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H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Energy models generally fail to consider 
impacts beyond direct GHG emissions. 

• ENBIOS joins a push to integrate life 
cycle thinking into energy modelling 
frameworks. 

• Extra dimensions are added via social 
metabolism and hierarchical analysis. 

• Analysis of EU scenarios reveals poten
tial land use, labour and material issues.  
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A B S T R A C T   

Many of the long-term policy decisions surrounding the sustainable energy transition rely on models that fail to 
consider environmental impacts and constraints beyond direct greenhouse gas emissions and land occupation. 
Such assessments offer incomplete and potentially misleading information about the true sustainability issues of 
transition pathways. Meanwhile, although decision-makers desire greater access to a broader range of envi
ronmental, material and socio-economic indicators, few tools currently address this gap. Here, we introduce 
ENBIOS, a framework that integrates a broader range of such indicators into energy modelling and policymaking 
practices. By calculating sustainability-related indicators across hierarchical levels, we reach deeper un
derstandings of the potential energy systems to be derived. With ENBIOS, we analyse a series of energy pathways 
designed by the Calliope energy system optimization model for the European energy system in 2030 and 2050. 
Although overall emissions will drop significantly, considerable rises in land, labour and critical raw material 
requirements are likely. These outcomes are further reflected in unfavourable shifts in key metabolic indicators 
during this period; energy metabolic rate of the system will drop by 25.6%, land requirement-to-energy will 
quadruple, while the critical raw material supply risk-to-energy ratio will rise by 74.2%. Heat from biomass and 
electricity from wind and solar are shown to be the dominant future processes across most indicator categories.  
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1. Introduction 

Global and local responses to the threat of climate change call for 
large reductions in the production of greenhouse gases (GHGs) via a 
rapid transition towards more sustainable energy system configurations. 
In the European Union (EU), the decarbonization of the economy–where 
renewable energy technologies replace older fossil fuel-based tech
nologies–acts as one of the five “dimensions” of the energy union 
strategy [1]. However, while “decarbonised” energy systems are 
generally seen to represent cleaner and more sustainable alternatives, 
wider understandings of the impacts and constraints that relate to 
different energy technologies are often overlooked in decision-making. 
Indeed, the integrated assessment models (IAMs) and other energy 
system models (ESMs) used to inform energy-related decisions in the EU 
and elsewhere tend to only include simplified estimates of direct GHG 
emissions and obviate other environmental factors–such as raw material 
or water use– that may limit calculations [2,3]. 

Incorporating detailed sets of environmental calculations into such 
models is cumbersome not only from a computational point of view; it is 
also complicated by the vastly different semantics employed to define 
energy and environmental dynamics [4]. Nevertheless, continuing to 
overlook or simplify certain environmental aspects and constraints 
could result in suboptimal outcomes in proposed transition pathways 
[5]. What’s more, research suggests that energy decision makers are 
eager to access more comprehensive information about the range of 
possible environmental impacts and other limitations that could affect 
future energy scenarios [6]. 

The use of life cycle assessment (LCA) [7] approaches is one way to 
address these shortcomings. Within an LCA analysis, the full life cycle of 
an energy–or any other–process is considered [8]. So, rather than basing 
quantifications solely on the most obvious or direct aspects of a process, 
LCA-based approaches require the collection of input–output in
ventories for all contributing operations, from material extraction 
through to end-of-life disposal or recycling stages. Input flows include 
aspects like raw material, land, water and energy use, while output flows 
include emissions to the atmosphere, water bodies and other ecosystems 
as well as the products and co-products of a technology. Collectively, 

this life cycle inventory (LCI) data can be converted into more tangible 
indicator outputs using predefined life cycle impact assessment (LCIA) 
methods or other calculations. 

LCA approaches have been widely adopted in recent years for 
comparing different existing and emerging technologies, including those 
within the energy sector [9,10]. Furthermore, they are beginning to be 
used to quantify impacts within complete energy systems by aggregating 
the impacts of the various technological processes that occur within 
them [11]. Attempts have also been made to integrate LCA data sources 
directly into energy models [8,12,13], and by creating simplified in
ventories on-the-fly within IAM simulations [14]. Conversely, within the 
burgeoning field of prospective life cycle assessment (pLCA) [15–20] 
information from IAMs, input–output models and other sources 
regarding future variations in energy system configurations–e.g., energy 
mixes or efficiencies–are used to incorporate provisions for future 
changes within LCA calculations. 

In any event, no existing approaches allow for the detailed inclusion 
and analysis of LCA-related inputs or outputs across hierarchical levels 
within energy systems. In this regard, a number of studies have applied 
relational analysis principles to assessing the social metabolism aspects 
of energy systems [21,22]. However, such analyses have not attempted 
to assess environmental impacts or constraints in any detail, nor have 
they included other socio-metabolic indicators or been able to integrate 
the resource needs of those systems. 

