nitrogen (NO) [67]. Both of them are in
charge of ensuring the correct performance of the nitrification
and denitrification processes described by the Activated Sludge
Model No. 1 (ASM1) [68]. In that sense, the DO control loop is in
charge of maintaining the dissolved oxygen in the fifth reactor of
the plant (SO,5) at a fixed set-point of 2 mg/L. The NO one is in
charge of maintaining the nitrate–nitrogen of the second reactor
tank (SNO,2) at a fixed value of 1 mg/L (see Fig. 11).

This is performed by means of manipulating the oxygen trans-
fer coefficient at the fifth tank (KLa,5) and the internal recircula-
tion flow rate (Qint ). In that sense, the control signals generated
by the PI controllers consist in:

KLa,5 = KSO,5

[
1+

1
TiSO,5s

]
· eSO,5 (s) (15)

int = KQint

[
1+

1
TiQint s

]
· eSNO,2 (s) (16)

here eSO,5 (s) and eSNO,2 (s) are the errors between the desired
et-points and the measured concentrations. KSO,5 is the PI pro-
ortional gain, which equals to 25, and TiSO,5 is the PI integral
ime, which is set to 1 · 10−3 days. In terms of the SNO,2 PI
ontroller, its gain, KQint , equals to 10000 whilst its integral time,
iQint , is equal to 0.0150 days. As it can be observed in the PI
ntegral time, both control loops differ in their dynamics. The ones
f SO,5 are much faster than the dynamics of SNO,2 concentrations.
his is also corroborated by the BSM1 simulation protocol. It
ot only specifies how to perform a simulation, but also which
opology of sensors and the sampling times that should be con-
idered. In that sense, the sensors in charge of measuring the SO,5
oncentration return values every minute while the sensors of
NO,2 return a value every 10 min [65,67]. Nevertheless, BSM1 also
pecifies that outputs from the benchmark should be obtained
very 15 min. In other words, among all the available measure-
ents, only those observed every 15 min must be considered

65].
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Fig. 12. Controllers designed to control the DO and NO control loops of a general purpose WWTP.
BSM1 also presents its own performance metrics. Since a
WWTP environment is in charge of cleaning polluted waters,
BSM1 implements the Effluent Quality Index (EQI) and the Overall
Cost Index (OCI) metrics to determine the environmental per-
formance and the costs related to the cleaning procedure. In
terms of the control performance, BSM1 proposes the IAE and
the ISE between the desired set-point and the obtained value as
the metric measuring this performance [67]. After simulating an
arbitrarily amount of time, they are computed as:

IAE =
∫ tf

tO

|ri(t)− yi(t)| dt ISE =
∫ tf

tO
(ri(t)− yi(t))2 dt (17)

here tO and tf are the initial and final time of the performed
imulation. ri(t) and yi(t) correspond to the desired set-point and
he measured value of the concentration being controlled. If a
hole year of the BSM1 behaviour is considered, for instance, the
efault PIs performance is as follows: (i) the SO,5 IAE and ISE are
qual to 12.1271 and 1.0378, and (ii) the IAE and ISE for the SNO,2
qual to 71.9769 and 30.0537, respectively.
As it is observed, the performance of the SNO,2 control loop can

e improved. Different approaches and control structures could
e tested, however, in this work we propose the TSM metric
n order to transfer a unique ANN-based controller performing
ell between the WWTP control loops, i.e., the DO and NO. In
hat manner, this will also ease the design process of the WWTP
peration.

.2. Results

After the validation of the TSM metric, it is applied over the
WTP environment, especially, over the BSM1 [65]. Thus, the
ain idea is to develop and implement an ANN-based PI for

he DO BSM1 control loop and then transfer it into the NO or
47
vice-versa. For that reason, two ANN-based PIs are considered.
Their structure is adopted from the work presented in [38] and
corresponds to the structure shown in Fig. 12.

