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A B S T R A C T   

Micromobility is often presented as a sustainable, affordable, and active urban transport option, in comparison to 
motorised modes. Understanding users routing preferences could help policymakers adapt and design facilities 
that attract a myriad of micromobility users. Whereas previous research largely focused solely on the built 
infrastructure, the ways in which sociodemographic factors affect micromobility route choice and infrastructure 
preferences are unclear. This study examines how elements of the built environment and sociodemographic 
attributes influence the route selection of 115 e-scooter and bike-share users in Barcelona, Spain. We also 
compare participants’ GPS-tracked trips to the shortest path that they could have followed and develop a 
multilevel model to estimate how urban and sociodemographic factors affect the decision to deviate from the 
shortest path. The findings show that micromobility users rarely choose the shortest path since urban elements 
related to safety, accessibility and aesthetics seem to shape their wayfinding decisions. Results help us 
comprehend cyclists’ and e-scooter riders’ distinct route preferences and further illustrate how the gender 
identity of micromobility users influences route choice and detour. The models indicate that, on average, women 
take shorter detours than men. We observe gender differences in the way cyclists and e-scooter riders favour 
certain elements in their trips, such as parked cars and cycling infrastructure. Our findings offer valuable insights 
into how sociodemographic factors interact with infrastructure and built environment conditions to influence 
micromobility users’ route choice and open up the potential to use these results to manage micromobility flows 
within cities.   

1. Introduction 

Cities have witnessed unprecedented growth in micromobility levels 
over the last decade, which draws environmental and social challenges, 
but also opportunities to the traditional transport system (Felipe-Falgas 
et al., 2022; Pucher and Buehler, 2017). Electric scooters (e-scooters 
hereafter) and bicycles attract new users due to their innovativeness, 
sustainability, affordability and speed (Bhandal and Noonan, 2022; 
Bretones and Marquet, 2022). This wave of popularity has brought an 
increasing interest in understanding how the built environment favours 
micromobility use (Codina et al., 2022; Cole-Hunter et al., 2015), along 
with how specific urban elements affect riding behaviour. Among the 
latter group of studies, the issue of route choice has drawn significant 
attention. It has been seen that cyclists and e-scooter riders travel longer 

distances to avoid traffic and its impacts, such as injuries, noise and 
pollution (Desjardins et al., 2021b; Scott et al., 2021). This excess travel 
requires more energy consumption per trip and thus can thwart the 
attractiveness of micromobility modes by decreasing their convenience 
and extending travel times. Additionally, numerous detours that 
outstretch travel distances may hinder these modes contribution to 
reducing transport externalities, which can be translated into health and 
economic extra costs (Gössling et al., 2019). However, deviating from 
the shortest path may just be a consequence of the increased adaptability 
of these modes to the user’s needs and preferences. Because of their 
novelty, not much is known yet on how elements of the built environ-
ment differently impact multiple social groups in their micromobility 
detour decisions. While research recognizes that route choice is ulti-
mately influenced by personal preferences and fears (Hardinghaus and 
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Weschke, 2022; Ravensbergen et al., 2020a), sociodemographic factors 
such as gender tend to be overlooked, with only a handful of exceptions 
(Bernardi et al., 2018; Fitch and Handy, 2020; Prato et al., 2018). 

Filling this gap is important both to better assess the impacts of 
micromobility and to improve the design of urban spaces aimed to invite 
a myriad of cyclists and e-scooter users. With that objective, this paper 
examines how route choice is influenced by elements of the built envi-
ronment and sociodemographic attributes using the GPS-tracked trips of 
115 e-scooter and bike-share users in Barcelona, Spain. We further 
compare those trips to the shortest paths that participants could have 
followed and build a multilevel model to estimate how urban attributes 
and sociodemographic factors affect the decision to detour from the 
shortest path. Moreover, we contribute to the literature by investigating 
e-scooter and bike-sharing route preferences within the same spatial 
context. 

2. Literature review 

In recent years, several attempts have been made to analyse bicycle 
route choice, whereas research on e-scooter wayfinding is still limited. 
Most of these studies acknowledge that cyclists tend to prefer short and 
simple routes. Li et al. (2017), for instance, found that cyclists’ route 
choice is greatly influenced by distance, while Lu et al. (2018) observed 
that cyclists tend to avoid intricate routes. Nonetheless, Zimmermann 
et al. (2017) demonstrated that the built environment largely affects 
cyclists’ route preferences and their likeliness to deviate from the 
shortest path. Extensive research has shown cyclists’ willingness to 
detour to look for dedicated cycling infrastructure (Ghanayim and 
Bekhor, 2018; Rupi et al., 2019; Wang et al., 2022). It has been noticed 
that cyclists often favour well-paved and well-lit bicycle lanes, separated 
from traffic and parked cars (Chen et al., 2018; Desjardins et al., 2021b; 
Majumdar and Mitra, 2019). In the same vein, cyclists tend to skirt 
urban elements that slow down their pace such as crosswalks, traffic 
lights and stops (McArthur and Hong, 2019; Prato et al., 2018). 

With that, some cyclists are willing to pedal further to integrate parks 
and green areas into their trips (Bernardi et al., 2018; Hardinghaus and 
Nieland, 2021; Lin and Fan, 2020; Marquart et al., 2020). These findings 
are important because while recreational cycling has been linked with 
parks and green streetscapes, utilitarian cyclists are often highly exposed 
to traffic-related pollutants (Lee and Sener, 2019; Sun et al., 2017). In 
terms of route choice, no consensus yet exists on whether cyclists inte-
grate shopping into their routes (Orellana and Guerrero, 2019; Sarjala, 
2019) or cycle away from shops and restaurants (Park and Akar, 2019; 
Skov-Petersen et al., 2018). In the same line, historical points of interests 
and, presumably, the presence of tourist seem to repel bicycle rides of 
local cyclists (Desjardins et al., 2022). 

In addition to environmental factors, sociodemographic factors have 
also been found to influence cyclists’ route choice (Fitch and Handy, 
2020). Schneider et al. (2021) observed that women are less likely to 
detour from the shortest path than men. When asked about this, women 
alleged that, pressed for time, balancing productive and reproductive 
work constrained the possibility of extending their bicycle trips (Rav-
ensbergen et al., 2020b; Sersli et al., 2020). Although women on average 
present shorter detours than men, they seem willing to pedal further to 
use protected bicycle lanes (Hardinghaus and Weschke, 2022). To un-
derstand why women might outstretch their trips to use cycling infra-
structure in a context of limited time availability, it is worth noting that 
cycling, in comparison to walking, has often been reckoned to magnify 
the visibility of women and people of colour, drawing unsolicited 
attention and eliciting harassment (Lubitow et al., 2019). Sersli et al. 
(2022) found that cycling through traffic requires women to negotiate 
their presence in the public space and be exposed to aggressions, which 
some might be unwilling to do. Accordingly, this would trigger the de-
cision to travel greater distances to avoid specific areas even in a context 
of time constraints. Consequently, safety concerns related to sexism and 
racism in public spaces are found to shape and limit cyclists’ route 

choice (Heim LaFrombois, 2019; Ravensbergen, 2022; Ravensbergen 
et al., 2020a). Similarly, Aldred et al. (2017) suggested that risk toler-
ance to traffic might also be different across age groups, which translates 
into older people having stronger preferences for separated infrastruc-
ture. Women and older adults also seem to take longer detours than men 
to ride through parks and quiet neighbourhoods (Hardinghaus and 
Weschke, 2022; Nawrath et al., 2019). Notwithstanding, these route 
preferences seem to take effect only during daylight, as fear and pros-
pects of harassment and assault appear to override these paths during 
nigh-time (Pellicer-Chenoll et al., 2021; Sersli et al., 2022). 