To bridge this gap, we introduce the ENvironmental and BIO
economic System Assessment (ENBIOS) framework. ENBIOS has been 
developed to perform sustainability assessments within the energy 
modelling platform developed as part of the Sustainable Energy Tran
sitions Laboratory (SENTINEL) project [23]. It connects LCA function
ality with the relational capabilities of the Multi-Scale Integrated 
Analysis of Societal and Ecosystem Metabolism (MuSIASEM) approach 
[24–27]. ENBIOS takes system definition information from ESMs –or 
any other real or theoretical systems– and combines this with built-in 
datasets to generate a range of environmental and other indicators at 
each element in that system. This fundamentally includes the use of 
LCA-based datasets and methods. However, any number of other user- 
defined methodologies or datasets can be included in these calculations. 

Nomenclature 

Glossary 
ALOP agricultural land occupation LCIA method 
CRM critical raw material 
EC European Commission 
EJ exajoules (x1018 joules) 
EMR energy metabolic rate (energy per hour of human activity) 

[MJ/h] 
ENBIOS ENvironmental and BIOeconomic System Assessment 
EoLRIR end-of-life recycling input rate [%] 
ESM energy system model 
EU European Union 
Gh gigahours (x109 hours) 
GHG greenhouse gas 
GHGMR GHG metabolic rate (GHG per hour of human activity) 

[kgCO2-eq/h] 
GWP global warming potential 
GWP100 global warming potential (100-year time horizon) LCIA 

method 
h hours 
HA human activity [h] 
IAM integrated assessment model 
ILO International Labour Organization 
IPCC Intergovernmental Panel on Climate Change 

ISIC International Standard Industrial Classification 
kg kilograms 
kgCO2-eq kilograms of carbon dioxide equivalent 
km2 square kilometres 
LCA life cycle assessment 
LCI life cycle inventory 
LCIA life cycle impact assessment 
m2 square metres 
MJ megajoules (x106 joules) 
MuSIASEM Multi-Scale Integrated Analysis of Socio-Ecosystem 

Metabolism 
MW megawatts (x106 watts) 
PgCO2-eq x1012 kilograms of carbon dioxide equivalent 
pLCA prospective life cycle assessment 
RoW rest of the world 
SENTINEL Sustainable Energy Transitions Laboratory 
solar PV solar photovoltaic 
SR supply risk [yr] 
TL teralitres (x1012 litres or 109 cubic metres) 
TWh terawatt-hours (x1012 watt-hours) 
ULOP urban land occupation LCIA method 
WDP water depletion LCIA method 
WMR water metabolic rate (water use per hour of human 

activity) [m3/h] 
yr years  
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Two broad types of indicators are produced within an ENBIOS 
simulation. The first of these, extensive indicators, are derived using life 
cycle inventory data and other inputs, such as labor requirements, and 
provide information about the total size and impacts of the system’s 
components. For example, total energy production, GHG emissions, land 
requirements or human labour could all be calculated for a given tech
nological process in a system. Combining extensive indicator values for 
each of these elements then allows a second set of intensive indicators to 
be calculated within the system. Using the previous examples, indicators 
could be derived to represent the energy produced per hour of labour or 
GHG emissions per unit of energy, providing useful information about 
system performance and relations. 

The set of extensive and intensive indicators can then be examined 
within and across hierarchical levels using multi-scale system analysis. 
This can provide valuable information about the nature of systems at 
different levels, from individual processes or grouped categories to 
entire energy systems. For example, visualisations of extensive data 
could help to identify if higher land requirements are caused by heat or 
electricity sources in a given scenario, or the relative contributions to 
labour requirements from different technologies across different sce
narios. Likewise, changes in intensive indicators–e.g., a drop in water 
use per unit of energy–can be compared and traced according to the 
changes that occur at different hierarchical levels. 

Ultimately, the innovation of the framework is rooted in its ability to 
integrate LCA and MuSIASEM methods for deriving extensive and 
intensive indicators to evaluate systems from a hierarchical analysis 
perspective. The flexibility of the framework to different systems and 
applications allows simple but powerful observations to be made about 
the different characteristics that exist at different places within a given 
hierarchy. This, in turn, provides insights into the potential constraints, 
“hot spots” and possible trade-offs that exist when analysing current or 
future systems, energy or otherwise. 

The article continues in Section 2 with a description of the use of the 
framework, including summarized descriptions of the LCA and MuSIA
SEM approaches that form its basis and the various inputs and outputs 
involved in an ENBIOS simulation. A selection of indicators and possible 
applications are also discussed. A case study example is then provided in 
Section 3, based on a projected “climate neutrality” scenario for the 
European energy system using outputs from the Euro-Calliope model. 
The article concludes in Section 4 with a discussion of key outcomes, 
potential issues and a roadmap for further development. 

2. The ENBIOS workflow 

While previous efforts have attempted to integrate LCA-based 

thinking with energy system configurations and to consider the socio- 
metabolic dynamics of energy systems, to the best of our knowledge 
ENBIOS represents the first attempt to consolidate these two perspec
tives into a single framework. To do this, ENBIOS integrates the high- 
resolution impact assessment capabilities of LCA with the systemic 
upscaling capabilities of MuSIASEM. A summary of the ENBIOS work
flow is represented in Fig. 1 and detailed in the following sections. 

