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with an odd kernel, homogeneous of degree −1 and of class 
C2 off the origin.
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1. Introduction

The vorticity form of the Euler equation for incompressible ideal fluids is

∂tω + v · ∇ω = 0,

v(·, t) = ω(·, t) �∇⊥N,

ω(z, 0) = ω0(z),

(1)
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where ω(z, t) is vorticity at the point z at time t, z = x + iy ∈ C = R2, t ∈ R, 
and N(z) = 1

2π log |z| is the fundamental solution of the laplacian in the plane. Since the 
kernel in the Biot-Savart law v(·, t) = ω(·, t) �∇⊥N is an orthogonal gradient, the velocity 
field v has zero divergence, in accordance with the fact that the fluid is incompressible. 
It is a deep result of Yudovich [10] that incompressibility yields that (1) is well posed in 
L∞(R2) ∩ L1(R2), in the sense that there exists a unique weak solution of (1) for each 
given initial condition in L∞(R2) ∩ L1(R2).

When one takes as initial condition the characteristic function ρ0 = χD0 of a bounded 
domain D0, then ω(·, t) = χDt

(·), where Dt is a bounded domain. This follows from 
the fact that (1) is a transport equation and one refers to such a solution as a vortex 
patch. In the eighties the problem of deciding if boundary smoothness persisted for 
all times was an open challenging question. Chemin proved in 1993 [4] that if D0 is a 
bounded simply connected domain with boundary of class C1+γ , 0 < γ < 1, then the 
weak solution of (1) with initial condition χD0 is of the form ω(z, t) = χDt

(z) with Dt

a simply connected domain of class C1+γ for all times t ∈ R. Indeed in [4] one proves 
a more general statement and the proof depends on para-differential calculus. In [1] a 
shorter proof, based on classical analysis methods, was devised. See also [8].

In this paper we consider the regularity problem for vortex patches for transport 
equations of the form

∂tω + v · ∇ω = 0,

v(·, t) = ω(·, t) � k,
ω(z, 0) = χD0(z),

(2)

where k : R2 \ {0} → R2 is an odd kernel, homogeneous of degree −1, of class C2 off 
the origin, and D0 is a simply connected domain with boundary of class C1+γ . These 
kernels produce in general velocity fields v with non-zero divergence. For instance, for 
k(z) = ∇N(z) one has div v(z, t) = χDt

(z) and the divergence is non-zero but still 
bounded. This kernel appears in models for aggregation and chemotaxis phenomena in 
biology (see [2] and the references given there). If k(z) = 1

2πz , the complex conjugate of 
∇N(z), then

div v(z, t) = χDt
(z) � div k(z) =

(
− 1
π

p. v. x
2 − y2

|z|4 � χDt

)
(z), z ∈ C, (3)

which is a second order Riesz transform applied to a characteristic function. The second 
order Riesz transforms are basic examples of convolution principal value Calderón-
Zygmund singular integrals, which do not preserve L∞(R2). Thus, in general, we should 
expect the divergence to be an unbounded function in BMO(R2). Indeed, if the domain 
Dt is smoothly bounded, then an even Calderón-Zygmund singular integral with kernel 
of class C1 off the origin sends χDt

to a bounded function, an elementary fact that 
guaranties that v(z, t) is a Lipschitz field. Thus in dealing with equation (2) in the class 
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of smooth vortex patches one has still bounded divergence, but formula (3) anticipates 
serious difficulties.

Our main result reads as follows.

Theorem. If D0 is a bounded simply connected domain with boundary of class C1+γ , 
0 < γ < 1, then there exists a weak solution of (2) with initial condition χD0 of the 
form ω(z, t) = χDt

(z) with Dt a simply connected domain of class C1+γ for all times t ∈
R. This solution is unique in the class of characteristic functions of domains of class 
C1+γ .

This has been proved simultaneously in any dimension in [3] via an intricate construc-
tion of appropriate defining functions. Our proof avoids the use of defining functions.

We proceed to state the definition of weak solution to (2), forward in time. A function 
ω(z, t) ∈ L∞([0, T ), L1(R2) ∩ L∞(R2)), T > 0, is a weak solution of (2) in R2 × [0, T ) if 
for each 0 < T0 < T and each compactly supported ϕ ∈ C1(R2 × [0, T0]) one has

∫
R2

(
ϕ(z, T0)ω(z, T0) − ϕ(z, 0)χD0(z)

)
dz =

T0∫
0

∫
R2

(
(∂tϕ + v · ∇ϕ)ω + ϕω div(v)

)
dzdt.