Previous literature has found that parents cycling with children are 
also willing to deviate to run into green areas (Hardinghaus and 
Weschke, 2022). Indeed, cycling with kids or through pregnancy is 
perceived to entail an increased sense of responsibility that translates 
into seeking routes with protected bicycle lanes while eluding parked 
cars, traffic and narrow streets (Desjardins et al., 2021a; Heim 
LaFrombois, 2019; Russell et al., 2021; Sersli et al., 2020). These route 
preferences have relevant social implications within the context of 
highly gendered travel behaviours. Combining care work and cycling 
entails developing specific strategies, not only for parents but also for 
cyclists that incorporate caring tasks such as shopping into their rides. As 
such, some have suggested combining frequent bike routes with access 
to everyday and grocery shopping as means of facilitating complex 
travel schedules (Janke and Handy, 2019; Russell et al., 2021). Never-
theless, Ravensbergen et al. (2020b) investigated how accommodating 
grocery shopping on cyclists’ routes might reproduce, and even rein-
force, a gendered division of household labour and care work. 

In comparison to bicycle route choice, the study of e-scooter route 
preferences is still incipient. It is noteworthy that differences in route 
preference between these vehicles might be due to the distinct socio-
demographic characteristics of their riders. The fleet of e-scooter users is 
on average younger, less affluent, and includes a higher share of men 
riders than the fleet of cyclists (Bieliński and Ważna, 2020). This finding 
has also been noted in Barcelona, where cyclists also report higher ed-
ucation levels (Roig-Costa et al., 2021). The scarce literature on e- 
scooters route choice shows that, overall, e-scooter riders share cyclists’ 
route preferences. Similarly to cyclists, e-scooter users appear to favour 
well-lit cycling infrastructure, but also sidewalks and one-way roads 
(Caspi et al., 2020; Yang et al., 2022; Zhang et al., 2021; Zuniga-Garcia 
et al., 2021). Furthermore, e-scooter riders seem likely to detour to go 
through green as well as commercial areas (Bai and Jiao, 2020; Yang 
et al., 2022). 

To date, only a handful of studies have simultaneously compared e- 
scooter and bicycle rides in the same spatial context. McKenzie (2019) 
acknowledged slight differences in their spatial occurrence: while bikes 
dominated in the downtown, e-scooters presented a broader adoption in 
the periphery of Washington, D.C.. In contrast, shared bikes had a more 
widespread distribution in comparison to shared e-scooters in Singapore 
(Zhu et al., 2020). Haworth et al. (2021) found major variance in cycling 
infrastructure use, due to differentiated regulations on where each 
vehicle should be ridden. Yet, cycling facilities use is similar between 
both vehicles in cities in which e-scooters and bicycles share a regulatory 
framework on where they can be used (Cubells et al., 2023). Regarding 
vehicle ownership, most of the research gathered spatial data offered by 
e-scooter-sharing companies (Bai and Jiao, 2020; Caspi et al., 2020; 
McKenzie, 2019; Yang et al., 2022; Zhang et al., 2021). Therefore, route 
choices of private e-scooter owners have, to our knowledge, only been 
investigated using observational data (Haworth et al., 2021; Tuncer 
et al., 2020). Indeed, this approach let the authors reflect on the easiness 
of riders to dismount their vehicles and swap from the roadway to the 
sidewalk, which might facilitate shortcutting (Tuncer et al., 2020). 
However, it is worth noting that there could be differences in decision- 
making processes between shared and private e-scooters. In the latter 
case, vehicle availability and economic cost, could be relevant for users 
to decide their route. 

Recent attempts to assess preference for route attributes have greatly 
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benefited from GPS data. GPS tracking has the strength to infer travel 
behaviour indicators, such as route choice, and frame them within the 
surrounding built environment (Park and Akar, 2019). Most studies 
investigating route choice from GPS-tracking data, however, have failed 
to disaggregate data by gender (Cho and Shin, 2022; Li et al., 2017; Lin 
and Fan, 2020; Lu et al., 2018; Pritchard et al., 2019; Sadeghinasr et al., 
2021; Wang et al., 2022; Zhang et al., 2021; Zuniga-Garcia et al., 2021) 
or tracked only a small sample size of cyclists who did not identify as 
men (Ghanayim and Bekhor, 2018; Lee and Sener, 2019; McArthur and 
Hong, 2019; Orellana and Guerrero, 2019; Sun et al., 2017; Zimmer-
mann et al., 2017), with very few exceptions (Bernardi et al., 2018; Fitch 
and Handy, 2020; Prato et al., 2018). Other approaches to assess route 
choice determinants have used stated preferences surveys and in-
terviews. This body of literature has been particularly successful in 
reviewing how multiple identities -including gender- influence cyclists’ 
route preferences (Desjardins et al., 2021a; Hardinghaus and Weschke, 
2022; Marquart et al., 2020; Nawrath et al., 2019). In contrast to GPS 
data, surveys ability to measure the use of cycling infrastructure and 
other elements of the built environment on the way is limited (Fitch and 
Handy, 2020). 

3. Methodology 

3.1. Study area 

Barcelona, with a population of 1.6 million residents (2020), is 
located on the northwest coast of the Mediterranean Sea. The city has a 
compact and mixed urban planning, a uniform distribution of services 
and an extensive cycling infrastructure (Fig. 1) (Lind et al., 2021; Mar-
quet and Miralles-Guasch, 2018). Micromobility, which includes shared 
bikes as well as private bikes and e-scooters, constitute up to 4% of 
Barcelona’s modal share (IERMB, 2021). Part of these bicycle trips is 
performed with shared bikes from the city’s public operator Bicing. This 
service can be acquired through an annual subscription and their users 
perform 2 out of 10 of the micromobility trips registered in the city. This 
dock-based bike-sharing system covers all city districts, and its 
>100,000 subscribers undertake about 50,000 trips daily (Soriguera and 
Jiménez-Meroño, 2020). On the contrary, the city does not provide an e- 
scooter-sharing platform as it does not allow private e-scooter sharing 
companies to operate within the municipality’s boundaries. Therefore, 

all e-scooters ridden in Barcelona are individually owned and their trips 
represent 26% of the overall micromobility share. 