2.1. Preparation 

The first step in the development of an ENBIOS simulation is typi
cally to define the system framework within a MuSIASEM environment. 
To do this one must first define a “dendrogram”, a multi-level structure 
that arranges the system hierarchically into “processor” nodes where the 
relationships between input and output flows are calculated. Processors 
can operate in one of two capacities within the “tree” of the dendrogram. 
“Structural processors” represent the most specific and tangible activ
ities that can easily be located within a spatial–temporal context (e.g., 
specific technologies like wind turbines or nuclear stations). Meanwhile, 
“functional processors” represent a less tangible social function (e.g., 
wind turbines or solar PV panels could exist as “structures” related to the 
“function” of renewable electricity supply, which itself related to elec
tricity supply and, ultimately, energy supply). In other words, the 
MuSIASEM usage within ENBIOS, the lower levels of the dendrogram 
are typically represented by structures that are later related to the func
tions they can provide further “up” the hierarchical structure, respecting 
their multifunctionality. 

With the hierarchical definition in place, structural processors are 
related to a specific activity which must be defined by an LCI listing. 
Several types of additional data are then also required to enable in
dicators to be calculated at each processor. The “foreground” scaling 
information is provided by scenario information such as energy mix and 
installed capacity data, supplied by outputs from ESMs or other system 
configuration data. By its nature, this data will differ the most between 
individual scenarios, where different configurations are being tested, for 
example. Other “background” input data–e.g., employment rates or 
constants for raw material calculations–are likely to remain relatively 
constant from scenario to scenario. 

The key background inputs are taken from LCA databases. Firstly, an 
LCI listing provides a detailed set of information relating to the masses of 
individual materials, volumes of water and areas of land required as 
inputs to a given process–e.g., the production of one unit of energy using 
a certain technology or process. Outputs to land, water and soil are also 
given in relation to radiation, waste and several other aspects. LCI data is 
assigned at each structural processor in the system dendrogram–one LCI 

Fig. 1. Overview of general workflow used in the operation of ENBIOS alongside typical inputs and indicators for energy systems.  
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process per processor–and is provided using the ecospold (.spold) format 
utilised within the Ecoinvent 3.8 database [28]. 

Meanwhile, an LCIA “method” defines the way that LCI listings for a 
given process are transformed into useful final indicators–e.g., global 
warming potential (GWP), total land and water use, and a raft of other 
resource and environmental impact metrics. Many methods exist for 
defining a range of such indicators [29,30]. A number of these LCIA 
methods can be used with ENBIOS and the required method must be 
chosen prior to initiating calculations. Furthermore, as LCI processes for 
fuel production do not consider the combustion of fuels during their 
final use stage (e.g., the operation of internal combustion engines or 
home heating using natural gas) the additional GHG emissions for fuels 
must also be considered. Here, the required emission factors are taken 
from the Intergovernmental Panel on Climate Change (IPCC) database 
[31]. It is noted that similar estimates would need to be added to account 
for the additional contributions from combustion processes when other 
air pollution indicators are being used. 

Aside from life-cycle data, any number of additional socio-metabolic 
indicator data sources can also be included, provided it has been nor
malised for installed capacity or for each unit of energy produced. For 
example, employment data typically specifies the labour required to 
maintain a given capacity of electricity and heat infrastructure or pro
duce a certain amount of fuel [32,33]. Indicators can also be calculated 
that use raw materials requirements from LCI data in conjunction with 
other conversion factors or formulae. Indeed, methods for using LCI data 
to estimate raw material supply risks, end-of-life recycling input rates 
(EoLRIR) and local environmental impact and environmental justice 
threats for individual materials have been hypothesised elsewhere 
[34,35]. In theory, any number of methodologies and sets of input data 
could be used to create customised indicators for each process within a 
defined system, and ENBIOS has been specifically formulated to offer 
high levels of flexibility to users in this regard. Nevertheless, a summary 
of typical ENBIOS data inputs for energy systems is shown in Fig. 2. 

2.2. Simulation 

Once the system hierarchy has been defined and input parameters 
have been specified, indicators can begin to be produced. The first step is 

to produce a set of extensive results; for all structural and functional 
processors according to the selected methods as specified in simulation 
system files. It is important to note here that–unlike most previous at
tempts to aggregate LCA and other indicators for complete systems–in 
ENBIOS we do not perform simple linear aggregations on the results for 
individual processors when upscaling to higher hierarchical levels. 
Rather, the input variables themselves are aggregated at each point 
within the system hierarchy before the calculations are made. That is, 
we aggregate data inputs over the indicators themselves in order to 
explore emergent relations. In our previous example, extensive in
dicators are calculated using the applicable LCI data at the structural 
processors for wind turbines or solar PV. However, at the functional 
processor that encompasses these two processors, upscaled LCI data 
items would need to be summed before the indicator calculations could 
proceed. While this will not change indicators derived using linear 
relationships–e.g., GHG emissions derived using characterization factors 
in LCIA calculations–it is vital for the robustness of the model, and its 
potential suitability to different applications, that separate calculations 
are performed in situations where non-linear relationships are involved. 