If ω(z, t) ∈ C1(R2 × [0, T )
)

is a classical solution of (2), then it is a weak solution; to 
show this one just applies the transport formula. Conversely, if ω(z, t) ∈ C1(R2 × [0, T )

)
is a weak solution, then it is a classical solution. See [5, Chapter 8] for a discussion of 
weak solutions for the Euler vorticity equation.

We now briefly outline the proof of the theorem. As in [1], first we take for granted 
that a local in time solution for the CDE (contour dynamics equation (17)) exists (see 
Chapter 8 of [5]) and then we continue by proving an a priori inequality for the relevant 
quantities giving the smoothness of Dt. In the appendix we give indications, for the sake 
of the reader, on how to solve locally in time the CDE in our case (the argument is 
basically routine).

The core of the proof is the second step, in which we show the a priori inequality for 
the Hölder seminorm of order γ of the gradient of the local in time solution X(·, t) of 
the contour dynamics equation. This is achieved by bringing in a commutator, which 
appears after an application of Whitney’s extension theorem. Is at this moment when 
we have to leave the boundary of Dt and work in the ambient space.

The third step consists in proving a logarithmic inequality which estimates ‖∇v(·, t)‖∞
in terms of ‖∇X(·, t)‖γ,∂D0 and the Lipschitz constant of the inverse of X(·, t). Again the 
estimate is performed by resorting to objects that live in the plane but off the boundary 
of Dt.

The hypothesis on the kernel k are the more general one can reasonably think of. 
The fact that the kernel is odd and homogeneous of degree −1 gives that a first order 
derivative of the kernel is a constant multiple of the delta function plus an even Calderón-
Zygmund singular integral. The kernels of these even singular integrals are C1 off the 
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origin since k is assumed to be C2 off the origin, and thus send characteristic functions 
of smoothly bounded domains into bounded functions.

2. The a priori estimate

Parametrize the boundary ∂D0 by a mapping h : T → ∂D0, of class C1+γ(T , R2)
satisfying the bilipschitz condition

c−1
0 |u− v| ≤ |h(u) − h(v)| ≤ c0 |u− v|, u, v ∈ T

for some positive constant c0. The mapping h induces a norm in the vector space of C1+γ

functions on the boundary of D0 with values in the plane defined on X ∈ C1+γ(∂D0, R2)
by

‖X‖1+γ = ‖X‖∞,∂D0 + ‖∇X‖γ,∂D0 , (4)

where

‖X‖∞,∂D0 = sup{|X(α)| : α ∈ ∂D0}

and

‖∇X‖γ,∂D0 = sup{
| d
duX(h(u)) − d

duX(h(v))|
|u− v|γ : u, v ∈ T , u �= v}.

We have used the notation (which is an abuse of language we adopt for the sake of 
conciseness)

d

du
f(u) = d

dθ
f(h(eiθ)), u = h(eiθ),

for each differentiable function f defined on T . The contour dynamics equation is an 
ordinary differential equation defined in the open set Ω of C1+γ(∂D0, R2) consisting of 
those mappings in C1+γ(∂D0, R2) satisfying the bilipschitz condition

0 < b = b(X) = inf{ |X(α) −X(β)|
|α− β| : α, β ∈ ∂D0, α �= β}. (5)

For more details on the contour dynamics equation (CDE) in this context the reader 
may consult the last section.

The CDE has a unique solution X(·, t) ∈ Ω for t ∈ (−T, T ) satisfying the initial 
condition X(·, 0) = I, where I stands for the identity map on ∂D0. Then t → X(α, t) is 
the trajectory of the particle that at time 0 is at the point α ∈ ∂D0 and X(∂D0, t) is a 
Jordan curve of class C1+γ which encloses a simply connected domain Dt. The function 
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ω(z, t) = χDt
(z) is a weak solution of equation (2) (forward in time) in R2 × [0, T ). This 

can be shown as in [5, proposition 8.6, p.332].
Thus the flow associated with the Lipschitz velocity field v(·, t) = χDt

(·, t) �k, namely 
the solution of

d

dt
X(α, t) = v(X(α, t), t),

X(α, t) = α ∈ R2,

(6)

coincides with the solution of the CDE for α ∈ ∂D0. What remains to be proven is that 
the maximal time of existence of the solution of the CDE is T = ∞ and for that we need 
an a priori inequality. By (6)

X(h(u), t) = h(u) +
t∫

0

v(X(h(u), s), s) ds, u ∈ T .