3.2. Data source 

In this context, we recruited 902 micromobility users through an 
intercept survey (more details to be found in Roig-Costa et al. (2021)). 
Between September 2020 and July 2021, we surveyed 326 e-scooter 
owners and 325 bike-sharing cyclists through the CAPI (Computer 
Assisted Personal Interviewing) methodology. From the initial sample, 
65 e-scooter riders and 70 bike-sharing cyclists dwelling in Barcelona 
were further asked to wear a GPS device (QStartz BT-Q1000XT; QStarz 
International Co., Ltd., Taiwan, R.O.C.) at all times during a week. The 
GPS logged the location of the recruited cyclists and riders at each 15 s 
epoch. This study was approved by the Ethics Committee on Animal and 
Human Experimentation at Universitat Autònoma de Barcelona 
(CEEAH-3656). Apart from GPS data, a second data set from the 
municipal open data repository containing characteristics of the built 
environment and exposure to pollutants was exploited (Ajuntament 
Ajuntament de Barcelona, 2022a). Both NO2 and acoustic pollution can 
be understood as proxies of traffic and road hierarchy. Further infor-
mation on air and acoustic pollution measurement, modelling and 
mapping can be found elsewhere (Ajuntament Ajuntament de Barce-
lona, 2022b). 

3.3. Data processing 

GPS data were processed through the Human Activity Behavior 
Identification Tool and data Unification System (HABITUS) software. 
This software identifies trips within trajectories and predicts their 
transport mode by calculating the distance and speed between consec-
utive GPS points. HABITUS flagged trips with a 90th percentile speed 
between 1 and 10 km/h as walking. Following, trips with a 90th 
percentile speed between 10 and 25 km/h were targeted as micro-
mobility and trips with a 90th percentile speed above the former speed 
threshold were classified as in vehicle (Kang et al., 2018). This software 
has been validated to correctly assign micromobility 73% of the time it 
was actually used (Carlson et al., 2015). Walking and in vehicle trips 
were filtered out from the analysis. 

The remaining GPS points were map-matched to the street network 

Fig. 1. Barcelona cycling infrastructure and trip count at each street segment.  
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to contextualise the routes that micromobility users followed. GPS 
points were snapped to the street map using a dynamic buffer with an 
upper search tolerance of 150 m (Li et al., 2020). A total of 1520 routes 
were then created with the Network Analysis toolset from ArcGIS Pro, 
based on Dijkstra’s algorithm (Lu et al., 2018; Scott et al., 2021). To 
avoid outliers, we excluded (i) circular trips (174 routes), (ii) trips that 
lasted <2 min or > 2 h (151 routes), (iii) trips outside the city limits (193 
routes), (iv) trips that contained unmatched points to the street network 
(17 routes), and (v) trips with observations >60 km/h (249 routes) 
(Clarry et al., 2019; Flügel et al., 2019; Zhang et al., 2021). 

To answer whether micromobility users take detours, we compared 
chosen routes to the shortest path cyclists and e-scooter riders could 
have followed without committing a traffic infraction. Shortest paths 
were calculated between each trip origin and destination using the R 
package ‘openrouteservice’ (Oleś, 2022). The algorithm inferred the 
shortest route through the OpenStreetMap (OSM) cycling network, since 
riding on the sidewalk is generally not allowed in the city (Desjardins 
et al., 2022; McArthur and Hong, 2019). The output of this process was 
the shortest route between the first and the last observation of each 
chosen route. Regardless, it is worth noting that some chosen routes 
covered a shorter distance than ‘openrouteservice’ inferred routes due to 
participants riding through streets that are not catalogued in the OSM 
cycling network. Also, micromobility vehicles have been reported to 
momentarily invade the sidewalk or ride contraflow, which might 
explain the presence of shortcuts in our database (Lind et al., 2021; 
Tuncer et al., 2020). The detour percentage, or Route Deviation Index, 
was then computed as the ratio of chosen route distance to its shortest 
route distance (Park and Akar, 2019; Ta et al., 2016): 

Detour percentage =

(
Chosen route distance
Shortest route distance

− 1
)

x 100 

The 95 percentile of the detour percentage was excluded (40 routes) 
as they mainly accounted for outliers (Klein et al., 2021). This process 
resulted in a final dataset of 696 routes (of which 51.6% were performed 
by participants who self-identified as women) undertaken on 90 
different days by 63 unique bike-sharing cyclists using conventional 
bicycles (of whom 39.7% self-reported as women) and 52 e-scooter 
riders (of whom 46.2% self-reported as women). Each user participated 
for an average of 2.7 days (sd = 1.5) and 6.3 trips (sd = 5.7) over the 
week they were given the GPS device. Negative detour percentage 
values were kept in the analysis as they represent shortcuts, such as 
riding through streets that are not catalogued in the OSM cycling 
network, sidewalks and/or contraflow (Fig.2). 

The next step was to measure the difference between chosen and 
shortest path. For each pair of routes, we calculated the percentage of 
ride circulating through cycling facilities, average pollution exposure 
and density of urban elements in a 50-m radius (Sarjala, 2019). Cycling 
facilities included cycling lanes (segregated infrastructure away from 
traffic), bicycle sharrows (demarcated streets where the driveway is 
shared with cars) and pedestrianised streets (low-speed areas where the 
pavement is shared with both cars and pedestrians). We also evaluated 
the average exposure to NO2 (μg/m3), daytime noise (dB) and Normal-
ized Difference Vegetation Index (NDVI) of each trip, as well as the 
density of the following urban elements: crosswalks, traffic lights and 
stops, streetlights, car parking places, historical points of interest, res-
taurants, intersections, upslopes, shops, and trees. We then calculated 
the difference in cycling infrastructure use, exposure and built envi-
ronment between each pair of chosen and shortest routes. Due to the 
diverse nature and magnitude of the variables, they were normalized 
using z-scores prior to model building. 

Fig. 2. Examples of chosen and shortest paths between three origin and destination pairs.  
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3.4. Statistical analysis 

Descriptive statistics and bivariate analysis were used to characterise 
trip attributes and the urban environment in the route vicinity. 
Furthermore, a set of multilevel linear mixed-effects models was built, 
modelling the detour percentage. All the models included user-specific 
random effects to control for unobserved heterogeneity (Kang and 
Fricker, 2018). Since each participant performed multiple routes, users 
represent the highest level of the analysis. In contrast, dependent vari-
ables related to the built environment, pollutant exposure, transport 
mode and sociodemographic characteristics constitute the lowest level. 
The first model tested detour percentage as a sum of urban elements and 
environmental exposure, while the second model added sociodemo-
graphic variables. The third model ran the same variables as the second 
model although stratified by transport mode. The sociodemographic 
variable with the highest estimate that tested for statistical significance 
in the analysis of variance (type II Wald chi-square tests) was gender. 
Hence, the fourth (only bicycle trips) and fifth models (only e-scooter 
trips) were additionally stratified by gender. To facilitate the interpre-
tation of the results, marginal effects were calculated and plotted for 
those variables that tested for statistical significance in the model 
analysis of variance. 