A further round of indicators can then be created by relating the 
initial indicators to additional data about the internal functioning of the 
system, thus characterizing the metabolic relationships and constraints 
that exist within the system. This includes–but is not limited to–the 
derivation of further intensive indicators, which are specific to a given 
system (e.g., rates, ratios or densities). For example, using the approach 
shown in Fig. 2, one could report “metabolic rate” indicators based on 
labour requirements or per-unit-of-energy indicators based on the total 
amount of energy produced. Indeed, an array of possible intensive in
dicators is possible based on the number of extensive indicators avail
able. As with the definition of extensive indicators, ENBIOS offers the 
user great flexibility to define customised intensive indicators of their 
choosing. In this case, we use the most common MuSIASEM indicator of 
system functioning–human activity–using the hours of labour associated 
with the life cycle of each technology. 

We calculated all extensive and intensive indicators on a per-unit-of- 
energy basis, then upscaled and further analysed these indicators 
examining values at different levels within the system based on the 
defined energy system hierarchy (i.e., the system configuration or 

Fig. 2. Overview of typical data and methodological inputs and derived final outputs at each processor in an ENBIOS simulation for a given energy system. LCI data, 
conversion factors, raw material factors and other such data inputs define the system background and are typically entered at the system definition stage and only 
updated sporadically. Meanwhile, foreground data inputs for individual energy system configurations change according to each scenario being tested. It is noted that 
input values are aggregated to previous levels of system hierarchies and that calculations always occur at each processor in a system; indicator outputs themselves are 
never aggregated directly. 
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“energy mix”). A broad range of indicators can then be examined from 
individual or grouped energy sub-technologies to entire energy systems, 
and vice versa. 

3. Application to European energy scenarios 

To demonstrate an application of ENBIOS, the framework was 
applied to the European energy system using a set of projected scenario 
results for the years 2030 and 2050 obtained from partners within the 
SENTINEL project. 

3.1. System definition 

The dendrogram for the case study system was defined to align with 
outputs obtained from Euro-Calliope [36], a version of the Calliope 
model [37] being utilised within the project. The model includes all EU 
member states (except Malta), together with Albania, Bosnia and Her
zegovina, Montenegro, Serbia, Switzerland, the United Kingdom, Ice
land and Norway. Euro-Calliope simulates all regional processes of 
electricity and heat generation at the centralised utility level alongside 
the most common forms of fuels used for direct consumption (predom
inantly those for transport, non-centralised electricity and heat gener
ation and use in industrial applications). A representation of the 
dendrogram is shown in Fig. 3. 

Structural processors representing the individual sub-technologies 
are shown as rounded blocks at the “n-5” level, on the right-hand side 
of the diagram. Functional processors that represent higher level com
binations of these sub-technologies according to energy supply tech
nology type (“n-4”), renewable status (“n-3”) and energy carrier type 
(“n-1”) are then shown as square blocks to the left of this column. 

3.2. Data inputs 

Results obtained from Euro-Calliope that reflect the information for 
the system under the “climate neutrality” scenario were used here for 
the years 2030 and 2050 [38]. This includes energy production data in 
terawatt-hours (TWh) and installed capacity data in megawatts (MW) 
for 11 sources of utility-level electricity and three sources of utility-level 
heat. Total production levels (TWh) were also obtained for five sources 
of fuel supply. Note that no methanol use was included under this 
particular scenario. LCI data was assigned at each structural processor 
from the Ecoinvent 3.8 database [28]. All electricity processes are 
defined per kilowatt-hour (kWh) of energy produced, while heat pro
cesses are defined per megajoule (MJ); all inventory items are, thus, 
initially converted to TWh equivalents according to standard conver
sions. Fuel production processes are defined per kilogram (kg), which 
requires the data to be converted to energetic equivalents using known 
MJ/kg calorific value equivalents [39]. As the case study uses total 
energy inputs for the European energy system as a whole, generalised 
LCI process listings for Europe were used, where available. Where these 
processes are not available, rest of world (RoW) values are used. How
ever, in some cases the RoW values deviate significantly from those of 
individual European countries, which are often quite similar. In these 
instances, the European country that represents the highest share for 
that category in the case study energy mix is used. Lastly, GHG emission 
factors for combustion of the five fuels–in kg carbon dioxide equivalent 
(CO2-eq) per kg fuel–were obtained from the IPCC database [31]. A full 
listing of the input data is provided in Table S1 of the supplementary 
information. 