The ANN-based PI structures are trained again considering
TensorFlow in its 1.14 version over Python 3.6 and the ADAM
optimiser with back-propagation training algorithm. The learning
rate is initially set at 1 · 10−3 and the L2 penalty at 1 · 10−4.
Once trained, the controller is deployed over Matlab

®
R2020b

and Simulink
®

v.10.2. The prediction performance for the ANN-
based PI managing the DO control loop returns a RMSE, MAPE
and R2 equal to 0.0260, 1.3561% and 0.999, respectively. The
structure in charge of the NO control loop shows a RMSE equal to
0.0444, a MAPE to 5.2018% and a R2 to 0.997. In both cases, these
metrics are computed contrasting the measurements provided by
the ANN-based PIs with the ones provided by the default BSM1
controllers.

In terms of their control performance, it is computed substi-
tuting the default PIs by the ANN-based PIs in the digital BSM1
model. It is worth noting here that no transfer is performed yet.
As a result, the IAE and ISE metrics for each BSM1 control loop are
equal to: (i) 0.5104 and 0.0014, respectively, for the DO control
loop, and (ii) 53.0984 and 16.6730, for the NO one. When default
BSM1 PI controllers are considered instead, the IAE and ISE for the
DO equal to 12.1271 and 1.0378. For the NO, these values equal
to 71.9769 and 30.0537, respectively. Thereby, it is shown that
both ANN-based structures can show a good control performance
when they are trained for managing their respective control loops
(see Fig. 13).

Once the control performance is computed and the behaviour
of both ANN-based controllers is determined, the TSM metric is
computed considering the closed loop configuration, i.e., the his-
toric data from the target domain. Results are shown in Table 4.

At first sight it is observed that in all cases the transference of
the ANN-based controller is suitable whatever direction is chosen.
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Fig. 13. Control Performance of the BSM1 scenario when the dedicated ANN-based controllers are considered.
Table 4
TSM when transferring the BSM1 data-based controllers from one control loop to another.
TSM between BSM1 control loops

Layers From SO,5 to SNO,2 From SNO,2 to SO,5 Without transfer

Input 0.8930 0.7320 0.8262
LSTM 1 0.9274 0.7718 0.9324
LSTM 2 0.9144 0.8910 0.9018
MLP 1 0.9148 0.8910 0.9078
MLP 2 0.9475 0.9246 0.9518

Minimum 0.8930 0.7320 0.8262

Computation Time - (s) 158.23 162.63 173.63
For instance, the minimum TSM regarding the transference from
the DO control loop to the NO one is equal to 0.8930. When the
other direction is chosen, the TSM value is reduced until 0.7320.
This entails that the performance behaviour of the transferred
version of the ANN-based controller is not as good as the one
primarily obtained. Thus, it is corroborated that the more similar
the scenarios, the higher the transferability between ANN-based
controllers.

If the values shown in Table 4 are considered, it is clearly
bserved that the best option is to develop an ANN-based con-
roller for the DO control loop and then transfer it to the NO
ne. If this is performed, all the TSM values between correlation
atrices are really close or even higher than 0.9, which tells
s that transferring this controller is a very suitable option. The
ighest similarity is now observed in the output of the MLP 2
ayer (see Fig. 14). As it is observed, the same tendency in the
alues is presented and therefore, the same shape (convex curve)
s obtained as the temporal evolution of the outputs of the ANN-
ased controller’s layer. This means that at this point is where
he ANN-based controller considering measurements from the NO
ontrol loop is giving values much closer to the ones observed
hen considering data from the DO loop.
Regarding the time involved in the TSM computation, again

ne can observe that in average it equals to 164.83 s. In this case,
he set-point is a fixed value, but the process under control is
uch more complicated than the academic examples considered
efore. Nevertheless, these amounts of time are small enough
o determine that adopting the TSM metric allows the control
48
designer to not only obtain a new control structure from an
existing one, but also to speed-up the whole process.

In terms of the IAE and ISE values, the transference of the ANN-
based PI from the DO control loop to the NO produce a reduction
with respect to the IAE and ISE values given by the default BSM1
PI controllers. In this case, the IAE and ISE are reduced from
12.1271 and 1.0378 to 0.5104 and 0.0014, respectively, for the
DO control loop. In terms of the NO loop, these values are reduced
from 71.9769 and 30.0537 to 42.2648 and 11.6644, respectively.