Regardless the survey handled out to participants offered multiple 
options to reflect their demographic diversity, particularly in terms of 
gender identity (woman, man, non-binary), all the participants self- 
identified as either women or men, and therefore the results struc-
tured gender following the two reported categories. 

4. Results 

4.1. Trip characteristics 

Bike-share cyclists and e-scooter users rode for an average of 2.32 km 
(sd = 2.15) (Table 1). That was 1.16 km (sd = 1.65) longer than the 
average shortest path. A comparison between transport modes illus-
trates that bike-share cyclists travelled a slightly greater distance, 2.48 
km (sd = 1.97), than e-scooter riders, with 2.19 km (sd = 2.31). These 
bicycle trips surpassed the shortest route by 1.06 km (sd = 1.44), while 
e-scooter rides deviated an average of 1.25 km (sd = 1.83). Most trips 
included some sort of deviation since 87.93% of them increased the 
shortest trip distance by at least 5%. Nevertheless, the detour percentage 
varied significantly between modes: half of the cyclists detoured at least 
45.69% from the shortest path whereas half of the e-scooter riders, at 
least 71.80%. On the contrary, 7.61% of the trips included a negative 
detour. In this sense, some riders were able to shortcut and almost halve 
the distance of the inferred shortest route (Fig. 2). 

The routes participants followed presented different urban elements 
than the estimated shortest paths (Table 2). Micromobility users seem to 
be consciously choosing to travel through streets with a significantly 
higher density of crosswalks, intersections, and bicycle sharrows, while 
avoiding stops, traffic lights and parked cars. Incidentally, cyclists and 
riders are also dismissing pedestrianised areas and streets with lots of 
shops and streetlights. In the same vein, chosen routes hold higher NO2 
and noise exposure levels than the shortest path. 

4.2. Built environment and exposure 

The results of the first model show how the built environment, 
pollutant exposure and transport mode were associated with the detour 
percentage. The significance and meaningfulness of each of these urban 
elements to influence detour percentage are captured in the coefficients 
of Model 1 (Table 3). According to the model, crosswalks are the urban 
element that explains detour the most. Hence, micromobility users seem 
to perform greater deviations to run into areas with a high density of 
crosswalks. On the contrary, pedestrianised streets, bicycle sharrows, 
stops and traffic lights have the opposite effect as participants tend to 
dodge them. In terms of exposure, chosen paths were significantly more 
exposed traffic-related (nitrogen dioxide) and acoustic pollution. The 
statistical analysis further illustrated that detour percentage varied 
significantly by transport mode, with e-scooters being associated with 
higher detour percentages. 

4.3. Sociodemographic factors and micromobility mode 

In comparison with the first model, the second model included 
sociodemographic variables. This model improved the estimation of the 
first one (p-value = 0.05) and revealed that sociodemographic attributes 

Table 1 
Route distances and detour percentage.   

Chosen route (km) Shortest route (km) Detour (km) Detour (%)  

Mean sd Median Mean sd Median Mean sd Median Mean sd Median 

Bicycle 2.48 1.97 2.01 1.42* 1.11 1.19 1.06 1.44 0.63 117.82* 167.24 45.69 
E-scooter 2.19 2.31 1.45 0.94* 0.81 0.63 1.25 1.83 0.57 161.14* 196.43 71.80 
Total 2.32 2.15 1.67 1.17 1 0.83 1.16 1.65 0.61 139.98 183.91 54.65  

* Significant p-values (<0.05) in the ANOVA test between transport modes. 

Table 2 
Characteristics of chosen and shortest routes.   

Chosen route Shortest 
route 

Difference Paired t-test 
(p-value)  

mean (sd) mean (sd) (%)  

Built environment 

Bicycle sharrowa 29.56 
(29.66) 

0.36 (1.25) 98.78 <0.001 

Crosswalksb 151.10 
(36.25) 

128.02 
(25.70) 15.27 <0.001 

Historical points of 
interestb 

18.66 
(23.96) 

17.769 
(25.58) 4.77 0.151 

Intersectionsb 493.39 
(258.84) 

516.61 
(278.85) 

4.60 <0.001 

Upslope 15%a 1.28 (5.69) 1.32 (5.28) 3.08 0.627 

Treesb 3618.74 
(1139.60) 

3645.14 
(1247.61) 

− 0.73 0.267 

Restaurantsb 358.16 
(182.75) 

363.05 
(194.65) − 1.37 0.137 

Streetlightsb 889.47 
(275.81) 

909.60 
(299.80) 

− 2.26 <0.001 

Shopsb 1195.51 
(549.55) 

1230.31 
(587.79) 

− 2.91 <0.001 

Stops and traffic 
lightsb 

4213.60 
(1567.95) 

4377.91 
(1719.91) 

− 3.90 <0.001 

Car parking placesb 1990.58 
(1513.74) 

2087.96 
(1653.84) − 4.89 0.004 

Cycling lanea 30.35 
(35.98) 

33.46 
(39.55) 

− 10.25 0.002 

Pedestrianised 
streeta 

31.49 
(38.16) 

36.83 
(42.21) 

− 16.96 <0.001  

Environmental exposure 
NO2 (μg/m3) 32.86 (4.57) 32.08 (4.68) 2.37 <0.001 
Noise (dB) 42.00 (4.97) 41.19 (5.08) 1.93 <0.001 
NDVI 0.02 (0.05) 0.02 (0.05) 0,00 0.452  

a Percentage of route conducted within; b Density expressed in units/km2. 
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also influenced the detour percentage, together with the previously 
modelled urban elements, environmental exposure and transport mode 
(Table 3). From the second model, it is apparent that men performed 
significantly longer detours than women. The other sociodemographic 
variables, which were age group and being a parent, did not influence 
detour percentage significantly. 

Since detour percentage varies significantly and greatly by transport 
mode (an average of 43,32% detour difference between bikes and e- 
scooters), the third model intersected the transport mode with all the 
previously run variables. As result, Model 3 statistically outperformed 
the fitness of the first model (p-value = 0.007). This last model tested 
whether the built environment, exposure and sociodemographic char-
acteristics explained cyclists’ and e-scooter riders’ deviation from the 
shortest path differently. Indeed, the third model presents that, for e- 
scooter trips, the chosen path had a greater share of cycling lanes and 

accounted for more streetlights and fewer car parking places, while the 
opposite was observed for bicycle rides. 