Hence

d

du
X(h(u), t) = dh

du
(u) +

t∫
0

∇v(X(h(u), s), s)
(

d

du
X(h(u), s)

)
ds. (7)

Clearly d
duX(h(u), s) is a tangent vector to ∂Ds at the point X(h(u), s). We would 

like to show that

∇v(X(h(u), s), s)
(

d

du
X(h(u), s)

)

is a commutator. We need three lemmas. The first works in Rn. The notion of jet is in 
[9, p. 176], although the term jet is not used there. Given a subset S of ⊂ Rn and a 
vector field 
F : S → Rn set

‖
F‖γ,S = sup{ |

F (x) − 
F (y)|
|x− y|γ : x, y ∈ S, x �= y}.

Lemma 1. Let Γ be a hypersurface of dimension n − 1 and of class C1+γ in Rn. Let 
N(x) = (N1(x), . . . , Nn(x)) be a normal field on Γ of class Cγ(Γ). Then (0, N(x)) is a 
jet of class C1+γ(Γ) with constant A‖N‖γ,Γ, A a constant depending only on γ. In other 
words,

sup
x,y∈Γ, x �=y

|(y − x) ·N(x)| ≤ A‖N‖γ,Γ |y − x|1+γ .

Proof. Assume, without loss of generality, that x = 0 and N(0) = (0, . . . , 0, Nn(0)) with 
Nn(0) > 0. Set δ−γ = 2‖N‖γ,Γ .
|N(0)|
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If |y| ≥ δ, then

|y ·N(0)| ≤ |y||N(0)| = |y|2‖N‖γ,Γ δγ ≤ 2‖N‖γ,Γ |y|1+γ ,

as required.
If y ∈ B(0, δ) ∩ Γ, then

|N(y) −N(0)| ≤ ‖N‖γ,Γ δγ = |N(0)|
2 .

Hence the tangent hyperplane to Γ at y forms an angle of less than 30◦ with the hor-
izontal hyperplane. Consequently B(0, δ) ∩ Γ is the graph of a function yn = ϕ(y′), 
y′ = (y1, . . . , yn−1), of class C1+γ , defined on the projection U of B(0, δ) ∩ Γ on 
{y ∈ Rn : yn = 0}. Note that U is open in Rn−1 and that, for y ∈ B(0, δ) ∩ Γ, the 
segment with extremes 0 and y′ is contained in U (by the implicit function theorem). It 
is also clear that |∇ϕ(y)| ≤ 1, y′ ∈ U , because of the inclination of tangent hyperplanes 
with respect to the horizontal hyperplane.

If y ∈ B(0, δ) ∩ Γ we have

|y ·N(0)| ≤ |ϕ(y′)||N(0)| ≤
(

sup
|z′|≤|y|, z′∈U

|∇ϕ(z′)|
)
|y′||N(0)| ≤ ‖∇ϕ‖γ,Γ|y′|1+γ |N(0)|.

Set

M(y′) = (−∂1ϕ(y′), . . . ,−∂n−1ϕ(y′), 1), y′ ∈ U,

which is a normal vector to Γ at y = (y′, ϕ(y′)). Hence

M(y′) = N(y)
Nn(y) , y ∈ B(0, δ) ∩ Γ,

and

‖∇ϕ‖γ,U = ‖M‖γ,U =
∥∥∥∥ N(y)
Nn(y)

∥∥∥∥
γ,U

.

Take y, z ∈ B(0, δ) ∩ Γ. Then

|y − z| = (|y′ − z′|2 + |ϕ(y′) − ϕ(z′)|2)1/2 ≤
√

2|y′ − z′|.

One has
∣∣∣∣ N(y) − N(z)

∣∣∣∣ ≤ 1 |N(y) −N(z)| + |N(z)| |Nn(z) −Nn(y)|
. (8)
Nn(y) Nn(z) |Nn(y)| |Nn(y)||Nn(z)|
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By the definition of δ

|Nn(y)| ≥ |Nn(0)| − |Nn(y) −Nn(0)| ≥ |N(0)| − ‖N‖γ,Γδγ = |N(0)|
2 .