Three sample LCIA impact categories from the ReCiPe Midpoint (H) 
group [40] were chosen in this example: GHG emissions in kg CO2-eq 
were derived using the “GWP100” method, total land occupation in m2 

was estimated by summing outputs from the agricultural (“ALOP”) and 

Fig. 3. ENBIOS dendrogram structure for the EU energy system. Structural processors representing specific electricity, heat and fuel supply processes are located on 
the right side of the figure. Functional processors are shown on the left of the figure. 
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urban (“ULOP”) land occupation methods, while water depletion in m3 

used the “WDP” method. 
Employment data that estimates of the number of full-time jobs 

provided by each installed MW of capacity for each electricity and heat 
generation category [33] was also obtained for each technology. The 
data includes employment across the manufacturing, construction and 
installation periods, as well as the ongoing operation and maintenance 
tasks occurring within the equipment’s lifetime. Decommissioning 

periods are also included, where appropriate. Consequently, although 
the lifetimes of energy infrastructure are generally between 20 and 50 
years [32], and capacities fluctuate from year to year as equipment is 
implemented and retired, a total number of job positions can be calcu
lated for each moment in time based on current capacities. Data for fuel 
production processes is typically given on a per-unit-of-energy basis. 
Hence, the total amount of fuel supplied within a given period–in this 
case, one year–contributes to the maintenance of a certain number of 

Fig. 4. Results showing outputs for extensive indicators. Results shown for six indicators across three hierarchical level groupings for projected 2030 and 2050 
energy mix outcomes under the EU”climate neutrality” scenario. 
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positions within that timeframe. A full listing of the utilised data is 
provided in Table S2 of the supplementary information. 

In order to fully incorporate labour aspects into the metabolic cal
culations within ENBIOS, raw job data was then converted into hours of 
human activity (HA) using estimates of annual working hours from 
relevant sectors. Here, “mean weekly hours actually worked” data was 
obtained from the International Labour Organization (ILO) for each 
country represented in the Euro-Calliope model [41]; data is available 
for all sectors identified within the International Standard Industrial 
Classification (ISIC) level 2 definitions, of which four are directly 
applicable to the energy sector and assigned to each processor. Com
posite annual values for the full model extent–one for each sector–were 
then calculated using the weekly hours worked in individual countries, 
weighted according to ILO employment rate data. The final data for each 
sector is listed in Table S3 of the supplementary information. 

Lastly, raw material factors that enable calculations to be made for 
material supply risk (SR) according to established methodologies 
[34,35] were also included. Factors were obtained via external sources 
[42,43] for the 55 substances contained within the LCI database that are 
considered to be critical raw materials (CRMs) by the European Com
mission (EC) [43]. It should be noted that, although SR values are 
essentially dimensionless, years (yr) are used as units in accordance with 
the adopted formula. 

3.3. Analysis 

Results were firstly derived at each of the 19 structural (“n-5”) pro
cessors for a group of six extensive indicators: the total energy produc
tion (directly from Euro-Calliope results), three LCIA indicators, raw 
material SR and employment-related human activity. A full listing is 
provided in Table S4 of the supplementary information. Further calcu
lations were then performed in relation to energy supply technology 
type (“n-4”), renewable status (“n-3”) and energy carrier type (“n-1”). 
The findings are displayed in Fig. 4 and listed in Table S5 of the sup
plementary information. A summary of the overall percentage changes 
at the system level are shown in Table 1 alongside a listing of the 
technology type (“n-4”) that makes the most significant contribution to 
overall system change. 

The extensive data outputs reveal several key findings. The most 
immediate trends observed in the energy production data are the overall 
increase of energy production within the system boundary, the move 
towards renewable energy and the increased electrification of the sys
tem by 2050. The breakdown of technologies also reflects the forecast 
dominance of electricity from wind (65.5 %) and solar (20.4 %), heat 
from biomass (7.6 %) and the phasing out of natural gas, which would 
drop from 40.9 % of system share in 2030 to 0.1 % by 2050. As expected, 
net GHG emissions are predicted to drop significantly between 2030 and 
2050, reducing by 54.7 %; the highest contributor to this drop is coal, 
which drops from 34.8 % of system share in 2030 to zero in 2050. 

The level of emissions produced in 2050 are predominantly linked to 
electricity production (43.0 %) and the combustion of fuels produced via 
electrolysis and hydrogen-to-fuel processes (55.8 %); emissions from 
centralised heat processes are relatively negligible (1.2 %). Solar PV 
(24.5 %), wind (14.8 %), natural gas (13.3 %) and bioenergy (9. 6 %) 
processes are all significant contributors to overall emissions in 2050, 

and emissions created by combusting kerosene (20.4 %) and diesel 
(13.8 %) formed from electrolysis processes are also significant. These 
replace the fossil fuel sources–coal (37.0 %), natural gas (30.1 %), diesel 
(13.3 %) and kerosene (10.4 %)–predicted to remain as the dominant 
emitters in 2030. 

Conversely, land occupation increases dramatically, largely driven 
by renewable energy sources. This rise is heavily influenced by the use of 
bioenergy sources, which accounts 71.1 % of the total required land in 
2050, up from 0.8 % in 2030. Water depletion is expected drop by 38.4 
%, the changes largely being linked to the move away from fossil fuel 
processes with higher water requirements, particularly coal and natural 
gas. Meanwhile, total SR more than doubles between 2030 and 2050 in 
this example. This is overwhelmingly the result of electricity from wind 
and solar sources, which contribute 57.0 % and 39.0 % of the total score 
in 2050, respectively. Lastly, the required number of hours of HA from 
employment increases by 78.0 % between 2030 and 2050 under this 
scenario. This is, again, largely driven by increases in wind and solar 
installations; wind is the dominant contributor here, rising from a 2.4 % 
share of overall activity in 2030 to a 17.1 % share in 2050. 