Models 1 to 3, although adjusted by transport mode, included both 
bicycle and e-scooter trips. In the next set of models, the two vehicles 
were split into different data sets and analysed separately. The variables 
of the following pair of models were additionally intersected with 
gender. In the only-bicycles model (Model 4) it is apparent that cyclists 
detoured longer distances seeking to use paths with numerous cross-
walks (Table 4). For e-scooters (Model 5), greater deviations from the 
shortest path were associated with selecting routes that run through 
dedicated cycling lanes and with a higher density of crosswalks. Both 
cyclists and e-scooter riders seemed to avoid routes with abundancy of 
stops, traffic lights, pedestrianised streets and bicycle sharrows, as 
illustrated in Fig.3. Results also suggest that both cyclists and e-scooter 
riders would have been less exposed to traffic-related pollutants if they 

Table 3 
Detour percentage according to the built environment, exposure, transport mode and sociodemographic variables.    

Model 1: 
Built environment and 
environmental exposure 

Model 2: 
Built environment, environmental 
exposure and sociodemographic 
variables 

Model 3:   

Built environment, environmental 
exposure and sociodemographic 
variables 

Interaction term: Transport 
mode 

Fixed effects  Coeffa CI 95%a Coeff CI 95% Coeff CI 95% Coeff CI 95% 

Intercept 126.8 [106.1–147.5] 127.4 [96.8–157.9] 122.5 [85.6–159.4] – –  

Built environment 
Crosswalks 40.0** [25.1–55] 41.6** [26.6–56.5] 36.2** [15.8–56.7] 9.9 [− 20.9–40.7] 
Streetlights 2.1 [− 13.2–17.5] 2.0 [− 13.3–17.3] − 16.7 [− 37.6–4.1] 40.5* [9.1–71.9] 
Car parking places 9.24 [− 4.8–23.3] 8.2 [− 5.9–22.3] 27.9 [5.2–50.5] − 30.6* [− 59.6–1.5] 
Historical points of interest 4.24 [− 10.5–19] 0.9 [− 14–15.8] − 6.4 [− 26.6–13.8] 14.5 [− 15.9–44.9] 
Restaurants − 6.0 [− 21.6–9.7] − 7.4 [− 23.1–8.3] − 9.0 [− 31.2–13.3] 10.7 [− 21–42.4] 
Stops and traffic lights − 31.3** [− 47.6–15.1] − 30.5** [− 46.6–14.3] − 29.2** [− 53.3–5.2] − 5.7 [− 38.9–27.5] 
Shops 7.89 [− 7.9–23.6] 7.1 [− 8.6–22.9] 18.0 [− 5.3–41.2] − 17.1 [− 49.3–15.2] 
Trees − 24.6** [− 39–10.3] − 24.2** [− 38.7–9.9] − 13.8** [− 34.5–6.8] − 19.6 [− 48.6–9.3] 
Cycling lane 7.97 [− 6.4–22.3] 6.5 [− 7.8–20.9] − 4.6 [− 22.5–13.3] 50.3* [18.6–82] 
Pedestrianised street − 38.2** [− 53.7–22.7] − 37.4** [− 52.9–22] − 38.9** [− 60.3–17.5] − 3.0 [− 34.5–28.4] 
Bicycle sharrow − 32.3** [− 46.1–18.4] − 33.1** [− 46.8–19.4] − 36.2** [− 56.1–16.4] − 5.1 [− 23.5–33.8] 
Intersections 10.6 [− 4.3–25.6] 9.8 [3.5–62.7] 10.5 [− 12–32.9] − 1.2 [− 32–29.5] 
Upslope 15% 0.54 [− 14.1–15.2] 0.3 [− 5.1–24.7] − 1.3 [− 27.2–24.7] 5.3 [− 26.5–37]  

Environmental exposure 
NO2 29.68** [11.8–47.5] 30.8** [12.9–48.7] 29.9** [4.8–55] 3.2 [− 32.6–39] 
Noise 32.5** [13.9–51.1] 31.8** [13.1–50.4] 31.0** [5.3–56.7] − 0.9 [− 38.5–36.8] 
NDVI 5.7 [− 7.7–19.2] 7.3 [− 6–20.7] 6.9 [− 13.8–27.6] − 1.4 [− 29–26.1]  

Transport mode 
Transport mode Bicycle =ref  =ref  =ref  =ref   

E-scooter 30.2* [− 0.4–60.8] 33.1* [− 14.4–14.9] 23.2* [− 35.4–81.8] – –  

Sociodemographic variables 
Gender Woman – – =ref  =ref  =ref   

Man – – 31.5* [2.3–60.7] 20.2* [− 22.5–63] 25.7 [− 36–87.3] 
Parent of a minor child No – – =ref  =ref  =ref   

Yes – – − 26.8 [− 59.8–6.2] − 23.9 [− 71.9–24] 18.5 [− 51.4–88.4] 
Age 16–24 – – − 17.3 [− 58.3–23.7] − 18.3 [− 73.8–37.2] 21.9 [− 63–106.8]  

25–34 – – =ref  =ref  =ref   
35–44 – – − 19.0 [− 57.9–19.9] 12.1 [− 41.3–65.5] − 50.4 [− 131.1–30.2]  
>45 – – − 12.9 [− 54.5–28.6] 4.2 [− 55.4–63.9] − 18.6 [− 105.3–68]  

Random effects 
User-specific variance (sd) 916 (30.27) 506.8 (22.5) 572.9 (23.9) 
Residual variance (sd) 24,325 (155.97) 24,436.9 (156.32) 23,628.2 (153.7)  

Model parameters 
AIC  7155.2 7154.3 7156.1 
BIC  7241.4 7262.1 7354.4 
p-value b =ref 0.05 0.007  

a Abbreviations: coefficient and confidence interval. 
* Significant p-values (<0.05) in the analysis of variance (type II Wald chi-square tests). 
** Significant p-values (<0.001) in the analysis of variance (type II Wald chi-square tests). 
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had followed OSM route recommendations. 
Results indicate that gender greatly explains detour, as it accounted 

for the highest coefficient in Model 2 among sociodemographic vari-
ables (Table 3). In addition, Model 3 further revealed that women took 
shorter detours than men regardless of the micromobility vehicle used. 
In Models 4 and 5, the variable gender was additionally intersected with 
route attributes to evaluate whether men and women favoured them 
differently (Table 4). This analysis highlighted that bike-share cyclists 
seem to equally value the elements of the surrounding built environ-
ment, except for cycling lanes (Fig. 4). Results show that men cyclists 
appear to pedal further to incorporate cycling lanes into their routes. In 
contrast, there are gender differences in the way e-scooter riders inte-
grate specific route attributes in their rides. Compared to women, men 
riding e-scooters deviate further from the shortest route to avoid car 
parking places while seeking to go across pedestrianised streets. 
Furthermore, detour percentages were significantly associated with the 
age of the e-scooter riders. The cohort that encapsulated 25 to 34-year- 
old participants was the age group with the greatest gender gap in terms 
of detour percentage, in which men travelled further from the shortest 
path than women (Table 4). 