Thus the right hand side of (8) is not greater than

23+γ/2 ‖N‖γ,Γ
|N(0)| |y

′ − z′|γ .

Therefore

|y ·N(0)|
|y|1+γ

≤ ‖∇ϕ‖γ,U |N(0)| ≤ 23+γ/2‖N‖γ,Γ

and the lemma follows with A = 23+γ/2. �
Lemma 2. Let Γ be a Jordan curve of class C1+γ in the plane and τ(x) = (τ1(x), τ2(x)), 
x ∈ Γ, a tangent vector to Γ at x with τ ∈ Cγ(Γ, R2). Then there exists g(x) =
(g1(x), g2(x)) ∈ Cγ(R2, R2) such that g = τ on Γ, ‖g‖γ,R2 ≤ C‖τ‖γ,Γ for a positive 
constant C depending only on γ, and div g = 0 in R2.

Proof. The field (−τ2(x), τ1(x)) is normal to Γ at each x ∈ Γ. By the previous lemma 
(0, −τ2(x), τ1(x)) is a C1+γ jet on Γ with constant Cγ ‖τ‖γ,Γ and by Whitney’s extension 
theorem there is a function ϕ ∈ C1+γ(R2, R) such that

ϕ = 0, ∂1ϕ = −τ2, ∂2ϕ = τ1, on Γ

and ‖∇ϕ‖γ,R2 ≤ C0 Cγ ‖τ‖γ,Γ, with C0 an absolute constant [9, Theorem 4, p.177]. 
Therefore

τ(x) = (∂2ϕ(x),−∂1ϕ(x)), x ∈ Γ.

Set g = (∂2ϕ, −∂1ϕ), so that g has no divergence in the plane and ‖g‖γ,R2 ≤ C ‖τ‖γ,Γ, 
where C = C0 Cγ depends only on γ. �
Lemma 3. Let τ(x) = (τ1(x), τ2(x)) ∈ Cγ(Γ) be a tangent field on Γ = ∂Ds. Then

∇v(x, s)(τ(x)), x ∈ Γ, (9)

is the restriction to Γ of the commutator∫
Ds

∇v(x− y, s)(g(x) − g(y)) dy, x ∈ R2,

where g is the field given by Lemma 2.
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Proof. The first component of (9) is

∂1v1(x, s)τ1(x) + ∂2v1(x, s)τ2(x) = (∂1k1 ∗ χ)(x)τ1(x) + (∂2k1 ∗ χ)(x)τ2(x) (10)

with χ = χDs
. In the sense of distributions (p.v. stands for principal value)

∂1k1 = p. v. ∂1k1 + c1δ0, c1 =
∫

|x|=1

k1(x)x1 dσ(x)

and

∂2k1 = p. v. ∂2k1 + c2δ0, c2 =
∫

|x|=1

k1(x)x2 dσ(x).

Let g be the field given by Lemma 2. Since (∂1k1 ∗ χ)g1 = (p.v. ∂1k1 ∗ χ)g1 + c1χg1

and ∂1k1 ∗ (χg1) = p.v. ∂1k1 ∗ (χg1) + c1χg1, we get

(∂1k1 ∗ χ)g1 = (p.v. ∂1k1 ∗ χ)g1 − p.v. ∂1k1 ∗ (χg1) + ∂1k1 ∗ (χg1).

Similarly

(∂2k1 ∗ χ)g2 = (p.v. ∂2k1 ∗ χ)g2 − p.v. ∂2k1 ∗ (χg2) + ∂2k1 ∗ (χg2).