Additional intensive indicators were then derived by comparing 
extensive indicators across and between MuSIASEM hierarchical levels. 
Fig. 5 provides side-by-side comparisons between 2030 and 2050 values 
for three “metabolic rate” indicators and four indicators that present 
extensive attributes on a per-MJ basis. Findings are presented for the 
three previous levels alongside the total system values at level “n”. A full 
listing is provided in Table S6 of the supplementary information. A 
summary of the overall percentage changes at the system level are 
shown in Table 2. 

The first of these analyses suggests that the energy metabolic rate 
(EMR) of the European energy system would drop by 25.6 % between 
2030 and 2050 under this scenario. This is predominantly the result of 
the large swing to electricity–and wind and solar technologies in par
ticular–which rises from 44.6 % to 91.5 % of system energy supply (fuels 
created via hydrogen from electrolysis are included in electricity totals). 
And, though heat and fuels are seen to provide significantly higher levels 
of energy per unit of activity, their shares of overall energy production 
decline from 31.2 % to 7.7 % and 24.2 % to 0.8 %, respectively, during 
this period. The rapid phasing out of natural gas assumed in the heating 
sector by 2050 results in the sharp drop observed in the EMR value for 
heat in this period and, coincidentally, a rise in the overall value for 
natural gas as its use as a direct fuel remains relatively high (see Fig. 4). 

Yet, while more hours of human activity would be required to pro
duce a unit of energy by 2050, findings for the GHG metabolic rate 
(GHGMR) confirm that significantly less emissions would be produced 
for each of these labour hours. This reduction is again strongly linked to 
a substantial change in the share of renewables which, on average, have 
GHGMR values less than 3 % of those for non-renewables. As a result, 
overall GHGMR values would reduce by 74.6 % between 2030 and 2050. 

Values for the water metabolic rate (WMR)–which decrease at the 
system level by 65.4 % between 2030 and 2050–are, again, strongly 
influenced by the dramatic drop in the use of fossil fuels. This is espe
cially true of coal and natural gas, whose extensive water use values 
represented 34.2 % and 15.5 % of the total contribution, respectively, in 
2030 but are expected to be virtually zero by 2050. A fall in the use of 
nuclear sources of electricity production, from which also have high per- 

Table 1 
Summary of changes in extensive indicators between projected 2030 and 2050 scenarios. Overall system changes at the “n” level, in relative percentage, are listed for 
each indicator. The most significant contributors at the “n-4” level, by change in overall percentage share, are also listed.   

Total energy GHG emissions Land occupation Water depletion Material supply risk Human activity 

Change (“n”) +32.5 % − 55.4 % +385.8 % − 38.4 % +146.4 % +78.0 % 
Most significant 

contributor 
Wind Coal Bioenergy Bioenergy Wind Wind 

Change in share (“n-4”) +58.2 % (7.3 % to 
65.5 %) 

− 37.0 % (37.0 % to 
zero) 

+70.6 % (0.8 % to 
71.4 %) 

+38.8 % (zero to 
38.8 %) 

+45.2 % (11.8 % to 
57.0 %) 

+14.6 % (2.4 % to 
17.1 %)  
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Fig. 5. Results showing outputs for intensive indicators. Results shown for seven indicators over complete system and three hierarchical level groupings for projected 
2030 and 2050 energy mix outcomes under the EU”climate neutrality” scenario. 

Table 2 
Summary of changes in intensive indicators between projected 2030 and 2050 scenarios. Overall system changes at the “n” level, in relative percentage, are listed for 
each indicator.   

Energy metabolic rate GHG metabolic rate Water metabolic rate Water use-to-energy Land use-to-energy GHG-to-energy Supply risk-to-energy 

Change (“n”)  − 25.6 %  − 74.9 %  − 65.4 %  − 53.5 %  − 66.3 %  +266.7 %  +86.0 %  
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MJ water requirements, is also a factor. Moreover, an increase of tech
nologies with relatively low water requirements such as wind and solar 
energy would help to reduce overall water use. Very similar results are 
observed for the water use-to-energy ratio, where the system-wide result 
is seen to reduce by 53.5 % by 2050. 

Meanwhile, the land use-to-energy ratio is predicted to almost 
quadruple between 2030 and 2050 under this scenario, predominantly 
due to the dramatic shift towards bioenergy (see Fig. 4). Overall land 
occupation for the system in 2050 was calculated to be around 4.9 times 
that in 2030, the contribution from bioenergy increasing from 0.8 % in 
2030 to 71.4 % in 2050; 51.8 % of this contribution is from heat derived 
from biomass. This is also reflected in the dramatic rise in the intensive 
value of heating witnessed at the “n-1” level. In this sense, it is noted that 
natural gas, nuclear energy, diesel and kerosene require considerably 
lower areas of land according to this metric. 