5. Discussion 

5.1. Detour 

Our results indicate that only a minority of micromobility trips 
actually used the shortest path available. In fact, almost 9 of every 10 
trips deviated from the shortest route to some extent, which is consistent 
with previous research (Park and Akar, 2019). However, micromobility 
users in Barcelona seem to have picked circuitous routes that, on 
average, surpass the detour percentage of other study cases (Chen et al., 
2018; Fitch and Handy, 2020; Ghanayim and Bekhor, 2018; Lu et al., 
2018). These differences might be indicative of a more fragmented 
network of dedicated infrastructure. Nonetheless, our sample being 
composed of both e-scooter and bike-sharing trips might also be skewing 
our results towards longer and more frequent detours, as e-scooter trips 
have been estimated to account for longer deviations than shared bi-
cycle. The reasons explaining e-scooters’ greater detour are threefold. 
First, riding an e-scooter is not as physically demanding as it is to ride a 
bicycle (López-Dóriga et al., 2022). Therefore, outstretching an e- 
scooter trip does not result in a physical payoff. Second, e-scooter use 
has often been regarded to support riding for leisure, tourism or for fun 
sake (McKenzie, 2019; Roig-Costa et al., 2021; Weschke et al., 2022), 
which would side with not selecting the most direct route. Thirdly, 
variations in vehicle ownership may contribute to the observed differ-
ences in detouring behaviour between e-scooters and shared bicycles. In 

Table 4 
Detour percentage according to the built environment, exposure, transport mode and sociodemographic variables, stratified by transport mode.    

Model 4: Bicycles Model 5: E-scooters    

Interaction term: Gender   Interaction term: Gender 

Fixed effects  Coeffa CI 95%a Coeff CI 95% Coeff CI 95% Coeff CI 95% 

Intercept 106.0 [70.3–141.7] – – 86.7 [22.8–150.6] – –  

Built environment 
Crosswalks 24.8** [− 0.1–49.7] 21.4 [− 15.8–58.6] 43.1** [6.6–79.5] − 1.0 [− 53–51.1] 
Streetlights − 10.5 [− 36.8–15.8] − 10.0 [− 48–27.9] − 4.2 [− 41.4–32.9] 36.9 [− 17.5–91.3] 
Car parking places 7.7 [− 22.9–38.4] 37.4 [− 2.6–77.4] 29.9 [1.5–58.3] − 51.0* [− 92.2–9.9] 
Historical points of interest − 6.6 [− 36–22.9] 4.0 [− 33.6–41.5] 32.3 [− 3.7–68.3] − 43.3 [− 94.2–7.5] 
Restaurants − 8.3 [− 42.7–26] − 5.0 [− 47.7–37.7] − 5.9 [− 37.5–25.8] 21.9 [− 32.4–76.1] 
Stops and traffic lights − 47.9* [− 80.8–15.1] 26.0 [− 17.6–69.5] − 37.1* [− 73.3–0.8] 11.4 [− 39.8–62.6] 
Shops 4.3 [− 29–37.7] 19.0 [− 23.3–61.4] − 20.1 [− 56.2–15.9] 25.2 [− 27.3–77.7] 
Trees − 20.8 [− 46.4–4.9] 4.9 [− 34.4–44.1] − 34.4** [− 68–0.7] 5.4 [− 41.7–52.6] 
Cycling lane − 17.4 [− 39.6–4.7] 34.0* [1.9–66.2] 56.1* [15.5–96.8] − 38.8 [− 97.3–19.7] 
Pedestrianised street − 31.4** [− 64.6–1.8] − 16.5 [− 57.7–24.6] − 70.9** [− 104.6–37.3] 77.0** [22.0–132.0] 
Bicycle sharrow − 24.9** [− 48.1–1.8] − 23.1 [− 58.9–12.8] − 28.9** [− 63–5.2] − 7.0 [− 53.7–39.8] 
Intersections 18.3 [− 10.7–47.3] − 8.5 [− 48.6–31.5] 4.9 [− 27.9–37.8] 9.9 [− 39–58.7] 
Upslope 15% 6.2 [− 23.2–35.6] − 14.3 [− 63.6–34.9] − 7.9 [− 74.3–58.6] 22.1 [− 48.3–92.6]  

Environmental exposure 
NO2 64.9* [36–93.9] − 76.4* [− 120.8–32.2] 11.0 [− 28.9–50.9] 41.1 [− 20.8–102.9] 
Noise 12.1* [− 19.2–43.5] 46.4* [0.9–92] 45.4* [0.7–90.3] − 6.4 [− 71.2–58.3] 
NDVI 5.7 [− 19.9–31.2] 16.3 [− 21.1–53.8] 21.4 [− 5.3–48.1] − 28.8 [− 73.5–15.9]  

Sociodemographic variables 
Gender Woman =ref  =ref  =ref  =ref   

Man 59.4 [4.3–114.5] – – 156.3 [64.2–248.4] – – 
Parent of a minor child No =ref  =ref  =ref  =ref   

Yes − 6.5 [− 62.3–49.3] 22.4 [− 66.2–111.1] − 51.3 [− 146.1–43.5] 28.0 [− 101.5–157.6] 
Age 16–24 26.9 [− 43.8–97.5] − 120.8 [− 221.7–19.9] 116.1 [17.5–214.6] − 232.1* [− 386–78.2]  

25–34 =ref  =ref  =ref  =ref   
35–44 21.3 [− 39.3–82] − 46.4 [− 135.9–43.2] 84.5 [− 35.4–204.5] − 167.1* [− 318.7–15.4]  
>45 − 12.0 [− 99.3–75.3] 8.5 [− 100.7–117.6] 64.2 [− 47.3–175.7] − 149.4* [− 309.4–10.5]  

Random effects 
User-specific variance (sd) 96.6 (9.8) 1260 (35.5) 
Residual variance (sd) 17,179.9 (131.1) 27,213 (164.96)  

a Abbreviations: coefficient and confidence interval. 
* Significant p-values (<0.05) in the analysis of variance (type II Wald chi-square tests). 
** Significant p-values (<0.001) in the analysis of variance (type II Wald chi-square tests). 
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Barcelona, e-scooters are exclusively privately owned, while shared bi-
cycles operate under a fee structure that imposes charges on users 
exceeding a 30-min ride duration (Bustamante et al., 2022). This pricing 
mechanism could potentially be incentivizing bike-share users to pri-
oritize shorter, more direct routes, in contrast to e-scooters. In addition 
to detour, our analysis also revealed the presence of shortcuts. Shortcuts 
can represent wrong-way riding but also participants using infrastruc-
ture that is not catalogued as cyclable by OSM (Dhakal et al., 2018). 
Both e-scooters and shared bikes are light vehicles that make it possible 
to engage in a series of small infractions such as temporarily invading 
the sidewalk or riding contraflow, which might explain the presence of 
shortcuts in our database (Lind et al., 2021; Tuncer et al., 2020). 