Note that

∂ik1 ∗ (χgi) = k1 ∗ ∂i(χgi) = k1 ∗ (gi∂iχ + χ∂igi)

and so, recalling that g has vanishing divergence,

∂1k1 ∗ (χg1) + ∂2k1 ∗ (χg2) = k1 ∗ (g · ∇χ + χ div g) = k1 ∗ (g · ∇χ) ≡ 0

since g|Γ = τ is tangent to Γ and ∇χ normal to Γ at each point of Γ. Thus if x ∈ Γ = ∂Ds

(∂1k1 ∗ χ)(x)τ1(x) + (∂2k1 ∗ χ)(x)τ2(x) =
∫
Ds

∂1k1(x− y)(g1(x) − g1(y) dy

+
∫
Ds

∂2k1(x− y)(g2(x) − g2(y)) dy

is indeed a sum of two scalar commutators. One has a similar formula for the second 
component of ∇v(x, s)(τ(x)) and the lemma follows. �
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Therefore, by the usual commutator estimate in the Hölder seminorm [1, Lemma, 
p.26] or [2, Lemma 3.2, p.3799],

‖∇v(x, s)(τ(x))‖γ,Γ ≤ C (1 + ‖∇v(·, s)‖∞) ‖g‖γ,R2 ≤ C (1 + ‖∇v(·, s)‖∞) ‖τ‖γ,Γ.

From (7) we see that

∥∥∥∥ d

du
X(h(u), t)

∥∥∥∥
γ,T

≤
∥∥∥∥ d

du
h(u)

∥∥∥∥
γ,T

+ C

t∫
0

(1 + ‖∇v(·, s)‖∞)
∥∥∥∥ d

du
X(h(u), s)

∥∥∥∥
γ,T

ds

and then, by Gronwall’s lemma, we get the a priori inequality

∥∥∥∥ d

du
X(h(u), t)

∥∥∥∥
γ,T

≤
∥∥∥∥ d

du
h(u)

∥∥∥∥
γ,T

exp

⎛
⎝C

t∫
0

(1 + ‖∇v(·, s)‖∞) ds

⎞
⎠ .

We also have an a priori inequality for

b(t) ≡ inf
α �=β

∣∣∣∣X(α, t) −X(β, t)
|α− β|

∣∣∣∣ = 1
sup
α �=β

|α−β|
|X(α,t)−X(β,t)|

= 1
‖∇X−1(·, t)‖∞

≥ exp

⎛
⎝−

t∫
0

‖∇v(·, s)‖∞ ds

⎞
⎠ .

Setting

q(t) =

∥∥ d
duX(h(u), t)

∥∥
γ,T

b(t)1+γ
, −T < t < T,

we finally obtain

q(t) ≤ C exp

⎛
⎝C

t∫
0

(1 + ‖∇v(·, s)‖∞) ds

⎞
⎠ , 0 < t < T. (11)

3. The logarithmic inequality

Let K ∈ C1(R2\{0}) be a real function, homogeneous of degree −2 and even. Set

Tf(x) = p.v.
∫
R2

K(x− y)f(y) dy,

so that T is a convolution, smooth, homogeneous, even Calderón–Zygmund operator.
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Let X ∈ C1+γ(∂D0, R2), D0 a domain of class C1+γ . Assume that X is bilipschitz 
onto the image and let b stand for the inverse of Lipschitz norm of the inverse mapping, 
as in (5). Since X(∂D0) is a Jordan curve, the simply connected domain D enclosed by 
the curve satisfies ∂D = X(∂D0).

The maximal singular integral of a function f is

T ∗f(x) = sup
ε>0

∫
|y−x|>ε

K(x− y)f(y) dy, x ∈ R2.

Lemma 4. We have

T ∗(χD)(x) ≤ A

(
1 + log+

(
|D|1/2 ‖ d

du
[X(h(u))]‖γ,T

1
b1+γ

))

= A
(
1 + log+

(
|D|1/2 q(t)

))
, x ∈ R2,

where A is a constant depending only on γ and the kernel K.

Proof. By an elementary argument [6, p.409-410] it is enough to prove the inequality for 
points x ∈ ∂D. Without loss of generality one can assume that x = 0 = X(0) and that 
the unitary normal vectors to ∂D0 and ∂D at 0 are (0, 1). Define δ by

δ−γ = 1
b1+γ

‖ d

du
[X(h(u))]‖γ,T .

Then for ε > 0

∫
|y|>ε

K(y)χD(y) dy =
∫

δ>|y|>ε

K(y)χD(y) dy +
∫

|D|1/2>|y|>δ

K(y)χD(y) dy

+
∫

|y|>|D|1/2

K(y)χD(y) dy.
(12)

The third term is estimated by

∫
|y|>|D|1/2

1
|y|2χD(y) dy ≤ 1

and the second by

2π sup |K(y)| log
(
|D|1/2

δ

)
≤ A log+

(
|D|1/2 ‖ d

du
[X(h(u))]‖γ,T

1
b1+γ

)
.

|y|=1



J. Verdera / Advances in Mathematics 416 (2023) 108917 11
It remains to estimate the first term in the right hand side of (12). The argument 
that follows is similar to that of [1] in the proof of Proposition 1, p.23–24. Incidentally, 
Proposition 1 of [1] was rediscovered in Lemma 5, p. 1142 of [7].