The net amount of GHG emissions produced per unit of supplied 
energy is a key system indicator for analysing system performance 
alongside emissions reduction targets. In this scenario, an overall 
reduction of 66.3 % is observed in this indicator between 2030 and 
2050. Again, overall system emissions are likely to remain dominated by 
non-renewable energy forms in 2030, although by 2050 the dominance 
of renewables would mean that a relatively large share of emissions 
would also be provided by renewables (51 %). Nevertheless, GHG-to- 
energy ratios for renewables remain predictably lower than non- 
renewables–around 40 times lower at the “n-3” level in 2050–and wind 
technologies comfortably provide the best outcomes within the group. 
However, it is noted that nuclear power is the lowest of the technologies 
examined and produces less than half of the emissions of wind energy. 

Finally, the level of extensive SR in the 2050 system is almost 2.5 
times that of the 2030 system, reflecting a substantial rise in potential 
supply disruptions during this period. Again, these values are rooted 
predominantly in contributions from wind (57 %) and solar (39 %) 
technologies. Analysis of SR-to-energy ratios confirms that solar and 
wind are substantially higher than all other categories at the “n-4” level; 
both are between 1.5 and 21.1 times higher than other technologies. 
Consequently, a net increase of 86 % is observed in the level of expected 
SR per unit of energy for the system as a whole between 2030 and 2050. 

4. Discussion and conclusions 

The ENBIOS framework brings a systemic approach to the assess
ment of environmental impacts and constraints within energy systems 
using a methodology that combines the high resolution of LCA meth
odologies with the multi-level functionality of the MuSIASEM approach. 
Furthermore, in the version presented here, we offer a first attempt at 
systematizing the integration of raw material indicators into energy 
modelling practices. Ultimately, ENBIOS has been designed to enable 
the relationships between indicators at different hierarchical levels to be 
analysed and the trade-offs between different energy transition path
ways to be compared–with each other and with defined benchmarks–
with the aim of informing better energy policy decision making. Full sets 
of indicators can be produced for multiple energy system scenarios, 
derived from different system configurations or across different regions 
and timeframes. Analysis of indicators can derive further information 
about preferred options, depending on the preferences or perceived 
limitations of policymakers, and determine whether certain scenarios 
are more–or less–technically feasible than others in terms of land use, 
raw material supply issues, employment or other socio-economic fac
tors. The ability to observe indicator data across and between levels also 
allows problem areas such as constraint hotspots to be more easily 
identified. 

The capabilities of ENBIOS were demonstrated using inputs from a 
“climate neutrality” scenario for the European energy system in 2030 
and 2050. Extensive outputs revealed that system changes in this peri
od–where a rapid switch is made towards renewables, particularly wind 
and solar electricity and heat from biomass–would result in a significant 

reduction in GHG emissions. However, although water requirements are 
unlikely to present serious issues, land occupation, material SR and la
bour requirements are all likely to rise dramatically. It is recognised that 
the values of land use derived can refer to many different types of use. 
For example, the land required by a nuclear plant is vastly different from 
land required for a hydropower dam or wind far. Nevertheless, here, the 
land use totals are largely related to biomass plantations. Meanwhile, 
material issues are strongly linked to wind and solar infrastructure, 
while the higher labour needs for solar contribute far more than wind or 
biomass operations. 

Further analysis of the system, via composite intensive indicators, 
provided further insights. At the system level, positive outcomes were 
observed for overall reductions in GHGMR (74.9 %), WMR (65.4 %), 
water-to-energy (53.5 %) and GHG-to-energy (66.3 %) ratios. Even so, 
an EMR reduction of 25.6 % suggests that the system would generate less 
energy per unit of human activity in 2050, which could have implica
tions on labour markets. Ratios of land use-to-energy and SR-to-energy 
are both also projected to increase markedly. Indeed, the conse
quences of different energy transition pathways on both of these issues is 
increasingly being highlighted and could result in wider ecological, 
political and environmental justice concerns [36,44,45]. 

Looking specifically to the three key processes at the “n-5” lev
el–electricity from wind and solar, and heat from biomass–reveals their 
influence on overall system indicators. Again, the high labour require
ment for solar infrastructure has a strong influence on lowering all 
metabolic rate values. Very low water requirements for wind turbines 
have positive effects on both water-related indicators. Similarly, their 
low GHG-to-energy ratios tend to dictate wider outcomes for this indi
cator. Extremely high land use-to-energy ratios for biomass result in 
their total dominance in this regard. Finally, high SR-to-energy ratios for 
wind and solar infrastructure are highly influential on the score re
ductions for this indicator. 