5.2. Built environment and environmental exposure 

Our analysis confirms previous studies finding that built environ-
ment conditions effectively impact wayfinding and route choices (Zim-
mermann et al., 2017). In this regard, previous work has noticed the 
importance of dedicated cycling infrastructure to explain detour (Lu 
et al., 2018; Wang et al., 2022). As shown in our results, e-scooter riders 
are willing to deviate significantly from the shortest path to travel 
through bicycle lanes. This behaviour might be related to the feeling of 
insecurity when sharing space with cars, or the feeling of being a 
nuisance for pedestrians when riding through the sidewalk (Gibson 
et al., 2022). Our findings corroborate those of Zhang et al. (2021) and 
Zuniga-Garcia et al. (2021) on e-scooter riders’ preference for cycling 

Fig. 3. Route attributes and detour trade-off calculated using Models 3–5 marginal effects.  

Fig. 4. Route attributes of e-scooter trips and detour trade-off by gender calculated using Model 5 marginal effects.  
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lanes. However, neither bike-share cyclists nor e-scooter riders seem to 
detour to favour routes with a high proportion of bicycle sharrows or 
pedestrianised streets. For the case of bicycle sharrows, our results 
contradict earlier research (Park and Akar, 2019; Rupi and Schweizer, 
2018; Yang et al., 2022) although this might be due to OSM route en-
gines tending not to recommend routes with bike sharrows (Table 2). 
Avoiding pedestrianised areas, on the other hand, is in accordance with 
prior findings (Lee and Sener, 2019; Skov-Petersen et al., 2018). These 
authors argue that micromobility users avoid sharing the space with 
pedestrians because it slows down their pace. 

Similarly, cyclists and e-scooter riders tend to plan their routing to 
skirt stops and traffic lights, as evidenced in our results and the literature 
(Prato et al., 2018). One could expect this behaviour to be a consequence 
of trying to maximize travel speed and flow (Cubells et al., 2023). 
Notwithstanding, this narrative is countered by the fact that micro-
mobility users are also found to be selecting routes that have a higher 
density of crosswalks. Previous research has also documented micro-
mobility users’ preference for spaces with clear formal traffic rules that 
increase space readability, and lower riding uncertainty (Cho and Shin, 
2022; Li et al., 2017). Streets with delimited spaces for different uses and 
a high density of designated crosses are perceived as safer by most 
micromobility users. This might explain micromobility users in our 
sample selecting routes with numerous crosswalks, which appears to 
represent a safer way of interacting with pedestrians (Skov-Petersen 
et al., 2018). Indeed, it is often claimed that perception of risk along with 
risk-mitigating attitudes might be as relevant as distance in micro-
mobility route choice (Kang and Fricker, 2018; Majumdar and Mitra, 
2019). This is in line with our results showing that e-scooter riders 
favour well-lit routes and avoid streets with numerous car parking pla-
ces (Yang et al., 2022). 

Regarding environmental exposure, our results seem to suggest that 
participants are not detouring to integrate urban greenness into their 
rides. While there is extensive literature on cyclists’ and e-scooter riders’ 
willingness to ride further to include greenery (Bernardi et al., 2018; Lin 
and Fan, 2020; Marquart et al., 2020; Yang et al., 2022), our results offer 
significant nuance on a compact-city spatial context with low levels of 
green areas but a homogeneous high tree coverage (Baró et al., 2019). 
Thus, our findings point out that users are not choosing to detour in 
order to encounter higher tree density. Yet, other life-forms of vegeta-
tion, such as shrubs and grasses, or even bare soil were not accounted for 
in the tree database and were only captured when analysing land 
coverage through NDVI. 

In terms of land use, results are not conclusive on whether micro-
mobility users integrate or avoid shopping while riding (Desjardins 
et al., 2022; Orellana and Guerrero, 2019; Schneider et al., 2021; Soltani 
et al., 2022). Neither restaurants nor historical points of interests have a 
clear positive or negative effect on route choice, as noticed by Sarjala 
(2019). Remarkably, Desjardins et al. (2022) and Fitch and Handy 
(2020) reported that the presence of restaurants and historical points of 
interests repelled micromobility users. Overall, this constitutes one of 
the first attempts to understand how e-scooter riders integrate both 
shopping and green elements into their rides (Bai and Jiao, 2020; Yang 
et al., 2022). 

Results also reveal that wayfinding strategies of micromobility users 
might inevitably expose them to higher levels of traffic-related (NO2) 
and acoustic pollution than those of shortest routes. This clearly con-
trasts with findings from previous studies that have used stated prefer-
ence surveys and have observed a self-reported disposition to select 
routes with less traffic and thus less pollution exposure (Desjardins et al., 
2021a; Gössling et al., 2019). Our objective GPS tracking data finds that 
micromobility users are still highly exposed to pollution and noise, as 
noticed elsewhere (Lee and Sener, 2019; Willberg et al., 2023; Wu et al., 
2021). 

5.3. Sociodemographic factors 

Drawing on the results of state preference surveys, several authors 
have hypothesised how research using spatial data could largely benefit 
from including sociodemographic variables known to influence route 
choice (Hardinghaus and Nieland, 2021; Lu et al., 2018; Park and Akar, 
2019; Scott et al., 2021). Of all the sociodemographic factors included in 
our study, neither the age of participants nor their parental status 
seemed to significantly influence route choice. These findings build on 
Aldred et al. (2017) conclusions that route choice might not stem 
directly from participants’ age, but rather from other factors such as 
previous cycling experience or familiarity with the cycling infrastructure 
network. Additionally, although neither shared bikes nor private e- 
scooters support travelling with an extra passenger, we could not 
exclude the possibility that parents might have been riding with children 
by their side. In any case, elements of the built environment did not seem 
to shape parents’ route choice when, most likely, riding solo. 

In contrast, our results reveal the importance of acknowledging 
participants’ gender to understand route choice. It is apparent that 
women perform shorter detours than men in Barcelona, particularly 
cyclists. This is in line with earlier research that observed that women, 
on average, tend to outstretch their cycling trips to a lesser extent than 
men (Schneider et al., 2021). Preferring the straightest route to chain 
trips might also be in accordance with time constraints. Women cyclists 
have reported feeling pressed for time, juggling care and productive 
work, and this came across to curtail opportunities for bicycling (Rav-
ensbergen et al., 2020b; Sersli et al., 2020). Apart from the likeliness to 
detour and its extension, the findings also reflect gender differences in 
route preferences. Although stated preference surveys surfaced women’s 
willingness to pedal further to incorporate bike lanes into their rides, our 
GPS data shows that women might not be extending their trips to favour 
dedicated cycling infrastructure (Hardinghaus and Weschke, 2022). 
Among e-scooter riders, men’s greater deviation comes with the op-
portunity to elude parked cars while favouring pedestrianised streets. 
This finding is contrary to previous studies examining bicycle route 
choice. In those, women pedalled further to run into calm streetscapes, 
while our results point to the opposite direction among e-scooter riders 
(Hardinghaus and Weschke, 2022). To the best of our knowledge, this is 
the first time that gender route-preference differences among e-scooter 
users are considered. 