Set

Dε,δ = {y ∈ D : ε < |y| < δ}, H− = {y = (y1, y2) ∈ R2 : y2 < 0}

and

Sρ = {y ∈ R2, |y| = ρ}, ρ > 0.

Since an even kernel with vanishing integral on the unit circumference has also vanishing 
integral on half a circumference, we get

∫
Dε,δ

K(y) dy =
δ∫

ε

⎛
⎜⎝ ∫
{θ∈S1:ρθ∈D}

K(θ) dσ(θ)

⎞
⎟⎠ dρ

ρ

=
δ∫

ε

⎛
⎜⎝ ∫
{θ∈S1:ρθ∈D}

K(θ) dσ(θ) −
∫

S1∩H−

K(θ) dσ(θ)

⎞
⎟⎠ dρ

ρ

=
δ∫

ε

⎛
⎜⎝ ∫
{θ∈S1:ρθ∈(D\H−)∪(H−\D)}

K(θ) dσ(θ)

⎞
⎟⎠ dρ

ρ

and ∣∣∣∣∣∣∣
∫

Dε,δ

K(y) dy

∣∣∣∣∣∣∣ ≤ sup
|θ|=1

|K(θ)|
δ∫

0

σ{θ ∈ S1 : ρθ ∈ (D\H−) ∪ (H−\D)}dρ
ρ
.

Since the domains D\H− and H−\D are “tangential”

σ{θ ∈ S1 : ρθ ∈ (D\H−) ∪ (H−\D)} ≤ A
1
ρ

sup{|X2(α)| : α ∈ ∂D0 and |X(α)| = ρ}.

Take |X(α)| = ρ < δ. If α = h(u) and 0 = h(u0), then

|X2(α)| = |X2(h(u)) −X2(h(u0))| ≤ ‖ d

du
[X2(h(u))]‖γ,T |u− u0|1+γ

≤ ‖ d

du
[X(h(u))]‖γ,T

1
b1+γ

|X(α)|1+γ

= ‖ d [X(h(u))]‖γ,T
1

ρ1+γ .

du b1+γ
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Thus

∣∣∣∣∣∣∣
∫

Dε,δ

K(y) dy

∣∣∣∣∣∣∣ ≤ A‖ d

du
[X(h(u))]‖γ,T

1
b1+γ

δ∫
0

ργ−1 dρ

= A ‖ d

du
[X(h(u))]‖γ,T

1
b1+γ

δγ

γ
= A. �

4. End of the proof

Having at our disposition the a priori estimate of section 2 and the logarithmic esti-
mate it is a standard matter to complete the proof. We remark that ∇v(·, t) is a 2 × 2
matrix with entries which are either constant multiples of χDt

or even homogeneous 
smooth Calderón -Zygmund operators applied to χDt

. Inserting the a priori estimate 
(11) into the logarithmic inequality we obtain

‖∇v(·, t)‖∞ ≤ C + C

t∫
0

(1 + ‖∇v(·, s)‖∞) ds, t ∈ (0, T ).

The factor |D|1/2 in the inequality of Lemma 4 causes no trouble because of the standard 
estimate

‖∇X(·, t)‖∞ ≤ exp
t∫

0

‖∇v(·, s)‖∞ ds, t ∈ (0, T ).

Gronwall’s lemma then yields

‖∇v(·, t)‖∞ ≤ C exp(Ct), t ∈ (0, T ).

Hence, for t ∈ (0, T ),

‖ d

du
[X(h(u), t)]‖γ,T ≤ C exp(C exp(Ct)),

and

b(t) ≥ C−1 exp(−C exp(Ct)) ≥ C−1 exp(−C exp(CT )).