The case study provides a simple illustration of the ability of ENBIOS 
to perform deeper analyses on the different relationships that exist 
within current and future energy systems, relationships that quantify 
constraints and areas of concern across different system levels. While 
this example provides a broad demonstration using potential European 
energy system configurations for illustrative purposes, it is noted that 
greater detail is possible and that future studies will aim to utilise system 
dendrograms that incorporate separate consideration of individual re
gions or countries, where LCA data exists. For example, outputs from the 
Euro-Calliope model are provided for 35 individual countries and 
separate definitions are often available for LCA processes at the national 
level. What’s more, shares of energy within technological groups could 
be further delineated into sub-technologies where suitable LCA data is 
available. While a lack of data is observed for certain technologies–such 
as wind and hydropower–a large selection of different LCA processes are 
defined for solar and biomass sub-technologies. This would allow far 
more detailed analyses to be undertaken. To that end, an implementa
tion and expansion of the ENBIOS framework in a python package has 
been created and is now in beta version [46]. 

In this regard, the validity of the LCIA indicators used in the case 
study was tested by comparing them against the range of available re
sults for individual European countries. The investigation found that 
most individual values for GHG emissions, land occupation and water 
depletion were within 2–3 % of the values used to represent Europe as a 
whole in the case study. The most significant differences by far were 
observed for waste incineration, where values could be several times 
higher or lower than others. The process used to represent Europe in the 
analysis is for Germany, which is the current and projected largest 
adopter of waste incineration. As such, the best possible representation 
is being used. However, it is recognised that a considerable amount of 
uncertainty is inherent within the results for waste incineration as a 
result of the variability in the regional data. Variations of 10–20 % are 
observed in the values for natural gas, coal, wind turbines and solar PV 
cells, suggesting that more regionally detailed investigations are also 
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likely to improve the accuracy of results for these technologies. 
It is also noted that in this work we derived sets of indicators using 

system configuration data taken from energy models. However, it is 
hoped that information produced by the framework could also be inte
grated into such models to be used as constrains. This, of course, would 
require the ENBIOS python module to be included within the broader 
architecture of an integrated model in order to become a truly interac
tive element of its system optimisation calculations. In this sense, it is 
also important to note that, while ENBIOS has been primarily formu
lated to analyse energy systems, it has been designed to be adaptable to 
any type of hierarchical system and could, theoretically, be used in any 
number of other applications where multi-level analysis is required, 
such as agricultural systems. This is especially true if users also require 
LCA functionalities to be integrated into their analysis. 

In any case, despite the potential of the framework in its current 
form, a number of limitations are noted. Firstly, as with many LCA- 
related applications, assessments are limited to using static informa
tion based on current inventories. That is, the derived outputs for future 
processes do not contain allowances for future improvements in the 
background systems that supply energy and material inputs. For 
example, the mix of electricity inputs used in creating or transporting a 
wind turbine in 2040 is essentially “locked” in its current configuration. 
In reality, many of these inputs would, themselves, produce less emis
sions or include higher amounts of recycled content as greener energy 
practices and circularity initiatives are implemented. It is hoped that the 
further integration of pLCA concepts–which enable the modification of 
background systems in modelled environments of this kind–can be 
included in the python module. This would allow users to manipulate 
LCI data assumptions to reflect future developments. Nevertheless, 
current ENBIOS assessments are capable of providing indications of key 
bottleneck hotspots in terms of required technological or sourcing im
provements, using current conditions as reference benchmarks. 

Similarly, it is acknowledged that variations may well occur to many 
of the input parameters used within the calculations for extensive in
dicators. For example, in the case study presented here, values of SR for 
individual materials are likely to change over time as reserve amounts 
and geo-political aspects fluctuate. Likewise, improvements in 
manufacturing or increased levels of automation may result in lower 
labour requirements, particularly for newer technologies like wind 
turbines, solar PV cells or biofuel production. Naturally, the extent of 
these improvements is difficult to predict, although learning curves or 
other approaches could be applied [47]. However, the architecture of 
ENBIOS means that it is simple to change input parameters of this kind 
for investigating multiple future scenarios. 

Several issues relating to LCA data availability have also been 
identified. Although Ecoinvent and other major LCI databases contain 
several thousand energy-related processes, a lack of good quality data 
remains for some common processes, especially for newer technologies. 
For example, innovations on wind, solar PV and bioenergy technologies 
are underrepresented and energy storage technologies are not yet rep
resented beyond the production of lithium-ion cells. Accordingly, they 
have not been included in the current analysis. Moreover, most quality 
LCA data sources are paywalled, which could seriously restrict access to 
calculations. 

ENBIOS joins a growing move towards the wider inclusion of sus
tainability concepts in energy modelling processes. The key to further 
progress in this area would seem to lie in the ability to place related data 
and operations into environments that are also compatible with the 
models themselves. As such, open-source applications such as Wurst 
[48], PREMISE [19] and the ENBIOS module that operate within Python 
environments are making it easier to import model output data and 
manipulate and automate the processing of life cycle data. Again, the 
ability to return outputs from applications such as ENBIOS back into 
energy models directly to achieve genuine two-way synthesis would 
greatly improve the ability of models to integrate the power of LCA and 
other high resolution environmental data in this manner. This would 

result in modelling platforms that include far better representations of 
environmental impacts and constraints as we strive to implement 
cleaner and more sustainable energy systems as safely, efficiently and 
rapidly as possible. 
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