6. Conclusions 

This study set out to comprehend how elements of the built envi-
ronment influenced the trip route choice and detours of 115 bike-share 
and e-scooter users while acknowledging sociodemographic factors. 
Micromobility riders in Barcelona did not always choose the shortest 
path since the presence of cycling infrastructure and urban elements 
together with personal preferences shaped their route choice. Hence, 
participants seemed to choose to extend their trips in order to select 
routes that had a higher density of crosswalks and bicycle sharrows, 
while avoiding stops, traffic lights and parked cars. Incidentally, riders 
also avoided pedestrianised areas and streets with lots of shops and 
streetlights. The results also revealed that cyclists and e-scooter riders 
shared preferences for certain elements of the built environment (such 
as crosswalks and stops), whereas they placed different value on others 
(such as cycling lanes, streetlights, and car parking places). In addition, 
gender appeared to influence participants’ willingness to detour as well 
as route choice preferences. These gender differences were more salient 
among private e-scooter users than among bike-share members. 

This research is not without limitations. The generalisability of the 
results is subject to the urban environment and mobility schemes of 
Barcelona. We note that further investigation is required to assess the 
applicability of the findings elsewhere and to include other transport 
modes, such as private bicycles and shared e-scooters, as well as to ac-
count for the economic cost and gendered spatial occurrence of trips. 
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Moreover, since participants were asked to wear the GPS device all day 
long, the study is limited by the accuracy of trip detection and transport 
mode inference methods. Future research will greatly benefit from ef-
forts put into improving the GPS processing of micromobility data 
(Berjisian and Bigazzi, 2022; Lißner and Huber, 2021). While the sample 
size is not large, this work accounts for an even gender representation of 
men and women and hence offers valuable insights into gender differ-
ences in travel behaviour. Being limited to participants’ answers on 
gender identity, however, this study could not regard route choice of 
non-binary riders and thus, further efforts ought to be made at exploring 
the travel behaviour of gender non-conforming people, but also other 
social groups, such as people with racialised or LGBTQI+ experiences 
(Lubitow et al., 2020, 2019; Nello-Deakin and Harms, 2019). 

The present study is among the first to explore micromobility route 
selection and detour while accounting for multiple micromobility modes 
and understanding their distinct detour triggers. Consequently, we 
contribute to closing the gap between cyclists’ and e-scooter riders’ 
different preferences for urban attributes within the same spatial context 
(McKenzie, 2019). This is an important step given the increasing need 
for scientific evidence that can help reliably forecast micromobility 
flows and demand within cities. Similarly, our study is also among the 
first ones to incorporate the sociodemographic characteristics of the 
users as predictors of detour and route choice. Our results clearly 
demonstrate the gendered nature of such decisions and reiterate previ-
ous calls on the importance of continuing to take an intersectional 
approach in our understanding of micromobility use. 
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Roig-Costa, O., Gómez-Varo, I., Cubells, J., Marquet, O., 2021. La movilidad post 
pandemia: perfiles y usos de la micromovilidad en Barcelona. Rev. Transp. Territ. 
https://doi.org/10.34096/rtt.i25.10958. 

Rupi, F., Schweizer, J., 2018. Evaluating cyclist patterns using GPS data from 
smartphones; Evaluating cyclist patterns using GPS data from smartphones. https:// 
doi.org/10.1049/iet-its.2017.0285. 

Rupi, F., Poliziani, C., Schweizer, J., 2019. Data-driven bicycle network analysis based on 
traditional counting methods and GPS traces from smartphone. ISPRS Int. J. Geo-Inf. 
8 https://doi.org/10.3390/ijgi8080322. 

Russell, M., Davies, C., Wild, K., Shaw, C., 2021. Pedalling towards equity: exploring 
women’s cycling in a New Zealand city. J. Transp. Geogr. 91, 102987 https://doi. 
org/10.1016/j.jtrangeo.2021.102987. 

Sadeghinasr, B., Akhavan, A., Furth, P.G., Gehrke, S.R., Wang, Q., Reardon, T.G., 2021. 
Mining dockless bikeshare data for insights into cyclist behavior and preferences: 
evidence from the Boston region. Transp. Res. Part Transp. Environ. 100, 103044 
https://doi.org/10.1016/j.trd.2021.103044. 

Sarjala, S., 2019. Built environment determinants of pedestrians’ and bicyclists’ route 
choices on commute trips: applying a new grid-based method for measuring the built 
environment along the route. J. Transp. Geogr. 78, 56–69. https://doi.org/10.1016/ 
j.jtrangeo.2019.05.004. 

Schneider, F., Daamen, W., Hoogendoorn, S., 2021. Trip chaining of bicycle and car 
commuters: an empirical analysis of detours to secondary activities. Transp. Transp. 
Sci. 1–24 https://doi.org/10.1080/23249935.2021.1901793. 

Scott, D.M., Lu, W., Brown, M.J., 2021. Route choice of bike share users: leveraging GPS 
data to derive choice sets. J. Transp. Geogr. 90 https://doi.org/10.1016/j. 
jtrangeo.2020.102903. 

Sersli, S., Gislason, M., Scott, N., Winters, M., 2020. Riding alone and together: is 
mobility of care at odds with mothers’ bicycling? J. Transp. Geogr. 83, 102645 
https://doi.org/10.1016/j.jtrangeo.2020.102645. 

Sersli, S., Gislason, M., Scott, N., Winters, M., 2022. Easy as riding a bike? Bicycling 
competence as (re)learning to negotiate space. Qual. Res. Sport Exerc. Health 14, 
268–288. https://doi.org/10.1080/2159676X.2021.1888153. 

Skov-Petersen, H., Barkow, B., Lundhede, T., Jacobsen, J.B., 2018. How do cyclists make 
their way? - a GPS-based revealed preference study in Copenhagen. Int. J. Geogr. Inf. 
Sci. 32, 1469–1484. https://doi.org/10.1080/13658816.2018.1436713. 

Soltani, A., Allan, A., Javadpoor, M., Lella, J., 2022. Space syntax in Analysing bicycle 
commuting routes in inner metropolitan Adelaide. Sustainability 14, 3485. https:// 
doi.org/10.3390/su14063485. 
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