The same principle is observed when transferring the ANN-
based controller from the NO control loop to the DO one. Here,
TSM values between the autocorrelation and cross-correlation
matrices decrease motivated by the fact that now, the outputs
of the different layers conforming the ANN-based controllers,
are less similar than before (see Fig. 15). Even though TSM tells
that the ANN-based structure can be transferred from the DO to
NO control loop, the control performance can experience some
degradation (see Table 5). This is corroborated by the IAE and
ISE values for both control loops. Experiencing improvements of
15.37% and 67.71%, the IAE and ISE values for the DO control
loop equal to 10.2629 and 0.3351, respectively. In terms of the
NO control loop, these values equal to 53.0984 and 16.6730,
respectively.

As it has been previously observed, the control performance
of the transferred ANN-based controller is highly related to the
TSM value between domains. The higher the TSM, the better the
control behaviour. For that reason, the best option to derive the
WWTP control loops is to firstly train the ANN-based controller
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Fig. 14. Output of the MDS algorithm when dimensions of the different layers are reduced into a 2-dimensional space.
Fig. 15. Output of the LSTM 2 layer when the MDS algorithm is applied over the ANN-based controller managing SNO,2 and then transferred into SO,5 control loop.
Table 5
Control performance when ANN-based PI controllers are transferred between
BSM1 control loops.
Control performance

DO control loop NO control loop

IAE ISE IAE ISE

Default BSM1 PI controllers 12.1271 1.0378 71.9769 30.0537
TL from DO to NO 0.5104 0.0014 42.2648 11.6644
TL from NO to DO 10.2629 0.3351 53.0984 16.6730

to correctly manage the DO control loop and then transfer it
into the NO. However, the performance yielded by this ANN-
based controller is far from achieving its main objective. As it is
observed in Fig. 16, the tracking process of the SNO,2 concentration
is not fulfilled.

To alleviate this, a fine-tuning process can be performed so
as to adapt the behaviour of the ANN-based controller to the
target domain and therefore, achieve the desired objective [38].
For instance, the performance of the NO control loop is improved
until showing IAE and ISE values equal to 7.0930 and 0.4528,
respectively. This entails that the fine-tuning of the ANN-based
controller in the target domain can improve the default control
performance a 90.15% and a 98.49%, respectively. In such a con-
text, the final control performance of the ANN-based structures
can be observed in Fig. 17.

To summarise, the TSM tells if an ANN-based structure can be
transferred from a source environment to a target one offering a
reliable performance. This entails a great benefit for the control
designer since instead of focusing the efforts in designing as
49
many controllers as loops, the designer only needs to design a
controller that can be transferred into the different control loops.
In that process, the TSM is of the utmost utility since it tells the
suitability of transferring an ANN structure beforehand.

6. Conclusions

This work proposes a solution for a critical issue regarding the
adoption of Transfer Learning methods to derive new industrial
controllers. The transference of ANN-based controllers cannot
be freely performed since the performance of the ANN-based
controller in the target control loop cannot be known a priori. For
that reason, the efforts of this work are focused on developing a
new metric, the TSM. It bases its behaviour on the computation of
the similarity between the source and target domains. To achieve
this, the computation of correlations between the outputs of the
different layers of the ANN-based controller when it is dealing
with measurements from the source and target domains is pro-
posed. Thus, the principle behind the TSM can be summarised
as follows: the more similar the correlation matrices, the more
suitable the transfer.

Here, the validation of the TSM, and therefore its behaviour, is
tested considering four different controlled processes, two FOPDT
and two SOPDT processes. Results show that:

• TSM yields values close to the maximum transfer suitability
(maximum value equals to 1) between those environments
or processes where the ANN-based controller performs well
for the source and target domain.
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Fig. 16. Control Performance of the BSM1 scenario when the ANN-based controllers are transferred.
Fig. 17. Control Performance of the BSM1 scenario when the ANN-based controllers are transferred and fine-tuned.
• TSM returns values far from the maximum suitability in
those scenarios where the transference of the ANN-based
controller is not feasible at all.