Consequently T = ∞.
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5. Appendix: local in time existence for the CDE

Our first remark is that if k : R2 \ {0} → R2 is an odd kernel, homogeneous of degree 
−1, differentiable off the origin, then

k = ∂1(x1k) + ∂2(x2k), x = (x1, x2) ∈ R2 \ {0}. (13)

This follows straightforwardly from Euler’s theorem on homogeneous functions.
Assume that ω(z, t) = χDt

(z) is a weak solution of the general equation (2). The 
velocity field is

v(·, t) = χDt
� k = χDt

� ( ∂

∂x
(xk) + ∂

∂y
(yk))

= ∂

∂x
χDt

� (xk) + ∂

∂y
χDt

� (yk).

Since ∇χDt
= −
ndσ = idz, where dσ is the arc-length measure on the curve ∂Dt and 

dz = dz∂Dt
, we have

∂

∂x
χDt

= −n1dσ = −dy and ∂

∂y
χDt

= −n2dσ = dx.

Setting z = x + iy and w = u + iv we get

v(z, t) = −
∫

∂Dt

(x− u)k(z − w) dv +
∫

∂Dt

(y − v)k(z − w) du

=
∫

∂Dt

k(z − w)〈−i(z − w) · dw〉,
(14)

where 〈·, ·〉 denotes scalar product in the plane.
The flow mapping is the solution of the ODE

d

dt
X(α, t) = v(X(α, t), t),

X(α, t) = α ∈ R2.

(15)

Substituting the expression (14) for the velocity field in (15) and making the change of 
variables w = X(β, t) we get

d

dt
X(α, t) = v(X(α, t), t) =

∫
∂Dt

k(X(α, t) − w)〈−i(X(α, t) − w), dw〉,

=
∫

k(X(α, t) −X(β, t))〈−i(X(α, t) −X(β, t)), ∇X(β, t)(dβ)〉.

∂D0
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In the last line β is a generic point of the curve ∂D0 and dβ the standard complex 
differential form associated with the curve. Then

∇X(β, t)(dβ) =
(
∂X1

∂β1
(β, t) dβ1 + ∂X1

∂β2
(β, t) dβ2,

∂X2

∂β1
(β, t) dβ1 + ∂X2

∂β2
(β, t) dβ2

)
.

In fact ∇X(β, t) can be understood more intrinsecally as the differential DX(β, t) of the 
mapping X(·, t) as a differentiable mapping from the differentiable curve ∂D0 onto the 
differentiable curve ∂Dt. This mapping takes a tangent vector to ∂D0 at the point β into 
a tangent vector to ∂Dt at the point X(β, t). The point is that this operation involves 
only first derivatives of X(·, t) on ∂D0.

Consider the Banach space C1+γ(∂D0, R2) endowed with the norm (4) and the open 
set Ω consisting of those mappings in C1+γ(∂D0, R2) satisfying the bilipschitz condition 
(5). For each X ∈ Ω define

F (X)(α) =
∫

∂D0

k(X(α) −X(β))〈−i(X(α) −X(β)), ∇X(β)(dβ)〉, α ∈ ∂D0. (16)

The CDE is the autonomous ODE in Ω

dX

dt
= F (X), X(·, 0) = I, (17)

where I is the identity mapping on ∂D0.
Of course one has to check that F (X) belongs to C1+γ(∂D0, R2) for each X ∈ Ω. 

After that one wants to apply the existence and uniqueness theorem of Picard, and for 
that one needs to check that F is locally Lipschitz in Ω.

All these facts are verified routinely and depend essentially on the fact that the kernel 
appearing in (16) is of class C2(R2 \ {0}, R2) and homogeneous of degree 0. The reader 
may consult [5, Chapter 8] for the case of the vorticity equation. For instance, when you 
take a derivative in α in (16) to prove that F (X) is in C1+γ(∂D0, R2), then you get an 
expression of the form

∫
∂D0

H(X(α) −X(β))L(∇X(β), dβ), (18)

where H(·) is a kernel of homogeneity −1 of class C1(R2 \ {0}, R2) and L(∇X(β), dβ)
a linear expression in ∂Xj/∂βk and dβj . Hence (18) may be understood as a (non-
convolution) singular integral on the curve ∂D0 applied to a linear combination of the 
∂Xj/∂βk, which are functions satisfying a Hölder condition of order γ. Then the result 
is a function of α in the same space.

An analogous situation appears in checking that F is locally Lipschitz in Ω.
The reader may also consult [2], where full details are provided in a similar context.
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