Once the TSM behaviour is validated, it is applied over a
ritical industrial environment, a WWTP, so as to determine if
he transference of an ANN-based controller can be performed
ithout problems. Results show that:

• ANN-based structures substituting the default controllers
can be applied and transferred regardless the direction,
i.e., from the DO to the NO control loop and vice-versa.
50
• The highest transferability is the one concerning the trans-
ference from the DO to the NO control loop. The minimum
TSM value equals to 0.8930.
• In terms of the control performance, the highest improve-

ment in the IAE and ISE values is offered when the ANN-
based controller is transferred from the DO to the NO control
loops. IAE and ISE values are reduced in average a 68.54%
and an 80.53%, respectively.

All this motivates us to conclude that TSM can be of utmost
interest to decide when to apply TL techniques and if it is suitable
to consider ANN-based controllers instead of conventional ones.
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oreover, this can pave the way in the application of ANN-based
ontrollers and TL techniques in the industrial control domain,
specially, in the design process.

bbreviations

The following abbreviations and notation are used in this
anuscript:

α Parameter to make proper the derivative part of
the controller

ANN Artificial Neural Network
ASM1 Activated Sludge Model N.1
BSM1 Benchmark Simulation Model No. 1
CNN Convolutional Neural Network
D Number of dimensions of an ANN layer
DO Dissolved Oxygen control loop
EQI Effluent Quality Index
eSO,5 Error between the desired SO,5 set-point and the

measured concentration
eSNO,2 Error between the desired SNO,2 set-point and the

measured concentration
FFNN Feed-forward Neural Network
FOPDT First Order Plus Dead-time
FT Fine-tuning
IAE Integrated Absolute Error
ICA Independent Component Analysis
IMC Internal Model Controller
ISE Integrated Squared Error
K Gain of the process
KLa,5 Oxygen Transfer Coefficient of the 5th reactor tank
KPID Proportional action of the PID controller
L Delay of the process
L2 L2 Norm
LDA Linear Discriminant Analysis
LSTM Long Short–Term Memory
M Number of layers of the ANN-based controller
MAPE Mean Average Percentage Error
MDS Multidimensional Scaling Algorithm
MLP Multilayer Perceptron
MPC Model Predictive Controller
N Number of considered time instants
NO Nitrate and nitrite nitrogen control loop
OCI Overall Cost Index
P(s) Process under control
Pi,x Identified process of Px(s)
Ps(s) Source domain process
Pt (s) Target domain process
PCA Principal Components Analysis
PI Proportional Integral controller
PID Proportional Integral Derivative controller
Qint Internal recirculation flow rate
r(s) Reference signal
rx′ ij Sample autocorrelation vector for

[
X′,i

]
rx′y′ ij Sample cross-correlation vector for

[
Y′,i

]
R2 Determination coefficient[
Rx′,i

]
k,j Element from k row and j column of Rx′,i[

Rx′y′,i
]
k,j Element from k row and j column of Rx′y′,i

RMSE Root Mean Squared Error
RNN Recurrent Neural Network
SNO,2 Nitrate and nitrite nitrogen in the 2th reactor tank
SNH Ammonium concentration
SO,5 Dissolved oxygen concentration in the 5th reactor

tank
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SOPDT Second Order Plus Dead-time
T Time constant of the process
Td,PID Derivative action of the PID controller
tf Final time of the performed simulation
Ti,PID Integral action of the PID controller
TL Transfer Learning
TSM Transfer Suitability Metric
tO Initial time of the performed simulation
u(s) Actuation signal
ωn Natural frequency of the process
WWTP Wastewater Treatment Plant
xi Output of the ith layer of the ANN-based controller

form the source domain at time instant t
Xi Output of the ith layer of the ANN-based controller

form the source domain
X′,i Xi after the application of the MDS algorithm[
X′,i

]
·,j Column j of X′,i

X∆,i
j Auxiliary matrix to compute the correlations

yi Output of the ith layer of the ANN-based controller
form the target domain at time instant t

Yi Output of the ith layer of the ANN-based controller
form the target domain

Y′,i Yi after the application of the MDS algorithm[
Y′,i

]
·,j Column j of Y′,i

y(s) Measured output signal
ζ Damping coefficient
γsuitability Transfer Suitability limit
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